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1. Introduction

Let E/F be a CM extension of a totally real number field F . We consider the uni-

tary group G= U(h) of a nondegenerate Hermitian space (V,h) over E of dimen-

sion m≥ 4 such that the signature of h is (1−, (m−1)+) at all the Archimedean

places of F . Let � ∈ V be a vector such that h[�] = +1, and let H be the stabi-

lizer of E� in G. An automorphic cuspidal representation π of G(AF ) is said to

be H(AF )-distinguished if π contains a cusp form ϕ on G(AF ) whose H-period

integral PH(ϕ) =
∫
H(F )\H(AF )

ϕ(h)dh is not zero, where dh is the Tamagawa

measure on H(AF ).

There are several reasons to believe the existence of a functorial transfer

from a class of GL2(AF )-distinguished cuspidal representations of GL2(AE) to

the set of H(AF )-distinguished cuspidal representations of G(AF ) (see [14], [5]).

To realize such a transfer between the sets of distinguished automorphic repre-

sentations on different groups, one uses a comparison of relative trace formulas
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whose efficiency has been confirmed in many cases since its cultivation by Jacquet

(see [10], [12], [13]; see also Flicker [6]). In this article, we fully develop a relative

trace formula for the symmetric space H\G to serve as one of the main tools for

constructing the transfer mentioned above, including all the associated techni-

calities necessary to carry out the comparison. Let us review its deduction in a

slightly simplified setting.

We choose a maximal oE-lattice L⊂ V and fix maximal compact subgroups

Uv ⊂G(Fv) by taking the stabilizer of L in G(Fv) at all finite places v of F . We

start with a decomposable function

Φ(g) =
∏
v

Φv(gv), g ∈G(AF ),

on the adèle groupG(AF ), whose non-Archimedean factors Φv(gv) are leftH(Fv)-

invariant smooth functions on G(Fv) such that Φv is of compact support modulo

H(Fv) and coincides with the characteristic function of H(Fv)Uv for almost all

v’s. Using the local harmonic analysis on H(Fv)\G(Fv), we explicitly construct

a wide and flexible enough class of Archimedean factors Φv(gv) with no support

condition but with some weak gauge-estimate on G(Fv) instead. This weaker

support condition on Φ is the main feature of our version of the relative trace

formula. For such Φ’s, we show that the Poincaré series

Φ(g) =
∑

γ∈H(F )\G(F )

Φ(γg), g ∈G(AF ),

converges absolutely and locally uniformly. To attain this, we construct a majo-

rant of Φ(g), adopting a method developed in [29] and [19] to the adelic setting.

The relative trace formula is obtained by computing the H(AF )-period integral

PH(Φ) in two ways, leading to its two different expressions, the spectral side

and the geometric side. The only serious issue to be settled here is the abso-

lute convergence of the expressions. On the spectral side, the problem is already

treated by Lapid [16] in a wide setting. As with Lapid, in our case we also need

an estimation of the unitary Eisenstein series on a Siegel domain of G(AF ) uni-

form in the spectral parameter. Such an estimate, stated in Lemma 6.5, becomes

available by a modification of the proof in [7]; for our purpose, we need to attain

the best possible exponent of the norm ‖g‖ in the majorant. From the gauge-

estimate of Φ, we have Φ ∈ L2+ε(G(F )\G(AF )) for some ε > 0 (see Lemma 6.3),

which yields the spectral expansion of Φ by automorphic forms. The resolution

involves the H(AF )-period of the unitary Eisensteins; in Section 5.9, we com-

pute them very explicitly by employing Shintani’s method. The nonexistence of

H(AF )-distinguished residual forms other than constants is also proved. Invoking

a weak version of Weyl’s law on the locally symmetric manifold of G(F ⊗QR) (see

[2]) and the uniform estimate of Eisenstein series mentioned above as well as a

similar uniform estimate for cusp forms, we prove that the spectral resolution of

Φ(g) converges absolutely and locally uniformly on G(AF ) (see Proposition 6.7).

The argument also shows that PH(Φ) is computable by taking the H(AF )-period

integral of each component in the spectral resolution. The process provides us
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with the spectral side (see Proposition 6.8). In Section 7.1, we classify double

cosets H(F )γH(F ) ⊂ G(F ) in terms of the number N�(γ) = NE/Fh(γ
−1�, �).

The geometric side is obtained by the familiar unfolding procedure (see [11]);

our gauge-estimate of Φ (see Lemma 6.1) ensures the absolute convergence of

the geometric side, which is necessary to apply Fubini’s theorem. As a conse-

quence, the geometric side is expressed as a linear combination of Φ(e) and the

sum of adelic orbital integrals J(γ,Φ) =
∫
Hγ(AF )\H(AF )

Φ(γh)dOγ(h) over dou-

ble cosets H(F )γH(F ) different from H(F ). The upshot of Sections 6 and 7 is

the relative trace formula enunciated in Theorem 7.4. The integral J(γ,Φ) is an

Euler product of similar local orbital integrals Jv(γ,Φv) over all places v of F . In

Section 8, we study the germ expansion of non-Archimedean local orbital inte-

grals Jv(γ,Φv) for the regular coset H(Fv)γH(Fv) near a singular coset; this

kind of theory is crucial to realize the transfer of orbital integrals in the compar-

ison of trace formulas. In Section 9, instead of developing a similar germ theory,

we compute all the Archimedean orbital integrals Jv(γ,Φv) directly in terms of

Gaussian hypergeometric series.

The first three sections after the Introduction are preliminaries. In Section 2,

we introduce basic notation and symbols which are valid throughout the article.

In Section 3, we recall the harmonic analysis of complex hyperbolic spaces fol-

lowing [4] and [25]. In Section 4, we prove the necessary property of the Poisson

integrals and the normalized local intertwining operators. The holomorphy of

these operators in the closure of positive chamber plays a pivotal role both in the

computation of Eisenstein periods (see Section 5.9) and in the uniform estimate

of unitary Eisenstein series (see Lemma 6.5). This article has two companion

works [27] and [28]. In [27], we proved the fundamental lemma. In [28], we will

complete the comparison of relative trace formulas.

Basic notation. Let N denote the set of positive integers, and let N0 =N∪{0}.
For a compact interval I ⊂R and δ > 0, set Tδ,I = {z ∈C | |Im(z)| ≥ δ,Re(z) ∈ I}.
For a number field or a non-Archimedean local field F , the maximal order of F is

denoted by oF . For any totally disconnected topological space X , S(X) denotes

the C-vector space of all those locally constant complex-valued functions on X

of compact support. For a set X and its subset Y , the symbol 1Y stands for the

characteristic function of Y on X .

2. Preliminaries

2.1
Let F be a field of characteristic 0, and let E = F [

√
θ] be a quadratic étale F -

algebra. The Galois conjugate over F of an element α ∈E is denoted by ᾱ. Let

V be an E-module of E-rank m, and let h : V × V → F be a nondegenerate

Hermitian form on V such that h(αx,βy) = αβ̄h(x, y) for x, y ∈ V and α,β ∈E.

For x ∈ V , the value h(x,x) is also denoted by h[x]. As in Section 1, let

G=
{
g ∈GLE(V ) | h(gx, gy) = h(x, y) for all x, y ∈ V

}
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be the unitary group of (V,h). We assume that a pair of F -isotropic vectors e,

e′ such that h(e, e′) = 1 is given, and we set V1 = (Ee+ Ee′)⊥. Let G1 be the

unitary group of V1. Let P be the stabilizer in G of the submodule Ee, and let

P1 be the stabilizer of the vector e. Then P is an F -parabolic subgroup of G, and

P is a semidirect product of P1 and an F -torus whose set of F -points consists of

all the elements [τ ] ∈G with τ ∈E×, defined by

[τ ]e= τe, [τ ]e′ = τ̄−1e′, [τ ]|V1 = id.

For g1 ∈ G1(F ), let m[g1] denote the element of G(F ) which acts on V1 by g1
and on Ee+Ee′ by the identity; we define M1 to be the F -subgroup whose set

of F -points is {m[g1] | g1 ∈G1(F )}. For X ∈ V1 and b ∈ F , define n[X; b] ∈G(F )

as

n[X; b]e= e, n[X; b]y = y− h(y,X)e (y ∈ V1),

n[X; b]e′ = e′ +X +
(
−2−1h[X] +

√
θb
)
e.

Let N be the unipotent radical of P ; then N(F ) = {n[X; b] |X ∈ V1, b ∈ F} and

P1 =M1N . If a vector � ∈ V such that

h[�] = 1 and h(�, e) = 1

is given, we define H to be the stabilizer of the submodule E� ⊂ V and H0 to

be that of the vector �. Then H is a symmetric subgroup of G obtained as the

fixator of the inner automorphism g 
→ s�gs
−1
� , where s� is the reflection of V

such that s�(�) =−�.

2.2. Gauge-forms
Let t ∈ F . We will regard Σ(t) = {x ∈ V −{0} | h[x] = t} as an F -variety by iden-

tifying it with ΣQ(t) (see Lemma A.1), where Q denotes the F -quadratic form

h[x] on V ∼= F 2m. Let ωV be the gauge-form on V defined as ωV = det(h(ξi, ξj))×∏m
j=1

dzj∧dz̄j

2
√
θ

for any E-basis {ξj} of V , where zj denotes the E-coordinate func-

tions on V dual to {ξj}. By fixing an F -point ξ ∈Σ(t), we have an F -isomorphism

G(ξ)\G ∼= Σ(t) sending a coset G(ξ)g to the vector g−1ξ, where G(ξ) denotes

the stabilizer of ξ in G. Let φ : V − {0} → F be the F -morphism defined by

φ(x) = h[x]. From Lemma A.1, there exists a unique G-invariant gauge-form

ωΣ(t) on Σ(t) such that ωV = ωΣ(t) ∧ φ∗(dt), where t is the coordinate of F . We

fix an F -rational left-invariant gauge-form ωG on G once and for all. Then we

take the unique gauge-form ωG(ξ) on G(ξ) so that ωG, ωG(ξ), and ωΣ(t) match

together algebraically in the sense of [30, p. 24]. In this way, we fix ωP1 on

P1 = G(e) and ωH0 on H0 = G(�). Let ωP1\G and ωH0\G be the gauge-forms

on P1\G ∼= Σ(0) and H0\G ∼= Σ(1) corresponding to ωΣ(0) and ωΣ(1), respec-

tively. Since P = {[τ ] | τ ∈E×}P1, there exists a left P -invariant gauge-form ωP

such that ωP = dτ∧dτ̄
2
√
θNE/F (τ)

∧ωP1 . Let T be the F -torus whose set of F -points is

E1 = {α ∈E |NE/F (α) = 1}. Since H ∼= T ×H0, we define an H-invariant gauge-

form ωH on H by taking the wedge product of pullbacks of ωT and ωH0 , where

ωT is the gauge-form of T such that dα∧dᾱ
2
√
θNE/F (α)

= ωT ∧ dt
t with t=NE/F (α).
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It is not difficult to see that PH = {g ∈ G | h(g−1e, �) = 0}, which shows

that PH is a Zariski-open subset of G. Set HP = P ∩H . It turns out that the

restriction of the map [τ ]m[g1]n[X; b] 
→ (τ, g1) from P to E× ×G1 induces an

isomorphism HP
∼= E1 ×G1. Since PH ∼= P ×HP \H , we have an H-invariant

gauge-form ωHP \H on HP \H such that ωG|PH corresponds to ωP ∧ ωHP \H on

P × (HP \H). We endow HP with the left-invariant gauge-form ωHP
such that

ωH , ωHP
, and ωHP \H match together algebraically.

2.3. Local Tamagawa measures
Let F be a local field of characteristic 0, and let | · |F be the normalized valuation

of F . Given a gauge-form ωX on a smooth F -variety X , the usual process (see

[30, Section 2.2]) yields a measure |ωX |F on the F -points X(F ). For example,

the Haar measure |dt|F on F is such that
∫
oF

|dt|F = 1 if F is non-Archimedean,

and
∫ 1

0
|dt|F = 1 if F =R. On the spaces such as G(F ), H(F ), Σ(t), P1(F ), and

HP (F )\H(F ), we put the (left-)invariant measures obtained from the gauge-

forms fixed in Section 2.2.

Let D(P (F )\G(F )) be the space of all those continuous functions φ :G(F )→
C such that φ([τ ]p1g) = |NE/F (τ)|m−1

F φ(g) for all τ ∈E×, p1 ∈ P1(F ). Then we

have a (continuous) linear functional μP\G : D(P (F )\G(F ))→ C satisfying the

relation ∮
P (F )\G(F )

(∫
P (F )

f(pg)|ωP |F (p)
)
dμP\G(g)

=

∫
G(F )

f(g)|ωG|F , f ∈Cc

(
G(F )

)
,

(2.1)

where
∮
P (F )\G(F )

φ(g)dμP\G(g) denotes the value μP\G(φ) for φ ∈ D(P (F )\
G(F )). Note that the modulus character of P (F ) is given by δP (F )([τ ]p1) =

|τ τ̄ |m−1
F (τ ∈E×, p1 ∈ P1(F )).

LEMMA 2.1

For any φ ∈D(P (F )\G(F )), we have

μP\G(φ) =

∫
HP (F )\H(F )

φ|ωHP \H |F .

Proof

This follows from ωG|PH = ωP ∧ ωHP \H and (2.1). �

3. Local harmonic analysis at Archimedean places

We let F = R and E = F [
√
θ] = C, and we identify an R-algebraic group with

its R-points; thus G = G(R), H =H(R), and so on. We assume that sgn(h) =

(1−, (m − 1)+), and we set �− = � − e. Let U be the stabilizer of C�−. Since

h[�−] =−1 and h(�, �−) = 0, U is a maximal compact subgroup of G and UH =

U ∩H is a maximal compact subgroup of H . Fix an orthonormal basis {�j}m−1
j=1
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of (�−)⊥ such that �m−1 = �, and set �m = �−; by means of the basis {�j}mj=1

of V , we identify G with U(m − 1,1). The minimal majorant of h is given

by ‖Z‖U = {
∑m

j=1 |h(Z, �j)|2}1/2 (Z ∈ V ). Moreover, H ∼= U(m − 2,1) × U(1)

and U ∼= {diag(k1, k2) | (k1, k2) ∈ U(m− 1)× U(1)}. For a dominant weight l =

{l(j)}1≤j≤m−1 (l(j) ∈ Z, l(j)≥ l(j+1)) and c ∈ Z, let (τ(l;c),W(l;c)) be a unitary

U = U(m−1)×U(1)-module obtained as the tensor product of an irreducible rep-

resentation of U(m− 1) with highest weight l and the character z 
→ zc of U(1).

First we recall some integration formulas, which are more or less well known; we

need to determine the normalizing constants therein.

LEMMA 3.1

We have

μP\G(φ) = |
√
θ|1−mπm−1Γ(m− 1)−1

∫
U
φ(k)dk, φ ∈D(P\G),

where dk is the Haar measure on U with total volume 1.

Proof

There exists a constant A> 0 such that

μP\G(φ) =A

∫
U
φ(k)dk(3.1)

for all φ ∈D(P\G). Fix ε > 0, and set

φ(g) =

∫
C×

exp
(
−ε
∥∥g−1[τ ]−1e

∥∥2
U
)
|τ |−(m−1)

C

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
R
, g ∈G.

By the polar coordinates τ = reiϕ, we have t = NE/F (τ) = r2 and dτ∧τ̄
2
√
θττ̄

=

d×t ∧ dϕ

2i
√
θ
. Since ‖Z‖U is U -invariant and ‖e‖2U = 2, it is easy to see that∫

U φ(k)dk = |
√
θ|−121−mπε1−mΓ(m − 1). On the other hand, if we set ϕ(t) =∫

Σ(t)
exp(−ε‖Z‖2)|ωΣ(t)|R for t ∈R, then∫

R

ϕ(t)e2πitτ dt=

∫
V

exp
(
−ε‖Z‖2

)
e2πiτh[Z]|ωV |R

= |
√
θ|−m πm

(ε− 2πiτ)m−1(ε+ 2πiτ)
.

By the Fourier inversion, ϕ(0) equals∫
R

|
√
θ|−mπm

(ε− 2πiτ)m−1(ε+ 2πiτ)
dτ = 2πiResτ=− ε

2πi

|
√
θ|−mπm

(ε− 2πiτ)m−1(ε+ 2πiτ)

= 21−mπm|
√
θ|−mε1−m.

Thus

μP\G(φ) =

∫
P1\G

exp
(
−ε‖g−1e‖2U

)
|ωP1\G|R

=

∫
Σ(0)

exp
(
−ε‖Z‖2

)
|ωΣ(0)|R = ϕ(0) = 21−mπm|

√
θ|−mε1−m.

From the identity (3.1), we have A= πm−1Γ(m− 1)−1|
√
θ|1−m. �
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Let A= {a(t) | t ∈R} be a 1-parameter subgroup of G defined as

a(t)�= (cosh t)�+ (sinh t)�−, a(t)�− = (cosh t)�− + (sinh t)�,

a(t)|(C�+C�−)⊥ = id,

and let ZU∩H(A) be the centralizer of A in U ∩H .

LEMMA 3.2

The map H × [0,+∞) × U → G sending (h, t, k) to ha(t)k induces a homeo-

morphism from the quotient space H × [0,+∞)× U/ ∼ onto G, where ∼ is an

equivalence relation on H × [0,+∞) × U such that (h, t, k) ∼ (h1, t1, k1) if and

only if t = t1 = 0, hk = h1k1 or t = t1 = 0, (hm,m−1k) = (h1, k1) with some

m ∈ ZU∩H(A). In particular, G−HU is a disjoint union of Ha(t)U (t > 0). We

have the integration formula∫
H\G

f(g)|ωH\G|R =CG

∫ ∞

0

∫
U
f(a(t)k)(cosh t)2m−3(sinh t)dtdk,

where CG = |
√
θ|1−m4πm−1Γ(m− 1)−1.

Proof

This follows from [9, Part II, Theorems 2.4, 2.5] except the value of CG. By

the basis {�j}mj=1 fixed at the beginning of Section 3, we write a general point

of V as Z =
∑m

j=1 zj�j . Set ξ2j−1 = Re(zj) and ξ2j = Im(zj) (1≤ j ≤m). Then

|ωV |R = (
√

|θ|)−m
∏2m

j=1 dξj . The U -orbit of �m−1 (resp., �m) coincides with the

unit sphere S2m−3 ⊂ �⊥m (resp., S1�m). If we set (ηj) = k�m−1 and k�m = eϕi�m
for k ∈ U , then the relation Z = rka(t)� (r > 0, k ∈ U , t ∈R) can be written as

ξj = r cosh tηj (1≤ j ≤ 2m− 2),

ξ2m−1 =−r sinh t cosϕ, ξ2m =−r sinh t sinϕ.

From these,

dξ1 ∧ · · · ∧ dξ2m =−r2m−1(cosh t)2m−3 sinh tdt∧ dr ∧ dϕ∧ dη

is obtained, where dη =
∑2m−2

j=1 (−1)jηj dη1 ∧ · · · ∧ d̂ηj ∧ · · ·dη2m−2 is the gauge-

form on the (2m − 3)-dimensional Euclidean sphere S2m−3. Hence ωΣ(1) =

(
√

|θ|)−m(cosh t)2m−3 sinh tdt ∧ dϕ ∧ dη. Since ωH0∩U\U = dη is the gauge-form

of the manifold H0 ∩ U\U ∼= S2m−3 and vol(S2m−3, |dη|R) = 2πm−1Γ(m− 1)−1,

we have

|ωH\G|R =
|ωΣ(1)|R

|2
√
θ|−1

R |dϕ|R

=
(√

|θ|
)1−m

4πm−1Γ(m− 1)−1(cosh t)2m−3 sinh t|dt|R dk̇,

where dk̇ is the U -invariant measure on H0 ∩ U\U with total measure 1. This

gives us CG. �
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3.1. Spherical function of the principal series
Fix d ∈N0. We put

cd(s) = Γ(2s)Γ
(2s+m− 1

2
+ d
)−1

Γ
(2s−m+ 3

2
− d
)−1

,

viewing this as a meromorphic function on C. We write (τd,Wd) in place of

(τ(d,0,...,0,−d;0),W(d,0,...,−d;0)). Then dimCW
U∩H
d = 1; we fix a unit vector ϑd ∈

WU∩H
d once and for all. Let C∞(H\G; τd) denote the space of all the C∞-

functions f :G→Wd such that

f(hgk) = τd(k)
−1f(g) for all (h, g, k) ∈H ×G×U .(3.2)

LEMMA 3.3

For s ∈C outside the poles of Γ(s+ m−1
2 +d)Γ(s− m−3

2 −d), there exists a unique

function Φd(s) ∈ C∞(H\G; τd) such that Φd(s; e) = ϑd satisfying the Casimir

eigenequation

CGΦd(s) = 2−1
{
(2s)2 − (m− 1)2

}
Φd(s).

We have Φd(s;a
(t)) = φd(s, t)ϑd for all t ∈R with

φd(s; t) = (cosh t)−2s−m+1

× 2F1

(2s+m− 1

2
+ d,

2s−m+ 3

2
− d; 1; tanh2 t

)
.

(3.3)

Proof

The existence follows from [9, Part II, Theorem 6.2]. Let f ∈C∞(H\G; τd). From

(3.2), there exists a C∞-function φ(t) in t > 0 such that f(a(t)) = φ(t)ϑd. Then

from [24, Proposition 7.1], the Casimir eigenequation CGf = 2−1{(2s)2 − (m−
1)2}f yields

d2φ

dt2
+
( 1

tanh t
+ (2m− 3) tanh t

)dφ
dt

+
4d(d+m− 2)

cosh2 t
φ

=
{
(2s)2 − (m− 1)2

}
φ.

(3.4)

By setting w = (cosh t)ν+m−1φ(t), z = tanh2 t, this is transformed to the Gaussian

hypergeometric equation z(1− z)w′′ + {c− (a+ b+1)z}w′ − abz = 0 (0< z < 1)

with

(a, b, c) =
(2s+m− 1

2
+ d,

2s−m+ 3

2
− d,1

)
,

which admits the unique smooth solution on |z|< 1 such that w(0) = 1. �

3.1.1

For s ∈ C outside the pole divisor of {scd(s)}−1, let Ψd(s) be the unique Wd-

valued smooth function on G−HU having the equivariance

Ψd(s;hgk) = τd(k)
−1Ψd(s;g) for all (h,k) ∈H ×U ,(3.5)
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whose radial part is given by Ψd(s;a
(t)) = ψd(s; t)ϑd (t > 0) with

ψd(s; t) =
−1

2CG

1

scd(s)
(cosh t)−2s−m+1

× 2F1

(2s+m− 1

2
+ d,

2s−m+ 3

2
− d; 2s+ 1;

1

cosh2 t

)
.

(3.6)

By the last formula on page 47 of [17], we have the relation

Φd(s;g) =−2CGcd(s)cd(−s)s
{
Ψd(s;g)−Ψd(−s;g)

}
, g ∈G−HU .(3.7)

LEMMA 3.4

There exists N > 0 such that, for any compact interval I ⊂ (−1,+∞) and δ > 0,∥∥Ψd(s;a
(t)
v )
∥∥≤ (1 + ∣∣Im(s)

∣∣)N (cosh t)−2Re(s)−m+1, s ∈ TI,δ, t≥ δ.

Proof

Set as = s+ m−1
2 +d, and bs = s− m−3

2 −d. From [17, p. 54], we have the integral

representation

ψd(s; t) =−C−1
G (cosh t)−(2s+m−1)

∫ 1

0

xbs−1Fs(t, x)dx, Re(s)>
m− 3

2
+ d,

with Fs(t, x) = (1 − x)as−1{1 − x(cosh t)−2}−as . Let n ∈ N be such that n >
m−3
2 + d. We argue as in [25, Lemma 9] to obtain∫ 1

0

xbs−1Fs(t, x)dt

=

n∑
k=1

{ k∏
j=1

1

bs + j − 1

}F (k−1)
s (t,2−1)

2bs+k−1

+
{ n∏
j=1

1

bs + j − 1

}∫ 1/2

0

xbs+n−1F (n)
s (t, x)dx+

∫ 1

1/2

xbs−1Fs(t, x)dx,

(3.8)

where F (j)
s (t, x) = dj

dxj Fs(t, x). Since |Fs(t, x)| � (1 − x)Re(as)−1 for (s,x) ∈
TI,δ×× [1/2,1] uniformly in t≥ δ, the third term of (3.8) is absolutely convergent

for Re(s) > −m−1
2 − d and is bounded by a constant uniformly in s ∈ TI,δ and

t≥ δ. From

F (k)
s (t, x) =

k∑
j=0

(
k

j

){ j∏
α=0

(as − 1 + α)
}{k−j−1∏

β=0

(as + β)
}

× (cosh2 t)j−k(1− x)as−j−1
(
1− x

cosh2 t

)as+j+k

,

we have |F (j)
s (t, x)| � (1 + |Im(s)|)j for (s,x) ∈ TI,δ × [0,1/2] uniformly in t≥ δ,

from which the second term of (3.8) is seen to be absolutely convergent for

Re(s)>−n+ m−3
2 + d and to be bounded by O((1 + |Im(s)|)n) on s ∈ TI,δ uni-

formly in t ≥ δ. The first term of (3.8) is evidently holomorphic on TI,δ and is

bounded uniformly on s ∈ FI,δ , t≥ δ. �
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It turns out that t 
→Ψd(s;a
(t)) is the unique solution to (3.4) on t > 0 satisfying

the asymptotic conditions

Ψd(s;a
(t)) = 2CG

−1 log t+O(1) (t→+0),(3.9)

Ψd(s;a
(t)) =O(e−2Re(s)−m+1) (t→+∞).(3.10)

In particular, the function Ψd(s;g) in g has logarithmic singularities along HU .

LEMMA 3.5

Let φ ∈ C∞(H\G,τd) be a function with the majorization
∑2

j=0 ‖ dj

dtj φ(a
(t))‖ �

e2δt for t ∈R+ with some constant δ > 0. If Re(s)> m−1
2 +δ, we have the formula∫

H\G

(
Ψ

(s)
d (g) |

[
CG − 2−1

{
(2s̄)2 + (m− 1)2

}]
φ(g)

)
|ωH\G|R = 2

(
ϑd|φ(e)

)
,

whose left-hand side converges absolutely.

Proof

We argue exactly in the same way as [20, Proposition 23] by using (3.9), (3.10),

and Lemma 3.2 to get the conclusion. �

3.1.2

Let A be the space of all those even entire functions α(s) such that, for any

c1 < c2 and for any N > 0, the estimate |α(σ + it)| � (1 + |t|)−N (t ∈ R) holds

uniformly in σ ∈ [c1, c2]. For α ∈ A, we introduce the α-smoothing of Ψd(s) by

the contour integral

Ψ̂d(α;g) =
1

2πi

∫
(σ)

Ψd(s;g)α(s)sds, g ∈G−HU ,(3.11)

with σ > m−3
2 + d.

LEMMA 3.6

On any compact subset U of G−HU , the integral (3.11) converges uniformly and

absolutely, defining a C∞-function on G−HU which is locally square-integrable

on G; it has a unique C∞-extension to the whole group G.

Proof

Fix δ > 0 and a compact interval I ⊂ (m−3
2 + d,+∞). From Lemma 3.4, there

exists a constant N ∈ N such that ‖Ψd(s;g)‖ � (1 + |Im(s)|)N for g ∈ U , s ∈
TI,δ . Since |α(s)| � (1+ |Im(s)|)−N−3 (s ∈ TI,δ), the integral (3.11) is absolutely

convergent uniformly in g ∈ U . In particular, g 
→ Ψ̂d(α;g) is continuous on G−
HU . From the first part of Lemma 3.2, for any relatively compact open set U ⊂G,

there exists U0 ⊂H such that U ⊂ U0{a(t) | t≥ 0}U . By Lemma 3.4, we have
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∫
U0

|ωH |R
∫
U
dk

∫ ∞

0

∥∥Ψ̂d(α;ha
(t)k)

∥∥(cosh t)2m−3 sinh tdt

�
{ 1

2π

∫
(σ)

(
1 +
∣∣Im(s)

∣∣)N ∣∣α(s)∣∣|sds|}
×
{∫ ∞

0

(cosh t)−(2σ+m−1)(cosh t)2m−3 sinh tdt
}
,

whose majorant is convergent. Thus Ψ̂d(α;g) is integrable on U ; since vol(U)<

∞, it becomes square-integrable on U also. Therefore, the function Ψ̂d(α;g)

defines a Wd-valued distribution on the Riemannian manifold G/U . Let f :G→
Wd be a smooth compactly supported function such that f(gk) = τd(k)

−1f(g) for

all k ∈ U . Applying Lemma 3.5 to theH-invariant function φ(g) =
∫
H
f(hg)|ωH |R,

we have∫
G

(
Ψ̂d(α;g)|CGf(g)

)
|ωG|R =

∫
G

(
Ψd(α1;g)|f(g)

)
|ωG|R

+
{ 1

2πi

∫
(σ)

α(s)sds
}{∫

H

(
ϑd|f(h)

)
|ωH |R

}
,

where αn(s) = 2−n{(2s)2 − (m − 1)2}nα(s) for n ∈ N. By shifting the contour

(σ) to (−σ) and then by using the relation α(s) = α(−s), we easily see that∫
(σ)

α(s)sds = 0. Thus we have the distributional differential equation

Δn
d Ψ̂d(α) = Ψ̂d(αn) on the manifold G/U , where Δd is the elliptic differential

operator induced from CG on the distributional sections of the C∞-vector bun-

dle G×U,τd Wd → G/U . From the argument above, we have Δn
d Ψ̂d(α) ∈ L2(U)

(∀n ∈ N) for any open relatively compact U -invariant set U ⊂ G. By a form of

Sobolev’s lemma, we conclude that Ψ̂d(α) is represented by a C∞-section of the

bundle G×U,τd Wd →G/U . �

For d, j ∈N0, let fd,j ∈C∞(H\G,τd) be the unique function determined by

fd,j(a
(t)) = (cosh2 t)−(m−2+d−j)

× 2F1

(
m− 2 + 2d− j,−j;m− 2 + 2d− 2j;

1

cosh2 t

)
ϑd.

We remark that this is a polynomial of (cosh2 t)−1, which for j = 0 is simply

fd,0(a
(t)) = (cosh2 t)−(m−2+d)ϑd.

LEMMA 3.7

For any t > 0, we have

Ψ̂d(α,a
(t)) =

−1

CG

{ 1

8πi

∫
iR

Φd(s;a
(t))α(s)

ds

|cd(s)|2

+
∑
j∈Z

0≤j≤d+m−3
2

(−1)j

j!

Γ(2d+m− 2− j)

Γ(2d+m− 3− 2j)

× fd,j(a
(t))α

(m− 3

2
+ d− j

)}
.
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Proof

This is the same as in [25, Proposition 12]. The relation (3.7) is used in the

proof. �

LEMMA 3.8

For any R> 0, we have∥∥Ψ̂d(α;a
(t))
∥∥� (cosh t)−R, t ∈R.(3.12)

Proof

Let 2σ− (m− 1)>R. Then from (3.11) and Lemma 3.4,∥∥Ψ̂d(α;a
(t))
∥∥� (cosh t)−R 1

2π

∫
(σ)

(
1 +
∣∣Im(s)

∣∣)N ∣∣α(s)∣∣|sds|
for all t≥ 1. From the estimate |α(s)|=O((1 + |Im(s)|)−N−3), the integral con-

verges. Thus (3.12) is obtained at least for t≥ 1. Since ‖Ψ̂d(α;a
(t))‖ is continuous

on R from Lemma 3.6, the estimate on t ≥ 1 is extended to R with a possibly

larger implied constant. �

REMARK

The representation I(| · |νR) = IndGP (| · |
ν
C ⊗ 1M1) is called the principal series of

H\G (see [4]). The discrete spectrum of L2(H\G) is completely described by the

functions fd,j (d, j ∈N0), which belong to L2(H\G) if and only if 0≤ j < m−3
2 +d.

4. Local harmonic analysis at non-Archimedean places

In this section, we let F be a local non-Archimedean field of characteristic 0. The

normalized valuation of F is denoted by | · |F . We fix a prime element � of F , and

we set q = |�|−1
F . Put |α|E = |αᾱ|F for α ∈E. If E is a field, let εE/F denote the

quadratic character of F× trivial on NE/F (E
×); if E is not a field, set εE/F = 1.

We identify an F -algebraic group with its F -points; thus G=G(F ), H =H(F ),

and so on. We assume that rankE(V )≥ 4, and we fix a maximal oE-lattice L in

(V,h). Set U to be the stabilizer of L in G. The aim of this section is to prepare

necessary ingredients for the local harmonic analysis of H\G.

4.1. The Poisson integrals
We set XF = C/2π

√
−1(log q)−1Z. For any quasicharacter χ of E× and any

irreducible smooth representation σ of M1, we consider the normalized induced

module IndGP (χ⊗ σ) of G.

LEMMA 4.1

The representation π = IndGP (χ⊗σ) is H-distinguished (i.e., HomH(π,C) = {0})
only if σ is the trivial representation of M1 and χ|E1 = 1.

Proof

This is proved by the same argument as in [27, Lemma 18]. �
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For a quasicharacter η of F×, set

I(η) = IndGP (η ◦NE/F ⊗ 1M1).

For a unitary character η of F× and ν ∈XF , the Poisson integral is defined by〈
Ξ
(
η| · |νF

)
, f
〉
=

∮
P\G

Y
(
η| · |νF ;g

)
f(g)dμP\G, f ∈ I

(
η| · |νF

)
,(4.1)

where

Y
(
η| · |νF ;g

)
=

{
(η| · |ν−(m−1)/2

F )(NE/F (h(g�, e)), g ∈ PH,

0, g ∈G− PH.

If Re(ν) ≥ m−1
2 , then the integral (4.1) converges absolutely, defining an H-

invariant C-linear form Ξ(η| · |νF ) : I(η| · |
ν
F )→ C because the function Y (η| · |νF )

with Re(ν) ≥ m−1
2 is continuous on G and is right H-invariant. By Bernstein’s

theorem (see [8, Section 12.2]), there exists a polynomial Rη(z) ∈C[z] such that

ν 
→ Rη(q
ν)Ξ(η| · |νF ) extends to an entire family of H-invariant functionals on

I(η| · |νF ) (ν ∈ XF ). We define the normalized H-invariant functional Ξ0(η| · |νF )
on I(η| · |νF ) by setting

Ξ0
(
η| · |νF

)
=

L(2ν + 1, η2εmE/F )

L(ν − m−3
2 , η ◦NE/F )

L(m− 1, εm−1
E/F )Ξ

(
η| · |νF

)
for all unitary characters η of F× and ν ∈XF .

LEMMA 4.2

For any flat section f (ν) of Iv(η| · |νF ) over ν ∈XF , the function 〈Ξ0(η| · |νF ), f (ν)〉
is holomorphic on Re(ν)≥ 0.

Proof

For φ ∈ S(V − {0}), set

φ̃(ν)(g) =

∫
E×

φ(g−1τe)η(τ τ̄)|τ |ν+(m−1)/2
E

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
F
, g ∈G.

Then φ̃(ν) is a holomorphic section of I(η| · |νF ). Given a flat section f (ν), there

exists a finite collection of holomorphic functions cj(ν) and functions φj ∈ S(V −
{0}) such that f (ν) =

∑
j cj(ν)φ̃

(ν)
j for all Re(ν)≥ 0. We have〈

Ξ0
(
η| · |νF

)
, φ̃(ν)

〉
=

∫
P1\G

Y
(
η| · |νF ;g

)
φ(g−1e)

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
F

=

∫
Σ(0)

(
η| · |ν−(m−1)/2)(

NE/Fh(�, ξ)
)
φ(ξ)|ωΣ(0)|F .

For a general element ξ ∈Σ(0), we set ξ = z�+Z with z ∈E and Z ∈ �⊥. Then

h[Z] = −zz̄. Let Σ′(t) denote the hyperboloid h[Z] = t in �⊥, and let ωΣ′(t)

be the gauge-form on Σ′(t) as in Section 2.2. As seen from Lemma A.1, ωΣ(0)

is decomposed to ωΣ′(−zz̄) ∧ dz∧dz̄
2
√
θ
. The function φ(z� + Z) can be expressed
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as a finite sum of decomposable functions φ1(z)φ2(Z) (φ1 ∈ S(E), φ2 ∈ S(�⊥)).
For our purpose, it is harmless to assume that φ(z� + Z) itself is one of these

decomposable functions. Thus〈
Ξ0
(
η| · |νF

)
, φ̃(ν)

〉
=

∫
E×

(
η| · |ν−(m−1)/2)

(zz̄)φ1(z)

×
{∫

Σ′(−zz̄)

φ2(Z)|ωΣ′(−zz̄)|F
}∣∣∣dz ∧ dz̄

2
√
θ

∣∣∣
F

=

∫
NE/F (E×)

(
η| · |ν−(m−1)/2)

(t)Φ1(t)Φ2(t)|dt|F ,

where we set

Φ1(t) =

∫
E(t)

φ1(z)|ωE(t)|F , Φ2(t) =

∫
Σ′(−t)

φ2(Z)|ωΣ′(−t)|F , t ∈NE/F (E),

with E(t) denoting the fiber N
−1
E/F (t) and ωE(t) denoting a gauge-form on E(t).

Suppose that E is a field. From Lemma A.2(1), Φ1(t) is a restriction to NE/F (E)

of a Schwartz–Bruhat function on F , and there is a constant C such that Ψ2(t) =

Φ2(t) − Cεm−1
E/F (t)|t|m−2

F is a restriction of a Schwartz–Bruhat function on F .

Let Z(χ;ϕ) denote the (analytic continuation of the) Tate zeta integral∫
NE/F (E×)

χ(t)ϕ(t)|dt|F for a character χ of F× and ϕ ∈ S(F ). Then we have

that 〈Ξ(η| · |νF ), f (ν)〉 is a sum of zeta integrals like Z(η| · |ν−(m−1)/2
F ;Φ1Ψ2) and

CZ(η| · |ν+(m−3)/2
F ;Φ1). The latter term is holomorphic on Re(ν)≥ 0. The former

one has the same singularity as the analytic continuation of the integral∫
oF∩NE/F (E×)

η(t)|t|ν−(m−1)/2
F |dt|F

= vol
(
NE/F (o

×
E); |dt|F

)
L
(
ν − m− 3

2
, η ◦NE/F

)
,

Re(ν)>
m− 3

2
,

which is canceled by the normalizing factor. Suppose that E is isomorphic to

F ⊕ F . In this case NE/F (E) = F and, from Lemma A.2(1), there exists a con-

stant C1 such that Φ1(t) − C1 ordF (t) extends to a Schwartz–Bruhat function

on F . We argue similarly to show that 〈Ξ(η| · |νF ), f (ν)〉 has a meromorphic con-

tinuation to C whose singularity on Re(ν) ≥ 0 is the same as the analytic con-

tinuation of the integral∫
oF−{0}

η(t)|t|ν−(m−1)/2
F ordF (t)|dt|F = vol

(
o
×
F ; |dt|F

) q−(ν−(m−3)/2)η(�)

(1− q−(ν−(m−3)/2)η(�))2
,

Re(ν)>
m− 3

2
,

which coincides with q−(ν−(m−3)/2)L(ν − m−3
2 , η ◦NE/F ) up to a constant factor

and is canceled by the normalizing factor. �
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LEMMA 4.3

Suppose that 2 ∈ o
×
F , that E is not a ramified extension of F , and that L is self-

dual. Let η be an unramified unitary character, and let f
(ν)
0 be the U -invariant

vector of I(η| · |νF ) such that f
(ν)
0 (k) = 1 for all k ∈ U . Then〈
Ξ0
(
η| · |νF

)
, f

(ν)
0

〉
= 1.

Proof

Let φ0 be the characteristic function of Lprim, and let φ̃
(ν)
0 be the correspond-

ing holomorphic section of I(η| · |νF ) as in the proof of Lemma 4.2. We have

φ0([τ ]ke) = 0 for some k ∈ U if and only if τ ∈ o
×
E , where oE = oF [

√
θ]. Thus

φ̃
(ν)
0 (k) =

∫
o
×
E

φ0(ke)
∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
F
= vol(o×E), k ∈ U ,

with vol(o×E) = 1− q−2 if E is an unramified field extension and vol(o×E) = (1−
q−1)2 if E ∼= F ⊕ F . Combining this with the obvious P -equivariance

φ̃
(ν)
0 ([τ ]p1g) = (η| · |ν+(m−1)/2

F )(τ τ̄)φ̃
(ν)
0 (g) ([τ ]p1 ∈ P ), we have the equality φ̃

(ν)
0 =

vol(o×E)f
(ν)
0 . Thus, from ωP = ωP1 ∧ dτ∧dτ̄

2
√
θττ̄

,〈
Ξ
(
η| · |νF

)
, f

(ν)
0

〉
= vol(o×E)

∮
P\G

Y
(
η| · |νF ;g

)
φ̃
(ν)
0 (g)dμP\G

= vol(o×E)

∮
P\G

∫
E×

Y
(
η| · |νF ; [τ ]g

)
φ0(τ

−1g−1e)

× |τ τ̄ |m−1
F

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
F
dμP\G

= vol(o×E)

∫
P1\G

Y
(
η| · |νF ;g

)
φ0(g

−1e)|ωP1\G|F

= vol(o×E)

∫
Σ(0)∩Lprim

(
η| · |ν+(m−1)/2

F

)(
NE/F

(
h(ξ, e)

))
|ωΣ(0)|F .

From the proof of [27, Lemma 20] and from [27, Remark, Section 5.3], the last

integral is evaluated to be

vol(o×E)
−1L(m− 1, εm−1

E/F )−1L(ν − m−3
2 , η ◦NE/F )

L(2ν + 1, η2εmE/F )
. �

4.2. Normalized intertwining operator
Let η be a unitary character of F×, and let ν ∈XF . The normalized intertwining

operator R(η, ν) : I(η| · |νF )→ I(η̄| · |−ν
F ) is defined by an analytic continuation of

the absolute convergent integral[
R(η, ν)f

]
(g) =

L(ν + m−1
2 , η ◦NE/F )L(2ν + 1, εmE/F η

2)

L(ν − m−3
2 , η ◦NE/F )L(2ν, ε

m
E/F η

2)

∫
N̄

f(n̄g)dn̄,

f ∈ I
(
η| · |νF

)
,
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for Re(ν)> m−1
2 , where N̄ is the unipotent radical of the opposite of P and dn̄

is the Haar measure on N̄ such that vol(N̄ ∩ U) = 1.

LEMMA 4.4

Under the same setting and assumptions as in Lemma 4.3, we have R(η, ν)f
(ν)
0 =

f
(ν)
0 for all Re(ν)≥ 0.

Proof

This is more or less a standard fact. Here is a brief sketch. Let L=
∑l

j=1(oEej +

oEe
′
j) + L0 be the Witt decomposition; thus V0 = L0 ⊗oE

E is an anisotropic

Hermitian space with dimE V0 being 0 or 1. Let B be the F -Borel subgroup of G

stabilizing the corresponding maximal isotropic flag. We may assume that e1 = e

and e′1 = e′. In particular, B ⊂ P and B has the Levi factor isomorphic to (E×)l×
U(V0). It is easy to see that I(η| · |νF )⊂ IndGB(χ1, χ2, . . . , χl;1U(V0)) with χ1 = η ◦
NE/F | · |νE , χj = | · |−

m+1−2j
2

E (2≤ j ≤ l). Our operator is obtained as a restriction

of the standard intertwining operator R̃w(χ) from IndGB(χ1, χ2, . . . , χl;1U(V0)) to

IndGB(w(χ1, χ2, . . . , χl);1U(V0)) with a particular Weyl group element w. Let f̃
(χ)
0

be the element of IndGB(χ1, χ2, . . . , χl;1U(V0)) extending f
(ν)
0 . Then R̃w(χ)f

(χ)
0 = 1

is confirmed by the Gindikin–Karpelevich formula. Since R(η, ν)f
(ν)
0 = R̃(χ)f̃

(χ)
0 ,

we are done. �

Since our G is not quasisplit in general, the analytical properties of R(η, ν) do

not seem obvious from the published works. Here, we provide what we need in

the proofs of Lemmas 5.1 and 5.2.

PROPOSITION 4.5

For any flat section f (ν) of I(η| · |νF ) and g ∈G, the function ν 
→ [R(η, ν)f ](g)

is holomorphic on Re(ν)≥ 0.

Proof

Suppose that E is a field. As in the proof of Lemma 4.2, we may suppose that

f (ν) = φ̃(ν) with some φ ∈ S(V − {0}). There exists a positive constant C such

that∫
N̄

f (ν)(n̄)dn̄=C

∫
N̄

∫
E×

φ(τ n̄−1e)η(τ τ̄)|τ |ν+(m−1)/2
E

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
F
|ωN̄ |F .

The mapping p : (τ, n̄) 
→ Z = τ n̄−1e from E× × N̄ to Σ(0) is an injective mor-

phism whose image is Zariski dense. Since ωΣ(0) is proportional to (τ τ̄)−(m−1) ×
p∗ dτ∧dτ̄

2
√
θττ̄

∧ p∗ωN̄ , the integral coincides with Iν(0) up to a positive constant,

where

Iν(t) =

∫
Σ(t)

φ(Z)
(
η| · |ν−(m−1)/2

F

)(
NE/Fh(Z,e

′)
)
|ωΣ(t)|F , t ∈ F.(4.2)

Thus the desired holomorphy follows from the next lemma. �
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LEMMA 4.6

(1) If Re(ν) > m−3
2 , for each t ∈ F , the integral (4.2) converges absolutely,

defining a holomorphic function on that region. For each Re(ν)> m−3
2 , the func-

tion t 
→ Iν(t) is continuous and integrable on F .

(2) The function ν 
→ L(ν − m−3
2 , η ◦ NE/F )

−1L(2ν, εmE/F η
2)−1Iν(0) has a

holomorphic extension to XF .

Proof

Write a general point Z ∈ V in the form Z = ze+ we′ + Z0 with z,w ∈ E and

Z0 ∈ V1. We may further assume that φ(Z) is of the form φ+(z)φ−(w)φ0(Z0) with

φ+, φ− ∈ S(E) and φ0 ∈ S(V1). Thus the Fourier transform of Iν(t) (Re(ν) >
m−3
2 ) becomes∫

F

Iν(t)ψ(τt)|dt|F =

∫
V

φ(Z)
(
η| · |ν−(m−1)/2

F

)(
NE/Fh(Z,e

′)
)
ψ
(
τh[Z]

)
dZ

= M̂φ0(τ)I(φ+, φ−;ν, τ),

where, for τ ∈ F ,

M̂φ0(τ) =

∫
V1

φ0(Z0)ψ
(
τh[Z0]

)
|ωV1 |F ,

I(φ+φ−;ν, τ) =

∫
E2

φ+(z)φ−(w)
(
η| · |ν−(m−1)/2

F

)
(zz̄)

×ψ
(
τ(zw̄+wz̄)

)∣∣∣dz ∧ dz̄

2
√
θ

∣∣∣
F

∣∣∣dw ∧ dw̄

2
√
θ

∣∣∣
F
.

Let Fα(ξ) =
∫
E
α(w)ψ(ξw̄+wξ̄)|dw∧dw̄

2
√
θ

|F be the Fourier transform of α ∈ S(E).

Then

I(φ+, φ−;ν, τ) =

∫
E

φ+(z)[Fφ−](τz)
(
η| · |ν−(m−1)/2

F

)
(zz̄)

∣∣∣dz ∧ dz̄

2
√
θ

∣∣∣
F
.

By setting φ′
+(z) = φ+(z)− φ+(0)δ(z ∈ oE), we write this integral as a sum of

I(φ′
+, φ−;ν, τ) and

φ+(0)

∫
oE

[Fφ−](τz)
(
η| · |ν−(m−1)/2

F

)
(zz̄)

∣∣∣dz ∧ dz̄

2
√
θ

∣∣∣
F
.(4.3)

There exist constants c1 < c2 such that φ′
+(z) = 0 if |z|E < c1 and [Fφ−](τz) = 0

if |z|E ≤ c2|τ |−1
E . Thus the integration domain of I(φ′

+, φ−;ν, τ) can be restricted

to the annulus c1 ≤ |z|E ≤ c2|τ |−1
E , which is empty if |τ |E > c2/c1. From this,

I(φ′
+, φ−;ν, τ) is absolutely convergent for all ν and defines a Schwartz–Bruhat

function in τ ∈ F depending holomorphically on ν and, moreover, whose value

at τ = 0 is the Tate zeta integral Fφ−(0)ZE(φ
′
+;η| · |

ν−(m−1)/2
F ◦NE/F ). (In this

proof, for α ∈ S(E) and a quasicharacter χ of E×, we define the Tate zeta integral

by ZE(α,χ) =
∫
E× α(z)χ(z)|dz∧dz̄

2
√
θ
|F .) In other words, there exists a function

Jν ∈ S(F×) depending holomorphically on ν ∈XF such that
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I(φ′
+, φ−;ν, τ) =Fφ−(0)ZE

(
φ′
+;η| · |

ν−(m−1)/2
F ◦NE/F

)
δ(τ ∈ oF ) + Jν(τ),

τ ∈ F,ν ∈XF .

(4.4)

Let us examine the integral (4.3). By the variable change z → τ−1z, it becomes

φ+(0)
(
η2| · |−2ν+(m−3)

F

)
(τ)

∫
τ−1oE

[Fφ−](z)
(
η| · |ν−(m−1)/2

F

)
(zz̄)

∣∣∣dz ∧ dz̄

2
√
θ

∣∣∣
F
.

If we complete the integration domain to E, the Tate zeta integral emerges.

Hence (4.3) is absolutely convergent on Re(ν)> m−3
2 and is written in the form

φ+(0)
(
η2| · |−2ν+(m−3)

F

)
(τ)
{
ZE

(
Fφ−;η| · |ν−(m−1)/2

F ◦NE/F

)
+Rν(τ)

}
on the region Re(ν)> m−3

2 , where Rν(τ), given by an integral on some annulus

|τ |−1
F < |z|E <C, is a Schwartz–Bruhat function on F× holomorphic in ν on the

whole space XF . By the Tate theory, L(s+ 1, η ◦NE/F )
−1ZE(α;η| · |sF ◦NE/F )

has a holomorphic extension to XF for any α ∈ S(E). Summing up the argument

thus far, we see that Iν(τ) is integrable on F if Re(ν)> m−3
2 , and we obtain the

identity

L
(
ν − m− 3

2
, η ◦NE/F

)−1

Îν(τ)

= M̂φ0(τ)
{
β1(ν) δ(τ ∈ oF ) + β2(ν)

(
η2| · |−2ν+(m−3)

F

)
(τ) + αν(τ)

}
,

Re(ν)>
m− 3

2

(4.5)

with some holomorphic functions β1(ν), β2(ν) on XF and some holomorphic fam-

ily of Schwartz–Bruhat functions αν ∈ S(F×). The integral M̂φ0(τ) is the Fourier

transform of the function Mφ0 recalled in Section A.1. From [21, Proposition 4.4],

it is of the form

M̂φ0(τ) =C1 δ(τ /∈ oF )ε
m
E/F (τ)|τ |

−(m−2)
F +C2δ(τ ∈ oF ) + γ(τ)(4.6)

with some constants C1, C2 and γ ∈ S(F×). If the Fourier inversion formula can

be applied, we have

L
(
ν − m− 3

2
, η ◦NE/F

)−1

Iν(0)

=

∫
F

M̂φ0(τ)L
(
ν − m− 3

2
, η ◦NE/F

)−1

I(φ+, φ−;ν, τ)|dτ |F

=

∫
F

{
C1 δ(τ /∈ oF )ε

m
E/F (τ)|τ |

−(m−2)
F +C2δ(τ ∈ oF ) + γ(τ)

}
×
{
β1(ν) δ(τ ∈ oF ) + β2(ν)

(
η2| · |−2ν+(m−3)

F

)
(τ) + αν(τ)

}
|dτ |F .

To justify this computation, we have to confirm the absolute convergence of

the integral, which we can write as a sum of integrals of functions from S(F×)

producing holomorphic terms and the following two integrals:
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C1β2(ν)

∫
F−oF

(εmE/F η
2)(τ)|τ |−2ν−1

F |dτ |F ,

C2β2(ν)

∫
oF

η2(τ)|τ |−2ν+m−3
F |dτ |F .

The first integral is absolutely convergent on Re(ν)> 0 and has a holomorphic

continuation to XF when multiplied by L(2ν, εmE/F η
2)−1. The second integral is

absolutely convergent on Re(ν)< m−2
2 , defining a holomorphic function on that

region. Consequently, at least on the region m−3
2 < Re(ν) < m−2

2 , the function

Iν(τ) is integrable on F and we can apply the Fourier inversion formula to obtain

an expression of L(ν − m−3
2 , η ◦NE/F )

−1L(2ν, εmE/F η
2)−1Iν(0), which admits a

holomorphic extension to the left half-plane Re(ν)< m−2
2 . �

5. Periods of automorphic forms

From now on, we work on a global setting. For a number field K, we will use

the following notation throughout this article. Let ΣK
fin and ΣK

∞ denote the set of

finite places of K and the set of infinite places of K, respectively. We set ΣK =

ΣK
fin ∪ΣK

∞. For v ∈ΣK , let Kv be the completion of K at v, and let | · |Kv
be the

normalized valuation of Kv . When v ∈ΣK
fin, qKv denotes the order of the residue

field of Kv . The modulus of an idèle a ∈A
×
K is denoted by |a|K =

∏
v |av|Kv . Let

K∞ =K ⊗Q R, and let A∞
K denote the finite adèles of K; thus AK =K∞ ×A∞

K .

5.1
Let E/F be a CM extension of a totally real number field F of degree dF ; thus,

E is a totally imaginary number field of degree 2dF . We fix an element θ ∈ F

such that E = F [
√
θ] once and for all. By the class field theory, the extension

E/F yields a quadratic idèle class character εE/F of F× trivial on the norms

NE/F (A
×
E). Let (V,h) be a nondegenerate Hermitian space of dimension m, and

let G = U(h) be its unitary group as in Section 2.1. We set Σ∞ = ΣF
∞ and

Σfin =ΣF
fin. For v ∈ΣF , the Fv-algebra E⊗F Fv is denoted by Ev . When v ∈Σfin,

set oEv = oE ⊗oF
oFv . For any v ∈ ΣF , the Hermitian form on the Ev-module

Vv = V ⊗E Ev induced from h by the scalar extension is denoted by hv . From

now on, we keep the following assumptions:

(i) m≥ 4;

(ii) for any v ∈ Σ∞, the Hermitian form hv on Vv
∼= Cm has exactly one

negative eigenvalue.

From these, by the Hasse–Minkowski theorem, the maximal totally isotropic

subspace of V is 1-dimensional. Thus the F -algebraic group G is of F -rank 1.

We can find a pair of isotropic vectors e, e′ in V such that h(e, e′) = 1 and the

orthogonal (Ee+Ee′)⊥ is anisotropic. We fix such a pair of vectors e, e′ and a

vector � ∈ V satisfying h[�] = 1 and h(�, e) = 1 once and for all, and define objects

V1, G1, P1, M1, and N1 as in Section 2.1.
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5.2. Compact subgroups
Set �− = �− e. For v ∈ Σ∞, let Uv be the stabilizer in G(Fv) of Ev�

− ⊂ V (Fv).

Since h[�−] = −1, Uv is a maximal compact subgroup of G(Fv) ∼= U(m− 1,1).

Due to hv(�, �
−) = 0, UH,v = Uv ∩H(Fv) becomes a maximal compact subgroup

of H(Fv). We fix an oE-lattice L1 ⊂ V1 which is maximal in the sense of [22] once

and for all, and we set L= oEe+ oEe
′ +L1. For v ∈Σfin, let Uv be the stabilizer

of Lv = L⊗oF
oFv in G(Fv); then Uv is a maximal compact subgroup of G(Fv).

We have the Iwasawa decomposition G(Fv) = P (Fv)Uv for all v ∈ΣF .

5.3. Global Tamagawa measures
Following [30], we define a Haar measure |d×t|A on A

×
F by |d×t|A = |DF/Q|−1/2 ×

(Ress=1 ζF (s))
−1
∏

v∈ΣF ζFv (1)|dtt |Fv , where ζF (s) denotes the completed Dede-

kind zeta function of F and ζFv (s) denotes its local v-factor. For any smooth

F -variety X , its gauge-form ωX , and a set of convergence factors {λv}v∈Σfin
for

X , we define a measure |ωX |A∞ on the finite adèle points X(A∞
F ) as the restricted

product of |ωX |∗Fv
= λ−1

v |ωX |Fv (see [30, Section 2.3]). Let |ωX |F∞ on X(F∞) be

the product measure of |ωX |Fv over v ∈ Σ∞. We define a measure |ωX |A on the

adèle points X(AF ) by taking the product of |ωX |F∞ and |ωX |A∞ multiplied by

|DF/Q|−dim(X)/2, and we set vol(X) = vol(X(AF ); |ωX |A). If (Vi,hi) (1≤ i≤ r)

is a finite collection of nondegenerate Hermitian spaces over E, as a set of con-

vergence factors for U =
∏r

i=1U(hi), we always take {L(1, εEv/Fv
)−r}v . Then

for any left-invariant gauge-form ωU on U , we have vol(U) = {2L(1, εE/F )}r.
Indeed, in [30, Section 4.4], it is shown that vol(SU(hi)) = 1 if we take the

convergence factor {1}v . From [30, Section 3.7(c)], vol(E1) = 2L(1, εE/F ) for

the convergence factor {L(1, εEv/Fv
)−1}v . Since SU(hi) is a normal subgroup

of U(hi) with SU(hi)\U(hi) ∼= T , we apply [30, Theorem 2.4.4] to see that

vol(U(hi)) = 2L(1, εE/F ). In this way, we fix Haar measures |ωG|A, |ωH0 |A, |ωH |A,
|ωHP

|A, and |ωG1 |A on G(AF ), H0(AF ), H(AF ), HP (AF ), and G1(AF ), respec-

tively. If U ′ is an F -subgroup which is also a direct product of unitary groups

and if gauge-forms ωU , ωU ′ , and ωU ′\U on U , U ′, and U ′\U , respectively, are

given as matching together algebraically, then we apply [30, Theorem 2.4.3] to

endow U/U ′ with a U -invariant gauge-form to define a U(AF )-invariant measure

|ωU/U ′ |A on (U ′\U)(AF ). In particular, for the hyperboloid Σ(t) (see Section 2.2)

and HP \H , the set of convergence factors is {1}v .

5.4. Siegel domain and norm functions
Set U =

∏
v∈ΣF Uv and U∞ =

∏
v∈Σ∞

Uv . Viewing them as subgroups of G(AF ),

we have the Iwasawa decomposition G(AF ) = P (AF )U . For g ∈ G(AF ), we set

a(g) = |τ |E by decomposing g = [τ ]m[g1]nk with g1 ∈ G1(AF ), τ ∈ A
×
E , n ∈

N(AF ), and k ∈ U . For a real τ > 0, define τ ∈ A
×
E as τw = τ1/dF (w ∈ ΣE

∞),

τw = 1 (w ∈ΣE
fin). Then we have |τ |E = τ2 and τ ∈A

×
F . For t0 > 0, set a+G(t0) =

{[τ ] | τ ≥ t0}. Any subset SG ⊂ G(AF ) of the form Na
+
G(t0)U with a rela-

tively compact subset N of P (AF )
1 = {[u]p1 | u ∈ A1

E , p1 ∈ P1(AF )} and t0 > 0

is called a Siegel domain of G(AF ) with respect to P and U . For a given
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Siegel domain SG =Na
+
G(t0)U and γ ∈G(F ), we set Sγ

G = γ−1Na
+
G(t0)γU . Let

ρ : GLE(V ) → GLm be an E-isomorphism. For v ∈ Σ, we define a norm func-

tion on G(Fv) by ‖gv‖G(Fv),ρ = sup{|ρ(g)ij |Ev | 1 ≤ i, j ≤ n} if v ∈ Σfin and by

‖gv‖G(Fv),ρ = ‖ρ(g)‖HS, the Hilbert–Schmidt norm of ρ(g) ∈GLm(C), if v ∈Σ∞.

For g = (gv) ∈G(AF ), the product ‖g‖G,ρ =
∏

v∈Σ ‖gv‖G(Fv),ρ, which makes sense

because ‖gv‖G(Fv),ρ = 1 for almost all v, is called the norm of g with respect

to ρ. If ρ′ is another E-isomorphism like ρ, then the corresponding norm func-

tions are comparable; that is, ‖g‖G,ρ � ‖g‖G,ρ′ on G(AF ). We fix ρ once and

for all, and omit the subscript ρ from ‖ · ‖G,ρ. For t = (tv)v∈Σ∞ ∈ RΣ∞ , we set

a(t) = (a
(tv)
v )v∈Σ∞ ∈ G(F∞), where a

(t)
v denotes the 1-parameter subgroup a(t)

of G(Fv) introduced in Section 3 (see Lemma 3.2 above). The following easily

confirmed relations are frequently used:∥∥[τ ]∥∥
G
� τ + τ−1, a(τ) = τ2,∥∥a(t)∥∥

G
�
∏

v∈Σ∞

cosh tv for τ > 0 and t ∈R
Σ∞ .

5.5. Eisenstein series
Let σ be an irreducible automorphic representation of G1(AF ). Since G1 is F -

anisotropic, σ is cuspidal. Let χ=
⊗

v χv be a unitary idèle class character of E×

trivial on {τ | τ > 0}. We define V (σ,χ) to be the space of all the smooth functions

f : M1(F )N(AF )\G(AF ) → C satisfying f([τ ]g) = χ(τ)f(g) for all τ ∈ A
×
E and

such that the function g1 
→ f(m[g1]k) in g1 ∈G1(AF ) belongs to the space of σ

for all k ∈ U . Then we define the representation I(σ,χ, ν) of G(AF ) by[
I(σ,χ, ν;g)f

]
(x) =

(
a(xg)a(x)−1

)ν+ρG
f(xg), g ∈G(AF ),

with ρG = m−1
2 . For a family of dominant weights Λ = {(lv; cv)}v∈Σ∞ , let

(τΛ,W (Λ)) be the external tensor product over v ∈ Σ∞ of the representations

of Uv on W(lv;cv) (see Section 3); that is, W (Λ) =�v∈Σ∞W(lv;cv).

Let f :G(AF )→W (Λ) be a smooth function satisfying

f
(
[τ ]p1gk

)
= χ(τ)τΛ(k∞)−1f(g), τ ∈A

×
E , p1 ∈M1(F )N(AF ), k ∈ U ,(5.1)

such that, for any w ∈W (Λ)∗ and for any k ∈ U , the function 〈w∗, f(m[g1]k)〉
on g1 ∈G1(AF ) belongs to the space of σ. For any ν ∈C, the function f (ν)(g) =

a(g)ν+ρGf(g) can be viewed as an element of the intertwining space HomU∞(τ∗Λ,

I(σ,χ, ν)). The W (Λ)-valued Eisenstein series

E(f (ν);g) =
∑

γ∈P (F )\G(F )

f (ν)(γg), g ∈G(AF ),(5.2)

convergent when Re(ν)> ρG, has a meromorphic continuation to C holomorphic

on the imaginary axis Re(ν) = 0.

5.5.1. The distinguished Eisenstein series

Let YF be the set of unitary idèle class characters of F× trivial on {τ | τ > 0}. For
η ∈ YF , put (I(η| · |νF ), V (η)) = (I(1, η ◦NE/F ), V (1, η ◦NE/F )), where 1 denotes
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the trivial representation of G1(AF ) on the constant functions. For η ∈ YF and

v ∈ Σ∞, let bv(η) ∈ R be the unique real number such that ηv(x) = |x|ibv(η)Fv
for

all positive x ∈ F×
v . Set

Q∞
(
η| · |νF

)
=
∏

v∈Σ∞

(
1 +
∣∣ν + ibv(η)

∣∣2), ν ∈C.

We call the vector ν∞(η| · |νF ) = {ν + ibv(η)}v∈Σ∞ the Archimedean spectral pa-

rameter of the principal series I(η| · |νF ) =
⊗

v I(ηv| · |
ν
Fv
). Given d= {dv}v∈Σ∞ ∈

N
Σ∞
0 , let (τd,W (d)) denote the irreducible unitary U∞-module obtained as the

external tensor product of Uv-modules (τdv ,Wdv ) (see Section 3.1) over all v ∈
Σ∞. Set Hd(η) = HomU∞(W (d)∗, V (η)) identified with a subspace of W (d)-

valued smooth functions on G(AF ). Let Ĥd(η) be the Hilbert space completion

of Hd(η) by the Hermitian inner product

(f |f1)η,d =
∫
U

(
f(k)|f1(k)

)
dk, f, f1 ∈Hd(η),

with dk the probability Haar measure on U , and fix an orthonormal basis Bd(η) of

Ĥd(η) contained in Hd(η) and consisting of decomposable functions. The Eisen-

stein series E(f (ν)) with f ∈Hd(η) play an important role; they are referred to

as the distinguished Eisenstein series. It is well known that there exists a mero-

morphic function mG(η, ν) : I(η| · |νF )→ I(η̄| · |−ν
F ) such that the constant term

of E(f (ν)) along the parabolic P is∫
N(F )\N(AF )

E(f (ν), ng)dn= f (ν)(g) +
(
mG(η, ν)f

)(−ν)
(g), g ∈G(AF ),(5.3)

where dn is the Haar measure on N(AF ) with vol(N(F )\N(AF )) = 1. From

Lemma 4.4 and [3, Theorem 8.2], there exists a positive constant C > 0 such

that[
mG(η, ν)f

]
(g) =C

L∞(ν − m−3
2 , η ◦NE/F )L

∞(2ν, εmE/F η
2)

L∞(ν + m−1
2 , η ◦NE/F )L∞(2ν + 1, εmE/F η

2)

×
{ ∏
v∈Σfin

[
Rv(η, ν)(fv)

]
(gv)
}

×
∏

v∈Σ∞

2−2(ν+ibv(η))Γ(2(ν + ibv(η)))Γ(ν + ibv(η)− m−3
2 )2

Γ(ν + ibv(η)− m−3
2 − dv)2Γ(ν + ibv(η) +

m−1
2 + dv)2

×
{ ⊗
v∈Σ∞

fv(gv)
}

(5.4)

for any decomposable elements f =
⊗

v fv ∈ Hd(η), where Rv(ηv, ν) :

I(ηv| · |νFv
)→ I(η̄v| · |−ν

Fv
) is the normalized intertwining operator studied in Sec-

tion 4.2.

LEMMA 5.1

The distinguished Eisenstein series E(f (ν)) is holomorphic on Re(ν)≥ 0 except



Relative trace formulas for unitary hyperbolic spaces 449

for a possible pole at ν = m−1
2 . The pole occurs only when η is trivial or εE/F

and dv = 0 for all v ∈Σ∞.

Proof

Suppose that η = 1 or εE/F . From (5.4) and by Proposition 4.5, mG(ν;f) is

holomorphic on Re(ν)≥ 0 except at ν = m−1
2 . �

LEMMA 5.2

For any δ > 0 and a compact interval I ⊂ (0,+∞), there exists a constant N > 0

such that ∥∥mG(η, ν)f
∥∥
η,d

�Q∞
(
η| · |νF

)N
, f ∈ Bd(η), ν ∈ Tδ,I , η ∈ YF .

There exists a constant N0 > 0 such that∣∣(mG(η, ν)m
′
G(η, ν)f |f

)
η,d

∣∣�Q∞
(
η| · |νF

)N0
, f ∈ Bd(η), ν ∈ iR, η ∈ YF ,

where m′
G(η, ν) denotes the derivative of mG(η, ν) ∈ EndC(V (η)) with respect

to ν.

Proof

In (5.4), the factor [R(ηv, ν)fv](gv), which is identically 1 except for a finite

number of v’s, is bounded on Tδ,I because it is holomorphic on Tδ,I (see Propo-

sition 4.5) and log qv-periodic in Im(ν); the gamma factor is also bounded on

Tδ,I uniformly in η by Stirling’s formula. The L-values in the denominator are

bounded from below by a constant uniformly in z ∈ Tδ,I and η, due to the absolute

convergence of the Euler products. By the convexity bound of L∞(ν − m−3
2 , η ◦

NE/F ) and L∞(2ν, εmE/F η
2) in the numerator, we have the polynomial bound∥∥mG(η, ν)f
∥∥
η,d

�Q∞
(
η| · |νF

)N
, ν ∈ Tδ,I , η ∈ YF ,(5.5)

with some N > 0. For the logarithmic derivative, we argue as in [7, Proposi-

tion 2]; as an ingredient, we need a polynomial bound of L∞(±ν + m−1
2 , η ◦

NE/F )
−1 d

dνL
∞(±ν + m−1

2 , η ◦ NE/F ) and L∞(1 ± 2ν, η2εmE/F )
−1 d

dνL
∞(1 ± 2ν,

η2εmE/F ) uniform in η ∈ YF . Since I ⊂ [0, m+1
2 ) implies that Re(−ν + m−1

2 ) > 1

for all ν ∈ iR, the former one is bounded, due to the convergence of the Euler

product. For the latter one, which is more delicate because it involves values of

Hecke’s L-function at the boundary of the critical strip, we apply [1] to have its

uniform majorant of the form Q∞(η| · |νF )N with some N > 0. �

5.6. Smoothed Eisenstein series
From (i) and (ii) in Section 5.1, dimF (�

⊥) = 2(m−1)≥ 6 and the signature of �⊥

at all v ∈Σ∞ is (1−, (m−2)+). By the same reasoning as in Section 5.1, we fix a

pair of F -isotropic vectors eH , e′H both orthogonal to � such that h(eH , e′H) = 1

once and for all. Then PH , the stabilizer of EeH in H , is an F -parabolic subgroup

of H . We fix a maximal oE-lattice LH which contains oEeH + oEe
′
H as an oE-

direct summand. For any v ∈Σfin, let UH,v be the stabilizer of LH,v = LH⊗oE
oE,v

in H(Fv). For v ∈ Σ∞, set UH,v = Uv ∩H(Fv). We define UH to be the direct
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product of UH,v over all v ∈ ΣF . The UH -spherical Eisenstein series on H(AF )

is defined by the meromorphic continuation to C of the absolutely convergent

series

EH(z;h) =
∑

δ∈PH(F )\H(F )

aH(δh)z+ρH , Re(z)> ρH , h ∈H(AF ),

where ρH = m−2
2 , and aH :H(AF )→R+ is defined by the Iwasawa decomposition

H(AF ) = PH(AF )UH in the same way as a :G(AF )→R+. Let mH(z) be the m-

function for EH(z) describing the constant term along PH , and let rH denote

the residue of mH(z) at the simple pole z = ρH . To regularize divergent integrals

on H(F )\H(AF ), following [23] and [31], we use the smoothed Eisenstein series

on H(AF ) defined by

Eβ,λ(h) =
r−1
H

2πi

∫
(σ)

β(z)

λ− z
EH(z;h)dz, h ∈H(AF ),Re(λ)> ρH ,(5.6)

with (σ) a vertical contour Re(z) = σ such that ρH < σ < Re(λ), where β(z) is

an entire function such that β(ρH) = 1 and sup{|β(σ + it)|(1 + |t|)N | t ∈ R, σ ∈
[c1, c2]}<∞ for all N ∈N and real numbers c1 < c2.

LEMMA 5.3

The integral (5.6) converges absolutely, defining a holomorphic function on

Re(λ) > ρH . For any ε > 0 and any Siegel domain SH of H(AF ) defined by

PH and UH , there exists a constant C > 0 such that∣∣(λ− ρH)Eβ,λ(h)
∣∣≤CaH(h)−Re(λ)+ρH , h ∈SH ,Re(λ) ∈ (ρH , ρH + ε).(5.7)

Moreover, for all h ∈H(AF ), we have the pointwise convergence

lim
λ→ρH+0

(λ− ρH)Eβ,λ(h) = 1.

Proof

Let δ > 0, and let I ⊂ (0,+∞) be a compact interval. We need a uniform esti-

mate like [7, Corollary 2] for our Eisenstein series EH(z), which is induced from

cuspidal because PH/NH is F -anisotropic. Although the setting of [7] does not

cover our case in a strict sense, the argument in [7, Section 5.3] can be modified

to be applied to EH(z). The crucial point is the estimation of the L2-norm of the

truncated Eisenstein series ‖ΛTEH(z)‖2 which, by the Maass–Selberg relation,

boils down to an upper bound of the function mH(z) in the vertical strip Tδ,I
(cf. [7, Proposition 2]). In our case, since I is in Re(z) > 0, the Maass–Selberg

relation takes the form

C
∥∥ΛTEH(z)

∥∥
2
=

e2xT − e−2xT

2x
+

e−2xT

2x

(
1−
∣∣mH(z)

∣∣2)
+

mH(z̄)e2iyT −mH(z)e−2iyT

iy
,

z = x+ iy ∈ Tδ,I ,
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with a constant C > 0 and no logarithmic derivative of mH(z) involved. To

estimate this, the first assertion of Lemma 5.2 (applied to EH(z) and mH(z)) is

enough. The remaining part of [7, Section 5.3] goes through as it is. Consequently,

for any element D of the universal enveloping algebra of NH(F∞), there exists

N > 0 such that∣∣[EH(z) ∗D
]
(h)
∣∣� (1 + ∣∣Im(z)

∣∣)NaH(h)N , z ∈ Tδ,I , h ∈SH .

By this, from [18, Lemma I.2.10], we can deduce the following estimate for the

nonconstant term of the Eisenstein series E∗
H(z;h) = EH(z;h)− {aH(h)z+ρH +

mH(z)aH(h)−z+ρH}:∣∣E∗
H(z;h)

∣∣�N1

(
1 +
∣∣Im(z)

∣∣)NaH(h)−N1 , z ∈ Tδ,I , h ∈SH ,(5.8)

where (and below) N1 > 0 is an arbitrary large number. We have

Eβ,λ(h) = I+(λ,h) + I∗(λ,h) + I−(λ,h)

for h ∈SH with

I+(λ,h) =
r−1
H

2πi

∫
(σ)

β(z)

λ− z
aH(h)z+ρH dz,

I∗(λ,h) =
r−1
H

2πi

∫
(σ)

β(z)

λ− z
E∗

H(z;h)dz,

I−(λ,h) =
r−1
H

2πi

∫
(σ)

β(z)

λ− z
mH(z)aH(h)−z+ρH dz,

where ρH < σ < Re(λ). The integral I+(λ,h) can be estimated as |I+(λ,h)| �
aH(h)−N1 on SH by shifting the contour (σ) far to the left. From (5.8), the

contour (σ) in I∗(λ,h) can be shifted to any vertical line in the half-plane Re(z)>

0; by this, we have a holomorphic continuation of I∗(λ,h) to Re(λ)> 0 with the

estimation |I∗(λ,h)| � aH(h)−N1 on SH . In these estimations for I+(λ,h) and

I∗(λ,h), the implied constants are taken to be uniform for λ lying in the strip

ρH <Re(λ)≤ ρH + ε. By shifting the contour in I−(λ,h) far to the right (beyond

λ) and accounting for the residue at z = λ, we have the expression

I−(λ,h) =
β(ρH)

λ− ρH
aH(h)−λ+ρH +

r−1
H

2πi

∫
(σ1)

β(z)

λ− z
mH(z)aH(h)−z+ρH dz,(5.9)

whose second term is holomorphic on the half-plane Re(λ)< σ1 and is estimated

by aH(h)−σ1+ρH . This completes the proof of (5.7). Let us show the second

assertion. We already see that I+(λ,h) + I∗(λ,h) is holomorphic at λ = ρH .

By (5.9), we have a meromorphic continuation of I−(λ,h) around λ = ρH and

limλ→ρH+0(λ− ρH)I−(λ,h) = limλ→ρH+0(λ− ρH)r−1
H mH(λ) = 1. �

5.7. The H-periods of automorphic forms
When we consider the automorphic forms on G(AF ), they are always required

to be U -finite under the right-translation.
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Let (τ,W ) be a finite-dimensional continuous representation of U∞. A func-

tion ϕ : G(AF )→W is called a W -valued automorphic form if it has the U∞-

equivariance ϕ(gk∞) = τ(k∞)−1ϕ(g) for all k∞ ∈ U∞ and if, for any w∗ ∈W ∗,

the coefficient 〈w∗, ϕ(g)〉 is an automorphic form in the usual sense (see [18,

Section I.2.17]). For such ϕ, if the integral

PH(ϕ) =

∫
H(F )\H(AF )

ϕ(h)|ωH |A

is absolutely convergent, it is called the H-period integral of ϕ. By the U∞-

equivariance of ϕ, we have PH(ϕ) ∈WH(AF )∩U∞ .

LEMMA 5.4

Let SH ⊂H(AF ) be a Siegel domain with respect to PH and UH . Let s ∈R, and

let ξ be a smooth C-valued function on H(F )\H(AF ) such that |ξ(h)| ≤Bξ‖h‖sG
on SH for a constant Bξ > 0. Let ϕ a W -valued automorphic form such that

‖ϕ(g)‖ ≤ Bϕ‖g‖rG on G(AF ) with some constant Bϕ > 0 and r > 0. Let U ⊂
G(AF ) be a compact set. If s+ r < 2(m− 2), then∫

h∈H(F )\H(AF )

∥∥ξ(h)ϕ(ha(t)g)∥∥|ωH |A ≤BξBϕC0

∏
v∈Σ∞

(cosh tv)
r,

t ∈R
Σ∞ , g ∈ U,

with a constant C0 only dependent on r and s. In particular, the integral∫
H(F )\H(AF )

ξ(h)ϕ(h)|ωH |A converges absolutely. The H-period integral PH(ϕ)

converges absolutely if r < 2(m− 2).

Proof

Fix γ0 ∈G(F ) such that γ0eH = e and γ0e
′
H = e′. Then PH = γ−1

0 Pγ0 ∩H . We

can choose a Siegel domain SG satisfying SH ⊂H(AF )∩S
γ0

G . We have∥∥ξ(h)ϕ(ha(t)g)∥∥≤BξBϕ‖h‖sG
∥∥ha(t)g∥∥r

G

≤BξBϕ‖h‖s+r
G

∥∥a(t)∥∥r
G
, h ∈SH , t ∈R

Σ∞ , g ∈ U.

Since a(γ0hγ
−1
0 )� aH(h),

‖h‖G � ‖γ0hγ−1
0 ‖G � aG(γ0hγ

−1
0 )1/2 � aH(h)1/2

for h ∈SH . Hence∫
SH

‖h‖s+r
G |ωH |A �

∫ ∞

t0

τ s+rτ−2(m−2) d×τ,

whose majorant is convergent for s + r − 2(m − 2) < 0. Since ‖a(t)‖G =∏
v∈Σ∞

‖a(tv)v ‖G(Ev) �
∏

v∈Σ∞
cosh tv , we are done. �

5.8. Eisenstein periods
From Lemma 5.4 applied to ϕ=E(f (ν)) with r = 2(|Re(ν)|+ ρG), we have the

following.
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COROLLARY 5.5

Let ξ be a smooth function on H(AF ) such that |ξ(h)| � a(h)β on SH with

some β ∈ R. If ν is a regular point for the Eisenstein series E(f (ν)) such that

β+ |Re(ν)|< m−3
2 , the integral

∫
H(F )\H(AF )

ξ(h)E(f (ν);h)|ωH |A converges abso-

lutely. The H-period integral PH(E(f (ν))) converges absolutely for ν ∈ iR.

Proof

Since m ≥ 4, for the constant function ξ(h) = 1 (with β = 0), the convergence

region |Re(ν)|< m−3
2 contains iR. �

The triple (χ,σ,Λ) is called distinguished if the following conditions are satisfied.

(i) We have that σ is the trivial representation of G1(AF ).

(ii) There is a unitary idèle class character η of F× such that χ= η ◦NE/F .

(iii) For all v ∈Σ∞, cv = 0. There exists d= {dv}v∈Σ∞ ∈N
Σ∞
0 such that the

dominant weight lv = {lv(j)}1≤j≤m−1 is given by lv(1) = dv , lv(j) = 0 (1 < j <

m− 1), and lv(m− 1) =−dv . If this is the case, we write Λ = Λd.

THEOREM 5.6

(1) Let ν ∈ iR. The H-period integral PH(E(f (ν))) is zero unless (χ,σ,Λ) is

distinguished. Suppose that (χ,σ,Λ) is distinguished and that f is a pure tensor⊗
fv with fv ∈ Iv(ηv) if v ∈Σfin and fv ∈HomUv (W

∗
dv
, Iv(ηv)) if v ∈Σ∞, where

Λ=Λd with d= {dv}v∈Σ∞ ∈N
Σ∞
0 . Then we have

PH

(
E(f (ν))

)
=

4|DF/Q|−2(m−1)L(1, εE/F )
2

L∞(m− 1, εm−1
E/F )

L∞(ν − m−3
2 , η ◦NE/F )

L∞(2ν + 1, η2εmE/F )

×
∏

v∈Σfin

Ξ0
(
ηv| · |νFv

;fv
)

×
{ ⊗
v∈Σ∞

22−mπ|
√
θ|(1−m)/2

Ev
ΓC(ν + ibv(η)− m−3

2 )2

ΓC(ν + ibv(η)− m−3
2 − dv)ΓC(ν + ibv(η) +

m−1
2 + dv)

×Prv
(
fv(1)

)}
,

(5.10)

where Prv :Wdv →W
Uv∩H(Fv)
dv

denotes the orthogonal projector.

(2) Let ν = r > 0 be a pole of the Eisenstein series E(f (ν)), and set ϕr =

Resν=rE(f (ν)). We have PH(ϕr) = 0 unless (χ,σ,Λ) is distinguished and r =
m−1
2 .

5.9. Proof of Theorem 5.6
For any Paley–Wiener function α(ν) such that α(ν) = α(−ν), we define the wave

packet of α by

Ê(α,f ;g) =
1

2π

∫
R

E(f (it);g)α(it)dt, g ∈G(AF ),(5.11)
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and consider the integral

I(λ) =

∫
H(F )\H(AF )

Eβ,λ(h)Ê(α,f ;h)|ωH |A.

Since |α(it)| = O((1 + |t|)−N ) (|t| → +∞) for any N > 0, |Ê(α,f ;g)| � a(g)ρG

on SG. Hence from Lemma 5.3 and Corollary 5.5, the integral I(λ) converges

absolutely when Re(λ)> 1/2, defining a holomorphic function. We will compute

limλ→ρH+0 I(λ). From [18, Proposition IV.1.11], the Eisenstein series E(f (ν)) has

a finite number of poles sj (1≤ j ≤ r) in Re(ν)≥ 0, which are all simple and on

the interval (0, ρG]. Let φj denote the residue of E(f (ν)) at ν = sj . Then φj is an

L2-automorphic form on G(AF ) with the estimation ‖φj(g)‖� a(g)−νj+ρG on a

Siegel domain SG of G(AF ). By shifting the contour in (5.11) to the convergence

region σ > ρG, we have

Ê(α,f ;g) =
1

2πi

∫
(σ)

E(f (ν);g)α(ν)dν −
∑
j

φj(g)α(sj).

By plugging this and changing the order of integrals, we have

I(λ) =
1

2πi

∫
(σ)

J(λ, ν)α(ν)dν −
∑
j

α(sj)Rj(λ),(5.12)

where

J(λ, ν) =

∫
H(F )\H(AF )

E(f (ν);h)Eβ,λ(h)|ωH |A,

Rj(λ) =

∫
H(F )\H(AF )

Eβ,λ(h)φj(h)|ωH |A.

Fubini’s theorem can be applied to obtain (5.12) since the integrals J(λ, ν) and

Rj(λ) are seen to be absolutely convergent for Re(λ)> σ+1/2 from Lemmas 5.3

and 5.4. Let Re(ν)> ρG and Re(λ)>Re(ν)+1/2. Then from the series expression

(5.2), we have

J(λ, ν) =

∫
H(F )\H(AF )

∑
γ∈P (F )\G(F )

f (ν)(γh)Eβ,λ(h)|ωH |A

=
∑

δ∈P (F )\G(F )/H(F )

∫
H(F )\H(AF )

∑
γ∈Hδ(F )\H(F )

f (ν)(δγh)Eβ,λ(γh)|ωH |A

=
∑

δ∈P (F )\G(F )/H(F )

∫
Hδ(F )\H(AF )

f (ν)(δh)Eβ,λ(h)|ωH |A,

where Hδ =H ∩ δ−1Pδ. Let γ0 ∈G(F ) be as in the proof of Lemma 5.4. Then

P (F )\G(F )/H(F ) = {e, γ0}. Hence J(λ, ν) = Je(λ, ν) + Jγ0(λ, ν) with Jδ(λ, ν)

denoting the integrals in the last displayed formula. Let us examine the integral

Jγ0(λ, ν). Let PH,1 be the stabilizer in PH of the vector eH . Set [τ ]H = γ−1
0 [τ ]γ0

for τ ∈A
×
E . By the Iwasawa decomposition H(AF ) = {[τ ]H | τ ∈A

×
E}PH,1(AF )×

UH ,
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Jγ0(λ, ν) =

∫
PH(F )\H(AF )

Eβ,λ(h)f (ν)(γ0h)|ωH |A

=

∫
E×\A×

E

∫
PH,1(F )\PH,1(AF )

∫
UH

Eβ,λ
(
l[τ ]H

)
× f (ν)

(
γ0nl[τ ]Hk

)
|τ |−2ρH

E

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
A
dldk,

where dl and dk are some Haar measures on PH,1(AF ) and UH , respectively. We

may assume that PH,1(F )\PH,1(AF ) has volume 1. Since γ−1
0 Pγ0 ∩H = PH and

γ−1
0 P1γ0 ∩H = PH,1, we have

Jγ0(λ, ν) =

∫
E×\A×

E

{∫
PH,1(F )\PH,1(AF )

Eβ,λ
(
l[τ ]H

)
dl
}

×
{∫

UH

f (ν)
(
[τ ]γ0k

)
dk
}
|τ |−2ρH

E

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
A

=

∫
E×\A×

E

{∫
PH,1(F )\PH,1(AF )

Eβ,λ
(
l[τ ]H

)
dl
}

×
{∫

UH

f (ν)(γ0k)dk
}
|τ |ν+ρG−2ρH

E

∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
A
.

From (5.3),∫
PH,1(F )\PH,1(AF )

Eβ,λ
(
l[τ ]H

)
dl=

r−1
H

2πi

∫
(c)

β(z)

λ− z

(
|τ |z+ρH

E +mH(z)|τ |−z+ρH

E

)
dz.

Substituting this into the last expression of Jγ0(λ, ν), we have the formula

Jγ0(λ, ν) = r−1
H

(∫
UH

f (ν)(γ0k)dk
)(

t1(λ, ν) + t2(λ, ν)
)

(5.13)

with

t1(λ, ν) =

∫
E×\A×

E

{ 1

2πi

∫
(c)

β(z)

λ− z
|τ |z+ν+ρG−ρH

E dz
}∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
A
,

t2(λ, ν) =

∫
E×\A×

E

{ 1

2πi

∫
(c)

β(z)

λ− z
mH(z)|τ |−z+ν+ρG−ρH

E dz
}∣∣∣dτ ∧ dτ̄

2
√
θτ τ̄

∣∣∣
A
,

which are evaluated by the following lemma. Note that ρG − ρH = 1/2.

LEMMA 5.7

Let Re(ν)> ρG and Reλ >Reν + 1/2. Then,

t1(λ, ν) = vol(E×\A1
E)

β(−ν − 1/2)

λ+ (ν + 1/2)
,

t2(λ, ν) = vol(E×\A1
E)

β(ν + 1/2)mH(ν + 1/2)

λ− (ν + 1/2)
.

Proof

Let c′ <Re(ν)+1/2< c and 1/2< c′ < ρH . From Lemma 5.1, the only singularity

of the function mH(z) on Re(z)> 1/2 is the simple pole at z = ρH . We have
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vol(E×\A1
E)

−1t2(λ, ν)

=

∫ +∞

0

{ 1

2πi

∫
(c)

β(z)

λ− z
mH(z)t−z+ν+1/2 dz

}
d×t

=

∫ 1

0

( 1

2πi

∫
(c′)

β(z)

λ− z
mH(z)t−z+ν+1/2 dz +

rHβ(ρH)

λ− ρH
t−ρH+ν+1/2

)
d×t

+

∫ +∞

1

( 1

2πi

∫
(c)

β(z)

λ− z
mH(z)t−z+ν+1/2 dz

)
d×t

=
1

2πi

∫
(c′)

β(z)

λ− z

−mH(z)

z − (ν + 1/2)
dz +

rHβ(ρH)

λ− ρH

1

−ρH + ν + 1/2

+
1

2πi

∫
(c)

β(z)

λ− z

mH(z)

z − (ν + 1/2)
dz

= (Resz=ν+1/2+Resz=ρH
)
( β(z)

λ− z

mH(z)

z − (ν + 1/2)

)
+

rHβ(ρH)

λ− ρH

1

−ρH + ν + 1/2

=
β(ν + 1/2)

λ− (ν + 1/2)
mH(ν + 1/2).

Since β(ρH) = 1, we are done. The computation of t1(λ, ν) is similar. �

From (5.13) and Lemma 5.7, the term Jγ0(λ, ν) is evidently meromorphic in

λ ∈C, and for Reν > ρG,

lim
λ→ρH+0

(λ− ρH)Jγ0(λ, ν) = 0(5.14)

uniformly in Im(ν). Let us examine the integral Je(λ, ν). SinceG1 is F -anisotropic

(from the assumption in Section 5.1) andHP
∼=E1×G1, the factor spaceHP (F )\

HP (AF ) is compact. We have

Je(λ, ν) =

∫
HP (F )\H(AF )

Eβ,λ(h)f (ν)(h)|ωH |A.

LEMMA 5.8

If Re(ν)> ρG, then
∫
HP (F )\H(AF )

‖f (ν)(h)‖|ωH |A <+∞. The integral

Ξ(f (ν)) =

∫
HP (F )\H(AF )

f (ν)(h)|ωH |A

is zero unless (χ,σ,Λ) is distinguished.

Proof

Since G1 is F -anisotropic, f (ν)(m[g1]uk) is bounded for (g1, u, k) ∈ G1(AF ) ×
N(AF )×U . From this remark, we have a constant C > 0 such that ‖f (ν)(g)‖ ≤
Ca(g)Re(ν)+ρG for all g ∈G(AF ). Since the function a(g) is leftHP (AF )-invariant,
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∫
HP (F )\H(AF )

a(h)Re(ν)+ρG |ωH |A

= vol
(
HP (F )\HP (AF )

)∫
HP (AF )\H(AF )

a(h)Re(ν)+ρG |ωHP \H |A.

The volume factor is finite since HP is F -anisotropic. To have the first assertion

of the lemma, it suffices to show that

Ξv =

∫
HP (Fv)\H(Fv)

a(gv)
Re(ν)+ρG |ωHP \H |Fv <+∞

and
∏

v Ξv <+∞. From Lemma 2.1, we have

Ξv =

∮
P (Fv)\G(Fv)

Y
(
| · |Re(ν)

Fv
;gv
)
a(gv)

Re(ν)+ρG dμP\G(gv)

with Y (| · |νFv
;gv) being continuous on G(Fv) for Re(ν) ≥ ρG; thus Ξv < +∞.

There exists a finite subset S ⊂ΣF such that Ξv (v /∈ S) is given by Lemma 4.3.

The convergence of
∏

v Ξv follows from that of the Euler product∏
v/∈S

ζEv (Re(ν)− m−3
2 )

L(2Re(ν) + 1, εmEv/Fv
)
L(m− 1, εm−1

Ev/Fv
)−1.

To prove the remaining half of the lemma, we write∫
HP (F )\H(AF )

f (ν)(h)|ωH |A

=

∫
h∈HP (AF )\H(AF )

(∫
l∈HP (F )\HP (AF )

f (ν)(lh)|ωHP
|A
)
|ωHP \H |A.

With d1τ and dg1 being some Haar measures on A1
E and on G1(AF ), respectively,

the integral in the bracket equals(∫
E×\A1

E

χ(τ)|τ |ν+ρG

E d×τ
)(∫

G1(F )\G1(AF )

f (ν)
(
m[g1]h

)
dg1

)
,

which vanishes unless χ|A1
E is trivial and g1 
→ f (ν)(m[g1]h) is a constant. The

restriction χ|A1
E is trivial if and only if χ= η ◦NE/F with some η ∈ YF . Thus the

first two conditions for (χ,σ,Λ) to be distinguished follow. The constraint on Λ

comes from the condition W
Uv∩H(Fv)
lv

= {0}. �

LEMMA 5.9

Let Re(ν)> ρG. Then, the integral Je(λ, ν) converges absolutely for Re(λ)> ρG
and

lim
λ→ρH+0

(λ− ρH)Je(λ, ν) =Ξ(f (ν))

uniformly with respect to Im(ν).

Proof

We have
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∣∣(λ− ρH)Je(λ, ν)−Ξ(f (ν))
∣∣

≤C

∫
HP (F )\H(AF )

∣∣(λ− ρH)Eβ,λ(h)− 1
∣∣a(h)Re(ν)+ρG |ωH |A

with a constant C > 0 independent of ν and λ. Fix a small ε > 0. From Lemma 5.3,

there exists a constant C0 > 0 such that supρH<λ<ρH+ε |(λ − ρH)Eβ,λ(h)| ≤ C0

on a Siegel set SH ; since the left-hand side is an H(F )-invariant function, the

same inequality is valid for any h ∈H(AF ). Hence∣∣(λ− ρH)Eβ,λ(h)− 1
∣∣a(h)Re(ν)+ρH ≤ (C0 + 1)a(h)Re(ν)+ρH ,

h ∈H(AF ), λ ∈ (ρH , ρH + ε].

From Lemma 5.8, the right-hand side of this inequality is integrable on HP (F )\
H(AF ). Thus by the Lebesgue dominated convergence theorem, we are done

because limλ→ρH+0(λ− ρH)Eβ,λ(h) = 1 for any h ∈H(AF ). �

LEMMA 5.10

Let σ > ρG. Then

1

2πi

∫
iR

PH

(
E(f (ν))

)
α(ν)dν

=
1

2πi

∫
(σ)

Ξ(f (ν))α(ν)dν −
∑
j

α(sj)PH(φj).
(5.15)

Proof

By Lemma 5.3 and Corollary 5.5, the left-hand side of (5.15) coincides with the

limit limλ→ρH+0(λ − ρH)I(λ), which in turn is evaluated as in the right-hand

side of (5.15) by means of (5.12), (5.14), and Lemma 5.9. �

If (χ,σ,Λ) is not distinguished, then Ξ(f (ν)) = 0 for all Re(ν)> ρG from Lemma

5.8. By letting α(s) vary, from the formula (5.15), we obtain PH(E(f (ν))) = 0

for all ν ∈ iR and PH(φj) = 0 for all j. In the rest of the proof, we assume that

(χ,σ,Λ) is distinguished. Let η ∈ YF be such that χ = η ◦ NE/F . In this case,

from the proof of Lemma 5.8,

Ξ(f (ν)) = vol(HP )|DF/Q|−dim(HP \H)/2
⊗
v

∫
HP (Fv)\H(Fv)

f (ν)
v (h)|ωHP \H |∗Fv

for Reν > ρG. Here the factor |DF/Q|−dim(HP \H)/2 arises from the definition of

the global Tamagawa measure. Since HP
∼=E1×U(V1), |ωHP \H |∗Fv

= |ωHP \H |Fv ,

vol(HP ) = {2L(1, εE/F )}2 and dim(HP \H) =m2− (m−2)2 = 4(m−1) (see Sec-

tion 5.3). By means of Lemma 4.3, the product becomes

L∞(m− 1, εm−1
E/F )

−1L∞(ν − m−3
2 , η ◦NE/F )

L∞(2ν + 1, η2εmE/F )

×
{ ∏
v∈Σfin

Ξ0
(
ηv| · |νFv

;fv
)} ⊗

v∈Σ∞

Ξv(f
(ν)
v )
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with

Ξv(f
(ν)
v ) =

∫
HP (Fv)\H(Fv)

f (ν)
v (h)|ωHP \H |Fv ∈Wlv (v ∈Σ∞).

LEMMA 5.11

For Re(ν)> ρG,

Ξv(f
(ν)
v ) =

|
√
θ|(1−m)/2

Ev
πm−1Γ(ν + ibv(η)− m−3

2 )2

Γ(ν + ibv(η)− m−3
2 − dv)Γ(ν + ibv(η) +

m−1
2 + dv)

Prv
(
fv(1)

)
.

Proof

Without loss of generality, we may assume that bv(η) = 0. From Lemma 2.1,

we see that the integral Ξv(f
(ν)
v ) coincides with the Poisson integral 〈Ξ(ηv| · |νFv

),

f
(ν)
v 〉 defined by (4.1), for any f

(ν)
v ∈ (Wdv ⊗C I(ηv| · |νFv

))Uv . Set Φ
(ν)
v (g) =

Ξv(R(g)f
(ν)
v ) for g ∈G(Fv). Then Φ

(ν)
v :G(Fv)→Wlv is a spherical function stud-

ied in Section 3.1. Since Φ
(ν)
v (1) = Ξv(f

(ν)
v ), we have Φ

(ν)
v (a

(t)
v ) = Ξv(f

(ν)
v )φdv (s;

t)ϑdv with φdv (s; t) given by (3.3), which, by [17, p. 47], equals

(cosh t)2ν−m+1
2F1

(−2ν −m+ 3

2
+ dv,

−2ν +m− 1

2
− dv; 1; tanh

2 t
)
.

On the one hand, by the formula in [17, p. 40], we have

lim
t→+∞

t−2ν+m−1Φ(ν)
v (a(t)v ) = Ξv(f

(ν)
v )2−2ν+m−1

× 2F1

(−2ν −m+ 3

2
+ dv,

−2ν +m− 1

2
− dv; 1; 1

)
=Ξv(f

(ν)
v )

2−2ν+m−1Γ(2ν)

Γ(ν + m−1
2 + dv)Γ(ν − m−3

2 − dv)

(5.16)

for Re(ν)� 0. On the other hand, by the same way as in [9, Proposition 7.7], we

have

lim
t→∞

t−2ν+m−1
(
Φ(ν)

v (a(t)v )|ϑdv

)
=

∫
N̄(Fv)

(
f (ν)
v (n̄)|ϑdv

)
|ωN̄ |Fv , Re(ν)� 0,

where ωN̄ is the unique gauge-form on N̄ such that ωG|PN̄ = ωP ∧ ωN̄ on the

Zariski-open set PN̄ ∼= P × N̄ of G. From [3, Theorem 8.2] after adjusting for

the difference of the normalization of measures by Lemma 3.1, the last integral

is evaluated as

|
√
θ|(1−m)/2

Ev
πm−1 2−2ν+m−1Γ(2ν)Γ(ν − m−3

2 )2

Γ(ν − m−3
2 − dv)2Γ(ν + m−1

2 + dv)2
.(5.17)

By equating (5.16) with (5.17), we have the desired expression for (Ξv(f
(ν)
v )|ϑdv )

on Re(ν)� 0. �

Consequently, we see that Ξ(f (ν)) with Re(ν)> ρG equals the right-hand side of

(5.10). By this expression, Ξ(f (ν)) has a meromorphic continuation on C. The

singularity on Re(ν)≥ 0 arises from the completed L-function L∞(ν − m−3
2 , η ◦
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NE/F )
∏

v∈Σ∞
ΓC(ν − m−3

2 ), which is holomorphic except for simple poles at

ν = m−1
2 , m−3

2 (only when η = 1 or εE/F ). Moreover, we have∥∥Ξ(f (ν))
∥∥� |L∞(ν − m−3

2 , η ◦NE/F )|
|L∞(2ν + 1, η2εmE/F )|

∏
v∈Σfin

∣∣Ξ0
(
ηv| · |νFv

;fv
)∣∣

×
{ ∏
v∈Σ∞

|ΓC(ν + ib(ηv)− m−3
2 )2|

|ΓC(ν + ib(ηv)− m−3
2 − dv)ΓC(ν + ibv(η) +

m−1
2 + dv)|

}
for Re(ν)≥ 0. Take any TI,δ in Re(ν)≥ 0. By Stirling’s formula, the gamma factor

turns out be O(1) on TI,δ . The product of normalized Poisson integrals is also

O(1) on TI,δ (because it is periodic in Im(ν)). From the convexity bound, we have

|L∞(ν − m−3
2 , η ◦NE/F )| � (1 + |Im(ν)|)N1 on TI,δ with some constant N1 > 0.

From [1], we have a polynomial bound |L∞(2ν+1, η2εmE/F )|−1 � (1+ |Im(ν)|)N2

on TI,δ . Thus, we have a polynomial bound of Ξ(f (ν)) on TI,δ . By shifting the

contour from (σ) back to the imaginary axis, we have

1

2πi

∫
(σ)

Ξ(f (ν))α(ν)dν

=
1

2πi

∫
iR

Ξ(f (ν))α(ν)dν

+ α
(m− 1

2

)
Resν=m−1

2
Ξ(f (ν)) + α

(m− 3

2

)
Resν=m−3

2
Ξ(f (ν)).

Comparing this with Lemma 5.10, we obtain

PH

(
E(f (ν))

)
=Ξ(f (ν)) (ν ∈ iR),

PH(φm−1
2

) = Resν=m−1
2

Ξ(f (ν)), PH(φm−3
2

) = Resν=m−3
2

Ξ(f (ν))

with φs =Resν=sE(f (ν)), and PH(φj) = 0 for a residual form φj (if any) other

than φm−1
2

and φm−3
2

. Actually, Lemma 5.1 shows that no such φj exists other

than φm−1
2

.

6. The spectral side

6.1. A majorant
Let V =

∏
v∈Σfin

Vv be a compact open subset of G(A∞
F ) such that Vv = Uv for

almost all v. Let φVv be the characteristic function of H(Fv)Vv on G(Fv), and

set φV(gfin) =
∏

v∈Σfin
φVv (gv) for gfin ∈ G(A∞

F ). For N ∈ N and v ∈ Σ∞, let us

define a function φ
(N)
v :G(Fv)→R+ by

φ(N)
v (gv) = ‖g−1

v �‖−N
Uv

, g ∈G(Fv),

where ‖ · ‖Uv is the minimal majorant of hv with respect to Uv . The function

φ
(N)
V :G(AF )→R+ defined by

φ
(N)
V (g) =

{ ∏
v∈Σ∞

φ(N)
v (gv)

}
φV(gfin), g = g∞gfin ∈G(AF ),
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is left H(AF )-invariant and is smooth on G(AF ). Thus the sum

Φ
(N)
V (g) =

∑
γ∈H(F )\G(F )

φ
(N)
V (γg), g ∈G(AF ),

is well defined.

LEMMA 6.1

Let N > 2(m− 1). The series Φ
(N)
V converges absolutely and normally on G(AF )

defining a left G(F )-invariant continuous function. For any Siegel domain SG ⊂
G(AF ) with respect to P and U , we have the estimation

Φ
(N)
V (g)� a(g), g ∈SG.

If N > 4m− 6, then the function Φ
(N)
V belongs to Ll(G(F )\G(AF )) for all 1≤

l <m− 1.

Proof

Let N =N∞Nfin be a relatively compact open neighborhood of the identity in

G(AF ) with N∞ and Nfin being open in G(F∞) and G(A∞
F ), respectively. We

may suppose that Nfin is a subgroup such that VNfin = V . Since N∞ =
∏

v∈Σ∞
Nv

is relatively compact, we have∥∥(gy)−1�
∥∥
Uv

≤Bv‖g−1�‖Uv , (g, y) ∈G(Fv)×Nv,

with Bv = supy∈Nv
{
∑

j ‖(y−1)∗vj‖2Uv
}1/2, where {vj} is an orthonormal basis

of V (Fv) with respect to the Hermitian inner product associated to the norm

‖ · ‖Uv , and where (y−1)∗ denotes the Hermitian adjoint of the operator y−1 ∈
EndC(V (Fv)). Thus, if we set B =

∏
v B

N
v , then

φ
(N)
V (g)≤Bφ

(N)
V (gy), (g, y) ∈G(AF )×N .

From this,

Φ
(N)
V (g)B−1vol(N )

≤
∫
y∈N

∑
γ∈H(F )\G(F )

φ
(N)
V (γgy)|ωG|A

≤
∑

γ∈H(F )\G(F )

∫
y∈H(F )\G(A)

∑
δ∈H(F )

1N (g−1γ−1δ−1y)φ
(N)
V (y)|ωG|A

≤
∫
y∈H(F )\G(AF )

{ ∑
γ∈G(F )

1N (g−1γy)
}
φ
(N)
V (y)|ωG|A

with 1N the characteristic function of N on G(AF ). Let U be an arbitrary

compact set in G(AF ). Since
∑

γ∈G(F ) 1N (g−1γy)≤#(G(F )∩UNN−1U−1)(<

+∞) for g ∈ U and y ∈G(AF ), the last integral is majorized uniformly in g ∈ U

by
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∫
H(F )\G(AF )

φ
(N)
V (y)|ωG|A,

which is the product of vol(H(F )\H(AF ))|DF/Q|−dim(H\G)/2 and

vol
(
H(A∞

F )\H(A∞
F )V ; |ωH\G|A∞

){ ∏
v∈Σ∞

∫
yv∈H(Fv)\G(Fv)

‖y−1
v �‖−N

Uv
|ωH\G|Fv

}
.

Since Vv is compact and Vv = Uv for almost all v, the first factor is finite. For

v ∈Σ∞, the integral∫
yv∈H(Fv)\G(Fv)

‖y−1
v �‖−N

Uv
|ωH\G|Fv

=CG

∫ ∞

0

(2 cosh2t)−N/2(cosh t)2m−3 sinh tdt

is convergent if N > 2(m− 1). This settles the first assertion of the lemma. From

Lemma 6.2(1), we have

Φ
(N)
V (g)� a(g)m−1

∫
H(F )\G(F )gN

φ
(N)
V (y) |ωG|A, g ∈SG.

Let φ
(N)
V (y) = 0; then y = ha(t)u with some h ∈ H(AF ), t ∈ (R+)

Σ∞ , and u ∈
U∞V . Hence ‖y‖G �‖h‖G‖a(t)‖G. If y ∈G(F )gN , then from Lemma 6.2(2), we

have ‖y‖−1
G � a(g)−1/2. Hence∫

H(F )\G(F )gN
φ
(N)
V (y)|ωG|A

�
∫
t∈R

Σ∞
+

I
(∥∥a(t)∥∥−1

G
a(g)1/2

) ∏
v∈Σ∞

φ(N)
v (a(tv)v )(cosh tv)

2m−3 sinh tv dtv

with I(T ) =
∫

h∈SH
‖h‖G≥T

|ωH |A. Since I(‖a(t)‖−1
G a(g)1/2)� ‖a(t)‖2(m−2)

G a(g)−(m−2)

by Lemma 6.2 (3) and since ‖a(t)‖G �
∏

v∈Σ∞
etv , the t-integral is majorized by

a(g)−(m−2)
∏
v

∫ ∞

0

e2tv(m−2)(cosh2tv)
−N/2(cosh tv)

2m−3 sinh tv dtv.

If N > 4m− 6, then the tv-integrals are convergent. Therefore,

Φ(g)� a(g)m−1 × a(g)−(m−2) = a(g)

for g ∈SG. By the Iwasawa decomposition, we have∫
SG

∣∣Φ(N)
V (g)

∣∣l|ωG|A �
∫ ∞

t0

a
(
[r]
)l
r−2(m−1) dr

r
=

∫ ∞

t0

r2l−2(m−1) dr

r
.

The last r-integral is finite if l <m− 1. �

LEMMA 6.2

(1) Let N be a relatively compact open set of G(AF ). Then∑
γ∈G(F )

1N (g−1γy)� a(g)m−11G(F )gN (y), g ∈SG, y ∈G(AF ).



Relative trace formulas for unitary hyperbolic spaces 463

(2) Let ‖ · ‖G be the norm function on G(AF ). Then

‖γgy‖−1
G � a(g)−1/2, γ ∈G(F ), g ∈SG, y ∈N .

(3) Let SH be a Siegel domain of H(AF ) with respect to PH and UH . Then∫
h∈SH

‖h‖G≥T

|ωH |A � T−2(m−2), T > 1.

Proof

We prove (1) and (2) in the same way as [26, Lemma 3.3]. Let γ0 ∈ G(F ) be

the element introduced in the proof of Lemma 5.4, and set [τ ]H = γ−1
0 [τ ]γ0 for

τ ∈A
×
E as in Section 5.9. A general element of SH is of the form h= y[τ ]Hk with

k ∈ UH and y ∈ PH(AF ) lying in a fixed compact set and τ ∈ (t0,+∞). Thus

‖h‖G � ‖[τ ]H‖G = ‖γ−1
0 [τ ]γ0‖G � ‖[τ ]‖G � τ . From this, we have∫

h∈SH
‖h‖G≥T

|ωH |A �
∫ ∞

T

τ−2(m−2)dτ

τ
� T−2(m−2).

�

6.2. Test functions
Let d = {dv}v∈Σ∞ ∈ N

Σ∞
0 , and let (τd,W (d)) be the unitary representation of

U∞ defined in Section 5.5. As before, we fix a unit vector ϑdv ∈ W
Uv∩H(Fv)
dv

for each v ∈ Σ∞, and we set ϑ(d) =
⊗

v∈Σ∞
ϑdv . Recall A (see Section 3.1.2).

For a decomposable function α=
⊗

v∈Σ∞
αv ∈⊗v∈Σ∞A, let us define a function

Ψ̂d(α) :G(F∞)→W (d)∼=
⊗

v∈Σ∞
Wdv by setting

Ψ̂d(α;g∞) =
⊗

v∈Σ∞

Ψ̂dv (αv;gv), g∞ = (gv)v ∈G(F∞).

A function φ ∈ S(G(A∞
F )) is called decomposable if there exists a family of func-

tions φv ∈ S(G(Fv)) with v ∈Σfin such that φv = 1Uv for almost all v and

φ(gfin) =
∏

v∈Σfin

φv(gv), gfin = (gv) ∈G(A∞
F ).

For a decomposable function φ, we define a smooth function Φd(α,φ) :G(AF )→
W (d) by setting

Φd(α,φ;g) = Ψ̂d(α;g∞)
∏

v∈Σfin

φH
v (gv), g ∈G(AF ),

where

φH
v (gv) = vol

(
H(Fv)∩ Uv; |ωH |∗Fv

)−1
∫
H(Fv)

φv(hvgv)|ωH |∗Fv
, gv ∈G(Fv).

Note that φH
v = φUv if φv = 1Uv . From the construction, the function Φ =Φd(α,φ)

has the equivariance

Φ(hgk∞) = τd(k∞)−1Φ(g), h ∈H(AF ), g ∈G(AF ), k∞ ∈ U∞.(6.1)
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6.3. The relative kernel functions
Let Φ =Φd(α,φ) be as in Section 6.2. From (6.1), the summation

Φ(g) = (−1)dF vol
(
H(A∞

F )∩ U ; |ωH |A∞
) ∑
γ∈H(F )\G(F )

Φ(γg), g ∈G(AF ),

makes sense if absolutely convergent. When the dependence on the data (d, α,φ)

matters, we write Φd(α,φ;g) in place of Φ(g).

LEMMA 6.3

The series Φ(g) =Φd(α,φ;g) converges absolutely and normally on G(AF ), defin-

ing a continuous W (d)-valued left G(F )-invariant function. For any l ∈ [1,m−1),

we have Φ ∈ (Ll(G(F )\G(AF ))⊗C W (d))U∞ .

Proof

For v ∈ Σfin, set Vv = Supp(φv). Then there exists a constant Bv > 0 such that

|φH
v (gv)| ≤BvφVv (gv) for all gv ∈G(Fv). For a place v ∈Σfin such that φv = 1Uv ,

we can take Bv = 1. Fix an integer N > 4m− 6. For v ∈ Σ∞, Lemma 3.8 yields

a constant Bv > 0 such that ‖Ψ̂dv (αv;gv)‖ ≤ Bv‖g−1
v �‖−N

Uv
for all gv ∈ G(Fv).

Taking the product of local estimations, we have ‖Φ(g)‖ ≤Bφ
(N)
V (g) for all g ∈

G(AF ) with B =
∏

v Bv . Then we apply Lemma 6.1 to complete the proof. �

6.4. Spectral expansion of the relative kernel function
For any unitary representation π of G(AF ), we set π[d] = (π⊗C W (d))U∞ , view-

ing this as a closed subspace of the Hilbert space π ⊗C W (d). In particular,

L2(G(F )\G(AF ))[d] is identified with the space of equivalence classes of measure-

able functions ϕ : G(F )\G(AF )→W (d) such that ϕ(gk∞) = τd(k∞)−1ϕ(g) for

all k∞ ∈ U∞ and
∫
G(F )\G(AF )

‖ϕ(g)‖2|ωG|A <+∞. Let Πdis(G) (resp., Πcus(G))

be the set of all the irreducible closed subrepresentations of L2(G(F )\G(AF ))

(resp., L2
cus(G(F )\G(AF ))). For π ∈Πdis(G), the space π[d] is identified with the

space of W (d)-valued L2-automorphic forms (see Section 5.7) whose coefficients

generate π; we fix an orthonormal basis Bd(π) of π[d] once and for all.

LEMMA 6.4

Let ϕ :G(AF )→W (d) be a smooth function which satisfies the following condi-

tions.

(i) We have ϕ(γgk∞) = τd(k∞)−1ϕ(g) for all γ ∈G(F ) and k∞ ∈ U∞.

(ii) There exists a family of complex numbers {νv}v∈Σ∞ such that

ϕ ∗ CG(Fv) = 2−1
{
(2νv)

2 − (m− 1)2
}
ϕ for all v ∈Σ∞.

(iii) For any ε > 0 and for any D ∈ U(g∞), the majorization ‖[ϕ∗D](g)‖�ε

a(g)(m−1)/2+ε on g ∈SG holds.
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Then the integral 〈Φ|ϕ〉=
∫
G(F )\G(AF )

(Φ(g)|ϕ(g))|ωG|A converges absolutely and

〈Φ|ϕ〉=
{ ∏
v∈Σ∞

αv(νv)
}(

ϑ(d)|PH(ϕ ∗ φ̄)
)
.

Proof

Set

ϕH(g∞) =

∫
H(A∞

F )\G(A∞
F )

φ̄H(gfin)
{∫

H(F )\H(AF )

ϕ(hg∞gfin)|ωH |A
}
|ωH\G|A∞ ,

g∞ ∈G(F∞),

where φH(gfin) is the product of φ
H
v (gv) over all v ∈Σfin. From condition (iii), by

Lemma 5.4, we see that the integral converges absolutely and has the majoriza-

tion

2∑
j=0

∥∥∥ dj

dtjw
ϕH
(
a(t)
)∥∥∥�ε

∏
v∈Σ∞

(cosh tv)
m−1+ε, t ∈R

Σ∞ ,w ∈Σ∞.(6.2)

Moreover ϕH(g∞), when viewed as a function in gv ∈ G(Fv), belongs to

C∞(H(Fv)\G(Fv), τdv ) for all v ∈Σ∞. We have

(−1)dF vol
(
H(A∞

F )∩ U ; |ωH |A∞
)−1〈Φ|ϕ〉

=

∫
H(F )\G(AF )

(
Φ(g)|ϕ(g)

)
|ωG|A

=

∫
H(AF )\G(AF )

(
Φ(g) |

∫
H(F )\H(AF )

ϕ(hg)|ωH |A
)
|ωH\G|A

=

∫
H(F∞)\G(F∞)

(
Ψ̂d(α;g∞)|ϕH(g∞)

)
|ωH\G|F∞

=
( 1

2πi

)dF
∫
L(σ)

{∫
H(F∞)\G(F∞)

(
Ψd(s;g∞)|ϕH(g∞)

)
|ωH\G|F∞

}
× α(s)dμ∞(s),

(6.3)

where Ψd(s;g∞) =
⊗

v∈Σ∞
Ψdv (sv;gv), α(s) =

∏
v∈Σ∞

αv(sv), and the outer inte-

gral in the last line is the multidimensional contour integral on L(σ) = {s ∈CΣ∞ |
Re(sv) = σ} with respect to the differential form dμ∞(s) =

∏
v∈Σ∞

sv dsv . Due

to the estimation (6.2) combined with Lemma 3.4, we have a constant N > 0

such that∣∣(Ψd

(
s;a(t)

)
|ϕH
(
a(t)
))∣∣�ε

∏
v∈Σ∞

(
1 +
∣∣Im(sv)

∣∣)N (cosh tv)
−2Re(sv)+ε, t ∈R

Σ∞ .

By this,∫
L(σ)

{∫
H(F∞)\G(F∞)

∣∣(Ψd(s;g∞)
∣∣ϕH(g∞)

)∣∣∣∣}∣∣α(s)∣∣∣∣dμ∞(s)
∣∣
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�
∫
L(σ)

{∫
R

Σ∞
+

|
(
Ψd

(
s;a(t)

)∣∣ϕH
(
a(t)
))∣∣ ∏

v∈Σ∞

(cosh tv)
2m−3(sinh tv)dtv

}
×
∣∣α(s)∣∣∣∣dμ∞(s)

∣∣
�ε

{∫
R

Σ∞
+

∏
v∈Σ∞

(cosh tv)
−2σ+2m−3+ε(sinh tv)dtv

}
×
{∫

L(σ)

(
1 +
∣∣Im(sv)

∣∣)N ∣∣α(s)∣∣∣∣dμ∞(s)
∣∣}.

In the last line, the tv-integrals are convergent if σ > m− 1 and the s-integral

is also convergent due to the majorization |αv(sv)| � (1 + |Im(sv)|)−N−2 on

Re(sv) = σ. Thus all the equalities occurring in the displayed formula (6.3) are

justified by Fubini’s theorem. By (6.2), we can apply Lemma 3.5 successively to

obtain∫
H(F∞)\G(F∞)

(
Ψd(s;g∞)|

∏
v∈Σ∞

[
CG(Fv) − 2−1

{
(2sv)

2 − (m− 1)2
}]
ϕH(g∞)

)
× |ωH\G|F∞

= 2dF
(
ϑ(d)|ϕH(e)

)
.

By condition (ii), this yields∫
H(F∞)\G(F∞)

(
Ψd(s;g∞)|ϕH(g∞)

)
|ωH\G|F∞ =

(ϑ(d)|ϕH(e))∏
v∈Σ∞

(ν2v − s2v)
.

Plugging this into the last formula in (6.3) and then applying [26, Lemma 9.5],

we have

(−1)dF vol
(
H(A∞

F )∩ U ; |ωH |A∞
)−1〈Φ|ϕ〉

=
( 1

2πi

)dF
∫
L(σ)

α(s)∏
v∈Σ∞

(ν2v − s2v)
dμ∞(s)

(
ϑ(d)|ϕH(e)

)
= (−1)dF

{ ∏
v∈Σ∞

αv(νv)
}(

ϑ(d)|ϕH(e)
)
.

By definition,

ϕH(e) =

∫
H(A∞

F )\G(A∞
F )

φ̄H(gfin)
{∫

H(F )\H(AF )

ϕ(hgfin)|ωH |A
}
|ωH\G|A∞

= vol
(
H(A∞

F )∩ U ; |ωH |A∞
)−1

×
∫
G(A∞

F )

φ̄(gfin)
{∫

H(F )\H(AF )

ϕ(hgfin)|ωH |A
}
|ωH\G|A∞

= vol
(
H(A∞

F )∩ U ; |ωH |A∞
)−1PH(ϕ ∗ φ̄). �

Let π ∈ Πdis(G). For v ∈ Σ∞, let νv(π) be a complex number such that the

eigenvalue of CG(Fv) on π is 2−1{(2νv(π))2− (m−1)2}; to specify νv(π) uniquely,
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we always impose the condition Re(νv(π)) > 0 or Re(νv(π)) = 0, Im(νv(π)) ≥ 0

on νv(π). The vector ν∞(π) = {νv(π)}v∈Σ∞ is called the Archimedean spectral

parameter of π. Set

Q∞(π) =
∏

v∈Σ∞

(
1 +
∣∣νv(π)∣∣2).

We already introduced the similar quantity Q∞(η| · |νF ) for η ∈ YF and ν ∈ C in

Section 5.5.1.

LEMMA 6.5

For any R> 0, there exists N > 0 such that∥∥ϕ(g)∥∥�Q∞(π)Na(g)−R, g ∈SG, ϕ ∈ Bd(π), π ∈Πcus(G).(6.4)

There exists N1 > 0 such that, for any ε > 0,∥∥E(f (ν);g)
∥∥�ε Q∞

(
η| · |νF

)N1
a(g)(m−1)/2+ε,

g ∈SG, f ∈ Bd(η), η ∈ YF , ν ∈ iR.
(6.5)

Proof

The first estimate, as well as the second one with a possibly larger exponent of

a(g), follows from the argument of [7, Section 5.3] (see also [27, Section 15.1]).

Since the exponent of a(g) in (6.5) is crucial to our purposes, we reproduce

the argument closely following [7] but giving a necessary modification. Let φ ∈
C0

c (G(AF )). Then from [7, p. 636],1 there exist constants c1, c2 > 0 such that

E
(
I
(
η| · |νF ;φ

)
f (ν), g

)
=

∫
G(F )\G(AF )

Kφ(g,x)Λ
TE(f (ν), x)|ωG|A

for all g ∈SG and all T > c1 log ‖g‖G + c2, where Kφ(g,x) =
∑

γ∈G(F ) φ(g
−1γx).

Let V = supp(φ). From Lemma 6.2, there is a constant c3 > 0 such that∣∣Kφ(g,x)
∣∣≤ c3a(g)

m−11G(F )gV(g), g ∈SG, x ∈G(AF ).

By Lemma 6.2(2), we have a constant c4 > 0 such that ‖x‖G ≥ c4a(g)
1/2 for

all x ∈ SG such that 1G(F )gV(x) = 0. Taking the integral in x ∈ SG and by

Lemma 6.2 (3) (adapted to G), we have(∫
G(F )\G(AF )

∣∣Kφ(g,x)
∣∣2|ωG|A

)1/2
≤ c5a(g)

m−1
(∫

x∈SG

‖x‖G≥c4a(g)
1/2

|ωG|A
)1/2

≤ c6a(g)
m−1

{
a(g)−(m−1)

}1/2
= c6a(g)

(m−1)/2

with some constant c5, c6 > 0. Thus, by the Cauchy–Schwarz inequality∣∣E(I(η| · |νF ;φ)f (ν), g
)∣∣≤ c6a(g)

(m−1)/2
∥∥ΛTE(f (ν))

∥∥
2

(6.6)

1In [7, p. 636] (line 5 from the bottom), T > c1‖g‖+c2 can be replaced with T > c1 log ‖g‖+c2.
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for all g ∈SG and all T ≥ c1 log ‖g‖G+ c2. Note that E(f (ν)) is a cuspidal Eisen-

stein series since M1
∼=G1 is F -anisotropic. From the Maass–Selberg relation (see

[7, (11)], we have a constant c7 > 0 (independent of ν, η, and T > 1) such that∥∥ΛTE(f (ν))
∥∥
2
≤ c7T

1/2
(
1 +
∣∣(mG(η̄,−ν)m′

G(η, ν)f |f
)
η,d

∣∣+ ∥∥mG(η, ν)f
∥∥
η,d

)
,

where mG(η, ν) : I(η| · |νF )→ I(η̄| · |−ν
F ) is the global intertwining operator defined

by (5.4). This, combined with Lemma 5.2, gives us constants c8 and N > 0

independent of T such that∥∥ΛTE(f (ν))
∥∥
2
≤ c8T

1/2Q∞
(
η| · |νF

)N
, ν ∈ iR, η ∈ YF .(6.7)

From (6.6) and (6.7),∣∣E(I(η| · |νF ;φ)f (ν), g
)∣∣≤ c9a(g)

(m−1)/2T 1/2Q∞
(
η| · |νF

)N
, ν ∈ iR, η ∈ YF ,

for all g ∈SG and all T > c1 log ‖g‖G + c2. By letting T = 2(c1 log ‖g‖G+ c2), we

obtain ∣∣E(I(η| · |νF ;φ)f (ν), g
)∣∣� a(g)(m−1)/2+εQ∞

(
η| · |νF

)
with the implied constant independent of ν ∈ iR, η ∈ YF , and f ∈ V (η). The

remaining part of the proof is the same as [7, Section 5.3]. �

Let V =
∏

v∈Σ∞
Vv be an open compact subgroup of G(A∞

F ) ∩ U such that φ

is right V-invariant. Let Πdis(G)V be the set of all those π ∈ Πdis(G) such that

πV = {0}, and set Πcus(G)V = Πcus(G) ∩ Πdis(G)V . For each π ∈ Πdis(G)V , we

always choose our Bd(π) in such a way that any ϕ ∈ Bd(π) belongs to π[d]V or

the orthogonal complement of π[d]V in π[d]. Similarly, for each η ∈ YF , we always

require that Bd(η) is a disjoint union of Bd(η)∩ Ĥd(η)
V and Bd(η)∩ (Ĥd(η)

V)⊥.

LEMMA 6.6

Let U be a compact subset of G(AF ). There exists N1 such that if R>N1, then

the series

CV
R(g) =

∑
π∈Πcus(G)V

∑
ϕ∈Bd(π)V

Q∞(π)−R
∥∥ϕ(g)∥∥

and the series-integral

EV
R(g) =

∑
η∈YF

∑
f∈Bd(η)V

∫
iR

Q∞
(
η| · |νF

)−R∥∥E(f (ν);g)
∥∥|dν|

converges uniformly on g ∈ U .

Proof

By Lemma 6.5, we have a constant C > 0 and N0 > 0 such that ‖ϕ(g)‖ ≤
CQ∞(π)N0 for all ϕ ∈ Bd(π)

V and g ∈ U . Thus, the series∑
π∈Πcus(G)V

∑
ϕ∈Bd(π)V

Q∞(π)−R+N0(6.8)
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is a uniform majorant for CV
R(g) on g ∈ U . By Weyl’s law for the C∞-bundle

G(F )\G(AF )/V×U∞,τd W (d)→G(F )\G(AF )/U∞V (see [2], [15]), the series (6.8)

turns out to be convergent if R−N0 > (m−1)dF . In the same way, by Lemma 6.5,

the series-integral EV
R(g) is majorized uniformly on U by∑
η∈YF

∑
f∈Bd(η)V

∫
iR

Q∞
(
η| · |νF

)−R+N0 |dν|(6.9)

with some constant N0 > 0. Since f ∈ Hd(η) is determined by its restriction to

Ufin = U ∩G(A∞
F ), we see that Bd(η)

V is contained in the space of W (d)-valued

functions on the finite set Ufin/V , and hence #Bd(η)
V ≤ [Ufin : V ] dimW (d). Thus

to see the convergence of (6.9), we may ignore the summation over f . There exists

an open compact subgroup V1 ⊂ U such that any function f : Ufin/V →W (d) is

left V1-invariant. Let fV be an ideal of oE such that, for any τ ∈
∏

v∈Σfin
{(1 +

fVoEv)∩ o
×
Ev

}, the element [τ ] (see Section 2.1 for the definition) is contained in

V1. Let YF (fV) be the set of η ∈ YF such that the conductor of η ◦NE/F divides

the ideal fV . Since Bd(η) =∅ unless η ∈ YF (fV), the series (6.9) is majorized by∑
η∈YF (fV )

∫
iR

Q∞
(
η| · |νF

)−R+N0 |dν|.

There exists a lattice L of {b = (bv) ∈ iRΣ∞ |
∑

v bv = 0} such that Y (fV) =

{η
∏

v | · |
bv
Fv

| b ∈ L,η ∈ Y 0
F (fV)}, where Y 0

F (fV) denotes the finite-order elements

in YF (fV). Since #Y 0
F (fV)<∞, we are reduced to see the convergence of∑

b∈L

∫
R

∏
v∈Σ∞

(
1 + |it+ bv|2

)−R+N0
dt.

Since
∫
RdF

∏dF

j=1(1+ |xj |2)−R dx <+∞ if R> dF /2, we have the desired conver-

gence for any R such that R> dF /2 +N0. �

PROPOSITION 6.7

The series-integral∑
π∈Πdis(G)V

∑
ϕ∈Bd(π)V

α
(
ν∞(π)

)(
ϑ(d)|PH(ϕ ∗ φ̄)

)
ϕ(g)

+
∑
η∈YF

∑
f∈Bd(η)V

1

4πi

∫
iR

α
(
ν∞
(
η| · |νF

))(
ϑ(d)|PH

(
E
(
I
(
η| · |νF ; φ̄

)
f (ν)
)))

×E(f (ν);g)dν

(6.10)

converges to the value Φ(g) absolutely and locally uniformly in g ∈G(AF ).

Proof

By Lemma 6.3, Φ ∈ L2+ε(G(F )\G(AF ))[d]
V for any ε ∈ [0,m− 3); since m≥ 4,

such ε’s are nonempty. We have the spectral expansion of Φ of the form
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Φ(g) =
∑

π∈Πdis(G)V

∑
ϕ∈Bd(π)V

〈Φ|ϕ〉ϕ(g)

+
∑
(χ,σ)

∑
f∈Bd(χ,σ)V

1

4πi

∫
iR

〈
Φ|E(f (−ν))

〉
E(f (ν))dν,

(6.11)

which should be understood in the L2-sense for a moment. Here (χ,σ) runs over

a set of pairs of unitary idèle class characters χ of E× and an irreducible closed

submodule σ ⊂ L2(G1(F )\G1(AF )), and Bd(χ,σ)
V is an orthonormal basis of

I(χ,σ)[d]V (see Section 5.5). Since ϕ=E(f (ν)) with ν ∈ iR satisfies the conditions

(i), (ii), and (iii) in Lemma 6.4, 〈Φ|E(f (ν))〉 is proportional to (ϑ(d)|PH(E(f (ν) ∗
φ̄)). By Theorem 5.6, PH(E(f (ν))) is zero unless χ = η ◦ NE/F with some η ∈
YF and σ coincides with the constant functions on G1(F )\G1(AF ). Let ϕ ∈
Bd(π) with π ∈ Πdis(G)−Πcus(G). From [18, Proposition IV.1.11], ϕ is a finite

linear combination of the residues ϕr =Ress=rE(f (ν)) with f ∈ I(χ,σ)[d] and r ∈
(0, m−1

2 ]. By applying Lemma 6.4 to ϕr, we see that 〈Φ|ϕr〉 is a constant multiple

of PH(ϕr ∗ φ̄), which, from Theorem 5.6(2), should be zero unless η ◦NE/F = 1, σ

is trivial, and r = m−1
2 . Applying Lemma 6.4 to all cuspidal components 〈Φ|ϕ〉,

we see that (6.11) is simplified to

Φ(g) =
∑

π∈Πdis(G)V

∑
ϕ∈Bd(π)V

α
(
ν∞(π)

)(
ϑ(d)|PH(ϕ ∗ φ̄)

)
ϕ(g)

+
∑
η∈YF

∑
f∈Bd(η)V

1

4πi

∫
iR

α
(
ν∞
(
η| · |νF

))(
ϑ(d)|PH

(
I
(
η| · |νF ; φ̄

)
f (ν)
))

×E(f (ν))dν,

(6.12)

where the only noncuspidal ϕ ∈ Bd(π)
V contributing to the sum is the constant

function, which occurs only when dv = 0 for all v. To complete the proof, it

suffices to show the uniform convergence on U of the series-integral (6.12). From

Lemmas 5.4 and 6.5, we have a constant N > 0 such that∥∥PH(ϕ ∗ φ̄)
∥∥≤ ∫

H(F )\H(AF )

∥∥(ϕ ∗ φ̄)(h)
∥∥|ωH |A

�Q∞(π)N , π ∈Πcus(G)V , ϕ ∈ Bd(π)
V .

(6.13)

For an arbitrary large R> 0, we have |α(s)| �
∏

v∈Σ∞
(1+ |Im(sv)|)−R compact

uniformly in Re(s). Hence∥∥α(ν∞(π)
)(
ϑ(d)|PH(ϕ ∗ φ̄)

)
ϕ(g)

∥∥≤ ∣∣α(ν∞(π)
)∣∣∥∥PH(ϕ ∗ φ̄)

∥∥∥∥ϕ(g)∥∥
�Q∞

(
ν∞(π)

)−R+N∥∥ϕ(g)∥∥
with the implied constant independent of π and ϕ. Thus, the discrete part of

(6.12) is majorized by the series CV
R−N (g), which is uniformly convergent on

U by Lemma 6.6. From Lemmas 5.4 and 6.5, we obtain a polynomial bound

‖PH(E(I(η| · |νF ; φ̄)f (ν)))‖ � Q∞(η| · |νF )N uniformly in f ∈ Bd(η)
V , η, and ν.
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Using this estimate and Lemma 6.6, we see the uniform convergence on U of the

continuous part of (6.12) in the same way as in the discrete part. �

6.5. Period integral of the relative kernel function
We consider the H-period integral PH(Φ|ϑ(d)) of g 
→ (Φ(g)|ϑ(d)).

PROPOSITION 6.8

The period integral PH(Φ|ϑ(d)) converges absolutely and equals (−1)dF ×
vol(H(A∞

F )∩ U) times∑
π∈Πdis(G)V

∑
ϕ∈Bd(π)V

α
(
ν∞(π)

)(
ϑ(d)|PH(ϕ ∗ φ̄)

)(
PH(ϕ)|ϑ(d)

)
+
∑
η∈YF

∑
f∈Bd(η)V

1

4πi

∫
iR

α
(
ν∞
(
η| · |νF

))(
ϑ(d)|PH

(
E
(
I
(
η| · |νF ; φ̄

)
f (ν)
)))

×
(
PH

(
E(f (ν))

)
|ϑ(d)

)
dν.

Proof

The formula is obtained by the termwise integration of the series-integral (6.10).

To justify this process by Fubini’s theorem, we only have to ensure the conver-

gence of the following series-integrals:∑
π∈Πdis(G)V

∑
ϕ∈Bd(π)V

∣∣α(ν∞(π)
)∣∣∣∣(ϑ(d)|PH(ϕ ∗ φ̄)

)∣∣
×
∫
H(F )\H(AF )

∥∥ϕ(h)∥∥|ωH |A,
(6.14)

∑
η∈YF

∑
f∈Bd(η)V

∫
iR

∣∣α(ν∞(η| · |νF ))∣∣∣∣(ϑ(d)|PH

(
E
(
I
(
η| · |νF ; φ̄

)
f (ν)
)))∣∣

×
{∫

H(F )\H(AF )

∥∥E(f (ν))
∥∥|ωH |A

}
|dν|.

(6.15)

By (6.13), the series (6.14) is majorized by∑
π∈Πdis(G)V

∑
ϕ∈Bd(π)V

∣∣α(ν∞(π)
)∣∣Q∞

(
ν∞(π)

)2N
,

whose convergence can be confirmed in the same way as in the previous proof.

The convergence of (6.15) is shown similarly. �

7. The geometric side

Let Φ=Φd(α,φ) be the relative kernel function defined in Section 6.3. We com-

pute the period integral PH(Φ|ϑ(d)) in a different way than in Section 6.5.
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7.1. The double coset space
For γ ∈G(F ), set

b(γ) = h(γ−1�, �), �γ = γ−1�− b(γ)�, Δγ = h[�γ ].

A simple computation shows that �γ is orthogonal to �, and Δγ = 1−NE/F b(γ).

LEMMA 7.1

There exists a well-defined bijection

N
� :H(F )\

(
G(F )−H(F )

)
/H(F )−→NE/F (E)

such that N�(H(F )γH(F )) = NE/F b(γ).

Proof

If h,h1 ∈ H(F ), then there exist elements c, c1 ∈ E1 such that h−1� = c� and

h1�= c1�; thus NE/F (h(hgh1�, �)) = NE/F (h(gh1�, h
−1�)) = NE/F (c1c̄h(g�, �)) =

NE/F (h(g�, �)). This shows that the map N� is well defined.

Let us show the injectivity of N�. Suppose that N�(H(F )gH(F )) =

N�(H(F )g1H(F )) with g, g1 ∈ G(F ) − H(F ). Then NE/F (h(g
−1�, �)) =

NE/F (h(g
−1
1 �, �)); equivalently, h(g−1�, �) = ch(g−1

1 �, �) with some c ∈ E1. If we

set y = h(g−1�, �), ξ0 = g−1�−y�, and ξ′0 = cg−1
1 �−y�, then we can easily confirm

that ξ0 and ξ′0 belong to �⊥. The condition g, g1 /∈H(F ) implies that both ξ0 and

ξ′0 are nonzero. A computation shows the identity h[ξ0] = 1 − NE/Fh(g
−1�, �).

Hence N�(H(F )gH(F )) = N�(H(F )g1H(F )) means the equality h[ξ0] = h[ξ′0].

Since h restricted to �⊥ is nondegenerate, we apply Witt’s theorem to have an

isometry h of �⊥ such that hξ0 = ξ′0. Extend h to an element of G(F ) by setting

h(�) = �. Then h(g−1�) = h(ξ0+y�) = ξ′0+y�= cg−1
1 �; equivalently, g1hg

−1�= c�.

This means that g1hg
−1 ∈ H(F ). Since h ∈ H(F ), we obtain H(F )g1H(F ) =

H(F )gH(F ), as desired.

Let a ∈E. By the Hasse–Minkowski theorem applied to the quadratic space

(h, �⊥) (see the first sentence of Section 5.6), we can find a vector ξa ∈ �⊥ such

that h[ξa] = 1−NE/F (a). Since the vector ξ = a�+ξa satisfies h[ξ] = 1, by Witt’s

theorem, we have ξ = g−1� with some g ∈G(F ). Noting that ξa = 0, we obtain

g ∈G(F )−H(F ), and by a computation N�(H(F )gH(F )) = NE/F (a) also. This

completes the proof. �

We fix a complete set of representatives XG,H(F ) in G(F )−H(F ) of the dou-

ble coset space H(F )\(G(F ) −H(F ))/H(F ) once and for all. An element γ ∈
XG,H(F ) is said to be regular or unipotent according to whether N�(γ) = 1 or

N�(γ) = 1, respectively. We set

Xr
G,H(F ) =

{
γ ∈XG,H(F ) |N�(γ) ∈ F − {1}

}
,

Xu
G,H(F ) =

{
γ ∈XG,H(F ) |N�(γ) = 1

}
.
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By Lemma 7.1, the set Xu
G,H(F ) is a singleton. Indeed, we may take Xu

G,H(F ) =

{γu}, where γu ∈G(F ) is an element such that γu�= �+ eH with eH being an

F -isotropic vector in �⊥.

7.2. The orbital integrals
Let γ ∈XG,H(F ), and set Hγ = γ−1Hγ ∩H . The unitary group U(h|�⊥) is iden-
tified with H0, and the stabilizer H0(�

γ) in H0 of �γ coincides with H0 ∩Hγ . By

the H0-isomorphism

H0(�
γ)\H0 �H0(�

γ)h−→ h−1�γ ∈Σ′(Δγ),

we transport the gauge-form |ωΣ′(Δγ)| on Σ′(Δγ) = {ξ ∈ �⊥ − {0} | h[ξ] = Δγ}
to H0(�

γ)\H0. When N�(γ) = 0, we have a gauge-form ωHγ\H on Hγ\H ∼=
H0(�

γ)\H0 (cf. [27, Lemma 4.7]). When N�(γ) = 0, it is easy to see that Hγ\H ∼=
(T × H0(�

⊥))\H0 with T = E1. We fix an H-invariant gauge-form ωHγ\H on

Hγ\H so that ωHγ\H , ωT , and ωH0(�⊥)\H0
match together algebraically.

LEMMA 7.2

We have vol(H) = {2L(1, εE/F )}2. For γ ∈XG,H(F ), the volume vol(Hγ) equals

{2L(1, εE/F )}2 or {2L(1, εE/F )}3 according to whether N�(γ) = 0 or N(γ)� = 0.

Proof

Since Hγ is isomorphic to U(m− 2)× U(1)2 or U(m− 2)× U(1) according to

whether N�(γ) is zero or not, from Section 5.3, the lemma is immediate. �

For any function Φ =Φ(d, α,φ) constructed in Section 6.2, define

Jd(γ;Φ) =

∫
Hγ(AF )\H(AF )

(
Φ(γh)|ϑ(d)

)
|ωHγ\H |A.(7.1)

LEMMA 7.3

We have ∑
γ∈XG,H(F )

∫
H(F )\H(AF )

∥∥Φ(γh)∥∥|ωHγ\H |A <+∞.(7.2)

In particular, the integral (7.1) converges absolutely.

Proof

From Lemma 6.1 and the proof of Lemma 6.3, we have the estimate∑
γ∈H(F )\G(F ) ‖Φ(γg)‖� a(g) on any Siegel domain SG ⊂G(AF ), which, com-

bined with Lemma 5.4, shows the convergence of the double integral∫
H(F )\H(AF )

∑
γ∈H(F )\G(F )

∥∥Φ(γh)∥∥|ωH |A.(7.3)
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By the unfolding, we see that this equals∑
γ∈H(F )\G(F )/H(F )

vol(Hγ)

∫
Hγ(A)\H(AF )

∥∥Φ(γh)∥∥|ωHγ\H |A,

which, from Lemma 7.2, turns out to be a majorant of (7.2). �

7.3. The relative trace formula
From Proposition 6.8 and Lemma 7.3, we obtain the following.

THEOREM 7.4

Let V be an open compact subgroup of G(A∞
F ) ∩ U . For any α ∈ A∞ and a

decomposable φ ∈ S(G(A∞
F ))V (see Section 6.2), we have the identity Id(α,φ) =

Jd(α,φ), where

Id(α,φ) =
∑

π∈Πdis(G)V

∑
ϕ∈Bd(π)V

α
(
ν∞(π)

)(
ϑ(d)|PH(ϕ ∗ φ̄)

)(
PH(ϕ)|ϑ(d)

)
+
∑
η∈YF

∑
f∈Bd(η)V

1

4πi

×
∫
iR

α
(
ν∞
(
η| · |νF

))(
ϑ(d)|PH

(
E
(
I
(
η| · |νF ; φ̄

)
f (ν)
)))

×
(
PH

(
E(f (ν))

)
|ϑ(d)

)
dν

and

Jd(α,φ) = (−1)dF vol
(
H(A∞

F )∩ U
){

vol(H)
(
Φd(α,φ; e)|ϑ(d)

)
+

∑
γ∈XG,H(F )

vol(Hγ)Jd
(
γ;Φd(α,φ)

)}
.

All the series and integrals are absolutely convergent.

8. The germ expansion of local orbital integrals

In this section, we return to the setting of Section 4, keeping all notation and

conventions introduced there. For any γ ∈ G −H , the local orbital integral is

defined by

JF (γ;f) =

∫
Hγ\H

f(γh)|ωHγ\H |F , f ∈ S(H\G),(8.1)

where Hγ and ωHγ\H are as in Section 7.2. We let SE(F ) be the space of all

the compactly supported C-valued functions ϕ on F smooth on F× such that

ϕ(x) equals a constant multiple of χE(x) in a neighborhood of x = 0, where

χE(x) = vol(o×F ){1 + ordF (x)}δ(x ∈ oF ) if E is not a field and χE(x) = δ(x ∈
oF ){1 + εE/F (x)} if E is a field.
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PROPOSITION 8.1

(1) Let f ∈ S(H\G). The integral (8.1) converges absolutely. There exists

ϕ0, ϕ1 ∈ SE(F ) such that

JF (γ;f) = ϕ1

(
N

�(γ)
)
+Ch�

∣∣N�(γ)− 1
∣∣m−2

F
εm−1
E/F

(
N

�(γ)− 1
)
ϕ0

(
N

�(γ)
)

(8.2)

for all γ ∈ G−H such that N�(γ) = 0, where Ch� is the constant to be defined

in Section A.1 For any pair (ϕ0, ϕ1) of elements from SE(F ) satisfying this

condition, we have

ϕ1(1) = JF (γu;f), ϕ0(1) = f(e).

(2) For any pair (ϕ0, ϕ1) of functions from SE(F ), there exists f ∈ S(H\G)

such that (8.2) holds for all γ ∈G−H with N�(γ) = 0.

Proof

There exists φ ∈ S(Σ(1)) such that f(g) =
∫
τ∈E1 φ(τg

−1�)|ωE1 |F for all g ∈ G.

Since Σ(1) is a closed subset of V , we can extend φ to an element of S(V )

denoted by the same symbol φ. Let γ ∈ G −H with N�(γ) = 0. For t ∈ F , set

Σ′(t) = �⊥ ∩Σ(t). Then

JF (γ;f) =

∫
Z∈Σ′(1−NE/F b(γ))

∫
τ∈E1

φ
(
τ
(
b(γ)�+Z

))
|ωE1 |F |ωΣ′(1−NE/F b(γ))|F

=

∫
τ∈E1

J�
(
τb(γ), φ

)
|ωE1 |F ,

where φ 
→ J�(β,φ) is the linear functional on S(V ) defined by (A.1). From

Lemma A.3, there exists ϕ̃1 ∈ S(E) such that

J�(β,φ) = ϕ̃1(β) +Ch�δ(NE/Fβ − 1 ∈ oF )|NE/Fβ − 1|m−2
F

× εm−1
E/F

(
NE/F (β)− 1

)
φ(β�)

(8.3)

for all β ∈E −E1. Setting β = τb(γ) with τ ∈E1 and taking the τ -integral, we

obtain

JF (γ;f) = ϕ1

(
NE/F b(γ)

)
+Ch�

∣∣NE/F b(γ)− 1
∣∣m−2

F

× εm−1
E/F

(
NE/F b(γ)− 1

)
ϕ0

(
NE/F b(γ)

)
,

(8.4)

where ϕ0 and ϕ1 are functions on F defined by integration on the fibers E(x) =

N
−1
E/F (x) as

ϕ1(x) =

∫
τ∈E(x)

ϕ̃1(τ)|ωE(x)|Fv ,

ϕ0(x) = δ(x− 1 ∈ oF )

∫
τ∈E(x)

φ(τ�)|ωE(x)|F .
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From Lemma A.2(2), both ϕ0 and ϕ1 belong to SE(F ). For any τ ∈E1, by taking

the limit β → τ in (8.3), we have ϕ̃1(τ) = J�(τ,φ). Hence,

ϕ1(1) =

∫
τ∈E1

J�(τ,φ)|ωE1 |F = JF (γu;f),

ϕ0(1) =

∫
τ∈E1

φ(τ�)|ωE1 |F = f(e).

This proves the first assertion in (1) of the proposition. To show the second part

of (1), we let ξ0 and ξ1 be functions from SE(F ) such that the equation (8.4)

with (ϕ0, ϕ1) replaced with (ξ0, ξ1) holds. By taking the difference of the two

equations, we obtain

ϕ1(NE/F b)− ξ1(NE/F b) =Ch�χh�(NE/F b− 1)
{
ξ0(NE/F b)−ϕ0(NE/F b)

}
(8.5)

for all b= b(γ) with some γ ∈G−H satisfying N�γ = 0,1. From Lemma 7.1, b can

be an arbitrary element in E×−E1. Since the function Ch�χh� on F is not smooth

at zero, a contradiction arises from (8.5) if ξ0(1) = ϕ0(1). Hence ξ0(1) = ϕ0(1)

and ξ1(1) = ϕ1(1) is obtained. This proves the second assertion of (1) in the

proposition. To show the claim (2), suppose that we are given a pair of functions

(ϕ0, ϕ1) from SE(F ) satisfying (8.2). By Lemma A.2(2), we can find ϕ̃0, ϕ̃1 ∈
S(E) such that

∫
E(t)

ϕ̃j(τ)|ωE(t)|F = ϕj(t) for all t ∈ F×. By Lemma A.3(2),

there exists φ ∈ S(V ) such that J�(β,φ) = ϕ̃1(β) + Ch�χh�(NE/Fβ − 1)ϕ̃0(β)

for all β ∈ E −E1. From this, we obtain (8.4) by taking the fiber integral over

β ∈E(NE/F b(γ)). �

9. Archimedean orbital integrals

In this section, we return to the setting of Section 3, keeping all notation and

conventions introduced there; thus F = R, E = C, G denotes G(R), and so on.

Fix an integer d ∈N0. Recall the function Ψ̂d(α;g) defined by (3.11). The aim of

this section is to study the integral

Jϑd

(
γ; Ψ̂d(α)

)
=

∫
Hγ\H

(
ϑd|Ψ̂d(α;γh)

)
|ωHγ\H |R(9.1)

for γ ∈G−H , where ϑd is the fixed unit vector of WU∩H
d implicit in the definition

of Ψ̂d(α) (see Section 3.1). The integral behaves differently depending on the

signature of h[�γ ] = 1−NE/F b(γ) (for the definition of �γ and b(γ), we refer the

reader to Section 7.1). Indeed, we have the following evaluation.

THEOREM 9.1

The integral (9.1) converges absolutely and

Jϑd

(
γ; Ψ̂d(α)

)
=

1

2πi

∫
(σ)

Ĵd(s;γ)α(s)sds,
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where σ > m−1
2 and

Ĵd(s;γ) =
−Γ(m− 1)

2

Γ(s− m−3
2 − d)

Γ(s+ m−1
2 + d)

d∑
l=0

d!

(d− l)!

(
d

l

)
(−1)l

(
1− h[�γ ]

)d−l

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−h[�γ ])−s+(m−3)/2−d+l Γ(s+

m−1
2 +d)Γ(s−m−3

2 +d−l)

Γ(2s+1)

×2F1(s+
m−1
2 + d, s− m−3

2 + d− l; 2s+ 1; (h[�γ ])−1)

(h[�γ ]< 0),

(2−1)δ(h[�
γ ]=0)Γ(m+ l− 2)

Γ(s−m−3
2 +d−l)

Γ(s+m−1
2 −d+l)

(h[�γ ]≥ 0).

We separate three cases h[�γ ]< 0, h[�γ ] = 0, and h[�γ ]> 0 to prove the theorem.

9.1. The case hv[�
γ ]< 0

Fix a vector �H ∈ V orthogonal to � and �− such that h[�H ] = +1, and define a

1-parameter subgroup a
(r)
H (r ∈R) by

a
(r)
H �− = cosh r�− + sinh r�H , a

(r)
H �H = cosh r�H + sinh r�−,

a
(r)
H |(C�H +C�−)⊥ = id.

We define 1-parameter subgroups t±H(ϕ) (ϕ ∈R) as

t+H(ϕ)�H = eiϕ�H , t+H(ϕ)|(C�H)⊥ = id,

t−H(ϕ)�− = eiϕ�−, t−H(ϕ)|(C�−)⊥ = id.

LEMMA 9.2

Suppose h[�γ ]< 0. The integral (9.1) converges absolutely and

Jϑd

(
γ; Ψ̂d(α)

)
=

1

2πi

∫
(σ)

Ĵd(s;γ)α(s)sds,

where

Ĵd(s;γ) =
2−m

2

1

scd(s)

d∑
l=0

(
d

l

)2(
l+m− 3

l

)−1

× (−1)l
(
−h[�γ ]

)l+m−2(
1− h[�γ ]

)d−l

×
∫ ∞

0

(
1− h[�γ ] cosh2 r

)−s−m−1
2 −d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d; 2s+ 1;

1

1− h[�γ ] cosh2 r

)
× (sinh r)2m+2l−5 cosh r dr.

Proof

Since NE/F b(γ) > 1, we have NE/F b(γ) = cosh2 tγ with some tγ > 0. Since

N�(a(t)) = NE/Fh(a
(t)�, �) = cosh2 t for t ∈ R, we have N�(a(tγ)) = N�(γ), which
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implies γ ∈ Ha(tv)H from Lemma 7.1. We can write γ = hγa
(tγ)h′

γ with some

hγ , h
′
γ ∈ H . Set a = a(tγ) and H̃�− = {h ∈ H | h�− = c�−, h� = c� (∃c ∈ C(1))}.

Then H ∩ a−1Ha = H̃�− is confirmed easily. We have an H-isomorphism from

H̃�−\H onto Hγ\H induced from h 
→ h−1
γ h. Thus, by a change of variables,

Jϑd

(
γ; Ψ̂d(α)

)
=

∫
Hγ\H

(
ϑd|Ψ̂d(α;γh)

)
|ωHγ\H |R

=
∣∣h[�γ ]∣∣m−2

∫
H̃�−\H

(
ϑd|Ψ̂d(α;ah)

)
dμ(h),

where dμ is the H-invariant measure on H̃�−\H corresponding to |ωΣ′(−1)|R on

Σ′(−1) = {Z ∈ �⊥ | h[Z] = −1} by the isomorphism H̃�−\H ∼= Σ′(−1) induced

from h 
→ h−1�−.

Let dk0 be the Haar measure on UH with total volume 1. The measure dμ

is decomposed as dμ= π|
√
θ|−1CH(sinh r)2m−5 cosh r dϕ

2|
√
θ| dr dk0 with respect to

the Cartan decomposition H̃�−\H = {t−H(ϕ)a
(r)
H | ϕ ∈ R r ≥ 0}UH , where CH =

|
√
θ|2−m4πm−2Γ(m− 2)−1. Noting that τd(k0)ϑd = ϑd, by Lemma 9.3, we have

Jϑd

(
γ; Ψ̂d(α)

)
=
∣∣h[�γ ]∣∣m−2

CH

∫ +∞

0

∫ 2π

0

dϕ

2|
√
θ|
(
ϑd|Ψ̂d

(
α;a(tγ)t−H(ϕ)a

(r)
H

))
× (sinh r)2m−5 cosh r dr

=
∣∣h[�γ ]∣∣m−2

π|
√
θ|−1CH

∫ +∞

0

(
ϑd|Ψ̂d(α;a

(u))
)
(cosh2 u)−d

×
d∑

l=0

(
d

l

)2(
l+m− 3

l

)−1

(−1)l(cosh tγ)
2(d−l)(sinh tγ sinh r)

2l(sinh r)2m−5

× cosh r dr

=
|h[�γ ]|m−2(2−m)1

2πi

∫ ∞

0

{∫
(σ)

(cosh2 u)−s−m−1
2 −d

× 2F
(
s+

m− 1

2
+ d, s− m− 3

2
− d; 2s+ 1;

1

cosh2 u

) α(s)

2scd(s)
sds
}

×
d∑

l=0

(
d

l

)2(
l+m− 3

l

)−1

(−1)l(cosh tγ)
2(d−l)(sinh tγ sinh r)

2l(sinh r)2m−5

× cosh r dr.

Since cosh2 u = 1 + sinh2 tγ cosh
2 r = 1− h[�γ ] cosh2 r, we are done by an order

change of integrals. To apply Fubini’s theorem, we need to make sure that
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∫ ∞

0

∫
(σ)

∣∣ψd(s;u)α(s)
∣∣|sds|(1 + sinh2 tγ cosh

2 r)−d(sinh r)2m+2l−5 cosh r dr

<+∞.

By Lemma 3.4, the integral is majorized from above by{∫
(σ)

(
1 +
∣∣Im(s)

∣∣)N ∣∣α(s)∣∣|sds|}
×
{∫ ∞

0

(1 + sinh2 tγ cosh
2 r)−σ−(m−1)/2−d(sinh r)2m+2l−5 cosh r dr

}
,

which is convergent if σ > (m − 3) − 2d + 2l due to the bound |α(s)| � (1 +

|Im(s)|)−N−3 and (1 + sinh2 tγ cosh
2 r)−σ−(m−1)/2−d(sinh r)2m+2l−5 cosh r �

e−(2σ−(m−3)+2d−2l)r for r ≥ 0. �

Let us compute Ĵd(s, γ). It suffices to evaluate the integral

fl(z) =

∫ ∞

0

(1− z cosh2 r)−s−(m−1)/2−d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d; 2s+ 1;

1

1− z cosh2 r

)
× (sinh r)2m+2l−5 cosh r dr

for z < 0. From the formula 2F1(a, b, c; z) = (1− z)−a
2F1(a, c− b; c; z

z−1 ) (see [17,

p. 47]), we have

fl(z) =

∫ ∞

0

(−z cosh2 r)−s−(m−1)/2−d

× 2F1

(
s+

m− 1

2
+ d, s+

m− 1

2
+ d; 2s+ 1; (z cosh2 r)−1

)
× (sinh r)2m+2l−5 cosh r dr.

Suppose that |z| > 1 and Re(z) < 0 for a moment. By the power series expan-

sion of 2F1 and by the formula
∫∞
0

(sinh r)α(cosh r)−β dr = 2−1B( 1+α
2 , β−α

2 ) for

Re(β)>Re(α), Re(α)>−1 (see [17, p. 10]), this becomes

Γ(2s+ 1)

Γ(s+ m−1
2 + d)2

∞∑
n=0

(−1)nΓ(s+ m−1
2 + d+ n)2

n!Γ(2s+ 1+ n)

× (−z)−s−m−1
2 −d−n

∫ ∞

0

(cosh r)−2s−(m−1)−2d−2n+1(sinh r)2m+2l−5 dr

=
Γ(2s+ 1)

2Γ(s+ m−1
2 + d)2

∞∑
n=0

(−1)nΓ(s+ m−1
2 + d+ n)2

n!Γ(2s+ 1+ n)
(−z)−s−m−1

2 −d−n

×
Γ(m+ l− 2)Γ(s− m−3

2 + d− l+ n)

Γ(s+ m−1
2 + d+ n)



480 Masao Tsuzuki

=
Γ(m+ l− 2)Γ(s− m−3

2 + d− l)

2Γ(s+ m−1
2 + d)

(−z)−s−m−1
2 −d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
+ d− l; 2s+ 1; z−1

)
.

When viewed as a function in z, the last expression is holomorphic on Re(z)< 0

and equals fl(z) when Re(z)< 0, |z|> 1, as seen above. By the absolute conver-

gence of the defining integral, fl(z) is also a holomorphic function on Re(z)< 0.

Thus the evaluation of fl(z) remains valid for all Re(z)< 0. This settles the first

case of the theorem.

LEMMA 9.3

We have a(t)t−H(ϕ)a
(r)
H ∈Ha(u)k with u≥ 0 and k ∈ U satisfying

cosh2 u= 1+ cosh2 r sinh2 t,(9.2)

(
ϑd|τd(k)ϑd

)
= (cosh2 u)−d

d∑
l=0

(
d

l

)2(
l+m− 3

l

)−1

(−1)l

(9.3)

× (cosh t)2(d−l)(sinh t sinh r)2l.

Proof

Set g = a(t)t−H(ϕ)a
(r)
H = ha(u)k with h ∈H , k ∈ U . On the one hand, from g =

a(t)t−H(ϕ)a
(r)
H , we have |(g−1�|�−)| = |(a(−r)

H (cosh t� − e−iϕ sinh t�−)|�−) =

| sinh t cosh r|. On the other hand, from g = ha(u)k, we compute |(g−1�|�−)| =
|(a(−u)�|�−)| = | sinhu|. Comparing these, we obtain | sinhu| = | sinh t cosh r|,
which is equivalent to (9.2). To show (9.3), we recall the polynomial realization of

Wd. We fix an orthonormal basis {�j}mj=1 of V such that �m = �−, �m−1 = �, and

�m−2 = �H , and we let xj (1≤ j ≤m) be the complex coordinate functions on V

dual to this basis. The group G is embedded into GLm(C) by sending an element

g ∈G to the matrix ρ(g) = (gij) such that g�i =
∑

j gji�j . Then ρ(gh) = ρ(g)ρ(h)

(g,h ∈G) is confirmed easily. We have

ρ(U) =
{
diag(k1, k2) | k1 ∈ U(m− 1), k2 ∈ U(1)

}
,

ρ(U ∩H) =
{
diag(u,u1, u2) | u ∈ U(m− 2), u1, u2 ∈ U(1)

}
.

The functions xj (1≤ j ≤m) together with their complex conjugates x̄j form a

C-basis of X = HomR(V,C). We let the group GLm(C) act on X C-linearly by

the rule gxi =
∑

j(g
−1)ijxj and gx̄i =

∑
j(ḡ

−1)ij x̄j ; the action is extended to the

symmetric algebra S(X) in the natural way. We introduce a C-bilinear pairing

on X by defining 〈xi, xj〉= 〈x̄i, x̄j〉= 0, 〈xi, x̄j〉= δij and extend it to S(X) by

the rule

〈y1 · · ·yp, z1 · · ·zq〉= δp,q
1

p!

∑
σ∈Sp

p∏
j=1

〈yj , zσ(j)〉
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for all decomposable elements y = y1 · · ·yp and z = z1 · · ·zq . Set

ξj = xj x̄j (1≤ j ≤m).

Then we have 〈ξdj , ξd
′

k 〉= δjkδd,d′
(
2d
d

)−1
. The relation

〈gx, y〉= 〈x, g∗y〉, g ∈GLm(C), x, y ∈ S(X),(9.4)

is confirmed easily, where g∗ = tḡ. Let ∂j and ∂̄j denote the derivation of S(X)

with respect to the variables xj and x̄j , respectively. For d ∈N0, let S
d(X) be the

subspace of homogeneous bidegree (d, d) elements of S(X). Let X0 be the C-span

of xj , x̄j (1≤ j ≤m− 1), and let S(X0) be the subalgebra of S(X) generated by

X0; S(X0) is a U -submodule of S(X). The space of harmonic tensors Wd = {x ∈
Sd(X0) |

∑m−1
j=1 ∂j ∂̄jx= 0} is a U -invariant subspace of Sd(X0) = S(X0)∩ Sd(X),

which yields a realization of τd inside S(X). Let prU∩H : S(X0)→ S(X0)
U∩H be

the projector defined by prU∩H(ξ) =
∫
U∩H

ρ(k0)ξ dk0. Set

wd = 2−1
{
(xm−1 +

√
−1xm−2)

d(x̄m−1 +
√
−1x̄m−2)

d

+ (xm−1 −
√
−1xm−2)

d(x̄m−1 −
√
−1x̄m−2)

d
}
,

ϑd = prU∩H(wd), vd = ξdm−1.

A simple computation reveals that wd ∈Wd, and the relation w̄d =wd is evident.

Thus ϑd ∈Wd and ϑ̄d = ϑd. Since τd(k0) (k0 ∈ U ∩H) preserves xm−1 up to a

constant, it is easy to see that 〈ϑd, vd〉 = 0, which guarantees ϑd = 0. We introduce

a Hermitian inner product on Wd by

(x|y) = 〈x, ȳ〉/〈ϑd, ϑ̄d〉, x, y ∈Wd.(9.5)

This is U -invariant and satisfies (ϑd|ϑd) = 1. To show the second formula in

the lemma, we compute the pairing 〈ρ(g)−1vd, ϑd〉 in two different ways. From

g = ha(u)k, using (9.4), we have〈
ρ(g)−1vd, ϑd

〉
=
〈
ρ(ha(u))−1vd, ρ(k

−1)
∗
ϑd

〉
=
〈
ρ(a(u))−1vd, ρ(k

−1)
∗
ϑd

〉
(since vd is H-invariant)

=
〈
(coshuxm−1 + sinhuxm)d(coshux̄m−1 + sinhux̄m)d,(9.6)

ρ(k−1)
∗
ϑd

〉
= (cosh2 u)d

〈
vd, ρ(k

−1)
∗
ϑd

〉
.

Here, the last equality is due to 〈Cxm+Cx̄m,Wd〉= {0}. From g = a(t)t−H(ϕ)a
(r)
H ,

the tensor ρ(g)−1vd is equal to{
cosh txm−1 + e−iϕ sinh t(cosh rxm + sinh rxm−2)

}d
×
{
cosh tx̄m−1 + eiϕ sinh t(cosh rx̄m + sinh rx̄m−2)

}d
=

d∑
l=0

(
d

l

)2

(cosh t)2l(sinh t sinh r)2(d−l)ξlm−1ξ
d−l
m−2 + η,
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with η a linear combination of monomials

xj
m−1x̄

k
m−1x

d−j
m−2x̄

d−k
m−2 with j = k, 0≤ j, k ≤m− 1,(9.7)

and those having xm or x̄m as a factor. The algebraic group H contains an F -

torus T such that t ∈ T acts on � by the scalar χ(t) ∈E1 fixing vectors orthogonal

to �. We have ρ(t)xj = xj(j =m− 1) and ρ(t)xm−1 = χ(t)−1xm−1 for all t ∈ T .

Since T ⊂U ∩H and ϑd is (U ∩H)-invariant, we automatically have ρ(t)ϑd = ϑd

for all t ∈ T . The elements (9.7) have nontrivial T -weights χj−k; thus the pairings

with ϑd are all zero. Those monomials having xm or x̄m as a factor are paired

with ϑd to be 0. As a linear combination of these, we have 〈η,ϑd〉= 0. Hence

〈
ρ(g)−1vd, ϑd

〉
=

d∑
l=0

(
d

l

)2

(cosh t)2l(sinh t sinh r)2(d−l)〈ξlm−1ξ
d−l
m−2, ϑd〉.(9.8)

LEMMA 9.4

Set R0 =
∑m−2

j=1 ξj . Then

prU∩H(ξlm−2) =

(
l+m− 3

l

)−1

Rl
0 (l ∈N).

Proof

Since Sl(X0)
U∩H = CRl

0, we have a constant cl ∈ C such that prU∩H(ξlm−2) =

clR
l
0. Consider the operator Δ0 =

∑m−2
j=1 ∂j ∂̄j . The obvious formula Δ0ξ

l
m−2 =

l2ξl−1
m−2 implies that Δ0 prU∩H(ξlm−2) = l2 prU∩H(ξl−1

m−2) because Δ0 is (U ∩H)-

invariant. The latter formula, combined with the easily confirmed formula

Δ0(R
l
0) = l(l+m− 3)Rl−1

0 , yields the recurrence relation cl =
l

n+m−3cl−1 (l > 1)

and c1 = (m− 2)−1, which is uniquely solved by cl =
(
l+m−3

l

)−1
. �

Recall the U -decomposition

Sd(X0) =

d⊕
l=0

RlWd−l where R=R0 + ξm−1 =

m−1∑
j=1

ξj .(9.9)

LEMMA 9.5

There exist constants c(k, l) ∈ C (0 ≤ l ≤ k) such that c(k,0) = 〈ξkm−1, ξ
k
m−1〉/

〈ϑk, ϑk〉 and

ξkm−1 =

k∑
l=0

c(k, l)Rlϑk−l (k ∈N).

Proof

SinceWU∩H
l =Cϑl, by taking the U∩H-invariant part, (9.9) yields Sd(X0)

U∩H =⊕d
l=0CR

lϑd−l. Hence the H-invariant tensor ξkm−1 is written as a linear combina-

tion
∑k

l=0 cklR
lϑk−l (0≤ l≤ k). To determine the coefficient ck0, we compute the

pairing 〈ξkm−1, ϑk〉. From the definition, the difference ϑk − ξkm−1 is a linear com-

bination of monomials in xj (1 ≤ j ≤m− 1) divisible by some xj (j =m− 1).
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Hence 〈ξkm−1, ϑk〉 = 〈ξkm−1, ξ
k
m−1〉. On the other hand, 〈ξkm−1, ϑk〉 = ck0〈ϑk, ϑk〉

because 〈Rlϑk−l, ϑk〉= 0 (l > 1). Thus ck0 = 〈ξkm−1, ξ
k
m−1〉/〈ϑk, ϑk〉. �

We compute

〈ξlm−1ξ
d−l
m−2, ϑd〉

=
〈
ξlm−1 prU∩H(ξd−l

m−2), ϑd

〉
=

(
d− l+m− 3

d− l

)−1

〈ξlm−1R
d−l
0 , ϑd〉 (Lemma 9.4)

=

(
d− l+m− 3

d− l

)−1 d−l∑
j=0

(
d− l

j

)
(−1)d−l−j〈ξd−j

m−1R
j , ϑd〉

(
by Rd−l

0 = (R− ξm−1)
d−l
)

=

(
d− l+m− 3

d− l

)−1 d−l∑
j=0

d−j∑
k=0

(
d− l

j

)
(−1)d−l−jc(d− j, k)〈Rj+kϑd−(j+k), ϑd〉

(Lemma 9.5)

=

(
d− l+m− 3

d− l

)−1

(−1)d−l〈vd, vd〉
(
by c(d,0) = 〈vd, vd〉/〈ϑd, ϑd〉

)
.

Combining this with (9.8), we obtain

〈
ρ(g)vd, ϑd

〉
=

d∑
l=0

(
d

l

)2(
d− l+m− 3

d− l

)−1

× (−1)d−l〈vd, vd〉(cosh t)2l(sinh t sinh r)2(d−l),

which, together with (9.6), shows the identity

〈
vd, ρ(k

−1)∗ϑd

〉
= (coshu)−2d

d∑
l=0

(
d

l

)2(
d− l+m− 3

d− l

)−1

× (−1)d−l(cosh t)2l(sinh t sinh r)2(d−l)〈vd, vd〉.

(9.10)

Let Pd : S
d(X0)→Wd be the projector determined by (9.9). Then 0 = 〈ϑd, vd〉=

〈ϑd, Pd(vd)〉 implies that Pd(vd) ∈Wd is nonzero. Since vd is H-invariant, Pd(vd)

is (U ∩H)-invariant. Thus Pd(vd) = cϑd with some c = 0. As we have seen in the

proof of Lemma 9.5, 〈vd, ϑd〉= 〈vd, vd〉. Hence c= 〈vd, vd〉/〈ϑd, ϑd〉. The identity

(9.10) holds true after we replace vd with Pd(vd) on the left-hand side. With this

remark, together with (9.5), the equation (9.10) yields (9.3). This completes the

proof of Lemma 9.3. �

9.2. The case h[�γ ]> 0

Let us define a 1-parameter subgroup κ(x) (x ∈R) by setting
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κ(x)�H = cosx�H − sinx�, κ(x)�= cosx�+ sinx�H ,

κ(x)|(C�+C�H)⊥ = id.

LEMMA 9.6

Suppose h[�γ ]> 0. The integral (9.1) converges absolutely and

Jϑd

(
γ; Ψ̂d(α)

)
=

1

2πi

∫
(σ)

Ĵd(s;γ)α(s)sds,

where

Ĵd(s;γ) =
(2−m)|h[�γ ]|m−2

2

1

scd(s)

d∑
l=0

(
d

l

)2(
l+m− 3

l

)−1

× (−1)l
(
−h[�γ ]

)l(
1− h[�γ ]

)d−l

×
∫ ∞

0

(
1 + h[�γ ] sinh2 r

)−s−m−1
2 −d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d; 2s+ 1;

1

1 + h[�γ ] sinh2 r

)
× (cosh r)2m+2l−5 sinh r dr.

Proof

Since 0 ≤ NE/F b(γ) < 1, we have NE/F b(γ) = cos2 xγ with some xγ ∈ (0, π/2].

Then h[�γ ] = 1 − cos2 xγ = sin2 xγ . Since N�(κ(xγ)) = NE/Fh(κ
(xγ)�, �) =

cos2 xγ =N�(γ), we have HγH =Hκ(xγ)H from Lemma 7.1. Thus γ = hγκ
(xγ)h′

γ

with some hγ , h
′
γ ∈H . Set κ = κ(xγ). Then it turns out that κ−1Hκ ∩H coin-

cides with H̃�H = {h ∈ H | h�H = c�H , h� = c� (∃c ∈ C(1))}. We remark that

H̃�H\H ∼= U(m−3,1)\U(m−2,1). Let dμ be the measure on H̃�H\H correspond-

ing to |ωΣ′(1)|R by the isomorphism H̃�H\H ∼= Σ′(1) = {Z ∈ �⊥ | h[Z] = +1}
induced by h 
→ h−1�H . Then |ωHγ\H |R on Hγ\H corresponds to |h[�]|m−2 dμ

on H�H\H by the isomorphism h 
→ hγh. For the pair (H,H̃�H ) and the mea-

sure dμ, both the decomposition H = H̃�H{t+H(ϕ)a
(r)
H | ϕ ∈ R r ≥ 0}UH and an

integration formula similar to the one in Lemma 3.2 hold true. Thus,

Jϑd

(
γ; Ψ̂d(α)

)
=
∣∣h[�γ ]∣∣m−2

∫
H�H

\H

(
ϑd|Ψ̂d(α,κh)

)
dμ(h)

=
∣∣h[�γ ]∣∣m−2

CH

∫ 2π

0

dϕ

2|
√
θ|

∫ ∞

0

(
ϑd|Ψ̂d

(
α,κt+H(ϕ)a

(r)
H

))
× (cosh r)2m−5 sinh r dr

with CH = |
√
θ|2−m4πm−2Γ(m−2)−1. The remaining part of the proof is similar

to Lemma 9.2 except that we use Lemma 9.7 below instead of Lemma 9.3. �
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LEMMA 9.7

We have κ(x)t+H(ϕ)a
(r)
H ∈Ha(u)k with u≥ 0 and k ∈ U satisfying

cosh2 u= 1+ sinh2 r sin2 x,

(
ϑd|τd(k)ϑd

)
= (1+ sin2 x sinh2 r)−d

d∑
l=0

(
d

l

)2(
l+m− 3

l

)−1

× (−1)l(cosx)2(d−l)(sinx cosh r)2l.

Proof

This is basically the same as Lemma 9.3. �

Let us compute Ĵd(s, γ). It suffices to evaluate the integral

f−
w (z) =

∫ ∞

0

(1 + z sinh2 r)−s−(m−1)/2−d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d,2s+ 1;

1

1 + z sinh2 r

)
× (cosh r)2w−1 sinh r dr

for z > 0, w =m+ l−2 with 0≤ l≤ d. We first keep the w in the region Re(w)< 1

and take the Mellin transform of z 
→ f−
w (z):∫ ∞

0

f−
w (z)zλ−1 dz =

∫ ∞

0

∫ ∞

0

zλ−1(1 + z sinh2 r)−s−(m−1)/2−d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d,2s+ 1;

1

1 + z sinh2 r

)
× (cosh r)2w−1 sinh r dr dz.

By the variable change z 
→ (sinh2 r)−1z, the double integral breaks up into a

product of ∫ ∞

0

(sinh r)−2λ+1(cosh r)2w−1 dr(9.11)

and ∫ ∞

0

zλ−1(1 + z)−s−(m−1)/2−d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d,2s+ 1;

1

1 + z

)
dz.

(9.12)

The first integral is absolutely convergent and is evaluated as Γ(1−λ)Γ(λ−w)
2Γ(1−w) if

Re(w)<Re(λ)< 1. By the variable change y = (1+ z)−1, (9.12) becomes∫ 1

0

ys+d+(m−1)/2−λ−1(1− y)λ−1
2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d,2s+ 1;y

)
dy,



486 Masao Tsuzuki

which is evaluated to be
Γ(2s+1)Γ(λ)2Γ(s+m−1

2 +d−λ)

Γ(s+m−1
2 +d)2Γ(s−m−3

2 −d+λ)
in the absolute convergence

region Re(s) + m−1
2 + d > Re(λ) > 0. Thus we see that the Mellin transform

converges absolutely on Re(w)<Re(λ)< 1, Re(s) + m−1
2 + d >Re(λ)> 0, and∫ ∞

0

f−
w (z)zλ−1 dz =

Γ(1− λ)Γ(λ−w)

2Γ(1−w)

Γ(2s+ 1)Γ(λ)2Γ(s+ m−1
2 + d− λ)

Γ(s+ m−1
2 + d)2Γ(s− m−3

2 − d+ λ)
.

By Mellin’s inversion formula,

f−
w (z) =

1

2πi

∫
(σ)

Γ(1− λ)Γ(λ−w)

2Γ(1−w)

Γ(2s+ 1)Γ(λ)2Γ(s+ m−1
2 + d− λ)

Γ(s+ m−1
2 + d)2Γ(s− m−3

2 − d+ λ)
z−λ dλ,

where the contour is taken as Re(w) < σ < 1. The integral on the right-hand

side defines a holomorphic function on Re(w)< 1. To continue it to a half-plane

containing the point w =m+ l− 2, we shift the contour leftward beyond λ=w,

which is the only pole of the integrand swept by the moving contour. By the

residue theorem,

f−
w (z) = 2−1 Γ(2s+ 1)Γ(w)2Γ(s+ m−1

2 + d−w)

Γ(s+ m−1
2 + d)2Γ(s− m−3

2 − d+w)
z−w

+
1

2πi

∫
(σ1)

Γ(1− λ)Γ(λ−w)

2Γ(1−w)

Γ(2s+ 1)Γ(λ)2Γ(s+ m−1
2 + d− λ)

Γ(s+ m−1
2 + d)2Γ(s− m−3

2 − d+ λ)

× z−λ dλ,

where σ1 < Re(w). The second term has a zero at w = m + l − 2 due to the

factor 1/Γ(1 − w). Thus f−
m+l−2(z) is given by the first term substituted with

w =m+ l− 2.

9.3. The case h[�γ ] = 0

Since �H + �− is an R-isotropic vector orthogonal to �, by Witt’s theorem, we can

fix δ ∈G such that δ−1�= �+ (�H + �−). Set Hδ = δ−1Hδ ∩H . A computation

reveals that Hδ = {h ∈H | h� = c�, h(�H + �−) = c(�H + �−) (∃c ∈ C(1))}. Thus
{a(r)H | r ∈R}Hδ , up to the center of H , coincides with the R-parabolic subgroup

of H stabilizing C(�H + �−). By the isomorphism Hδ\H ∼= Σ′(0) induced by

h 
→ h(�H + �−), we transport the measure |ωΣ′(0)|R to obtain an H-invariant

measure dμ on Hδ\H . From Lemma 3.1, we have the integral formula∫
Hδ\H

f(h)dμ(h) =
2π

|
√
θ|

× |
√
θ|2−m πm−2

Γ(m− 2)

×
∫ ∞

0

∫
UH

f(a
(r)
H k0)e

−2(m−2)r dr dk0

(9.13)

associated to the Iwasawa decomposition H =Hδ{a(r)H | r ∈ R}UH , where dk0 is

the probability Haar measure on UH .
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LEMMA 9.8

Suppose h[�γ ] = 0. The integral (9.1) converges absolutely and

Jϑd

(
γ; Ψ̂d(α)

)
=

1

2πi

∫
(σ)

Ĵd(s;γ)α(s)sds,

where

Ĵd(s;γ) =
2−m

4

1

scd(s)

d∑
l=0

(
d

l

)2(
l+m− 3

l

)−1

(−1)l
∫ ∞

0

(1 + e−2r)−s−m−1
2 −d

× 2F1

(
s+

m− 1

2
+ d, s− m− 3

2
− d; 2s+ 1;

1

1 + e−2r

)
e−2(m+l−2)r dr.

Proof

Since h(δ−1�, �) = 1, we have γ ∈HδH from Lemma 7.1. By a change of variables,

we have Jϑd
(γ; Ψ̂d(α)) =

∫
Hδ\H(ϑd|Ψ̂d(α, δh))dμ(h). We complete the proof in

the same way as in Lemmas 9.2 and 9.6 by using the formula (9.13) and Lemma

9.9 below. �

LEMMA 9.9

Let δa
(r)
H = ha(u)k with h ∈H(Fv), u ∈R, and k ∈ U . Then

cosh2 u= 1+ e−2r,
(
ϑd|τd(k)ϑd

)
=

d∑
l=0

(
d

l

)2(
l+m− 3

l

)−1

(−1)le−2lr.

Proof

This is basically the same as in Lemma 9.3. We use the formula ρ(δ)xm−1 =

xm−1 + xm−2 + xm. �

By the variable change z = e−2r, the integral Ĵd(s, γ) is reduced to the same

integral (9.12) with λ= l+m− 2 in the case h[�γ ]> 0.

Appendix

Let F be a field of characteristic 0.

LEMMA A.1

Let Q =
∑n

j=1 ajx
2
j be a nondegenerate quadratic form over F of n-variables

x1, . . . , xn. For any t ∈ F , set

ΣQ(t) =
{
x ∈ Fn − {0} |Q(x) = t

}
,

viewing this as an F -algebraic variety. Let ωFn = dx1 ∧ · · · ∧ dxn be the standard

gauge-form on Fn. Let φ : Fn − {0}→ F be the F -morphism defined by φ(x) =

Q(x).

(1) There exists a gauge-form ωΣQ(t) on ΣQ(t) satisfying the relation ωFn =

ωΣQ(t) ∧ φ∗(dt), where t is the coordinate function on F .
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(2) For j, let Uj = {x ∈ΣQ(t) | xj = 0}. Then

ωΣQ(t)|Uj =
1

2ajxj
dx1 ∧ · · · d̂xj ∧ · · · ∧ dxm.

A.1
Let F be a local non-Archimedean field of characteristic 0, and let E = F [

√
θ]

be an étale quadratic algebra over F . Let εE/F be the quadratic character of

F× trivial on NE/F (E
×) if E is a field and εE/F = 1 otherwise. Let V be an m-

dimensional E-vector space, and let h : V ×V →E be a nondegenerate Hermitian

form on V . Set Σ(t) =ΣQ(t) for t ∈ F , where Q is the quadratic form h[Z] on

the F -vector space V . For φ ∈ S(V ), define

Mf (t) =

∫
Σ(t)

f(x)|ωΣ(t)|F , t ∈ F.

If m= 1 and h is isotropic, then we set Ch = vol(o×F ). If m> 1, or m= 1 and h

is anisotropic, then we set Ch = |θ|−m/2
F |2|−m

F ρ(εmE/F ,m)−1γ(Q), where ρ(χ, s) =

ε(χ, s,ψ)−1 L(s,χ)
L(1−s,χ) for a quasicharacter χ of F× with respect to the additive

character ψ of F such that ψ|oF = 1 and ψ|p−1
F = 1. The factor |θ|−m/2

F |2|−m
F

comes from the difference between our Haar measure on V and the one used in

[21]. Define a function χh : F× →C× by

χh(t) = δ(t ∈ oF )

⎧⎪⎪⎨⎪⎪⎩
εE/F (t)

m|t|m−1
F (m> 1),

1 + ordF (t) (m= 1 and h is isotropic),

1 + εE/F (t) (m= 1 and h is anisotropic).

LEMMA A.2

(1) For any f ∈ S(V ), there exists ϕ ∈ S(F ) such that

Mf (t) = ϕ(t) + f(0)Chχh(t), t ∈ F×.

(2) Let Sh(F ) be the space of all the compactly supported functions ϕ on F

smooth on F× such that ϕ(t) = Cχh(t) in a neighborhood of t = 0 with some

constant C. Then, f 
→Mf is a linear surjection from S(V ) onto Sh(F ).

Proof

This follows from [21, Proposition 3.5, Théorème 3.7] applied to our h viewed as

a quadratic form on the 2m-dimensional F -vector space V . We also note that,

since dimF V = 2m is even, we apply the first case of [21, Proposition 1.7] to

determine the constants βa(Q) occurring in [21, Proposition 3.5]. �

Let � ∈ V be an anisotropic vector with h[�] = 1. Set h� = h|�⊥. For t ∈ F , we set

Σ�(t) = �⊥ ∩Σ(t). For any β ∈E, define

J�(β, f) =

∫
y∈Σ�(1−NE/F β)

f(β�+ y)|ωΣ�(1−NE/F β)|F , f ∈ S(V ).(A.1)
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PROPOSITION A.3

(1) Let f ∈ S(V ). For any β ∈E, the integral J�(b, f) converges absolutely.

There exist ϕ0, ϕ1 ∈ S(E) such that

J�(β, f) = ϕ1(β) +Ch�χh�(1−NE/Fβ)ϕ0(β), β ∈E −E1.(A.2)

(2) Let ϕ0, ϕ1 ∈ S(E). There exists f ∈ S(V ) such that (A.2) holds for all

β ∈E −E1.

Proof

To prove (1), we may assume that f(β�+ y) = f1(β)f2(y) with f1 ∈ S(E), f2 ∈
S(�⊥). Then J�(β, f) = f1(β�)Mf2(1 − NE/Fβ). Applying Lemma A.2(1), we

have assertion (1). Let us show assertion (2). Let ϕ0, ϕ1 ∈ S(E). By Lemma

A.2(2), we have a function f ′
0 ∈ S(�⊥) such that Mf ′

0
(t) =Ch�χh�(t) for all t ∈ F .

Define f ′ ∈ S(V ) by setting f ′(β�+ y) = ϕ0(b)f
′
0(y) for b ∈E and y ∈ �⊥. Then

J�(β, f ′) = ϕ0(b)Mf ′
0
(1−NE/Fβ) = ϕ0(β)Ch�χh�(1−NE/Fβ)

for all β ∈E−E1. Let φ be the characteristic function of a compact open neigh-

borhood of 1 − NE/F (supp(ϕ1)). Then φ ∈ S(F ). By Lemma A.2(2), we have

f ′′
0 ∈ S(�⊥) such that Mf ′′

0
(t) = φ(t) for all t ∈ F . Define f ′′(β�+y) = ϕ1(b)f

′′
0 (y).

Then

J�(β, f ′′) = ϕ1(b)Mf ′′
0
(1−NE/Fβ) = ϕ1(β)φ(1−NE/Fβ) = ϕ1(β)

for all β ∈E −E1. Obviously, the function f = f ′ + f ′′ has the desired property.

�
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