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Abstract Givena classical semisimple complex algebraic groupG anda symmetric pair

(G,K) of non-Hermitian type, we study the closures of the spherical nilpotentK-orbits

in the isotropy representation ofK. For all such orbit closures, we study the normality,

and we describe the K-module structure of the ring of regular functions of the normal-

izations.
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Introduction

Let G be a connected semisimple complex algebraic group, and let K be the fixed

point subgroup of an algebraic involution θ of G. Then K is a reductive group,

which is connected if G is simply connected.

The Lie algebra g of G splits into the sum of eigenspaces of θ,

g= k⊕ p,

where the Lie algebra k of K is the eigenspace of eigenvalue 1, and p is the

eigenspace of eigenvalue −1. The adjoint action of G on g, once restricted to K,

leaves k and p stable.

Therefore, p provides an interesting representation of K, called the isotropy

representation, where one may want to study the geometry of the K-orbits. With

this aim, one looks at the so-called nilpotent cone Np ⊂ p, which consists of the
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elements whose K-orbit closure contains the origin. In this case, Np actually

consists of the nilpotent elements of g which belong to p. By a fundamental

result of Kostant and Rallis [21, Theorem 2], as in the case of the adjoint action

of G on g, there are finitely many nilpotent K-orbits in p.

Provided K is connected, we restrict our attention to the spherical nilpotent

K-orbits in p. Here spherical means with an open orbit for a Borel subgroup of

K or, equivalently, with a ring of regular functions which affords a multiplicity-

free representation of K. The classification of these orbits is known and due to

King [19].

In the present article, we begin a systematic study of the closures of the

spherical nilpotent K-orbits in p. In particular, we analyze their normality and

describe the K-module structure of the coordinate rings of their normalizations.

This is done by making use of the technical machinery of spherical varieties,

which is recalled in Section 1.

Here we will deal with the case where (G,K) is a classical symmetric pair

with K semisimple; the other cases will be treated in forthcoming articles. The

semisimplicity of K is equivalent to the fact that p is a simple K-module, in

which case G/K is also called a symmetric space of non-Hermitian type.

Let GR be a real form of G with Lie algebra gR and Cartan decomposition

gR = kR + pR, so that θ is induced by the corresponding Cartan involution of

GR. Then K is the complexification of a maximal compact subgroup KR ⊂GR,

and the Kostant–Sekiguchi–D̄oković correspondence (see [14], [30]) establishes

a bijection between the set of the nilpotent GR-orbits in gR and the set of the

nilpotent K-orbits in p. Let us briefly recall how it works. More details and

references can be found in [12].

Every nonzero nilpotent element e ∈ gR lies in an sl(2)-triple {h, e, f} ⊂ gR.

Every sl(2)-triple {h, e, f} ⊂ gR is conjugate to a Cayley triple {h′, e′, f ′} ⊂ gR,

that is, an sl(2)-triple with θ(h′) =−h′, θ(e′) =−f ′, and θ(f ′) =−e′. To a Cayley

triple in gR one can associate its Cayley transform

{h, e, f} �→
{
i(e− f),

1

2
(e+ f + ih),

1

2
(e+ f − ih)

}
:

this is a normal triple in g, that is, an sl(2)-triple {h′, e′, f ′} with h′ ∈ k and

e′, f ′ ∈ p. By [21], any nonzero nilpotent element e ∈ p lies in a normal triple

{h, e, f} ⊂ g, and any two normal triples with the same nilpositive element e are

conjugated under K. Then the desired bijective correspondence is constructed

as follows. Let O ⊂ gR be an adjoint nilpotent orbit, choose an element e ∈ O
belonging to a Cayley triple {h, e, f}, consider its Cayley transform {h′, e′, f ′},
and let O′ =Ke′. Then O′ ⊂ p is the nilpotent K-orbit corresponding to O.

Among the nice geometric properties of the Kostant–Sekiguchi–D̄oković cor-

respondence, we just recall here one result concerning sphericality: the spherical

nilpotent K-orbits in p correspond to the adjoint nilpotent GR-orbits in gR which

are multiplicity free as Hamiltonian KR-spaces (see [18]).

In accordance with the philosophy of the orbit method (see, e.g., [1]), the

unitary representations of GR should be parameterized by the (co-)adjoint orbits
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of GR. In particular, one is interested in the so-called unipotent representations of

GR, namely, those which should be attached to nilpotent orbits. The K-module

structure of the ring of regular functions on a nilpotent K-orbit in p (which

we compute in our spherical cases) should give information on the corresponding

unitary representation of GR. Unitary representations that should be attached to

the spherical nilpotent K-orbits are studied in [17] (when G is a classical group)

and [29] (when G is the special linear group). When G is the symplectic group,

for particular spherical nilpotent K-orbits, such representations are constructed

in [32] and [33].

The normality and the K-module structure of the coordinate ring of the clo-

sure of a spherical nilpotent K-orbit in p have been studied in several particular

cases, with different methods, by Nishiyama [24], [25], by Nishiyama, Ochiai, and

Zhu [26], and by Binegar [2]. In Appendix A we report the list of the spherical

nilpotent K-orbits in p for all symmetric pairs (g, k) of classical non-Hermitian

type. In the classical cases, the adjoint nilpotent orbits in real simple algebras

are classified in terms of signed partitions, as explained in [12, Chapter 9]. In the

list, every orbit is labeled with its corresponding signed partition.

For every orbit we provide an explicit description of a representative e ∈ p, as

an element of a normal triple {h, e, f}, and the centralizer of e, which we denote

by Ke. All these data can be directly computed using King’s [19] paper on the

classification of the spherical nilpotent K-orbits (but we point out a missing case

therein; see Remark A.1).

The first datum which is somewhat new in this work is the Luna spherical

system associated with NK(Ke), the normalizer of Ke in K, which is a wonderful

subgroup of K. It is equal to K[e], the stabilizer of the line through e, and note

that K[e]/Ke
∼=C×. The Luna spherical systems are used to deduce the normality

or nonnormality of the K-orbits and to compute the corresponding K-modules

of regular functions.

Appendix B consists of two sets of tables, where we summarize our results

on the spherical nilpotent K-orbits in p. Given such an orbit O =Ke, in the first

set (see Tables 2–10) we describe the normality of its closure O, and if Õ −→O
denotes the normalization, then we describe the K-module structure of C[Õ] by

giving a set of generators of its weight semigroup Γ(Õ) (i.e., the set of the highest

weights occurring in C[Õ]). The second set (see Tables 11–19) contains the Luna

spherical systems of NK(Ke).

In Section 1 we compute the Luna spherical systems. In Section 2 we study

the multiplication of sections of globally generated line bundles on the corre-

sponding wonderful varieties, which turns out to be always surjective in all cases

except one. In Section 3 we deduce our results on normality and semigroups.

Notation
Simple roots of irreducible root systems are denoted by α1, α2, . . . and enumer-

ated as in Bourbaki; when belonging to different irreducible components they

are denoted by α1, α2, . . ., α
′
1, α

′
2, . . ., α

′′
1 , α

′′
2 , . . ., and so on. For the fundamental
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weights we adopt the same convention, they are denoted by ω1, ω2, . . ., ω
′
1, ω

′
2, . . .,

ω′′
1 , ω

′′
2 , . . ., and so on. In the tables for the orthogonal cases at the end of the arti-

cle we use a variation of the fundamental weights �1,�2, . . ., which is explained

in Appendix B. By V (λ) we denote the simple module of highest weight λ; the

acting group will be clear from the context.

1. Spherical systems

In this section we compute the Luna spherical systems given in the tables at

the end of the article, in Appendix B. First, let us briefly explain what a Luna

spherical system is (see, e.g., [5] for a plain introduction).

1.1. Luna spherical systems
Recall that a subgroup H of K is called wonderful if the homogeneous space

K/H admits an open equivariant embedding in a wonderful K-variety. A K-

variety is called wonderful if it is smooth and complete with an open K-orbit

whose complement is the union of D1, . . . ,Dr smooth prime K-stable divisors

with nonempty transversal crossings such that two points x,x′ lie in the same

K-orbit if and only if

{i : x ∈Di}= {i : x′ ∈Di}.

The wonderful embedding of K/H is unique up to equivariant isomorphism and

is a projective spherical K-variety. The number r of prime K-stable divisors is

called the rank of X .

Let us fix, inside K, a maximal torus T and a Borel subgroup B containing T .

This choice yields a root system R and a set of simple roots S in R. Let us also

denote by (·, ·) the scalar product in the Euclidean space spanned by R, by α∨

the coroot associated with α, and by 〈·, ·〉 the usual Cartan pairing

〈α∨, λ〉= 2
(α,λ)

(α,α)
.

For any spherical K-variety X , the set of colors, which is denoted by ΔX ,

is the set of prime B-stable, non-K-stable divisors of X . It is a finite set. In

our case, if X is the wonderful embedding of K/H , then the colors of K/H are

just the irreducible components of the complement of the open B-orbit, and the

colors of X are just the closures of the colors of K/H , so that the two sets ΔX

and ΔK/H are naturally identified.

For any spherical K-variety X one can also define another finite set, the set

of spherical roots, usually denoted by ΣX . Here we recall its definition only in the

wonderful case. Suppose X is the wonderful embedding of K/H . By definition,

X contains a unique closed K-orbit; therefore, every Borel subgroup of K fixes

in X a unique point. Let us call z the point fixed by B−, the opposite of the

Borel subgroup B. For all K-stable prime divisors Di, let σi be the T -eigenvalue
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occurring in the normal space of Di at z

TzX

TzDi
.

Then the set of spherical roots is the set ΣX = {σ1, . . . , σr}, also denoted by

ΣK/H . The spherical roots are linearly independent, and the corresponding reflec-

tions

γ �→ γ − 2
(σi, γ)

(σi, σi)
σi

generate a finite group of orthogonal transformations which is called the little

Weyl group of X . In our case, in which the center of K acts trivially, the spherical

roots are elements of NS, that is, linear combinations with nonnegative integer

coefficients of simple roots.

The Picard group of a wonderful variety X is freely generated by the equiv-

alence classes of the colors of X . Expressing the classes of the K-stable divisors

in terms of the basis given by the classes of colors

[Di] =
∑

D∈ΔK/H

cK/H(D,σi)[D],

we get a Z-bilinear pairing, which is also called a Cartan pairing,

cK/H : ZΔK/H ×ZΣK/H → Z.

It is known to satisfy quite strong restrictions, as follows.

For any simple root α ∈ S, the set of colors moved by α, which is denoted by

ΔK/H(α), is the set of colors that are not stable under the action of the minimal

parabolic subgroup P{α}. Any simple root α moves at most two colors, and more

precisely, there are exactly four cases.

Case p. α moves no colors.

Case a. α moves two colors. This happens if and only if α ∈ ΣK/H , and in

this case we have

(1) ΔK/H(α) = {D ∈ΔK/H : cK/H(D,α) = 1},
(2) cK/H(D,σ)≤ 1 for all D ∈ΔK/H(α) and σ ∈ΣK/H ,

(3)
∑

D∈ΔK/H(α) cK/H(D,σ) = 〈α∨, σ〉 for all σ ∈ΣK/H .

Case 2a. α moves one color and 2α ∈ ΣK/H . In this case if D ∈ΔK/H(α),

then we have cK/H(D,σ) = 1
2 〈α∨, σ〉 for all σ ∈ΣK/H .

Case b. α moves one color and 2α /∈ ΣK/H . In this case if D ∈ ΔK/H(α),

then we have cK/H(D,σ) = 〈α∨, σ〉 for all σ ∈ΣK/H .

The set of simple roots moving no colors is denoted by Sp
K/H . The set of colors

ΔK/H is a disjoint union of subsets Δa
K/H , Δ2a

K/H , and Δb
K/H which consist of

colors moved by simple roots of type (a), (2a), and (b), respectively. The set

Δa
K/H is also denoted by AK/H .

Case a. A color in AK/H may be moved by several simple roots.

Case 2a. A color in Δ2a
K/H is moved by a unique simple root.
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Case b. A color in Δb
K/H may be moved by at most two simple roots. In this

case, two simple roots α and β move the same color if and only if α and β are

orthogonal and α+ β ∈ΣK/H .

Note that the full Cartan pairing cK/H : ZΔK/H ×ZΣK/H → Z is determined

by its restriction to AK/H ×ΣK/H . If H is a wonderful subgroup of K, then the

triple (Sp
K/H ,ΣK/H ,AK/H), endowed with the map cK/H : AK/H × ΣK/H → Z,

is called the spherical system of H .

1.2. Luna diagrams
In Appendix B, we present the spherical systems of the wonderful subgroups

H =NK(Ke) of K by providing the sets of spherical roots ΣK/H and the Luna

diagrams. The Luna diagram of a spherical system consists of the Dynkin diagram

of K decorated with some extra symbols from which one can read off all the data

of the spherical system. Let us briefly explain how it works. Here we only explain

how to read off the missing data (the set Sp
K/H and the map cK/H : AK/H×ΣK/H ;

see, e.g., [5] for a complete description).

Every circle (shadowed or not) represents a color. Circles corresponding to

the same color are joined by a line. The colors moved by a simple root are close

to the corresponding vertex of the Dynkin diagram.

Case p. No circle is placed in correspondence to the vertex.

Case a. Two circles are placed: one above and one below the vertex.

Case 2a. One circle is placed below the vertex.

Case b. One circle is placed around the vertex.

Therefore, the set Sp is given by the vertices with no circles. It is worth saying

that in general Sp is included in {α ∈ S : 〈α∨, σ〉= 0 ∀σ ∈Σ}.
To read off the map c : A×Σ→ Z, one has to know that an arrow (it looks

more like a pointer but it has a source and a target) starting from a circle D

above a vertex α and pointing toward a spherical root σ nonorthogonal to α

means that c(D,σ) =−1. Vice versa, the Luna diagram is organized so that the

colors D corresponding to circles that lie above the vertices have c(D,σ) ≥ −1

for all σ ∈Σ, so if there is no arrow starting from a circle D above a vertex α and

pointing toward a spherical root σ nonorthogonal to α (with D /∈Δ(σ)), then

this means that c(D,σ) = 0. These together with the properties of the Cartan

pairing for colors of type (a), explained above, allows us to recover the map

c : A×Σ→ Z.

The two colors moved by α ∈ S ∩ Σ will be denoted by D+
α and D−

α . The

former refers to the circle placed above the vertex, while the latter refers to the

circle placed below. The color moved by a simple root α /∈ Σ will be denoted

by Dα.

As an example we show in detail how to recover the map c : A×Σ→ Z for

the first case of the list where a nonempty set AK/H occurs (case 4.4 with q > 2).

The group K is of type Cp×Cq , with p and q greater than 2. The set of spherical
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roots is

Σ =
{
α1, α2, α

′
1, α

′
2, α

′
2 + 2(α′

3 + · · ·+ α′
q−1) + α′

q

}
,

and the Luna diagram is as follows.

Here the set Sp is given by the simple roots αi for all 4 ≤ i ≤ p and α′
i for all

4≤ i≤ q. The elements of A, that is, the colors of type (a), are five:

D−
α2
, D+

α2
=D+

α′
2
, D−

α1
=D−

α′
2
, D+

α1
=D+

α′
1
, D−

α′
1
.

We know that, for all colors D of type (a), c(D,σ) = 1 if σ ∈ S and D ∈Δ(σ), and

c(D,σ)≤ 0 otherwise. Therefore, let us show how to determine c(D−
α2
, σ) for all

σ ∈Σ. First D−
α2

∈Δ(α2); then c(D−
α2
, α2) = 1. Since there is an arrow from D+

α2

to α1, c(D
+
α2
, α1) = −1; furthermore, c(D−

α2
, α1) + c(D+

α2
, α1) = 〈α∨

2 , α1〉 = −1.

Thus, we have c(D−
α2
, α1) = 0. The other spherical roots σ are orthogonal to α2,

so c(D−
α2
, σ) + c(D+

α2
, σ) = 0. If c(D−

α2
, σ) is less than 0, then c(D+

α2
, σ) must be

greater than 0, but this happens only if D+
α2

∈Δ(σ). Therefore, c(D−
α2
, α′

2) =−1

while it is 0 on the other two spherical roots c(D−
α2
, α′

1) = c(D−
α2
, α′

2 + 2(α′
3 +

· · ·+ α′
q−1) + α′

q) = 0. The entire map c : A×Σ→ Z is as follows.

α1 α2 α′
1 α′

2 σ5

D−
α2

0 1 0 −1 0

D+
α2

−1 1 0 1 0

D−
α1

1 −1 −1 1 0

D+
α1

1 0 1 −1 0

D−
α′

1
−1 0 1 0 −1

1.3. Operations on spherical systems
Here we briefly recall the definition and the essential properties of some combina-

torial operations on spherical systems which correspond to geometric operations

on wonderful varieties (see, e.g., [5] for some more details and references).

1.3.1. Subsystems

All (irreducible) K-subvarieties of a wonderful K-variety X are wonderful. They

are exactly the K-orbit closures of X and are in correspondence with the subsets

of ΣX . IfD1, . . . ,Dr are theK-stable prime divisors ofX , recall that the spherical

roots σ1, . . . , σr are T -eigenvalues occurring, respectively, in the normal spaces of

Di at z, TzX/TzDi. Therefore, every K-subvariety X ′ of X is the intersection

of some K-stable prime divisors

X ′ =
⋂
i∈I

Di

for some I ⊂ {1, . . . , r}. Its spherical system is thus given by
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• Sp
X′ = Sp

X ,

• ΣX′ = {σi : i /∈ I},
• AX′ =

⋃
α∈S∩ΣX′ ΔX(α) with the map cX restricted to ZAX′ ×ZΣX′ .

1.3.2. Quotients

Let X1 and X2 be the wonderful embeddings of K/H1 and K/H2, respectively.

If H1 is included in H2 with connected quotient H2/H1, there exists a surjective

equivariant morphism from X1 to X2 with connected fibers. In terms of spherical

systems this is equivalent to an operation called quotient, as follows. A subset Δ′

of ΔX1 is called distinguished if there exists a linear combination with positive

coefficients

D′ ∈
∑
D∈Δ′

nDD

such that cX1(D
′, σ)≥ 0 for all σ ∈ΣX1 . If Δ

′ is distinguished, then the monoid

(NΣX1)/Δ
′ =
{
σ ∈NΣX1 : cX1(D,σ) = 0 ∀D ∈Δ′}

is known to be free (see [3]). Therefore, we can consider the following triple,

which is called the quotient of the spherical system of X1 by Δ′:

• Sp
X1

/Δ′ = {α ∈ S : ΔX1(α)⊂Δ′},
• ΣX1/Δ

′, the basis of (NΣX1)/Δ
′,

• AX1/Δ
′ =
⋃

α∈S∩(ΣX1
/Δ′)ΔX1(α) endowed with the map cX1 restricted to

Z(AX1/Δ
′)×Z(ΣX1/Δ

′).

If X1 and X2 are wonderful K-varieties with a surjective equivariant mor-

phism with connected fibers ϕ : X1 → X2, then Δ′
ϕ = {D ∈ ΔX1 : ϕ(D) = X2}

is distinguished and the spherical system of X2 is equal to the quotient of the

spherical system of X1 by Δ′
ϕ. If X1 is a wonderful K-variety, then every dis-

tinguished subset Δ′ of ΔX1 corresponds in this way to a surjective equivariant

morphism with connected fibers onto a wonderful variety whose spherical system

is equal to the quotient of the spherical system of X1 by Δ′.

1.3.3. Parabolic inductions

Let Q be a parabolic subgroup of K, with Levi decomposition Q= LQu. A won-

derful K-variety X is said to be obtained by parabolic induction from the won-

derful L-variety Y if

X ∼=K ×Q Y,

where Qu acts trivially on Y . Further, since Y is a wonderful L-variety, the

radical of L acts trivially on Y , as well.

Clearly, if the wonderful K-variety X is obtained by parabolic induction

from the wonderful embedding of L/M , then X is the wonderful embedding

of K/(MQu). In terms of spherical systems this corresponds to the following

situation. Assume that Q contains B− and L contains T , and denote by SL the

subset of S generating the root subsystem of L. The wonderful K-variety X is
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obtained by parabolic induction from a wonderful L-variety Y if and only if

Sp
X ∪ {suppσ : ∀σ ∈ΣX} ⊂ SL.

In this case, the spherical system of Y , after the above inclusion, is equal to the

triple (Sp
X ,ΣX ,AX). In plain words, the spherical system of X is obtained from

the spherical system of Y by letting the extra simple roots in S � SL move one

extra color each so that they are all of type (b).

1.3.4. Localizations

Let Q be a parabolic subgroup of K, containing B−, and let Q= LQu be its Levi

decomposition, with L containing T . Denote by Lr the radical of L, and denote

by SL the subset of S generating the root subsystem of L.

Let X be a wonderful K-variety. Consider the subset of X of points fixed by

Lr, and take its connected component which contains z, the unique point fixed

by B−. It is a wonderful L-variety Y called the L-localization of X . The spherical

system of Y is obtained from the spherical system of X as follows:

• Sp
Y = Sp

X ∩ SL,

• ΣY = {σ ∈ΣX : suppσ ⊂ SL},
• AY =

⋃
α∈SL∩ΣX

ΔX(α) with the map cX restricted to ZAY ×ZΣY .

In this case the spherical system of Y is said to be obtained from the spherical

system of X by localization in SL.

1.4. Luna’s classification of wonderful varieties
Here we recall the statement of Luna’s theorem of the classification of wonderful

varieties (see [23, Théorème 1], [13, Corollary 3], [9, Theorem 1.2.3]). In our case

the center of K always acts trivially, so here we assume for convenience that K

is a semisimple complex algebraic group of adjoint type. Let T , B, and S be as

above.

Every spherical root of any wonderful K-variety is the spherical root of a

wonderful K-variety of rank 1, and the wonderful varieties of rank 1 are well

known. In particular, the set Σ(K) of the spherical roots of all the wonderful

K-varieties is finite and is described by the following result.

THEOREM 1.1

Every spherical root σ of any wonderful K-variety, for any semisimple complex

algebraic group K of adjoint type, belongs to Table 1.

There is an abstract notion of a Luna spherical system given as follows.

DEFINITION 1.2

A triple (Sp,Σ,A), where Sp is a subset of S, Σ is a subset of Σ(K) without

proportional elements, and A is a finite set endowed with a map c : A×Σ→ Z

is called a spherical K-system if the following axioms hold.
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Table 1. Spherical roots

Type of support Spherical root

A1 α

A1 2α

A1 ×A1 α+ α′

Am α1 + · · ·+ αm

A3 α1 + 2α2 + α3

Bm α1 + · · ·+ αm

Bm 2(α1 + · · ·+ αm)

B3 α1 + 2α2 + 3α3

Cm α1 + 2(α2 + · · ·+ αm−1) + αm

Dm 2(α1 + · · ·+ αm−2) + αm−1 + αm

F4 α1 + 2α2 + 3α3 + 2α4

G2 2α1 + α2

G2 4α1 + 2α2

G2 α1 + α2

(A1) For all D ∈A, c(D,σ)≤ 1 for all σ ∈Σ, and c(D,σ) = 1 only if σ ∈ S.

(A2) For all α ∈ S ∩Σ, {D ∈ A : c(D,α) = 1} has cardinality 2, and for all

σ ∈Σ ∑
D:c(D,α)=1

c(D,σ) = 〈α∨, σ〉.

(A3) For all D ∈A there exists α ∈ S ∩Σ with c(D,α) = 1.

(Σ1) For all α ∈ S such that 2α ∈Σ, 1
2 〈α∨, σ〉 ∈ Z≤0 for all σ ∈Σ� {2α}.

(Σ2) For all α and β in S such that α and β are orthogonal and α+ β ∈Σ,

〈α∨, σ〉= 〈β∨, σ〉 for all σ ∈Σ.

(S) For all σ ∈Σ,

• if σ = α1 + · · ·+ αm with suppσ of type Bm, then

{α2, . . . , αm−1} ⊂ Sp ⊂
{
α ∈ S : 〈α∨, σ〉= 0

}
;

• if σ = α1 + 2(α2 + · · ·+ αm−1) + αm with suppσ of type Cm, then

{α3, . . . , αm} ⊂ Sp ⊂
{
α ∈ S : 〈α∨, σ〉= 0

}
;

• otherwise{
α ∈ suppσ : 〈α∨, σ〉= 0

}
⊂ Sp ⊂

{
α ∈ S : 〈α∨, σ〉= 0

}
.

The following is known as Luna’s theorem of classification of wonderful varieties.

THEOREM 1.3

The map which associates to a wonderful K-variety X its spherical system (Sp
X ,

ΣX ,AX) is a bijection between the set of wonderful K-varieties up to equivariant

isomorphism and the set of spherical K-systems.



Spherical nilpotent orbits in symmetric pairs 727

1.5. The spherical systems of the list
Here we show that the spherical systems given in the tables of Appendix B

are indeed the spherical systems associated with NK(Ke), the normalizers of

the centralizers of the representatives e given in Appendix A. For all K, every

spherical system given in the tables satisfies the axioms of Definition 1.2, so

by Theorem 1.3 it is equal to a spherical system associated with a (uniquely

determined up to conjugation) wonderful subgroup of K. Here we compute this

wonderful subgroup for any spherical system of Appendix B.

1.5.1. Parabolic inductions and trivial factors

In all the spherical systems of Appendix B the set (suppΣ) ∪ Sp is properly

contained in S. Therefore, the corresponding wonderful K-varieties X can be

obtained by parabolic induction from wonderful L-varieties Y , where L is prop-

erly contained in K. We set SL = (suppΣ)∪Sp. Furthermore, in general suppΣ

and Sp � suppΣ are orthogonal, so that L is a direct product L1 × L2, where

SL1 = suppΣ and SL2 = Sp � suppΣ, with L2 acting trivially on Y . In many

cases Sp � suppΣ is nonempty. Note that the above decomposition L= L1 ×L2

is not uniquely determined, but here the center of L acts trivially on Y , so we

do not care which part of the center of L is contained in the two factors L1 and

L2.

In the following we will compute, in all our cases, the wonderful subgroups

associated with the spherical systems obtained by localization in SL1 = suppΣ.

1.5.2. Trivial cases

In cases 1.1 (r = 1), 2.1 (r = 1), 3.1 (r = 1), 4.1 (r = 1), 5.1, 6.1, 7.1 (r = 1), 8.1

(r = 1), and 9.1 (r = 1), the set Σ is empty, so the spherical system obtained

by localization in suppΣ is trivial. More explicitly, the parabolic subgroups Q of

K given in Appendix A are the wonderful subgroups associated with the given

spherical K-systems.

1.5.3. Symmetric cases

In cases 1.1, 2.1, 3.1, 4.1, 4.2 (q = 1), 4.3 (p = 1), 7.1, 7.2 (r = 0), 7.3 (r =

0), 8.1, 8.2 (r = 0), 8.3 (r = 0), 9.1, 9.2 (r = 0), and 9.3 (r = 0), the spherical

system obtained by localization in suppΣ is the spherical system of a symmetric

subgroup NL1(L
θ
1) of L1, where Lθ

1 is the fixed point subgroup of an involution θ

of L1. The wonderful symmetric subgroups and their spherical systems are well

known (see, e.g., [8]). More precisely,

• in case 1.1 we get [8, case 6];

• in cases 2.1, 3.1, 7.3 (r = 0, p= 1), 8.2 (r = 0, q = 1), and 8.3 (r = 0, p= 1),

we get [8, case 5];

• in cases 4.1, 4.2 (q = 1), 4.3 (p = 1), 7.1, 7.2 (r = 0, q = 2), 8.1, 9.1, 9.2

(r = 0, q = 2), and 9.3 (r = 0, p= 2), we get [8, case 2];

• in cases 7.3 (r = 0, p > 1), 8.2 (r = 0, q > 1), and 8.3 (r = 0, p > 1), we get

[8, case 9];
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• in cases 7.2 (r = 0, q > 2), 9.2 (r = 0, q > 2), and 9.3 (r = 0, p > 2), we get

[8, case 15].

1.5.4. Other reductive cases

In cases 4.2 (q > 1), 4.3 (p > 1), 4.6, and 4.7, the spherical system obtained by

localization in suppΣ is the spherical system of a wonderful reductive (but not

symmetric) subgroup of L1. More precisely,

• in cases 4.2 (q > 1) and 4.3 (p > 1) we get [8, case 42];

• in cases 4.6 and 4.7 we get [8, case 46 (p= 5)].

1.5.5. Morphisms of type L
Note that in all the above cases the Levi subgroup L such that SL = (suppΣ)∪Sp

is equal to Kh, the centralizer of h given in the list of Appendix A. In the

remaining cases this is no longer true, but we have the following situation.

In the remaining cases, namely, cases 4.4, 4.5, 7.2 (r > 0), 7.3 (r > 0), 8.2

(r > 0), 8.3 (r > 0), 9.2 (r > 0), and 9.3 (r > 0), the given spherical K-system

(Sp,Σ,A) admits a distinguished set of colors Δ′ such that the corresponding

quotient

(Sp/Δ′,Σ/Δ′,A/Δ′)

is the spherical system of a wonderful K-variety which is obtained by par-

abolic induction from a wonderful Kh-variety. Indeed, SKh
= (supp(Σ/Δ′)) ∪

(Sp/Δ′).

Such a distinguished set of colors Δ′ is minimal, that is, does not contain

any proper nonempty distinguished subset. Moreover, the corresponding quotient

has higher defect, which means the following. The defect of a spherical system is

defined as the nonnegative integer given by the difference between the number

of colors and the number of spherical roots.

In all our cases, we have

(1) card(Δ�Δ′)− card(Σ/Δ′)> cardΔ− cardΣ.

Therefore, the set Δ′ corresponds to a minimal surjective equivariant morphism

with connected fibers of type L in the sense of [5, Proposition 2.3.5]. In particular,

the minimal quotients of higher defect have been studied in [7, Section 5.3]. Let

us recall their description.

Let H1 be the wonderful subgroup associated with the spherical K-system

(Sp,Σ,A), let Δ′ be a distinguished subset satisfying the condition (1), and let

H2 be the wonderful subgroup of K associated with the quotient of (Sp,Σ,A)

by Δ′. We can assume H1 ⊂H2. Recall that the quotient H2/H1 is connected.

Under the condition (1) we have that Hu
1 is properly contained in Hu

2 . Take

Levi decompositions H1 = LH1H
u
1 and H2 = LH2H

u
2 with LH1 ⊂ LH2 . Then

LieHu
2 /LieH

u
1 is a simple LH1 -module, and LH1 and LH2 differ only by their

connected center. The defect of a spherical system is equal to the dimension of

the connected center of the associated wonderful subgroup, so the codimension
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of LH1 in LH2 is equal to

d= card(Δ�Δ′)− card(Σ/Δ′)− (cardΔ− cardΣ).

The quotient LieHu
2 /LieH

u
1 can be described as follows. There exist d+ 1

LH2 -submodules of LieHu
2 , W0, . . . ,Wd, isomorphic as LH1 -modules but not as

LH2 -modules. By denoting by V the LH2 -complement of W0⊕· · ·⊕Wd in LieHu
2 ,

as an LH1 -module,

LieHu
1 =W ⊕ V,

where W is a cosimple LH1 -submodule of W0 ⊕ · · · ⊕Wd which projects nontriv-

ially on every summand W0, . . . ,Wd.

As stated above, in our cases we always have H2 ⊂Q, with Q=KhQ
u given

in the list of Appendix A, LH2 ⊂Kh, and Hu
2 =Qu.

One can say something more about the inclusion of W0, . . . ,Wd in LieQu.

One has to consider the set SΔ′ , whose general definition involves the notion of

external negative color (see [5, Section 2.3.5] and [7, Section 5.2]). Without going

into technical details, in our cases it holds that

SΔ′ = (suppΣ)�
(
supp(Σ/Δ′)

)
.

Moreover, cardSΔ′ = d+ 1, say, SΔ′ = {β0, . . . , βd}. Assuming Q contains B−,

we have that W0, . . . ,Wd are, respectively, included in the simple L-submodules

V (−β0), . . . , V (−βd) containing the root spaces of −β0, . . . ,−βd. In our cases the

integer d+ 1, the cardinality of SΔ′ , is always equal to 2 or 3.

In the following, for all the remaining cases, we describe the quotient of

(Sp,Σ,A) by Δ′ and describe LH2 in Kh. The knowledge of SΔ′ will be enough

to uniquely determine the modules W0, . . . ,Wd.

REMARK 1.4

Actually, the results contained in [7] allow us to reduce the computation of the

wonderful subgroup associated with a spherical system to the computation of

the wonderful subgroups associated with somewhat smaller spherical systems. In

particular, [7, Section 5.3] allows us to reduce the computation of the wonderful

subgroup associated with a spherical system with a quotient of higher defect

to the computation of the wonderful subgroups associated with some spherical

subsystems. Moreover, many of the spherical systems under consideration have

a tail (see [7, Section 6]), and these cases can also be reduced to some smaller

cases. Similar general considerations could be done for the cases obtained by

“collapsing” the tails. We prefer to avoid as far as possible the technicalities and

give a direct explicit description of our wonderful subgroups even if they are

already somewhat known.

1.5.6. Type B

(a) Tail case. Localizing the spherical systems of cases 7.3 (0< r < p), 8.2 (0<

r < q), and 8.3 (0< r < p) in suppΣ, we obtain the following spherical system,



730 Bravi, Chirivì, and Gandini

which we label as ay(s, s) + b′(t), for a group of semisimple type As ×Bs+t with

t≥ 1:

Sp = {α′
s+2, . . . , α

′
s+t},

Σ = {α1, . . . , αs, α
′
1, . . . , α

′
s,2(α

′
s+1 + · · ·+ α′

s+t)},
A = {D1, . . . ,D2s+1}, with Δ = A ∪ {D2s+2} and full Cartan pairing as

follows:

α1 =D1 +D2 −D3,

αi =−D2i−2 +D2i−1 +D2i −D2i+1 for 2≤ i≤ s,

α′
i =−D2i−1 +D2i +D2i+1 −D2i+2 for 1≤ i≤ s,

2(α′
s+1 + · · ·+ α′

s+t) =−2D2s+1 + 2D2s+2.

If t= 1, then the Luna diagram is as follows.

If t > 1, then it is as follows.

The combinatorics is the same, so from now on we just report the diagram for

t > 1.

Consider the quotient by Δ′ = {D2i : 1≤ i≤ s}:

Σ/Δ′ =
{
α2 + α′

1, . . . , αs + α′
s−1,2(α

′
s+1 + · · ·+ α′

s+t)
}
.

It is a spherical system obtained by parabolic induction from the direct product

of case 2 and the rank 1 case 9 (resp., the rank 1 case 4) if t > 1 (resp., t= 1),

the labels referring to [8]. We have SΔ′ = {α1, α
′
s}.

(b) Collapsed tail. Localizing the spherical systems of cases 7.3 (r = p), 8.2

(r = q), and 8.3 (r = p) in suppΣ, we obtain the following spherical system,

which is labeled as aby(s, s) or S-6 in [3], for a group of semisimple type As ×
Bs:

Sp = ∅,
Σ = {α1, . . . , αs, α

′
1, . . . , α

′
s},

A = {D1, . . . ,D2s+1}=Δ, with Cartan pairing as follows:

α1 =D1 +D2 −D3,

αi =−D2i−2 +D2i−1 +D2i −D2i+1 for 2≤ i≤ s,

α′
i =−D2i−1 +D2i +D2i+1 −D2i+2 for 1≤ i≤ s− 2,
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α′
s−1 =−D2s−3 +D2s−2 +D2s−1 −D2s −D2s+1,

α′
s =−D2s−1 +D2s +D2s+1.

The Luna diagram is as follows.

Consider the quotient by Δ′ = {D2i : 1≤ i≤ s}:

Σ/Δ′ = {α2 + α′
1, . . . , αs + α′

s−1}.

It is a spherical system obtained by parabolic induction from [8, case 2]. We have

SΔ′ = {α1, α
′
s}.

1.5.7. Type C

(a) Tail case. Localizing the spherical systems of cases 4.4 (q > 2) and 4.5 (p > 2)

in suppΣ, we obtain the following spherical system, which we label as ay(2,2) +

c(t), for a group of semisimple type A2 × Ct+1 with t≥ 2:

Sp = {α′
4, . . . , α

′
t+1},

Σ = {α1, α2, α
′
1, α

′
2, α

′
2 + 2(α′

3 + · · ·+ α′
t) + α′

t+1},
A = {D1, . . . ,D5}, with Δ=A∪{D6} and full Cartan pairing as follows:

α1 =−D2 +D3 +D4 −D5,

α2 =D1 +D2 −D3,

α′
1 =−D3 +D4 +D5,

α′
2 =−D1 +D2 +D3 −D4 −D6,

σ5 =−D5 +D6.

The Luna diagram is as follows.

Consider the quotient by Δ′ = {D2,D4}:

Σ/Δ′ =
{
α1 + α′

2, α
′
2 + 2(α′

3 + · · ·+ α′
t) + α′

t+1

}
.

It is a spherical system obtained by parabolic induction from [8, case 42], already

considered in Section 1.5.4. We have SΔ′ = {α2, α
′
1}.
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(b) Collapsed tail. Localizing the spherical systems of cases 4.4 (q = 2) and

4.5 (p = 2) in suppΣ, we obtain the spherical system aby(2,2) for a group of

semisimple type A2×B2, a particular case of the spherical system obtained above

in Section 1.5.6.

1.5.8. Type D

(a) Tail case. Localizing the spherical systems of cases 7.2 (0 < r < q − 1), 9.2

(0< r < q−1), and 9.3 (0< r < p−1) in suppΣ, we obtain the following spherical

system for a group of semisimple type As ×Ds+t with t≥ 2:

Sp = {α′
s+2, . . . , α

′
s+t},

Σ = {α1, . . . , αs, α
′
1, . . . , α

′
s,2(α

′
s+1 + · · ·+ α′

s+t−2) + α′
s+t−1 + α′

s+t},
A = {D1, . . . ,D2s+1}, with Δ = A ∪ {D2s+2} and full Cartan pairing as

follows:

α1 =D1 +D2 −D3,

αi =−D2i−2 +D2i−1 +D2i −D2i+1 for 2≤ i≤ s,

α′
i =−D2i−1 +D2i +D2i+1 −D2i+2 for 1≤ i≤ s,

σ2s+1 =−2D2s+1 + 2D2s+2.

It is [6, case 60], labeled as ay(s, s) + d(t).

(b) Collapsed tail. Localizing the spherical systems of cases 7.2 (r = q − 1),

9.2 (r = q − 1), and 9.3 (r = p− 1) in suppΣ, we obtain the following spherical

system for a group of semisimple type As ×Ds+1:

Sp = ∅,
Σ = {α1, . . . , αs, α

′
1, . . . , α

′
s, α

′
s+1},

A = {D1, . . . ,D2s+2}=Δ, with Cartan pairing as follows:

α1 =D1 +D2 −D3,

αi =−D2i−2 +D2i−1 +D2i −D2i+1 for 2≤ i≤ s− 1,

αs =−D2s−2 +D2s−1 +D2s −D2s+1 −D2s+2,

α′
i =−D2i−1 +D2i +D2i+1 −D2i+2 for 1≤ i≤ s− 1,

α′
s =−D2s−1 +D2s +D2s+1 −D2s+2,

α′
s+1 =−D2s−1 +D2s −D2s+1 +D2s+2.

It is [6, case 40], labeled as ady(s, s + 1) or S-10 in [3], and considered also in

[4, Section 5] as the spherical system of the comodel wonderful variety of cotype

D2(s+1).

2. Projective normality

This section is devoted to proving the following result, which we need in order

to study the singularities of closures of spherical nilpotent K-orbits in p.

THEOREM 2.1

Let (g, k) be a classical symmetric pair of non-Hermitian type, and let O⊂ p be a

spherical nilpotent K-orbit. If (g, k) = (sp(2p+2q), sp(2p)+ sp(2q)), assume that

the signed partition of O is neither (+34,+12p−8) nor (−34,−12q−8) (Cases 4.6
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and 4.7 in Appendix A). Let X be the wonderful K-variety associated to O. Then

the multiplication of sections

mL,L′ : Γ(X,L)⊗ Γ(X,L′)−→ Γ(X,L⊗L′)

is surjective for all globally generated line bundles L,L′ ∈ Pic(X).

We point out that multiplication is not surjective if (g, k) = (sp(2p+2q), sp(2p)+

sp(2q)) and O is the spherical nilpotent orbit corresponding to the signed parti-

tions (+34,+12p−8) or (−34,−12q−8)) (see Example 2.7 below). These cases will

be treated separately in Section 3.1 with an ad hoc argument.

Let us briefly recall here some generalities about the multiplication of sections

of line bundles on a wonderful variety (for more details and references, see [4]). Let

X be a wonderful K-variety with set of spherical roots Σ and set of colors Δ.

The classes of colors form a free basis for the Picard group of X and for the

semigroup of globally generated line bundles. Therefore, the Picard group of X

is identified with ZΔ, and the semigroup of globally generated line bundles is

identified with NΔ. Given E,F ∈NΔ we will also write mE,F meaning mLE ,LF
.

Given D ∈ ZΔ we denote by LD ∈ Pic(X) the corresponding line bundle, and

we fix sD ∈ Γ(X,LD) a section whose associated divisor is D. Recall that every

line bundle on X has a unique K-linearization. Then sD is a highest weight

vector, and we denote by VD ⊂ Γ(X,LD) the K-submodule generated by sD.

Since X is a spherical variety, Γ(X,LD) is a multiplicity-free K-module; hence,

VD is uniquely determined and sD is uniquely determined up to a scalar factor.

By identifying Σ with the set of K-stable prime divisors of X , every σ ∈ ZΣ

determines a line bundle Lσ ∈ Pic(X), and the map ZΣ−→ Pic(X) is injective.

The line bundle Lσ is effective if and only if σ ∈NΣ, and for all σ ∈ ZΣ we fix a

section sσ ∈ Γ(X,Lσ) whose associated divisor is σ. Such a section is a highest

weight vector of weight 0 and is uniquely determined up to a scalar factor.

By identifying Pic(X) with ZΔ, we regard ZΣ as a sublattice of ZΔ. This

defines a partial order ≤Σ on ZΔ as follows: if D,E ∈ ZΔ, then D ≤Σ E if and

only if E−D ∈NΣ. This allows us to describe the space of global sections of LE

as

Γ(X,LE) =
⊕

F∈NΔ:F≤ΣE

sE−FVF .

In particular, if E ∈ NΔ, then we have that Γ(X,LE) is an irreducible K-

module if and only if E is minuscule in NΔ with respect to ≤Σ or zero; that is,

if F ∈NΔ and F ≤Σ E, then it must be F =E.

To any line bundle LE on X , we attach two characters ξE and ωE as follows.

Let H be the stabilizer of a point x0 in the open orbit of X , fix a maximal

torus T and a Borel subgroup B such that T ⊂B, and let y0 be the point fixed

by the opposite of the Borel subgroup B. Then we denote by ξE ∈Hom(H,C×)

the character given by the action of H over the fiber LE,x0 , and we denote by

ωE ∈Hom(T,C×) the character given by the action of T over the fiber LE,y0 .
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If E ∈ NΔ, then the set of sections VE ⊂ Γ(X,LE) does not vanish on the

closed orbit of X , so it defines a regular map φE : X −→ P(V ∗
E). We choose

a nonzero element hE ∈ V ∗
E in the line φE(x0). Note that VE is the irreducible

module of highest weight ωE and that hE is determined by the condition g ·hE =

ξE(g)hE for all g ∈H .

For D ∈Δ, the weight ωD is combinatorially described as follows: if D ∈Δ2a

and α ∈ S is such that D ∈Δ(α), then ωD = 2ωα; otherwise ωD =
∑

ωα for all

α ∈ S such that D ∈Δ(α) (see [31, Lemma 30.24]).

2.1. General reductions
By making use of quotients and parabolic inductions, it is possible to reduce the

study of the multiplication maps. We recall such reductions from [4].

LEMMA 2.2 ([4, COROLLARY 1.4])

Let X be a wonderful variety with set of colors Δ, let X ′ be a quotient of X by a

distinguished subset Δ0 ⊂Δ with set of colors Δ′, and identify Δ′ with Δ�Δ0.

If D ∈ NΔ and supp(D) ∩Δ0 = ∅ and if LD ∈ Pic(X) and L′
D ∈ Pic(X ′) are

the line bundles corresponding to D regarded as an element in NΔ and in NΔ′,

respectively, then Γ(X,LD) = Γ(X ′,L′
D). In particular, if mD,E is surjective for

all D,E ∈NΔ, then mD′,E′ is surjective for all D′,E′ ∈NΔ′.

LEMMA 2.3 ([4, PROPOSITION 1.6])

Let X be a wonderful variety, and suppose that X is the parabolic induction of

a wonderful variety X ′. Then for all L,L′ in Pic(X) the multiplication mL,L′ is

surjective if and only if the multiplication mL|X′ ,L′|X′ is surjective.

We now explain how to reduce the study of the multiplication maps with respect

to wonderful subvarieties.

LEMMA 2.4

Let X be a wonderful variety, and let X ′ ⊂X be a wonderful subvariety. If mL,L′

is surjective for all globally generated L,L′ ∈ Pic(X), then mL,L′ is surjective for

all globally generated L,L′ ∈ Pic(X ′).

Proof

Denote by Σ and Δ the set of spherical roots and the set of colors of X , respec-

tively, and denote by Σ′ and Δ′ those of X ′. The restriction of line bundles

induces a map ρ : NΔ −→ NΔ′, and the restriction of sections Γ(X,LD) −→
Γ(X ′,Lρ(D)) is surjective for all D ∈ NΔ. Given E,F ∈ NΔ, the surjectivity of

mρ(E),ρ(F ) follows then from the surjectivity of mE,F .

Set

Δ′
0 =
{
D ∈Δ′ : c(D,σ)≤ 0 ∀σ ∈Σ′}.
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Note that every D ∈ NΔ′
0 is minuscule with respect to ≤Σ′ or zero; namely,

Γ(X ′,LD) = VD for all D ∈ NΔ′. Indeed, if D ∈ NΔ′
0 and D − σ ∈ NΔ for some

σ ∈ NΣ, then it follows that −σ ∈ NΔ; hence, both σ and −σ define effective

divisors on X ′. On the other hand the cone of effective divisors of X ′ contains

no line, since X ′ is complete; therefore, it must be σ = 0.

Let D ∈ Δ. By reasoning as in [15, Section 1.13] with the combinatorial

description of ρ, it follows that for all D ∈Δ there exists D′ ∈ (Δ′ �Δ′
0) ∪ {0}

such that ρ(D) − D′ ∈ NΔ′
0, and conversely for all D′ ∈ Δ′ � Δ′

0 there exists

D ∈Δ with ρ(D)−D′ ∈NΔ′
0.

Now let E,F ∈NΔ′. Then by the previous discussion there exist E′, F ′ ∈NΔ′
0

such that E+E′, F +F ′ ∈ ρ(NΔ). On the other hand since E′, F ′ ∈NΔ′
0 we have

Γ(X,LE+E′+F+F ′) = Γ(X,LE+F )VE′+F ′ and

Im(mE+E′,F+F ′) = Im(mE,F )VE′VF ′ = Im(mE,F )VE′+F ′ .

Therefore, the surjectivity of mE,F follows from that of mE+E′,F+F ′ . �

A strategy to prove the surjectivity of the multiplication map was described in

[11] for wonderful symmetric varieties and in [4] for general wonderful varieties.

Such a strategy reduces the proof of the surjectivity of the multiplication maps

for all pairs of globally generated line bundles to a finite number of computations,

which arise in correspondence to the so-called fundamental low triples.

Recall from [4] that a triple (D,E,F ) ∈ (NΔ)3 with F ≤Σ D+E is called a

low triple if, for all D′,E′ ∈NΔ such that D′ ≤Σ D, E′ ≤Σ E, and F ≤Σ D′+E′,

it holds that D′ =D and E′ = E. The triple (D,E,F ) is called a fundamental

triple if D,E ∈Δ.

To determine the low triples, the notion of covering difference is useful. Let

E,F ∈NΔ with E <Σ F , and suppose that E is maximal in NΔ with this prop-

erty: then we say that F covers E and we call F − E a covering difference in

NΔ.

For all E =
∑

D∈Δ kDD ∈ ZΔ, define its positive part E+ =
∑

kD>0 kDD, its

negative part E− =E+−E, and its height ht(E) =
∑

D∈Δ kD. Note that γ ∈NΣ

is a covering difference in NΔ if and only if γ+ covers γ−.

As noted in [4, Section 2.1, Remark], the covering differences in NΔ are

finitely many; therefore, there is always a bound for the height of the positive

part of a covering difference. In all the examples we know (including those we

will deal with in the present article) this bound can be taken to be 2.

Let (D,E,F ) be a low triple, and suppose that mD,E is surjective. Then it

is a straightforward consequence of the definition that sD+E−FVF ⊂ VDVE . On

the other hand we have the following.

LEMMA 2.5 ([4, LEMMA 2.3])

Let X be a wonderful variety, and let n be such that ht(γ+)≤ n for every covering

difference γ. If sD+E−FVF ⊂ VDVE for all low triples (D,E,F ) with ht(D+E)≤
n, then the multiplication maps mD,E are surjective for all D,E ∈NΔ.
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To verify that sD+E−FVF ⊂ VDVE we will make use of the following.

LEMMA 2.6 ([10, LEMMA 19])

Let D,E,F ∈ NΔ be such that D ≤Σ E + F . Then sE+F−DVD ⊂ VEVF if and

only if the projection of hE ⊗ hF ∈ V (ω∗
E)⊗ V (ω∗

F ) onto the isotypic component

of highest weight ω∗
D is nonzero.

EXAMPLE 2.7

Let g = sp(2p + 2q) and k = sp(2p) + sp(2q). If p ≥ 4, consider the spherical

nilpotent K-orbit O defined by the signed partition (+34,+12p−8) (or similarly

the one defined by (−34,−12q−8) if q ≥ 4). Let X be the corresponding wonderful

K-variety. Then there are elements D,E ∈NΔ such that mD,E is not surjective.

Indeed, the spherical system of X is the following.

Label the spherical roots and the colors of X as

σ1 = α2, σ2 = α′
2, σ3 = α1, σ4 = α′

1, σ5 = α3,

D1 =D+
α2
, D2 =D−

α2
, D3 =D+

α1
, D4 =D−

α1
,

D5 =D−
α3
, D6 =Dα4 .

Then the Cartan pairing of X is expressed as

σ1 =D1 +D2 −D3,

σ2 =−D1 +D2 +D3 −D4 −D5,

σ3 =−D2 +D3 +D4 −D5,

σ4 =−D3 +D4 +D5,

σ5 =−D2 +D3 −D4 +D5 −D6.

Consider the triple (D3,D3,D1 +D2 +D6). Then 2D3 −D1 −D2 −D6 =

σ2 + σ3 + σ4 + σ5, and the triple is easily shown to be low. On the other hand

if VD1+D2+D6 ⊂ V 2
D3

, then it would be V (2ω2 + ω4 + ω′
2) ⊂ V (ω1 + ω3 + ω′

2)
⊗2,

which is not the case. Therefore, mD3,D3 is not surjective.

2.2. Basic cases
We show in this section that, in order to prove Theorem 2.1, we are reduced to the

study of three special families of wonderful varieties. By following Section 1.5.1

and by Lemma 2.3, the surjectivity of the multiplications on X is reduced to

that one on a wonderful L1-variety Y , where L1 is the Levi subgroup of K

corresponding to the set of simple roots in suppΣ. More precisely, Y is the

localization of X at the subset suppΣ ⊂ S, and the wonderful varieties arising
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in this way are described in Sections 1.5.2, 1.5.3, 1.5.4 (only cases 4.2 and 4.3),

1.5.6, 1.5.7, and 1.5.8.

Analyzing all the possible cases, we now show that to prove the surjectivity

of the multiplications for Y we are reduced to the following three families:

• ay(2,2) + c(t), t≥ 2,

• ay(s, s) + b′(t), s, t≥ 1,

• aby(s, s), s≥ 2.

In the cases of Section 1.5.2 the wonderful variety X is a flag variety. There-

fore, the surjectivity of the multiplication of globally generated line bundles holds

trivially, since the space of sections of a globally generated line bundle on a flag

variety is an irreducible K-module.

In the cases of Section 1.5.3 the wonderful variety Y is the wonderful com-

pactification of an adjoint symmetric variety, and the surjectivity of the multi-

plication of globally generated line bundles holds thanks to [11].

In cases 4.2 and 4.3 of Section 1.5.4 (up to switching the two factors of K)

the surjectivity of the multiplications of Y is reduced to that one of the wonderful

variety Z with spherical system ay(2,2) + c(t) where t≥ 2. More precisely, start

with Z and consider the set of colors {D+
α1
,D+

α2
}. It is distinguished, and the

corresponding quotient is a parabolic induction of Y . Therefore, the surjectivity

of the multiplications of Y follows from that of Z thanks to Lemmas 2.2 and 2.3.

In the cases of Section 1.5.6(a) Y is the wonderful variety with spherical

system ay(s, s) + b′(t), where s ≥ 0 and t ≥ 1, but if s = 0, then it is just an

adjoint symmetric variety. In the cases of Section 1.5.6(b) Y is the wonderful

variety with spherical system aby(s, s), where s≥ 2.

In the cases of Section 1.5.7(a) Y is the wonderful variety with spherical

system ay(2,2) + c(t), where t≥ 2, whereas in the cases of Section 1.5.7(b) Y is

the wonderful variety with spherical system aby(2,2).
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In the cases of Section 1.5.8(a) Y is the wonderful variety with spherical

system ay(s, s) + d(t), where s≥ 0 and t≥ 2. The surjectivity of the multiplica-

tions in this case can be reduced to that of a comodel wonderful variety, which

is known by [4, Theorem 5.2]. Let indeed Z be the comodel wonderful variety of

cotype D2(s+t). This is the wonderful variety with the following spherical system

for a group of semisimple type As+t−1 ×Ds+t.

Consider the wonderful subvariety of Z associated to Σ � {αs+1, . . . , αs+t−1}.
Then the set of colors {D−

α′
s+1

, D±
α′

s+2
, . . . ,D±

α′
s+t

} is distinguished, and the cor-

responding quotient is a parabolic induction of Y . Therefore, the surjectivity of

the multiplications of Y follows from that of Z thanks to Lemmas 2.2 and 2.3.

Finally, in the cases of Section 1.5.8(b) Y is the comodel wonderful variety of

cotype D2(s+1), and the surjectivity of the multiplications for this variety follows

by [4, Theorem 5.2].

2.3. Projective normality of ay(2,2) + c(t)

Consider the wonderful variety X for a semisimple group G of type A2 × Ct+1

with t≥ 2 defined by the following spherical system.

The spherical system associated to this Luna diagram is described in Sec-

tion 1.5.7. For convenience we number the five spherical roots as

σ1 = α2, σ2 = α′
2, σ3 = α1, σ4 = α′

1, σ5 = α′
2 +

t∑
i=3

2α′
i + α′

t+1.

There are six colors that we label as

D1 =D−
α2
, D2 =D+

α2
, D3 =D−

α1
,

D4 =D+
α1
, D5 =D−

α′
1
, D6 =Dα′

3
.

The weights of these colors are

ωD1 = ω2, ωD2 = ω2 + ω′
2, ωD3 = ω1 + ω′

2,

ωD4 = ω1 + ω′
1, ωD5 = ω′

1, ωD6 = ω′
3.

Note that the G-stable divisor of X corresponding to σ5 is a parabolic induc-

tion of a comodel wonderful variety of cotype A5 (see [4, Section 5]). Therefore,

we can restrict our study to the covering differences and the low triples of X

which contain σ5.
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LEMMA 2.8

Let γ ∈ NΣ be a covering difference in NΔ with σ5 ∈ suppΣ γ. Then either γ =

σ5 =−D5+D6 or γ = σ2+σ4+σ5 =−D1+D2. Every other covering difference

γ ∈NΣ verifies ht(γ+) = 2.

Proof

Denote γ =
∑

aiσi. Then we have

γ = (a1 − a2)D1 + (a1 + a2 − a3)D2 + (−a1 + a2 + a3 − a4)D3
(2)

+ (−a2 + a3 + a4)D4 + (−a3 + a4 − a5)D5 + (−a2 + a5)D6.

Suppose that a5 �= 0. IfD5 ∈ supp(γ−), then γ−+σ5 ∈NΔ, and ifD6 ∈ supp(γ+),

then γ+ − σ5 ∈ NΔ. Therefore, if γ �= σ5, then it must be D5 /∈ supp(γ−) and

D6 /∈ supp(γ+); namely, a3 + a5 ≤ a4 and a5 ≤ a2. It follows that a2 > 0 and

a4 > 0. Suppose that σ �= σ2 +σ4 +σ5 =−D1 +D2. Then a1 + a4 ≤ a2+ a3 since

γ− + σ4 /∈ NΔ, and a2 ≤ a1 since γ− + σ2 + σ4 + σ5 /∈ NΔ. Therefore, we get

a1 + (a4 − a3)≤ a2 ≤ a1, which is absurd since a4 − a3 ≥ a5 > 0.

As already noted, the G-stable divisor ofX corresponding to σ5 is a parabolic

induction of a comodel wonderful variety of cotype A5. Therefore, the covering

differences γ with σ5 /∈ suppΣ γ coincide with those studied in [4, Proposition 3.2],

and they all satisfy ht(γ+) = 2. �

LEMMA 2.9

Let (D,E,F ) be a low fundamental triple, denote γ =D +E − F , and suppose

that σ5 ∈ suppΣ γ. Then we have the following possibilities:

• (D2,D3,D1 +D4 +D5), γ = σ2 + σ5;

• (D3,D3,D1 + 2D5), γ = σ2 + σ3 + σ5;

• (D2,D2,D4 +D5), γ = σ1 + σ2 + σ5;

• (D2,D3,2D5), γ = σ1 + σ2 + σ3 + σ5;

• (D3,D4,D1 +D5), γ = σ2 + σ3 + σ4 + σ5;

• (D4,D4,D1), γ = σ2 + σ3 + 2σ4 + σ5.

Proof

By Lemma 2.8, σ5 = −D5 +D6 and σ2 + σ4 + σ5 = −D1 +D2 are the unique

covering differences γ with ht(γ+) = 1. Therefore, D1,D3,D4,D5 are minuscule

in NΔ.

Let (D,E,F ) be a fundamental triple with supp(F ) ∩ supp(D + E) = ∅,

denote γ =D+E − F =
∑

aiσi, and suppose a5 > 0. Note that if (D,E,F ) is a

low triple, then D6 /∈ supp(γ+). Suppose that indeed D =D6. Then D5 <Σ D and

F ≤Σ D5+E. Therefore, if (D,E,F ) is a low triple, then (2) implies 0< a5 ≤ a2.

Suppose a4 = 0. Then for every covering difference σ ≤ γ it holds that

ht(σ+) = 2. Therefore, (D,E,F ) is necessarily a low triple.

To classify such fundamental triples, suppose D2 /∈ supp(γ+). Then

c(D2, γ) ≤ 0; hence, a1 + a2 ≤ a3 and we get 2 ≤ 2a2 ≤ a2 + a3 − a1. Since
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ht(γ+) = 2, it follows that D = E = D3. Equivalently, we have the equality

c(D3, γ) = −a1 + a2 + a3 = 2, and the inequalities c(D2, γ) ≤ 0, c(D4, γ) ≤ 0

imply 2a1 − a3 + 2 ≤ a3 ≤ a1 − a3 + 2. It follows that a1 = 0 and a2 = a3 = 1,

and the inequality 0 < a5 ≤ a2 implies a5 = 1. Therefore, γ = σ2 + σ3 + σ5 and

F =D1 + 2D5.

Similarly, suppose that a4 = 0 and D3 /∈ supp(γ+). Then c(D3, γ)≤ 0. Hence,

a2 + a3 ≤ a1, and we get 2 ≤ 2a2 ≤ a1 + a2 − a3. Since ht(γ+) = 2, it follows

that D =E =D2. Equivalently, c(D2, γ) = a1 + a2 − a3 = 2, and the inequalities

c(D1, γ)≤ 0, c(D3, γ)≤ 0 imply a2+a3 ≤ a1 ≤ a2. It follows that a3 = 0 and a1 =

a2 = 1, and the inequality 0< a5 ≤ a2 implies a5 = 1. Therefore, γ = σ1+σ2+σ5

and F =D4 +D5.

Suppose now that a4 = 0 and γ+ =D2 +D3. Then the equalities c(D2, γ) =

c(D3, γ) = 1 imply a3 − a1 = a2 − 1 = 1 − a2, and it follows that a1 = a3 and

a2 = 1. Therefore, the inequality 0< a5 ≤ a2 implies a5 = 1, and the inequality

c(D1, γ)≤ 0 implies a1 ≤ a2. Therefore, either γ = σ2+σ5 and F =D1+D4+D5,

or γ = σ1 + σ2 + σ3 + σ5 and F = 2D5.

Suppose finally that a4 > 0. Note that if (D,E,F ) is a low triple, then D2 /∈
supp(γ+). Indeed, σ2 + σ4 + σ5 ≤ γ, and if, for example, D =D2, then D1 <Σ D

and F ≤Σ D1 + E. Therefore, c(D2, γ) ≤ 0; hence, 0 < a1 + a2 ≤ a3. It follows

that c(D4, γ) = −a2 + a3 + a4 ≥ a1 + a4 > 0; therefore, D4 ∈ supp(γ+). Since

ht(γ+) = 2, in particular, it must be that a4 ≤ 2.

Suppose that a4 = 1. Then c(D3, γ) = −a1 + a2 + a3 − a4 ≥ 2a2 − a4 > 0;

hence, γ+ =D3+D4. Therefore, c(D3, γ) = c(D4, γ) = 1 and we get the equalities

a2 + a3 = a1 +2 and a2 = a3. The inequality c(D2, γ)≤ 0 then implies that a1 +

a2 ≤ a2; hence, a1 = 0, a2 = a3 = 1, and a5 = 1 thanks to the inequality 0< a5 ≤
a2. Therefore, γ = σ2 + σ3 + σ4 + σ5 and F =D1 +D5, and (D,E,F ) is a low

triple since D3,D4 are both minuscule.

Suppose that a4 = 2. Then c(D4, γ) =−a2 + a3 + a4 ≥ a1 + a4 ≥ 2, and since

ht(γ+) = 2 it follows that γ+ = 2D4. Moreover, we get a1 = 0 and a2 = a3. By

the inequalities c(D2, γ) ≤ 0, c(D3, γ) ≤ 0 we then get that a1 + a2 ≤ a3 and

−a1+ a2+ a3− a4 ≤ 0. On the other hand c(D3, γ) =−a1+ a2+ a3− a4 ≥ 2a2−
a4 = 2a2−2≥ 0. Therefore, c(D3, γ) = 0 and it follows that a2 = 1. Thanks to the

inequality 0< a5 ≤ a2, we have a5 = 1 as well. Therefore, γ = σ2 + σ3 +2σ4 + σ5

and F =D1, and (D,E,F ) is a low triple since D4 is minuscule. �

To prove the projective normality of X we now apply Lemma 2.6. This requires

some computations. We first need an explicit description of the invariants. Let

V = C3 with standard basis given by e1, e2, e3. Let W = C2n, where n = t+ 1.

We choose a basis e′1, . . . , e
′
n, e

′
−n, . . . , e

′
−1 and fix a symplectic form such that

ω(e′i, e
′
j) = δi,−j for i > 0.

We set Λ2
0W = {α ∈ Λ2W : 〈ω,α〉= 0} and ω∗ =

∑n
i=1 e

′
i ∧ e′−i. Let ϕ1, ϕ2, ϕ3

be the basis of V ∗ dual to e1, e2, e3. Note that the isomorphism from Λ2V to V ∗

sending e1 ∧ e2 to ϕ3, e1 ∧ e3 to −ϕ2, and e2 ∧ e3 to ϕ1 is G-equivariant. We

set G= SL(V ∗)× Sp(W,ω), so that we can take H as the stabilizer of the line
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spanned by the vector e= e1⊗e′−2−e2⊗e′2−e3⊗e′1. We denote by hi the vector

hDi ∈ V ∗
Di

. In coordinates the vectors hi are given as

• V ∗
D4

= V ⊗W and h4 = e;

• V ∗
D5

=W and h5 = e′1;

• V ∗
D3

= V ⊗ Λ2
0W and h3 = e1 ⊗ (e′1 ∧ e′−2)− e2 ⊗ (e′1 ∧ e′2);

• V ∗
D2

= V ∗ ⊗ Λ2
0W and

h2 = ϕ3 ⊗
(
e′2 ∧ e′−2 −

1

n
ω∗
)
− ϕ2 ⊗ (e′1 ∧ e′−2)−ϕ1 ⊗ (e′1 ∧ e′2);

• V ∗
D1

= V ∗ and h1 = ϕ3.

We can now prove the following result.

PROPOSITION 2.10

The multiplication mD,E is surjective for all D,E ∈NΔ.

Proof

By Lemma 2.8 every covering difference γ ∈ NΣ satisfies ht(γ+)≤ 2. Therefore,

by Lemma 2.5 it is enough to check that sD+E−FVF ⊂ VD ·VE for all low funda-

mental triples (D,E,F ).

Suppose that σ5 /∈ suppΣ(D+E − F ), and let X ′ be the G-stable divisor of

X corresponding to σ5. Then X ′ is a parabolic induction of a comodel wonderful

variety of cotype A5; hence, the inclusion sγVF ⊂ VD · VE follows by Lemma 2.3

together with [4, Theorem 5.2].

By Lemma 2.6 we are reduced to proving that for all low triples (Di,Dj , F )

listed in Lemma 2.9 the projection of hi⊗hj onto the isotypic component of type

V ∗
F in V ∗

Di
⊗ V ∗

Dj
is nonzero.

(D2,D3,D1+D4+D5). We have V ∗
D1+D4+D5

= sl(V )⊗S2W , the equivariant

map

π : (V ∗ ⊗ Λ2
0W )⊗ (V ⊗ Λ2

0W )−→ sl(V )⊗ S2W

given by

π
(
(ϕ⊗ a∧ b)⊗ (v⊗ c∧ d)

)
=
(
ϕ⊗ v− 1

3
ϕ(v)Id

)
⊗
(
ω(a, c)bd− ω(b, c)ad− ω(a, d)bc+ ω(b, d)ac

)
,

and

π(h2⊗h3) = (ϕ3⊗e1)⊗e′1e
′
−2− (ϕ3⊗e2)⊗e′1e

′
2+(ϕ1⊗e1+ϕ2⊗e2)⊗ (e′1)

2 �= 0.

(D3,D3,D1 + 2D5). We have V ∗
D1+2D5

= Λ2V ⊗ S2W , the equivariant map

π : (V ⊗ Λ2
0W )⊗ (V ⊗ Λ2

0W )−→ Λ2V ⊗ S2W

given by

π
(
(u⊗ a∧ b)⊗ (v⊗ c∧ d)

)
= (u∧ v)⊗

(
ω(a, c)bd− ω(b, c)ad− ω(a, d)bc+ ω(b, d)ac

)
,
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and

π(h3 ⊗ h3) = 2(e1 ∧ e2)⊗ (e′1)
2 �= 0.

(D2,D2,D4 +D5). We have V ∗
D4+D5

= Λ2V ∗ ⊗ S2W , the equivariant map

π : (V ∗ ⊗ Λ2
0W )⊗ (V ∗ ⊗ Λ2

0W )−→ Λ2V ∗ ⊗ S2W

given by

π
(
(ϕ⊗ a∧ b)⊗ (ψ⊗ c∧ d)

)
= (ϕ∧ψ)⊗

(
ω(a, c)bd− ω(b, c)ad− ω(a, d)bc+ ω(b, d)ac

)
and

π(h2 ⊗ h2) = 2
(
(ϕ3 ∧ϕ2)⊗ e′1e

′
−2 + (ϕ3 ∧ϕ1)⊗ e′1e

′
2 − (ϕ2 ∧ϕ1)⊗ (e′1)

2
)
�= 0.

(D2,D3,2D5). We have V ∗
2D5

= S2W , the equivariant map

π : (V ∗ ⊗ Λ2
0W )⊗ (V ⊗ Λ2

0W )−→ S2W

given by

π
(
(ϕ⊗ a∧ b)⊗ (v ⊗ c∧ d)

)
= ϕ(v)

(
ω(a, c)bd− ω(b, c)ad− ω(a, d)bc+ ω(b, d)ac

)
and

π(h2 ⊗ h3) =−2(e′1)
2 �= 0.

(D3,D4,D1 +D5). We have V ∗
D1+D5

= Λ2V ⊗W , the equivariant map

π : (V ⊗ Λ2
0W )⊗ (V ⊗W )−→ Λ2V ⊗W

given by

π
(
(u⊗ a∧ b)⊗ (v⊗ c)

)
= (u∧ v)⊗

(
ω(a, c)b− ω(b, c)a

)
and

π(h3 ⊗ h4) =−2(e1 ∧ e2)⊗ e′1 �= 0.

(D4,D4,D1). We have the equivariant map

π : (V ⊗W )⊗ (V ⊗W )−→ Λ2V

given by

π
(
(u⊗ a)⊗ (v⊗ b)

)
= ω(a, b)(u∧ v)

and

π(h4 ⊗ h4) =−2(e1 ∧ e2) �= 0. �

2.4. Projective normality of ay(s, s) + b′(t)

Consider the wonderful variety X for a semisimple group G of type As × Bs+t

with s, t≥ 1 defined by the following spherical system.
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The spherical data and the Cartan pairing associated to this Luna diagram are

described in Section 1.5.6. For convenience we number the spherical roots as

σ2i−1 = αi, σ2i = α′
i for i= 1, . . . , s, σ2s+1 =

s+t∑
i=s+1

2α′
i.

There are 2s+ 2 colors that we label as

D2i−1 =D−
αi
, for i= 1, . . . , s, D2s+1 =D−

α′
s
,

D2i =D+
αi
, for i= 1, . . . , s, D2s+2 =Dα′

s+1
.

The weights of these colors are

ωD2i−1 = ωi + ω′
i−1 for i= 2, . . . , s, ωD1 = ω1, ωD2s+1 = ω′

s,

ωD2i = ωi + ω′
i for i= 1, . . . , s, ωD2s+2 = ω̃′

s+1,

where ω̃′
s+1 = ω′

s+1 if t > 1 and ω̃′
s+1 = 2ω′

s+1 if t= 1.

Note that X has the same Cartan matrix as that of the spherical nilpotent

orbit studied in [4, Section 7.3]. It follows that the covering differences and the

fundamental low triples are the same as those computed therein, since they only

depend on the Cartan matrix. In particular, every covering difference γ satisfies

ht(γ+) = 2, and every fundamental triple is low. In order to prove the projective

normality of X , in the following lemma we summarize some properties of its

fundamental triples.

LEMMA 2.11

Let (Dp,Dq, F ) be a fundamental triple, denote γ =Dp +Dq − F , and suppose

that σ2s+1 ∈ suppΣ(γ). Then p, q are even integers and σ1 /∈ suppΣ(γ). If more-

over σ2 ∈ suppΣ(γ), then p+ q− 3≤ 2s+ 1 and F =D1 +Dp+q−3.

Proof

Take a sequence of coverings in NΔ

F = Fn+1 <Σ Fn <Σ · · ·<Σ F1 =Dp +Dq.

Denote γi = Fi − Fi+1. By [4, Propositions 3.2, 7.3] we have the following three

possibilities:

• γi = σpi + σpi+2 + · · ·+ σqi−1 =Dpi +Dqi −Dpi−1 −Dqi+1, for some inte-

gers pi, qi of different parity with 1≤ pi < qi ≤ 2s+ 1,

• γi = σpi−1+σpi + · · ·+σqi =Dpi +Dqi −Dpi−2−Dqi+2, for some integers

pi, qi of the same parity with 2≤ pi ≤ qi ≤ 2s,

• γi = σpi + σpi+2 + · · ·+ σqi−2 + 2(σqi + σqi+2 + · · ·+ σ2s) + σ2s+1 =Dpi +

Dqi −Dpi−1 −Dqi−1, for some even integers pi, qi with 2≤ pi ≤ qi ≤ 2s.
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Since σ2s+1 ∈ suppΣ(γ), there is at least one γi of type 3. Let k be minimal

with γk of type 3; because of the parity of pk and qk, the previous description

implies that every γj with j �= k is of type 2. Moreover, it follows that pi+1 = pi−2

and qi+1 = qi + 2 for all i �= k and that pi, qi are even (resp., odd) for all i≤ k

(resp., i > k).

Therefore, p= p1 and q = q1 are even integers and 2≤ p≤ q ≤ 2s+2, and we

get the equalities pn+1 = p− 2n− 1 and qn+1 = q + 2n− 1. Suppose that k = n.

Then pn and qn are even and 2 ≤ pn ≤ qn ≤ 2s + 2; hence, 1 ≤ pn+1 ≤ qn+1 ≤
2s+ 1. Suppose instead k < n. Then pn and qn are odd and 2 ≤ pn ≤ qn ≤ 2s,

and again we get 1≤ pn+1 ≤ qn+1 ≤ 2s+ 1.

To show the first claim, note that σ1 ∈ suppΣ(γ) if and only if σ1 ∈ suppΣ(γn).

This is not the case if k = n. If k < n, then it also cannot happen, since then pn
and qn would be odd. Similarly, σ2 ∈ suppΣ(γ) if and only if σ2 ∈ suppΣ(γn) if

and only if pn+1 = 1. This means n= p
2 − 1, which implies qn+1 = p+ q− 3. �

To prove the projective normality of X we will apply Lemma 2.6. First we

describe the invariants. Let V =Cs+1 with standard basis given by e1, . . . , es+1.

Let W = C2n+1 where n = s + t. We choose a basis e′1, . . . , e
′
n, e

′
0, e

′
−n, . . . , e

′
−1

and fix a bilinear symmetric form such that β(e′i, e
′
j) = δi,−j for all i, j ≥ 0. Set

G = SL(V ∗) × SO(W,β), so that we can take H as the stabilizer of the line

spanned by the vector e= e1 ⊗ e′0 +
∑s+1

i=2 ei ⊗ e′s−i+2. We have

V ∗
D2i−1

= ΛiV ⊗ Λi−1W, V ∗
D2i

= ΛiV ⊗ ΛiW

for i= 1, . . . , s+ 1. If we denote by hi the vector hDi ∈ V ∗
Di

, then in coordinates

the vectors hi are given as

h2i−1 =
∑

2≤j1<···<ji−1≤s+1

e1 ∧ ej1 ∧ · · · ∧ eji−1 ⊗ e′s−ji−1+2 ∧ · · · ∧ e′s−j1+2,

h2i =
∑

2≤j1<···<ji−1≤s+1

e1 ∧ ej1 ∧ · · · ∧ eji−1 ⊗ e′s−ji−1+2 ∧ · · · ∧ e′s−j1+2 ∧ e′0

+
∑

2≤j1<···<ji≤s+1

ej1 ∧ · · · ∧ eji ⊗ e′s−ji+2 ∧ · · · ∧ e′s−j1+2.

PROPOSITION 2.12

The multiplication mD,E is surjective for all D,E ∈NΔ.

Proof

As already noted, [4, Propositions 3.2, 7.3] show that every covering difference

γ ∈ NΣ satisfies ht(γ+) = 2. It follows that every D ∈Δ is minimal in NΔ with

respect to ≤Σ; hence, every fundamental triple is low. Therefore, by Lemma 2.5

we have to check that sD+E−FVF ⊂ VD ·VE for all fundamental triples (D,E,F ).

Let (D,E,F ) be such a triple, and denote γ =D+E − F .

Suppose that σ2s+1 /∈ suppΣ(γ), and let X ′ be the G-stable divisor of X

corresponding to the spherical root σ2s+1. Then X ′ is a parabolic induction of
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a comodel wonderful variety of cotype A2s+1 (see [4, Section 5]). Hence, the

inclusion sγVF ⊂ VD · VE follows by Lemma 2.3 together with [4, Theorem 5.2].

Suppose that σ2s+1 ∈ suppΣ(γ), and assume D = Dp and E = Dq . Then

σ1 /∈ suppΣ(γ) by Lemma 2.11. We show that sγVF ⊂ VD · VE , proceeding by

induction on s.

Suppose that σ2 /∈ suppΣ(γ). Then suppΣ(γ) ⊂ {σ3, . . . , σ2s+1}. Let X ′′ be

the G-stable subvariety of X obtained by intersecting the G-stable divisors cor-

responding to σ1 and to σ2. If s > 1, then X ′′ is a parabolic induction of the

wonderful variety of type ay(s − 1, s − 1) + b′(t). Therefore, the multiplication

of sections of globally generated line bundles on X ′′ is always surjective by the

inductive hypothesis thanks to Lemma 2.3. If instead s= 1, then X ′′ is a para-

bolic induction of a rank 1 wonderful symmetric variety Y , which is homogeneous

under its automorphism group. Therefore, the multiplication of sections of glob-

ally generated line bundles on Y is always surjective, and the same holds for X ′′

by Lemma 2.3 again. In particular, since (D,E,F ) is a low triple, it follows that

the inclusion sγVF ⊂ VD · VE .

Suppose now that σ2 ∈ suppΣ(γ). Then by Lemma 2.11 it follows that p= 2�

and q = 2m are even integers, and F =D1+D2�+2m−3 with 2�+2m−3≤ 2s+1.

Hence, by Lemma 2.6 we need to find an equivariant map

ϕ : (Λ�V ⊗ Λ�W )⊗ (ΛmV ⊗ ΛmW )−→ Vω1+ω�+m−1
⊗ Λ�+m−2W

such that ϕ(h2�⊗h2m) �= 0. (The formula also makes sense when �+m−1 = s+1,

by setting ωs+1 = 0.) Note that V ⊗ Λ�+m−1V � Vω1+ω�+m−1
⊕ Λ�+mV , and we

denote by ρ1 and ρ2 the projection, respectively, onto the first factor and onto

the second factor. In particular, the map ρ2, up to a scalar factor, is just the

wedge product. We will construct a map

ψ : (Λ�V ⊗ Λ�W )⊗ (ΛmV ⊗ ΛmW )−→ (V ⊗ Λ�+m−1V )⊗ Λ�+m−2W

such that ψ(h2� ⊗ h2m) �= 0 and (ρ2 ⊗ Id) ◦ ψ(h2� ⊗ h2m) = 0 so that the map

ϕ= (ρ1 ⊗ Id) ◦ψ will have the desired properties.

Let π1 : Λ
�W ⊗ ΛmW −→ Λ�+m−2W be defined by

π1(u1 ∧ · · · ∧ u� ⊗ v1 ∧ · · · ∧ vm)

=
∑
i,j

(−1)i+jβ(ui, vj)u1 ∧ · · · ∧ ûi ∧ · · · ∧ u�+1 ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vm.

Let π2 : Λ
�V ⊗ ΛmV −→ V ⊗ Λ�+m−1V be defined by

π2(u1 ∧ · · · ∧ u� ⊗ v1 ∧ · · · ∧ vm)

=
∑
i

(−1)iui ⊗ u1 ∧ · · · ∧ ûi ∧ · · · ∧ u� ∧ v1 ∧ · · · ∧ vm.

Let π3 : Λ
�V ⊗ ΛmV −→ Λ�+mV be defined by π3(x ⊗ y) = x ∧ y. Finally, set

ψ = π2 ⊗ π1, so that (ρ2 ⊗ Id) ◦ψ = π3 ⊗ π1.
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Note that the value of π2 ⊗ π1 (resp., π3 ⊗ π1) on h2� ⊗ h2m is the same as

that on∑
2≤j1<···<j�−1≤s+1

e1 ∧ ej1 ∧ · · · ∧ ej�−1
⊗ e′s−j�−1+2 ∧ · · · ∧ e′s−j1+2 ∧ e′0

⊗
∑

2≤k1<···<km−1≤s+1

e1 ∧ ek1 ∧ · · · ∧ ekm−1 ⊗ e′s−km−1+2 ∧ · · · ∧ e′s−k1+2 ∧ e′0.

The first is equal to(
�+m− 2

�− 1

)∑
(e1 ⊗ e1 ∧ ei1 ∧ · · · ∧ ei�+m−2

)⊗ e′s−i�+m−2+2 ∧ · · · ∧ e′s−i1+2

(the sum being over 2≤ i1 < · · ·< i�+m−2 ≤ s+1). The second is equal to 0. �

2.5. Projective normality of aby(s, s)
Consider the wonderful variety X for a semisimple group G of type As×Bs with

s≥ 2 defined by the following spherical system.

The spherical data and the Cartan pairing associated to this Luna diagram are

described in Section 1.5.6. The spherical roots are simple roots. For convenience

we enumerate them as

σ2i−1 = αi, σ2i = α′
i for i= 1, . . . , s.

There are 2s+ 1 colors that we label as

D2i−1 =D−
αi
, D2i =D+

αi
for i= 1, . . . , s, D2s+1 =D−

α′
s
.

The weights of these colors are

ωD1 = ω1, ωD2i = ωi + ω′
i for i= 1, . . . , s,

ωD2i−1 = ωi + ω′
i−1 for i= 2, . . . , s, ωD2s+1 = ω′

s.

Note that the G-stable divisor of X corresponding to σ2s is a parabolic induc-

tion of a comodel wonderful variety of cotype A2s (see [4, Section 5]). Therefore,

we can restrict our study to the covering differences and the low triples of X

which contain σ2s.

LEMMA 2.13

Let γ ∈ NΣ be a covering difference in NΔ with σ2s ∈ suppΣ γ. Then either

γ = σ2s = D2s +D2s+1 −D2s−1, or γ = σ2s−1 + σ2s = −D2s−2 + 2D2s, or γ =∑s
i=� σ2i =D2� −D2�−1 for some 1≤ � < s. Every other covering difference sat-

isfies ht(γ+) = 2.
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Proof

Recall that the Cartan pairing is as follows (we also set Di = 0 for all i≤ 0 and

all i≥ 2s+ 2):

σi = −Di−1 +Di +Di+1 −Di+2 for i �= 2s− 2,

σ2s−2 = −D2s−3 +D2s−2 +D2s−1 −D2s −D2s+1.

Set γ =
∑2s

i=1 aiσi =
∑2s+1

i=1 ciDi. We have the following identities (we set ai = 0

for i≤ 0 and i≥ 2s+ 1):

ci = −ai−2 + ai−1 + ai − ai+1 for i < 2s+ 1,

c2s+1 = −a2s−2 − a2s−1 + a2s.

By hypothesis, we have a2s > 0.

Let k ≥ 0 be minimal with c2s−2k > 0. Then c2s−2i ≤ 0 for all 0≤ i < k, and

it follows that

a2s−2j − a2s−2j+1 ≥ a2s−2j+2 − a2s−2j+3

for all 1≤ j ≤ k, and a2s−2j ≥ a2s > 0 for all 0≤ j ≤ k.

If k > 0, set γ0 =
∑k

j=0 σ2s−2j = −D2s−2k−1 +D2s−2k. Then γ0 ≤Σ γ and

γ+ − γ0 ∈NΔ; hence, γ = γ0 since γ is a covering difference.

We are left with the case k = 0. In particular, c2s > 0. We claim that γ

is necessarily equal to σ2s or to σ2s−1 + σ2s. Assume that γ �= σ2s and γ �=
σ2s−1 + σ2s. Since a2s > 0 and σ2s = −D2s−1 + D2s + D2s+1, it follows that

c2s+1 ≤ 0; hence, a2s−1 > 0. Since σ2s−1 = −D2s−2 +D2s−1 +D2s −D2s+1, it

must be that c2s−1 ≤ 0, and since σ2s−1 +σ2s =−D2s−2 +2D2s, it must be that

c2s = 1. The latter implies

a2s−2 − a2s = a2s−1 − 1≥ 0.

Hence, a2s−2 > 0. Note that c2s−2 ≤ 0. If indeed c2s−2 > 0, then γ+ − (σ2s−2 +

σ2s) = γ+− (−D2s−3 +D2s−2) ∈NΔ; hence, γ =−D2s−3+D2s−2, contradicting

c2s > 0.

Let j ≥ 3 be such that a2s−j+1 − a2s−j+3 ≥ 0, and suppose that a2s−i+1 > 0

and c2s−i+1 ≤ 0 for all i with 2 ≤ i ≤ j. (Note that these conditions have just

been proved for j = 3.) As c2s−j+2 ≤ 0, it follows that

a2s−j − a2s−j+2 ≥ a2s−j+1 − a2s−j+3 ≥ 0.

Hence, a2s−j > 0. This implies c2s−j ≤ 0. If indeed c2s−j > 0, set

γ0 =

j/2∑
i=0

σ2s−2i =−D2s−j−1 +D2s−j if j is even,

γ0 =

(j+1)/2∑
i=1

σ2s−2i+1 =−D2s−j−1 +D2s−j +D2s −D2s+1 if j is odd.

Then γ0 ≤Σ γ and γ+− γ0 ∈NΔ; hence, γ = γ0, contradicting c2s > 0 in the first

case and a2s > 0 in the second case.
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By applying this argument recursively for j = 3, . . . , s − 1, it follows that

ai > 0 for all 1≤ i≤ 2s, ci ≤ 0 for all 1≤ i≤ 2s−1, and a1−a3 ≥ 0. In particular,

a1 + a2 − a3 = c2 ≤ 0 and a1 − a3 ≥ 0, which are in contradiction.

As already noted, the G-stable divisor of X corresponding to σ2s is a par-

abolic induction of a comodel wonderful variety of cotype A2s. Therefore, the

covering differences γ with σ2s /∈ suppΣ γ coincide with those studied in [4, Propo-

sition 3.2], and they all satisfy ht(γ+) = 2. �

LEMMA 2.14

Let (D,E,F ) be a low fundamental triple, denote γ =D +E − F , and suppose

that σ2s ∈ suppΣ γ. Then we have the following possibilities:

• (D2m+1,D2s,D2m−1 +D2s+1) for 1≤m< s, γ =
∑2s

i=2m σi;

• (D2s,D2s,D2s−3), γ = σ2s−2 + σ2s−1 + 2σ2s;

• (D2s,D2s,D2s−2), γ = σ2s−1 + σ2s;

• (D2s,D2s+1,D2s−1), γ = σ2s.

Proof

Set D + E − F =
∑2s

i=1 aiσi =
∑2s+1

i=1 ciDi, and set also D =D2s−p+1 and E =

D2s−q+1. By hypothesis, we have a2s > 0.

At least one of the two indices p and q must be odd. Indeed, if both p and

q were even, then by taking a sequence

F = Fn <Σ Fn−1 <Σ · · ·<Σ F0 =D+E

of coverings in NΔ, Fi−1 − Fi would necessarily be a covering difference of a

comodel spherical system of cotype A (see [4, Proposition 3.2.(2)]); hence, σ2s /∈
suppΣ(D+E − F ).

We claim that at least one of the two indices p and q must be equal to 1. Let

us prove the claim. Assume both p and q are different from 1. We can assume

that q is the minimal odd number between p and q. Since c2s−2i ≤ 0 for every

0≤ i < (q− 1)/2, as in the above proof, it follows that a2s−2i ≥ a2s > 0 for every

0≤ i≤ (q− 1)/2. Set

γ0 =

(q−1)/2∑
i=0

σ2s−2i =−D2s−q +D2s−q+1

and E′ = D2s−q+1 − γ0. Then E′ ∈ NΔ and F ≤Σ D + E′ <Σ D + E; hence,

(D,E,F ) is not a low triple. Therefore, we can assume q = 1.

Suppose that p = 0. We have D2s +D2s+1 − σ2s =D2s−1, but the latter is

minuscule; therefore, we get only (D2s,D2s+1,D2s−1).

Suppose that p= 1. We have −a2s−2−a2s−1+a2s ≤ 0 and −a2s−2+a2s−1+

a2s = 2; hence, a2s−1 > 0. Now, we have 2D2s − (σ2s−1 + σ2s) =D2s−2, but in

NΔ the latter covers only D2s−3, with D2s−2− (σ2s−2+σ2s) =D2s−3. Therefore,

if a2s−2 = 0 or a2s = 1, we get only (D2s,D2s,D2s−2). If a2s−2 > 0 and a2s > 1,

since D2s−3 is minuscule, we get only (D2s,D2s,D2s−3).
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Suppose that p > 1. We have −a2s−2−a2s−1+a2s ≤ 0 and −a2s−2+a2s−1+

a2s = 1; hence, a2s−1 > 0 and, since

a2s−2 − a2s = a2s−1 − 1≥ 0,

also a2s−2 > 0. For every 1< i < p, as c2s−i+1 ≤ 0, we have

a2s−i−1 − a2s−i+1 ≥ a2s−i − a2s−i+2.

Therefore, a2s−j+1 > 0 for all 1≤ j ≤ p+ 1.

If p is odd, set

γ0 =

(p−1)/2∑
i=0

σ2s−2i =−D2s−p +D2s−p+1

and D′ = D2s−p+1 − γ0. Then D′ ∈ NΔ and F ≤Σ D′ + E <Σ D + E; hence,

(D,E,F ) is not a low triple.

If p is even, we have

D2s−p+1 +D2s −
p+1∑
i=1

σ2s−i+1 =D2s−p−1 +D2s+1,

but the latter is minuscule. We get (D2s−p+1,D2s,D2s−p−1 +D2s+1). �

To prove the projective normality of X we will apply Lemma 2.6. This requires

some computations, and we will need an explicit description of the invariants h3

and h2s.

Fix V = Cs+1 with standard basis e1, . . . , es+1, and fix W = C2s+1 with

basis e′1, . . . , e
′
s, e

′
0, e

′
−s, . . . , e

′
−1 and with a symmetric bilinear form β such that

β(ei, ej) = δi,−j . Set G = SL(V ∗) × Spin(W,β), so that we can take H as the

stabilizer of the line spanned by the vector e= e1 ⊗ e′0 +
∑s+1

i=2 ei ⊗ e′s−i+2.

We will need to use the spin module for the group Spin(W ). Let us recall

its construction. Let W = U ⊕ Ce′0 ⊕ U∗, where U is the span of e′1, . . . , e
′
s and

U∗ is the span of e′−s, . . . , e
′
−1 identified with the dual of U by the form β. Let

S = ΛU∗, and rename the basis of U∗ as ψn = e′−n, . . . , ψ1 = e′−1. Define a map

πS : W ⊗ S −→ S by setting πS(e
′
i ⊗ψi1 ∧ · · · ∧ ψik) equal to

k∑
j=1

(−1)j−1β(e′i, e
′
−ij )ψi1 ∧ · · · ∧ ψ̂ij ∧ · · · ∧ψik if i > 0,

(−1)kψi1 ∧ · · · ∧ψik if i= 0,

ψ−i ∧ ψi1 ∧ · · · ∧ψik if i < 0.

Then πS is G-equivariant, and its alternating square π2
S : Λ

2W ⊗ S −→ S cor-

responds to the spin representation via the isomorphism Λ2W ∼= so(W,β). We

have

V ∗
D1

= V, V ∗
D3

= Λ2V ⊗W, V ∗
D2s

= ΛsV ⊗ S, V ∗
D1+D2s+1

= V ⊗ S.
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The invariants, in coordinates, are

h3 =

s+1∑
i=2

e1 ∧ ei ⊗ e′s−i+2,

h2s = e2 ∧ · · · ∧ es+1 ⊗ 1 +

s+1∑
i=2

(−1)i−1e1 ∧ · · · ∧ êi ∧ · · · ∧ es+1 ⊗ψs−i+2.

PROPOSITION 2.15

The multiplication mD,E is surjective for all D,E ∈NΔ.

Proof

By Lemma 2.13 every covering difference γ ∈ NΣ satisfies ht(γ+) ≤ 2. There-

fore, by Lemma 2.5 it is enough to check that sD+E−FVF ⊂ VD · VE for all low

fundamental triples (D,E,F ).

Suppose that σ2s /∈ suppΣ(D+E−F ), and let X ′ be the G-stable divisor of

X corresponding to σ2s. Then X ′ is a parabolic induction of a comodel wonderful

variety of cotype A2s; hence, the inclusion sγVF ⊂ VD ·VE follows by Lemma 2.3

together with [4, Theorem 5.2].

We are left to check that sD+E−FVF ⊂ VDVE for all low fundamental triples

(D,E,F ) with σ2s ∈ suppΣ(D+E −F ). Consider first the triple (D3,D2s,D1 +

D2s+1). Then we have the projection π : (Λ2V ⊗W )⊗ (ΛsV ⊗ S)→ V ⊗ S given

by

π
(
(u1 ∧ u2 ⊗w)⊗ (v⊗ψ)

)
=
(
(u2 ∧ v)u1 − (u1 ∧ v)u2

)
⊗ πs(w⊗ψ),

where Λs+1V ∼=C via e1 ∧ · · · ∧ es+1 �→ 1, and we get π(h3 ⊗h2s) = s(e1 ⊗ 1) �= 0.

We now proceed by induction on s. Assume s= 2. Then we are left to check

the triples (D4,D4,D1), (D4,D4,D2), and (D4,D5,D3).

(D4,D4,D1). We have the projection π : (Λ2V ⊗ S)⊗ (Λ2V ⊗ S)→ V given

by π(u1∧u2⊗ϕ)⊗ (v1∧ v2⊗ψ)) = π′(ϕ⊗ψ)((u1∧u2∧ v1)v2− (u1∧u2∧ v2)v1),

with Λ3V ∼= C given by the identification e1 ∧ e2 ∧ e3 = 1. Note that S is self-

dual, and set π′ : S⊗S →C given by ϕ⊗ψ �→ ϕ∧ψ followed by the identification

ψ2 ∧ ψ1 = 1. We get π(h4 ⊗ h4) =−2e1 �= 0.

(D4,D4,D2) and (D4,D5,D3). Since σ1, σ2 /∈ suppΣ(D + E − F ), we can

consider the intersection X ′ of the G-stable divisors of X corresponding to the

spherical roots σ1, σ2. Then the sections in VD, VE , s
D+E−FVF do not vanish

on X ′, so it is enough to prove that sD+E−FVF ⊂ m′
D,E(VD ⊗ VE), where m′

denotes the multiplication of sections on X ′. Consider in G the Levi subgroup L

associated to the roots α2, α
′
2, which has semisimple factor of type A1 ×A1, and

consider the comodel L-variety Y of cotype A3. The wonderful G-variety X ′ is

obtained by parabolic induction from Y . Hence, our claim follows by Lemma 2.3.

Assume s > 2. Then we are left to check the triples (D2m+1,D2s,D2m−1 +

D2s+1) with 1 <m < s, (D2s,D2s,D2s−3), (D2s,D2s,D2s−2), and (D2s,D2s+1,

D2s−1). Let (D,E,F ) be such a triple. Then σ1, σ2 /∈ suppΣ(D+E−F ), and we

can consider the intersection X ′ of the G-stable divisors of X corresponding to
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the spherical roots σ1, σ2. Take the Levi subgroup L of G, associated to the roots

α2, . . . , αs, α
′
2, . . . , α

′
s, of semisimple type As−1 ×Bs−1, and consider the comodel

L-variety Y of type aby(s − 1, s − 1). The wonderful G-variety X ′ is obtained

by parabolic induction from Y . Hence, our claim follows by Lemma 2.3 and the

induction hypothesis. �

3. Normality and semigroups

Recall that we have fixed a maximal torus T in K and Borel subgroup B of K

containing T . We use X (T ) for the weight lattice of T .

Let us denote by Γ(Z) the weight semigroup of a K-spherical variety Z,

Γ(Z) =
{
λ ∈ X (T ) : Hom

(
C[Z], V (λ)

)
�= 0
}
.

Let Ke be a spherical nilpotent orbit in p, and let Σ and Δ, respectively, be the

set of spherical roots and the set of colors of the wonderful compactification of

K/K[e]. Let us denote by Dp the element of NΔ such that p= V ∗
Dp

. Provided that

the multiplication of sections of globally generated line bundles on the wonderful

compactification of K/K[e] is surjective, we have that Ke ⊂ p is normal if and

only if Dp is minuscule in NΔ with respect to the partial order ≤Σ (see [4,

Section 7]). If moreover K̃e is the normalization of Ke, then

Γ(K̃e) =
⋃
n∈N

{ωE :E ∈NΔ,E ≤Σ nDp};

that is, Γ(K̃e) = ω(ΓDp
), where ΓDp

is the subsemigroup of NΔ given by

ΓDp
=
⋃
n∈N

{E ∈NΔ :E ≤Σ nDp}.

In the present section we will study the normality of Ke, and we will compute

the weight semigroups Γ(K̃e) by computing the corresponding semigroups ΓDp
.

In particular, we will prove the following theorem.

THEOREM 3.1

Let (g, k) be a classical symmetric pair of non-Hermitian type. Then Ke is not

normal if and only if (g, k) = (so(m+ n), so(m) + so(n)) and the signed partition

of Ke is (+3,+2n−1,+1m−n−1), with n > 1 odd, or (−3,+2m−1,−1n−m−1), with

m> 1 odd.

In Appendix A these are cases 7.3 with r = p, 8.2 with r = q, and 8.3 with r = p.

The normality or nonnormality of Ke as well as the generators of the weight

semigroup Γ(K̃e) are given in Tables 2–10 in Appendix B.

In the tables we also provide the codimension of Ke � Ke in Ke. Note

that if Ke is normal and the codimension of Ke�Ke in Ke is greater than 1,

then C[Ke] =C[Ke], so that the weight semigroup of Ke actually coincides with

Γ(K̃e).
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Note also that, in all cases where Ke is not normal, the normalization K̃e−→
Ke is not even bijective (see [15] for a general procedure to compute the K-orbits

in K̃e and in Ke).

REMARK 3.2

The normality of Ge is well known and may be deduced from [22] (see also [28],

when Ge is spherical under the action of G). In particular, if (g, k) is a classical

symmetric pair of non-Hermitian type, then Ge is normal in all but the following

cases:

• g= sp(2n) with n > 3 and the partition of Ge is (32,12n−6) (cases 4.2 and

4.3, with p+ q > 3),

• g = sp(2n) with n > 6 and the partition of Ge is (34,12n−12) (cases 4.6

and 4.7, with p+ q > 6),

• g= so(2n+ 1) and the partition of Ge is (3,2n−1) (case 7.3, with r = p=

q− 1).

We now report the details of the computation of the semigroup ΓDp
. We omit

the cases where K/K[e] is a flag variety (cases 5.1 and 6.1 in Appendix A) or

a parabolic induction of a symmetric variety (cases 1.1, 2.1, 3.1, 4.1, 7.1, 8.1,

and 9.1, as well as cases 7.2, 7.3, 8.2, 8.3, 9.2, and 9.3 when r = 0). In these

cases the combinatorics of spherical systems is easier. By [20], the normality of

Ke is already known in all these cases (see the discussion at the beginning of

Appendix B), and the corresponding weight semigroups Γ(Ke) were obtained in

[2] by using different techniques.

3.1. Symplectic cases
Cases 4.2 (q > 1) and 4.3 (p > 1). Let us deal with the case 4.2 (q > 1); the other

one is similar. We have two spherical roots σ1 = α1 + α′
1 and σ2 = α′

1 + 2(α′
2 +

· · ·+ α′
q−1) + α′

q and three colors D1 =Dα1 , D2 =Dα′
2
, and D3 =Dα2 .

We have Dp =D1, which is minuscule in NΔ; therefore, Ke is normal. Fur-

thermore, D2 + D3 = 2D1 − σ1 and D3 = 2D1 − σ1 − σ2; therefore, D1,D2 +

D3,D3 ∈ ΓD1 .

Let us set σ =
∑

aiσi ∈NΣ and nD1 − σ =
∑

ciDi ∈NΔ. We have

nD1 − σ = (n− 2a1)D1 + (a1 − a2)D2 + a1D3,

and therefore, c3 − c2 = a2. It follows that

ΓD1 = 〈D1,D2 +D3,D3〉N.

Cases 4.4 (q > 2) and 4.5 (p > 2). Let us deal with case 4.4 (q > 2); the other

one is similar. Let us keep the notation of Sections 1.5.7 and 2.3. Therefore,

D1 = D−
α2
, D2 = D+

α2
, D3 = D−

α1
, D4 = D+

α1
, D5 = D−

α′
1
, D6 = Dα′

3
, and D7 =

Dα3 .

Then we have Dp =D4, which is minuscule in NΔ; therefore, Ke is normal.

Moreover, D2 = 2D4 − σ3 − σ4, D1 =D2 − σ2 − σ4 − σ5; therefore, D1,D2,D4 ∈
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ΓD4 . Moreover, D3+D7 =D1+D2−σ1, D5+D7 =D2+D4−σ1−σ2−σ3−σ4,

D6 +D7 =D2 +D4 − σ1 − σ2 − σ3 − σ4 − σ5; therefore, D3 +D7,D5 +D7,D6 +

D7 ∈ ΓD4 as well.

Let us set σ =
∑

aiσi ∈NΣ and nD4 − σ =
∑

ciDi ∈NΔ. We have

nD4 − σ = (−a1 + a2)D1 + (−a1 − a2 + a3)D2 + (a1 − a2 − a3 + a4)D3

+ (n+ a2 − a3 − a4)D4 + (a3 − a4 + a5)D5 + (a2 − a5)D6 + a1D7,

and therefore, c3 + c5 + c6 = c7. It follows that

ΓD4 = 〈D1,D2,D4,D3 +D7,D5 +D7,D6 +D7〉N.

Cases 4.4 (q = 2) and 4.5 (p= 2). Let us deal with case 4.4 (q = 2); the other

one is similar. Label the spherical roots σ1 = α2, σ2 = α′
2, σ3 = α1, σ4 = α′

1,

and label the colors D1 = D−
α2
, D2 = D+

α2
, D3 = D−

α1
, D4 = D+

α1
, D5 = D−

α′
1
,

D6 =Dα3 .

Then we have Dp =D4, which is minuscule in NΔ; therefore, Ke is normal.

Moreover, D2 = 2D4 − σ3 − σ4, D1 =D2 − σ2 − σ4; therefore, D1,D2,D4 ∈ ΓD4 .

Similarly D3 +D6 =D1 +D2 − σ1 and D5 +D6 =D2 +D4 − σ1 − σ2 − σ3 − σ4;

therefore, D3 +D6,D5 +D6 ∈ ΓD4 as well.

Let us set σ =
∑

aiσi ∈NΣ and nD4 − σ =
∑

ciDi ∈NΔ. We have

nD4 − σ = (−a1 + a2)D1 + (−a1 − a2 + a3)D2 + (a1 − a2 − a3 + a4)D3

+ (n+ a2 − a3 − a4)D4 + (a2 + a3 − a4)D5 + a1D6,

and therefore, c3 + c5 = c6. It follows that

ΓD4 = 〈D1,D2,D4,D3 +D6,D5 +D6〉N.

Cases 4.6 and 4.7. Let us deal with case 4.6; the other one is similar.

In this case Dp is minuscule in NΔ. By following Example 2.7, this does not

imply that the ring
⊕

n∈N Γ(X,LnDp
) is generated by its degree 1 component

VDp
=Γ(X,LDp

); indeed, the multiplication of sections of globally generated line

bundles on X is not necessarily surjective. However, using our methods we are

still able to compute the normality and the weight semigroups of Ke.

Enumerate the spherical roots and the colors of X as in Example 2.7. Then

Dp =D4, and by definition

Γ(Ke) =
⋃
n∈N

{ωE :E ∈NΔ, VE ⊂ V n
D4

}.

LEMMA 3.3

The following inclusions hold:

(1) VD1 ⊂ V 2
D4

(where D1 = 2D4 − σ2 − σ3 − 2σ4),

(2) VD2 ⊂ V 2
D4

(where D2 = 2D4 − σ3 − σ4),

(3) VD3 ⊂ VD1VD2 (where D3 =D1 +D2 − σ1),

(4) VD5 ⊂ VD1VD4 (where D5 =D1 +D4 − σ1 − σ3),

(5) VD6 ⊂ V 2
D1

(where D6 = 2D1 − 2σ1 − σ3 − σ5).
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Proof

Consider the G-stable divisor X ′ ⊂ X corresponding to σ5: it is a parabolic

induction of a wonderful variety of type aby(2,2). By Proposition 2.15 together

with Lemma 2.3 it follows that the multiplication of sections is surjective for all

pairs of globally generated line bundles on X ′. Denote by ρ′ : Pic(X)−→ Pic(X ′)

the restriction of line bundles, and for D ∈NΔ set D′ = ρ′(D). By Lemma 2.14,

(D′
4,D

′
4,D

′
1) and (D′

4,D
′
4,D

′
2) are low triples for X ′, and since D′

5 ≤ D′
1 +D′

4

and D′
3 ≤ D′

1 + D′
2 are coverings in Pic(X ′), it follows that (D′

1,D
′
4,D

′
5) and

(D′
1,D

′
2,D

′
3) are low triples for X ′ as well. On the other hand, for all D ∈ NΔ

the G-modules VD and VD′ are canonically identified, and since the restriction

Γ(X,LD)−→ Γ(X ′,LD′) is surjective, we get the inclusions (1), (2), (3), and (4).

We are left with the inclusion (5). Consider the distinguished subset of colors

Δ0 = {D2,D3,D4,D5}, and denote by Y the quotient of X by Δ0. Then Y is a

rank 1 wonderful variety with spherical root 2σ1 + σ3 + σ5 whose set of colors is

identified with {D1,D6}. By Lemma 2.2 we have that Γ(X,LnD1) = Γ(Y,LnD1)

for all n ∈ N. Since D6 ≤ 2D1 is a covering in Pic(Y ), the triple (D1,D1,D6) is

low in Pic(Y ). On the other hand Y is a parabolic induction of a rank 1 symmetric

variety, and for such a variety, the multiplication of sections of globally generated

line bundles is known to be always surjective. By Lemma 2.3 the same holds for Y ,

and since it corresponds to a low triple we get the inclusion VD6 ⊂ V 2
D1

. �

PROPOSITION 3.4

We have that Ke is normal, and Γ(Ke) is generated by the weights

ω2, ω4, ω1 + ω′
1, ω2 + ω′

2, ω1 + ω3 + ω′
2, ω3 + ω′

1.

Proof

Clearly, Γ(Ke)⊂ ω(NΔ). On the other hand by the previous lemma we have that

ω(D) ∈ Γ(Ke) for all D ∈Δ; therefore, Γ(Ke) = ω(NΔ) and the description of

the generators follows by the description of the map ω.

Note that the weights ω(D1), . . . , ω(D6) are linearly independent. Therefore,

Γ(Ke) is a saturated semigroup of weights. (That is, if ΓZ ⊂X (T ) is the sublattice

generated by Γ(Ke) and if ΓQ+ ⊂X (T )⊗Q is the cone generated by Γ(Ke), then

Γ(Ke) = ΓZ ∩ ΓQ+ .) It follows that Ke is normal. �

3.2. Orthogonal cases
3.2.1. Tail cases

Cases without Roman numerals. Let us deal with case 7.2 (r < q − 1). Cases

7.3 (r <min{p, q − 1}), 8.2 (r < q), 8.3 (r < p), 9.2 (r <min{p− 1, q − 1}), and
9.3 (r <min{p− 1, q − 1}) are similar. Suppose that r > 0; otherwise, we have

a symmetric case. Let us keep the notation of Section 1.5.8. Therefore, for all

i = 1, . . . , r, D2i−1 = D−
αi

and D2i = D+
αi
; furthermore, D2r+1 = D−

α′
r
, D2r+2 =
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Dα′
r+1

, and D2r+3 =Dαr+1 . To have a uniform notation, we denote

D̃2r+3 =

{
D2r+3 if r < p− 1,

2D2r+3 if r = p− 1.

We have Dp =D2, which is minuscule in NΔ; therefore, Ke is normal.

Set D̃1 =D1, D̃2 =D2, and for all k = 3, . . . ,2r+ 2,

D̃k =D2 +Dk−2 − (σ1 + · · ·+ σk−2).

Note that

D̃k =

{
Dk if k ≤ 2r,

Dk + D̃2r+3 if k = 2r+ 1,2r+ 2.

PROPOSITION 3.5

The semigroup ΓD2 is generated by D̃2i and D̃2i−1 + D̃2j−1 for all i, j = 1, . . . ,

r+ 1.

Proof

Since D2 ∈ ΓD2 , by induction on the even indices, it follows that D̃2i ∈ ΓD2 for

all i≤ r+ 1. On the other hand,

D1 =D2 −
(
σ2 + σ4 + · · ·+ σ2r−2 + σ2r +

σ2r+1

2

)
.

Therefore, for the odd indices, we get D̃2i−1 + D̃2j−1 ∈ ΓD2 for all i, j ≤ r+ 1.

Let σ ∈ NΣ, and suppose that nD2 − σ ∈ NΔ. Let σ =
∑

aiσi and nD2 −
σ =

∑
ciDi. Note that if r = p − 1, then c2r+3 is even. Therefore, nD2 − σ ∈

〈D1, . . . ,D2r+2, D̃2r+3〉N, and we write

nD2 − σ = b1D1 + · · ·+ b2r+2D2r+2 + b2r+3D̃2r+3.

Expressing the coefficients b1, . . . , b2r+3 with respect to a1, . . . , a2r+1 we get

that
∑r+1

i=1 b2i−1 = 2a2r+1 and b2r+1 + b2r+2 = b2r+3. The claim follows. �

Cases with Roman numerals. Let us deal with case 9.2 (r = p− 1< q − 1), (I).

Case (II) and cases 7.3 (r = q − 1 < p) and 9.3 (r = q − 1 < p− 1) are similar.

First, let us suppose r > 1. Let us keep the notation of Section 1.5.8. Therefore, for

all i= 1, . . . , r, D2i−1 =D−
αi

and D2i =D+
αi
; furthermore, D2r+1 =D−

α′
r
, D2r+2 =

Dα′
r+1

, and D2r+3 =Dαp . We haveDp =D2, which is minuscule in NΔ; therefore,

Ke is normal.

Set D̃1 =D1 and D̃2 =D2, and define inductively, for all k = 3, . . . ,2r+ 2,

D̃k =D2 + D̃k−2 − (σ1 + · · ·+ σk−2).

Note that

D̃k =

⎧⎪⎪⎨⎪⎪⎩
Dk if k ≤ 2r− 2,

Dk +D2r+3 if k = 2r− 1,2r,

Dk + 2D2r+3 if k = 2r+ 1,2r+ 2.
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PROPOSITION 3.6

The semigroup ΓD2 is generated by D̃2i and D̃2i−1 + D̃2j−1 for all i, j = 1, . . . ,

r+ 1.

Proof

Since D2 ∈ ΓD2 , for the even indices, it follows that D̃2i ∈ ΓD2 for all i≤ r + 1.

On the other hand

D1 =D2 −
(
σ2 + σ4 + · · ·+ σ2r−2 + σ2r +

σ2r+1

2

)
.

Therefore, for the odd indices, we get D̃2i−1 + D̃2j−1 ∈ ΓD2 for all i, j ≤ r+ 1.

Let σ ∈NΣ, and suppose that nD2−σ ∈NΔ. Denote σ =
∑

aiσi and nD2−
σ =

∑
ciDi. Expressing the coefficients c1, . . . , c2r+3 with respect to a1, . . . , a2r+1

we get that
∑r+1

i=1 c2i−1 = 2a2r+1 and c2r−1 + c2r +2c2r+1 +2c2r+2 = c2r+3. The

claim follows. �

We are left with the case r = 1, the case r = 0 being symmetric. Here we have

Dp =D2 +D5, which is minuscule in NΔ; therefore, Ke is normal. Proceeding

as above we get the same semigroup

ΓD2+D5 = 〈D2 +D5,D4 + 2D5,2D1 + 2D5,D1 +D3 + 3D5,2D3 + 4D5〉N.

3.2.2. Collapsed tails of type B

Cases without Roman numerals. Let us deal with case 8.2 (r = q). Cases 7.3 (r =

p < q − 1) and 8.3 (r = p) are similar. Let us keep the notation of Sections 1.5.6

and 2.5. Therefore, D2i−1 =D−
αi

and D2i =D+
αi

for all i= 1, . . . , r, D2r+1 =D−
α′

q
,

and D2r+2 =Dαr+1 .

We have Dp = D2. Note that D2 is not minuscule; indeed, D1 = D2 −∑r
i=1 σ2i. Therefore, Ke is not normal.

To have a uniform notation set

D̃2r+2 =

{
D2r+2 if r < p− 1,

2D2r+2 if r = p− 1.

Set D̃1 =D1 and D̃2 =D2, and define inductively for all i= 3, . . . ,2r+ 1

D̃i =D2 + D̃i−2 − (σ1 + · · ·+ σi−2).

Note that

D̃i =

⎧⎪⎪⎨⎪⎪⎩
Di if i≤ 2r− 1,

D2r +D2r+1 if i= 2r,

2D2r+1 + D̃2r+2 if i= 2r+ 1.

PROPOSITION 3.7

The semigroup ΓD2 is generated by D̃1, . . . , D̃2r+1.
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Proof

Let σ ∈ NΣ, and suppose that nD2 − σ ∈ NΔ. Denote σ =
∑

aiσi and nD2 −
σ =

∑
ciDi. Note that if r = p − 1, then c2r+3 is even. Therefore, nD2 − σ ∈

〈D1, . . . ,D2r+2, D̃2r+3〉N, and we write

nD2 − σ = b1D1 + · · ·+ b2r+2D2r+2 + b2r+3D̃2r+3.

By expressing the spherical roots in terms of colors it follows that b2r+1 = b2r +

2b2r+2. The claim follows. �

Case with Roman numerals. We deal here with case 7.3 (r = p= q− 1), (I); case

(II) is similar. The notation will be slightly different than before: let us enumerate

the spherical roots Σ = {σ1, . . . , σ2r} as

σ2i−1 = α′
i, σ2i = αi for all i= 1, . . . , r.

Accordingly, we enumerate the colors as D2i−1 = D−
α′

i
and D2i = D+

α′
i
for all

i= 1, . . . , r, D2r+1 =D−
αp

, and D2r+2 =Dα′
q
.

We have Dp = D2. Note that D2 is not minuscule; indeed, D1 = D2 −∑r
i=1 σ2i. Therefore, Ke is not normal.

Set D̃1 =D1 and D̃2 =D2, and define inductively for all i= 3, . . . ,2r+ 1

D̃i =D2 + D̃i−2 − (σ1 + · · ·+ σi−2).

Note that

D̃i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Di if i≤ 2r− 2,

D2r−1 +D2r+2 if i= 2r− 1,

D2r +D2r+1 +D2r+2 if i= 2r,

2D2r+1 + 2D2r+2 if i= 2r+ 1.

PROPOSITION 3.8

The semigroup ΓD2 is generated by D̃1, . . . , D̃2r+1.

Proof

Let σ ∈ NΣ, and suppose that nD2 − σ ∈ NΔ. Let σ =
∑

aiσi and nD2 − σ =∑
ciDi. By expressing the spherical roots in terms of colors it follows that c2r+1−

c2r = 2a2r−1 and c2r−1 + c2r+1 = c2r+2. The claim follows. �

3.2.3. Collapsed tails of type D

Cases without Roman numerals. Let us deal with case 7.2 (r = q − 1). Cases

9.2 (r = q − 1 < p− 1) and 9.3 (r = p− 1 < q − 1) are similar. Let us keep the

notation of Section 1.5.8. Therefore, for all i= 1, . . . , r, D2i−1 =D−
αi

and D2i =

D+
αi
; furthermore, D2r+1 =D−

α′
r
, D2r+2 =D−

α′
r+1

, and D2r+3 =Dαr+1 . To have a

uniform notation, we denote

D̃2r+3 =

{
D2r+3 if r < p− 1,

2D2r+3 if r = p− 1.
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We have Dp =D2, which is minuscule in NΔ; therefore, Ke is normal.

Set D̃1 =D1, D̃2 =D2, and for all k = 3, . . . ,2r+ 2,

D̃k =D2 +Dk−2 − (σ1 + · · ·+ σk−2).

Note that

D̃k =

{
Dk if k ≤ 2r,

Dk +D2r+2 + D̃2r+3 if k = 2r+ 1,2r+ 2.

Furthermore, set

D̃′
2r+2 =D2 +D2r − (σ1 + · · ·+ σ2r−1 + σ2r+1) = 2D2r+1 + D̃2r+3.

PROPOSITION 3.9

The semigroup ΓD2 is generated by D̃2i, D̃2i−1 + D̃2j−1 for all i, j = 1, . . . , r+ 1

with i+ j ≤ 2r+ 1, and D̃′
2r+2.

Proof

Since D2 ∈ ΓD2 , for the even indices, it follows that D̃2i ∈ ΓD2 for all i≤ r + 1,

and D̃′
2r+2 ∈ ΓD2 as well. On the other hand,

D1 =D2 −
(
σ2 + σ4 + · · ·+ σ2r−2 +

σ2r + σ2r+1

2

)
.

Therefore, for the odd indices, we get D̃2i−1 + D̃2j−1 ∈ ΓD2 for all i, j ≤ r+ 1.

Let σ ∈NΣ and suppose that nD2 − σ ∈NΔ. Denote σ =
∑

aiσi and nD2 −
σ =

∑
ciDi. Note that if r = p − 1, then c2r+3 is even. Therefore, nD2 − σ ∈

〈D1, . . . ,D2r+2, D̃2r+3〉N, and we write

nD2 − σ = b1D1 + · · ·+ b2r+2D2r+2 + b2r+3D̃2r+3.

Expressing the coefficients b1, . . . , b2r+3 with respect to a1, . . . , a2r+1 we get that∑r+1
i=1 b2i−1 = 2a2r+1 and b2r+1 + b2r+2 = 2b2r+3. The claim follows. �

Cases with Roman numerals. Let us deal with case 9.2 (r = p−1 = q−1), (I). Case

(II) and case 9.3 (r = q − 1 = p− 1) are similar. First, let us suppose r > 1. Let

us keep the notation of Section 1.5.8. Therefore, for all i= 1, . . . , r, D2i−1 =D−
αi

and D2i =D+
αi
; furthermore, D2r+1 =D−

α′
q−1

, D2r+2 =D−
α′

q
, and D2r+3 =Dαp .

We have Dp =D2, which is minuscule in NΔ; therefore, Ke is normal.

Set D̃1 =D1 and D̃2 =D2, and define inductively, for all k = 3, . . . ,2r+ 2,

D̃k =D2 + D̃k−2 − (σ1 + · · ·+ σk−2).

Note that

D̃k =

⎧⎪⎪⎨⎪⎪⎩
Dk if k ≤ 2r− 2,

Dk +D2r+3 if k = 2r− 1,2r,

Dk +D2r+2 + 2D2r+3 if k = 2r+ 1,2r+ 2.
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Furthermore, set

D̃′
2r+2 =D2 + D̃2r − (σ1 + · · ·+ σ2r−1 + σ2r+1) = 2D2r+1 + 2D2r+3.

PROPOSITION 3.10

The semigroup ΓD2 is generated by D̃2i, D̃2i−1 + D̃2j−1 for all i, j = 1, . . . , r+ 1

with i+ j ≤ 2r+ 1, and D̃′
2r+2.

Proof

Since D2 ∈ ΓD2 , for the even indices, it follows that D̃2i ∈ ΓD2 for all i≤ r + 1,

and D̃′
2r+2 ∈ ΓD2 as well. On the other hand

D1 =D2 −
(
σ2 + σ4 + · · ·+ σ2r−2 +

σ2r + σ2r+1

2

)
.

Therefore, for the odd indices, we get D̃2i−1 + D̃2j−1 ∈ ΓD2 for all i, j ≤ r+ 1.

Let σ ∈NΣ, and suppose that nD2−σ ∈NΔ. Let σ =
∑

aiσi and nD2−σ =∑
ciDi. Expressing the coefficients c1, . . . , c2r+3 with respect to a1, . . . , a2r+1 we

get that
∑r+1

i=1 c2i−1 = 2a2r+1 and c2r−1 + c2r + c2r+1 + c2r+2 = c2r+3. The claim

follows. �

We are left with the case r = 1, the case r = 0 being symmetric. Here we have

Dp =D2 +D5, which is minuscule in NΔ; therefore, Ke is normal. Proceeding

as above we get the same semigroup; that is, ΓD2+D5 is generated by D2 +D5,

2D4 + 2D5, 2D3 + 2D5, 2D1 + 2D5, D1 +D3 +D4 + 3D5.

Appendix A: List of spherical nilpotent K-orbits in p in the classical
non-Hermitian cases

Here we report the list of the spherical nilpotent K-orbits in p for all symmetric

pairs (g, k) of classical non-Hermitian type. Every K-orbit in p is labeled with

the signed partition of the corresponding real nilpotent orbit, via the Kostant–

Sekiguchi–D̄oković bijection. For every orbit we provide a representative e and a

normal triple containing it {h, e, f}.
For all i ∈ Z, let k(i) be the adh-eigenspace in k of eigenvalue i. We denote

by Q the parabolic subgroup of K whose Lie algebra is equal to

LieQ=
⊕
i≥0

k(i).

In each case we describe the centralizer of h, which we denote by Kh or by L,

which is a Levi subgroup of Q. We denote by Qu the unipotent radical of Q. Then

we describe the centralizer of e, which we denote by Ke. A Levi subgroup of Ke

is always given by Le, the centralizer of e in L. The unipotent radical of Ke

is either equal to Qu or equal to a cosimple Le-submodule of Qu. In the latter

case, there always exist some simple Le-submodules in k(1), say, W0, . . . ,Wd,

which we determine, with the following properties. They are isomorphic as Le-

modules but lie in pairwise distinct isotypical L-components. By denoting by V
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the Le-complement of W0 ⊕ · · · ⊕Wd in LieQu, as an Le-module,

LieKu
e =W ⊕ V,

where W is a cosimple Le-submodule of W0⊕· · ·⊕Wd which projects nontrivially

on every summand W0, . . . ,Wd. Actually, the integer d+ 1, the number of the

above simple Le-modules W0, . . . ,Wd, will only be equal to 2 or 3.

REMARK A.1

As already mentioned, the list of spherical nilpotent K-orbits in p is in [19], and

all the data in our list, such as a representative and its centralizer, can be directly

computed using the information contained therein, with one exception. There is

one missing case in [19], corresponding to the signed partition (+34,+12n−8)

for the symmetric pair (sp(2n + 4), sp(2n) + sp(4)) with n ≥ 4 (cases 4.6 and

4.7 in Appendix A). The lack comes from a small mistake in [19, Lemma 7.2];

we have checked that there is no further missing case arising from that lemma.

The smallest case of this family, which is for n= 4, was already present in [27,

Example 5.8].

A.1 sl(2n)/sp(2n)

We set K = Sp(2n), n≥ 2, p= V (ω2). Let us fix a basis e1, . . . , en, e−n, . . . , e−1 of

C2n, a skew-symmetric bilinear form ω such that ω(ei, ej) = δi,−j for 1≤ i≤ n,

and K = Sp(C2n, ω). Then ω can be seen as a linear form on Λ2C2n, ω(ei ∧ ej) =

ω(ei, ej), and

p= kerω ⊂ Λ2C2n.

A.1.1 (2r,1n−2r) r ≥ 1

We take

e=

r∑
i=1

ei ∧ e2r−i+1, h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ 2r,

−ei if −2r ≤ i≤−1,

0 otherwise,

f =

r∑
i=1

e−2r+i−1 ∧ e−i.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(2r)× Sp(2n− 4r). The centralizer of e is Ke = LeQ
u, where Le

∼= Sp(2r)×
Sp(2n− 4r).

A.2 sl(2n+ 1)/so(2n+ 1)

We set K = SO(2n + 1), n ≥ 2, p = V (2ω1). If n = 1, then p = V (4ω). Let us

fix a basis e1, . . . , en, e0, e−n, . . . , e−1 of C2n+1, a symmetric bilinear form β such

that β(ei, ej) = δi,−j for all i, j, and K = SO(C2n+1, β). Then β can be seen as a

linear form on S2C2n+1, β(eiej) = β(ei, ej), and

p= kerβ ⊂ S2C2n+1.
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A.2.1 (2r,12n−2r+1), r ≥ 1

We take

e=

r∑
i=1

eier−i+1, h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

f =

r∑
i=1

e−r+i−1e−i.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r)× SO(2n− 2r+1). The centralizer of e is Ke = LeQ
u, where Le

∼=O(r)×
SO(2n− 2r+ 1).

A.3 sl(2n)/so(2n)

We set K = SO(2n), n≥ 3, p= V (2ω1). If n= 2, then p= V (2ω + 2ω′). Let us

fix a basis e1, . . . , en, e−n, . . . , e−1 of C2n, a symmetric bilinear form β such that

β(ei, ej) = δi,−j for all i, j, and K = SO(C2n, β). Then β can be seen as a linear

form on S2C2n, β(eiej) = β(ei, ej), and

p= kerβ ⊂ S2C2n.

Let us denote by τ the linear endomorphism of C2n switching en and e−n and

fixing all the other basis vectors. The conjugation by τ is an involutive internal

automorphism of g, leaving k and p stable, and inducing the nontrivial involution

of the Dynkin diagram of k.

A.3.1 (2r,12n−2r), r ≥ 1

If r < n, we take

e=
r∑

i=1

eier−i+1, h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

f =
r∑

i=1

e−r+i−1e−i.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r) × SO(2n − 2r). The centralizer of e is Ke = LeQ
u, where Le

∼= O(r) ×
SO(2n− 2r).

If r = n, then there exist two orbits labeled I and II. Case (I) can be described

as above by specializing r equal to n. Case (II) can be obtained from case (I) by

conjugating by τ .

A.4 sp(2p+ 2q)/sp(2p) + sp(2q)

We set K = Sp(2p)× Sp(2q), p, q ≥ 1, p= V (ω1 + ω′
1). Let us fix a basis e1, . . . ,

ep, e−p, . . . , e−1 of C
2p and a skew-symmetric bilinear form ω such that ω(ei, ej) =

δi,−j for 1≤ i≤ p. Similarly, let us fix a basis e′1, . . . , e
′
q, e

′
−q, . . . , e

′
−1 of C2q and

a skew-symmetric bilinear form ω′ such that ω′(e′i, e
′
j) = δi,−j for 1≤ i≤ q. Then

K = Sp(C2p, ω)× Sp(C2q, ω′) and

p=C2p ⊗C2q.
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A.4.1 (+22r,+12p−2r,−12q−2r), r ≥ 1

We take

e =

r∑
i=1

ei ⊗ e′r−i+1, f =−
r∑

i=1

e−r+i−1 ⊗ e′−i,

h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r)× Sp(2p− 2r)×GL(r)× Sp(2q − 2r). The centralizer of e is Ke = LeQ
u,

where Le
∼= GL(r) × Sp(2p − 2r) × Sp(2q − 2r), and the GL(r) factor of Le is

embedded skew-diagonally, A �→ (A,A−1), into the GL(r)×GL(r) factor of L.

A.4.2 (+32,+12p−4,−12q−2)

We take

e = e1 ⊗ e′−1 − e2 ⊗ e′1, f = 2e−2 ⊗ e′−1 + 2e−1 ⊗ e′1,

h(ei) =

⎧⎪⎪⎨⎪⎪⎩
2ei if 1≤ i≤ 2,

−2ei if −2≤ i≤−1,

0 otherwise,

h(e′i) = 0 ∀i.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(2) × Sp(2p − 4) × Sp(2q). The centralizer of e is Ke = LeQ
u, where Le

∼=
SL(2) × Sp(2p − 4) × Sp(2q − 2), and the SL(2) × Sp(2q − 2) factor of Le is

embedded as

(A,B) �→ (A,A,B)

into SL(2)× Sp(2)× Sp(2q− 2), where the SL(2) factor is included in the GL(2)

factor of L and the Sp(2) × Sp(2q − 2) factor is included in the Sp(2q) factor

of L.

A.4.3 (−32,+12p−2,−12q−4)

This case can be obtained from case 4.2 by switching the roles of p and q.

A.4.4 (+32,+22,+12p−6,−12q−4)

We take

e = e1 ⊗ e′−2 − e2 ⊗ e′2 − e3 ⊗ e′1,

f = e−3 ⊗ e′−1 + 2e−2 ⊗ e′−2 + 2e−1 ⊗ e′2,
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h(ei) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2ei if 1≤ i≤ 2,

ei if i= 3,

−ei if i=−3,

−2ei if −2≤ i≤−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if i= 1,

−e′i if i=−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(2)×GL(1)× Sp(2p− 6)×GL(1)× Sp(2q − 2). The centralizer of e is Ke =

LeK
u
e , where Le

∼= SL(2)×GL(1)×Sp(2p−3)×Sp(2q−4), the SL(2)×Sp(2q−4)

factor of Le is embedded as

(A,B) �→ (A,A,B)

into SL(2)× Sp(2)× Sp(2q− 4), where the SL(2) factor is included in the GL(2)

factor of L and the Sp(2)× Sp(2q− 4) factor is included in the Sp(2q− 2) factor

of L, and the GL(1) factor of Le is embedded skew-diagonally

z �→ (z, z−1)

into the GL(1) × GL(1) factor of L. The quotient LieQu/LieKu
e is a simple

Le-module of dimension 2 as follows. In k(1) there are exactly two simple Le-

submodules, W0,W1, of highest weight ω1 with respect to the SL(2) factor, iso-

morphic as Le-modules but lying in two distinct isotypical L-components. Let

V be the Le-complement of W0 ⊕ W1 in LieQu. As an Le-module, LieKu
e is

the direct sum of V and a simple Le-submodule of W0 ⊕ W1 which projects

nontrivially on both summands W0 and W1.

A.4.5 (−32,+22,+12p−4,−12q−6)

This case can be obtained from case 4.4 by switching the roles of p and q.

A.4.6 (+34,+12p−8), q = 2

We take

e = e1 ⊗ e′−1 + e2 ⊗ e′−2 − e3 ⊗ e′2 − e4 ⊗ e′1,

f = 2(e−4 ⊗ e′−1 + e−3 ⊗ e′−2 + e−2 ⊗ e′2 + e−1 ⊗ e′1),

h(ei) =

⎧⎪⎪⎨⎪⎪⎩
2ei if 1≤ i≤ 4,

−2ei if −4≤ i≤−1,

0 otherwise,

h(e′i) = 0 ∀i.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(4)×Sp(2p−8)×Sp(4). The centralizer of e isKe = LeQ
u, where Le

∼= Sp(4)×
Sp(2p− 8), and the Sp(4) factor of Le is embedded diagonally, A �→ (A,A), into

the GL(4)× Sp(4) factor of L.

A.4.7 (−34,−12q−8), p= 2

This case can be obtained from case 4.6 by switching the roles of p and q.
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A.5 so(2n+ 1)/so(2n)

We set K = SO(2n), n≥ 3, p= V (ω1). If n= 2, then p= V (ω + ω′). Let us fix

a basis e1, . . . , en, e−n, . . . , e−1 of C2n, a symmetric bilinear form β such that

β(ei, ej) = δi,−j for all i, j, and K = SO(C2n, β). Then

p=C2n.

A.5.1 (+3,+12n−2)

We take

e= e1, h(ei) =

⎧⎪⎪⎨⎪⎪⎩
2ei if i= 1,

−2ei if i=−1,

0 otherwise,

f =−2e−1.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(1)× SO(2n− 2). The centralizer of e is Ke = LeQ
u, where Le

∼= SO(2n− 2).

A.6 so(2n+ 2)/so(2n+ 1)

We set K = SO(2n+1), n≥ 2, p= V (ω1). If n= 1, then p= V (2ω). Let us fix a

basis e1, . . . , en, e0, e−n, . . . , e−1 of C2n+1, a symmetric bilinear form β such that

β(ei, ej) = δi,−j for all i, j, and K = SO(C2n+1, β). Then

p=C2n+1.

A.6.1 (+3,+12n−1)

We take

e= e1, h(ei) =

⎧⎪⎪⎨⎪⎪⎩
2ei if i= 1,

−2ei if i=−1,

0 otherwise,

f =−2e−1.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(1)× SO(2n− 1). The centralizer of e is Ke = LeQ
u, where Le

∼= SO(2n− 1).

A.7 so(2p+ 2q+ 1)/so(2p+ 1) + so(2q)

We set K = SO(2p+1)×SO(2q), p≥ 2, q ≥ 3, p= V (ω1+ω′
1). If p= 1 and q ≥ 3,

then p= V (2ω+ω′
1). If p≥ 2 and q = 2, then p= V (ω1+ω′+ω′′). If p= 1 and q =

2, then p= V (2ω+ω′+ω′′). Let us fix a basis e1, . . . , ep, e0, e−p, . . . , e−1 of C2p+1

and a symmetric bilinear form β such that β(ei, ej) = δi,−j for all i, j. Similarly,

let us fix a basis e′1, . . . , e
′
q, e

′
−q, . . . , e

′
−1 of C2q and a symmetric bilinear form β′

such that β′(e′i, e
′
j) = δi,−j for all i, j. Then K = SO(C2p+1, β)× SO(C2q, β′) and

p=C2p+1 ⊗C2q.

Let us denote by τ the linear endomorphism of C2p+2q+1 switching e′q and

e′−q and fixing all the other basis vectors. The conjugation by τ is an involutive

internal automorphism of g, leaving k and p stable, and inducing the nontrivial

involution of the Dynkin diagram of k.
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A.7.1 (+22r,+12p+1−2r,−12q−2r), r ≥ 1

If r < q, we take

e =

r∑
i=1

ei ⊗ e′r−i+1, f =−
r∑

i=1

e−r+i−1 ⊗ e′−i,

h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r)×SO(2p−2r+1)×GL(r)×SO(2q−2r). The centralizer of e isKe = LeQ
u,

where Le
∼=GL(r)× SO(2p− 2r+ 1)× SO(2q − 2r), and the GL(r) factor of Le

is embedded skew-diagonally, A �→ (A,A−1), into the GL(r)×GL(r) factor of L.

If r = q, then there exist two orbits labeled I and II. Case (I) can be described

as above by specializing r equal to q. Case (II) can be obtained from case (I) by

conjugating by τ .

A.7.2 (+3,+22r,+12p−1−2r,−12q−1−2r)

If r ≤ q− 2, we take

e = e1 ⊗ (e′q + e′−q) +

r∑
i=1

ei+1 ⊗ e′r−i+1,

f = −
( r∑
i=1

e−r+i−2 ⊗ e′−i

)
− e−1 ⊗ (e′q + e′−q),

h(ei) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2ei if i= 1,

ei if 2≤ i≤ r+ 1,

−ei if −r− 1≤ i≤−2,

−2ei if i=−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(1)×GL(r)× SO(2p− 2r− 1)×GL(r)× SO(2q− 2r). The centralizer of e is

Ke = LeK
u
e , where Le

∼=GL(r)×SO(2p− 2r− 1)×S(O(1)×O(2q− 2r− 1)), the

S(O(1)×O(2p− 2r− 1)) factor of Le is embedded as

(z,A) �→ (z, z,A)

into GL(1)×S(O(1)×O(2q−2r−1)), where the S(O(1)×O(2q−2r−1)) factor

is included in the SO(2q−2r) factor of L, and the GL(r) factor of Le is embedded

skew-diagonally

B �→ (B,B−1)
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into the GL(r) × GL(r) factor of L. The quotient LieQu/LieKu
e is a simple

Le-module of dimension r as follows. In k(1) there are exactly two simple Le-

submodules, W0,W1, of highest weight ωr−1 with respect to the GL(r) factor,

isomorphic as Le-modules but lying in two distinct isotypical L-components. Let

V be the Le-complement of W0 ⊕ W1 in LieQu. As an Le-module, LieKu
e is

the direct sum of V and a simple Le-submodule of W0 ⊕ W1 which projects

nontrivially on both summands W0 and W1.

If r = q− 1, then the normal triple h, e, f , the parabolic subgroup Q= LQu,

and Le have the same description, with Ke = LeK
u
e . The quotient LieQ

u/LieKu
e

remains a simple Le-module of dimension q−1, but here in k(1) there are exactly

three simple Le-submodules, W0,W1,W2, of highest weight ωq−2 with respect

to the GL(q − 1) factor, isomorphic as Le-modules but lying in three distinct

isotypical L-components. Let V be the Le-complement of W0 ⊕ W1 ⊕ W2 in

LieQu. As an Le-module, LieKu
e is the direct sum of V and a cosimple Le-

submodule of W0⊕W1 ⊕W2 which projects nontrivially on every summand W0,

W1, and W2.

A.7.3 (−3,+22r,+12p−2r,−12q−2−2r)

If r ≤ q− 2, we take

e =
( r∑
i=1

ei ⊗ e′r−i+2

)
+ e0 ⊗ e′1, f =−2e0 ⊗ e′−1 −

r∑
i=1

e−r+i−1 ⊗ e′−i−1,

h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2e′i if i= 1,

e′i if 2≤ i≤ r+ 1,

−e′i if −r− 1≤ i≤−2,

−2e′i if i=−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r)×SO(2p− 2r+1)×GL(1)×GL(r)×SO(2q− 2r− 2). The centralizer of e

is Ke = LeK
u
e , where Le

∼=GL(r)× S(O(1)×O(2p− 2r))× SO(2q− 2r− 2), the

S(O(1)×O(2p− 2r)) factor of Le is embedded as

(z,A) �→ (z,A, z)

into S(O(1) × O(2p − 2r)) × GL(1), where the S(O(1) × O(2p − 2r)) factor is

included in the SO(2p−2r+1) factor of L, and the GL(r) factor of Le is embed-

ded skew-diagonally

B �→ (B,B−1)

into the GL(r) × GL(r) factor of L. The quotient LieQu/LieKu
e is a simple

Le-module of dimension r as follows. In k(1) there are exactly two simple Le-

submodules, W0,W1, of highest weight ω1 with respect to the GL(r) factor,

isomorphic as Le-modules but lying in two distinct isotypical L-components. Let

V be the Le-complement of W0 ⊕ W1 in LieQu. As an Le-module, LieKu
e is
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the direct sum of V and a simple Le-submodule of W0 ⊕ W1 which projects

nontrivially on both summands W0 and W1.

If r = q − 1, then there exist two orbits labeled I and II. Case (I) can be

described as above by specializing r equal to q − 1. Case (II) can be obtained

from case (I) by conjugating by τ .

A.8 so(2p+ 2q+ 2)/so(2p+ 1) + so(2q+ 1)

We set K = SO(2p+1)×SO(2q+1), p, q ≥ 2, p= V (ω1+ω′
1). If p= 1 and q ≥ 2,

then p= V (2ω+ω′
1). If p≥ 2 and q = 1, then p= V (ω1 +2ω′). If p= q = 1, then

p= V (2ω+ 2ω′).

Let us fix a basis e1, . . . , ep, e0, e−p, . . . , e−1 of C2p+1 and a symmetric bilin-

ear form β such that β(ei, ej) = δi,−j for all i, j. Similarly, let us fix a basis

e′1, . . . , e
′
q, e

′
0, e

′
−q, . . . , e

′
−1 of C2q+1 and a symmetric bilinear form β′ such that

β′(e′i, e
′
j) = δi,−j for all i, j. Then K = SO(C2p+1, β)× SO(C2q+1, β′) and

p=C2p+1 ⊗C2q+1.

A.8.1 (+22r,+12p+1−2r,−12q+1−2r), r ≥ 1

We take

e =

r∑
i=1

ei ⊗ e′r−i+1, f =−
r∑

i=1

e−r+i−1 ⊗ e′−i,

h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r)× SO(2p− 2r+1)×GL(r)× SO(2q− 2r+1). The centralizer of e is Ke =

LeQ
u, where Le

∼= GL(r) × SO(2p− 2r + 1)× SO(2q − 2r + 1), and the GL(r)

factor of Le is embedded skew-diagonally, A �→ (A,A−1), into the GL(r)×GL(r)

factor of L.

A.8.2 (+3,+22r,+12p−1−2r,−12q−2r)

We take

e = e1 ⊗ e′0 +
r∑

i=1

ei+1 ⊗ e′r−i+1, f =−
( r∑
i=1

e−r+i−2 ⊗ e′−i

)
− 2e−1 ⊗ e′0,

h(ei) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2ei if i= 1,

ei if 2≤ i≤ r+ 1,

−ei if −r− 1≤ i≤−2,

−2ei if i=−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(1)×GL(r)×SO(2p− 2r− 1)×GL(r)×SO(2q− 2r+1). The centralizer of e
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is Ke = LeK
u
e , where Le

∼=GL(r)× SO(2p− 2r− 1)× S(O(1)×O(2q− 2r)), the

S(O(1)×O(2q− 2r)) factor of Le is embedded as

(z,A) �→ (z, z,A)

into GL(1) × S(O(1) × O(2q − 2r)), where the S(O(1) × O(2q − 2r)) factor is

included in the SO(2q−2r+1) factor of L, and the GL(r) factor of Le is embed-

ded skew-diagonally

B �→ (B,B−1)

into the GL(r) × GL(r) factor of L. The quotient LieQu/LieKu
e is a simple

Le-module of dimension r as follows. In k(1) there are exactly two simple Le-

submodules, W0,W1, of highest weight ωr−1 with respect to the GL(r) factor,

isomorphic as Le-modules but lying in two distinct isotypical L-components. Let

V be the Le-complement of W0 ⊕ W1 in LieQu. As an Le-module, LieKu
e is

the direct sum of V and a simple Le-submodule of W0 ⊕ W1 which projects

nontrivially on both summands W0 and W1.

A.8.3 (−3,+22r,+12p−2r,−12q−1−2r)

This case can be obtained from case 8.2 by switching the roles of p and q.

A.9 so(2p+ 2q)/so(2p) + so(2q)

We set K = SO(2p)× SO(2q), p, q ≥ 3, p= V (ω1 + ω′
1). If p= 2 and q ≥ 3, then

p= V (ω + ω′ + ω′′
1 ). If p≥ 3 and q = 2, then p= V (ω1 + ω′ + ω′′). If p= 2 and

q = 2, then p = V (ω + ω′ + ω′′ + ω′′′). Let us fix a basis e1, . . . , ep, e−p, . . . , e−1

of C2p and a symmetric bilinear form β such that β(ei, ej) = δi,−j for all i, j.

Similarly, let us fix a basis e′1, . . . , e
′
q, e

′
−q, . . . , e

′
−1 of C2q and a symmetric bilinear

form β′ such that β′(e′i, e
′
j) = δi,−j for all i, j. Then K = SO(C2p, β)×SO(C2q, β′)

and

p=C2p ⊗C2q.

Let us denote by τ the linear endomorphism of C2p+2q switching ep and

e−p and fixing all the other basis vectors. Similarly, let us denote by τ ′ the

linear endomorphism of C2p+2q switching e′q and e′−q and fixing all the other

basis vectors. The conjugation by τ (and by τ ′, resp.) is an involutive external

automorphism of g, leaving k and p stable, and inducing the nontrivial involution

of the first (the second, resp.) connected component of the Dynkin diagram of k.

A.9.1 (+22r,+12p−2r,−12q−2r), r ≥ 1

If r < p and r < q, we take

e =

r∑
i=1

ei ⊗ e′r−i+1, f =−
r∑

i=1

e−r+i−1 ⊗ e′−i,
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h(ei) =

⎧⎪⎪⎨⎪⎪⎩
ei if 1≤ i≤ r,

−ei if −r ≤ i≤−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(r)× SO(2p− 2r)×GL(r)× SO(2q− 2r). The centralizer of e is Ke = LeQ
u,

where Le
∼= GL(r)× SO(2p− 2r)× SO(2q − 2r), and the GL(r) factor of Le is

embedded skew-diagonally, A �→ (A,A−1), into the GL(r)×GL(r) factor of L.

If r = p and r < q, then there exist two orbits labeled I and II. Case (I) can

be described as above by specializing r equal to p. Case (II) can be obtained

from case (I) by conjugating by τ .

If r < p and r = q, then there exist two orbits labeled I and II. Case (I) can

be described as above by specializing r equal to q. Case (II) can be obtained

from case (I) by conjugating by τ ′.

If r = p= q, then there exist four orbits with a double label I or II. Case (I,

I) can be described as above by specializing r equal to p= q. Case (I, II) can be

obtained from case (I, I) by conjugating by τ ′. Case (II, I) can be obtained from

case (I, I) by conjugating by τ . Case (II, II) can be obtained from case (I, I) by

conjugating by τ and τ ′.

A.9.2 (+3,+22r,+12p−2−2r,−12q−1−2r)

If r ≤ p− 2 and r ≤ q− 2, we take

e = e1 ⊗ (e′q + e′−q) +

r∑
i=1

ei+1 ⊗ e′r−i+1,

f = −
( r∑
i=1

e−r+i−2 ⊗ e′−i

)
− e−1 ⊗ (e′q + e′−q),

h(ei) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2ei if i= 1,

ei if 2≤ i≤ r+ 1,

−ei if −r− 1≤ i≤−2,

−2ei if i=−1,

0 otherwise,

h(e′i) =

⎧⎪⎪⎨⎪⎪⎩
e′i if 1≤ i≤ r,

−e′i if −r ≤ i≤−1,

0 otherwise.

Let Q= LQu be the corresponding parabolic subgroup of K, so that L=Kh
∼=

GL(1)×GL(r)× SO(2p− 2r− 2)×GL(r)× SO(2q− 2r). The centralizer of e is

Ke = LeK
u
e , where Le

∼=GL(r)×SO(2p− 2r− 2)×S(O(1)×O(2q− 2r− 1)), the

S(O(1)×O(2p− 2r− 1)) factor of Le is embedded as

(z,A) �→ (z, z,A)

into GL(1)×S(O(1)×O(2q−2r−1)), where the S(O(1)×O(2q−2r−1)) factor

is included in the SO(2q−2r) factor of L, and the GL(r) factor of Le is embedded

skew-diagonally

B �→ (B,B−1)
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into the GL(r) × GL(r) factor of L. The quotient LieQu/LieKu
e is a simple

Le-module of dimension r as follows. In k(1) there are exactly two simple Le-

submodules, W0,W1, of highest weight ωr−1 with respect to the GL(r) factor,

isomorphic as Le-modules but lying in two distinct isotypical L-components. Let

V be the Le-complement of W0 ⊕ W1 in LieQu. As an Le-module, LieKu
e is

the direct sum of V and a simple Le-submodule of W0 ⊕ W1 which projects

nontrivially on both summands W0 and W1.

If r ≤ p− 2 and r = q − 1, then the normal triple h, e, f , the parabolic sub-

group Q= LQu, and Le have the same description, with Ke = LeK
u
e . The quo-

tient LieQu/LieKu
e remains a simple Le-module of dimension q − 1, but here

in k(1) there are exactly three simple Le-submodules, W0,W1,W2, of highest

weight ωq−2 with respect to the GL(q− 1) factor, isomorphic as Le-modules but

lying in three distinct isotypical L-components. Let V be the Le-complement of

W0 ⊕W1 ⊕W2 in LieQu. As an Le-module, LieKu
e is the direct sum of V and

a cosimple Le-submodule of W0 ⊕W1 ⊕W2 which projects nontrivially on every

summand W0, W1, and W2.

If r = p − 1, then there exist two orbits labeled I and II. Case (I) can be

described as above by specializing r equal to p− 1. Case (II) can be obtained

from case (I) by conjugating by τ .

A.9.3 (−3,+22r,+12p−1−2r,−12q−2−2r)

This case can be obtained from case 9.2 by switching the roles of p and q.

Appendix B: Tables of spherical nilpotent K-orbits in p in the classical
non-Hermitian cases

Let e ∈ Np, and let {h, e, f} be a normal triple containing it. The action of the

semisimple element h on g induces a Z-grading g=
⊕

i∈Z g(i), where we denote

g(i) = {x ∈ g : [h,x] = ix}. This defines the height of e (which actually depends

only on Ge), defined as ht(e) =max{i : g(i) �= 0}. By [27, Theorem 2.6], the orbit

Ge is spherical if and only if ht(e)≤ 3.

Similarly, one may consider the action of h on p, and the corresponding

Z-grading p =
⊕

i∈Z p(i), where p(i) = p ∩ g(i). This defines the p-height of e

(which actually depends only on Ke), defined as htp(e) = max{i : p(i) �= 0}. By
[27, Theorems 5.1, 5.6], the orbit Ke is spherical if ht(e) ≤ 3, whereas if Ke

is spherical, then ht(e) ≤ 4 and htp(e) ≤ 3. Similarly to the adjoint case, Ke

is normal if htp(e) = 2, in which case Hesselink’s [16] proof of the normality of

the closure of a nilpotent adjoint G-orbit of height 2 essentially applies (see [20,

Proposition 2.1]).

In Tables 2–10, for every spherical orbit Ke⊂Np, we report its signed parti-

tion (column 2), the Kostant–Dynkin diagram and the height of Ge (columns 3,

4), the Kostant–Dynkin diagram and the p-height of Ke (columns 5 and 6), the

normality of Ke (column 7), the codimension of Ke�Ke in Ke (column 8), and

the weight semigroup of K̃e (column 9).
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In the orthogonal cases, the generators of the weight semigroups given in

the tables are expressed in terms of the following variation of the fundamental

weights of an irreducible root system R

�i =

⎧⎪⎪⎨⎪⎪⎩
2ωi if i= n and R= Bn,

ωn−1 + ωn if i= n− 1, n and R=Dn,

ωi otherwise,

and we set �0 = 0.

In all cases with a Roman numeral, (I) or (II), one K-orbit is obtained from

the other one by applying an involutive automorphism of a factor of K of type D.

In some of these cases, the generators of Γ(K̃e) are given just for the K-orbit

labeled with (I); the generators for the other one are obtained by switching ωp−1

and ωp (resp., ω′
q−1 and ω′

q) if the first (resp., the second) component is the one

involved by the above-mentioned automorphism. Which component is involved

by the automorphism is clear from the Kostant–Dynkin diagrams of the two

orbits.

In Tables 11–19, for every spherical nilpotent orbit Ke in p, we report the

Luna diagram and the set of spherical roots of the spherical system of K[e]. For

every family of K-orbits, we draw the Luna diagram for values of the parameters

n,p, q big enough with respect to r. When r becomes close to n, p, or q, the

diagram may change. Let us explain how it changes.

Whenever K has a factor of type Dt, where the diagram ends with

(the corresponding simple root αs moving a color of type b, with αs+1, . . . , αt

belonging to Sp) as in case 3.1, the given diagram is for s < t− 1. If s= t− 1,

then both the simple roots αt−1 and αt move colors of type b. If s = t, with

Roman numeral (I), then αt−1 ∈ suppΣ and αt moves a color of type b. If s= t,

with Roman numeral (II), then αt ∈ suppΣ and αt−1 moves a color of type b.

For example, the diagram of case 3.1 becomes as follows.

r = n− 1

r = n (I)
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r = n (II)

Whenever K has a factor of type Dt, where the diagram ends with a tail

(the corresponding simple root αs moving a color of type b, with αs+1, . . . , αt

belonging to Sp and 2(αs+ · · ·+αt−2)+αt−1+αt belonging to Σ) as in case 7.2,

the given diagram is for s < t− 1. If s= t− 1, then the simple roots αt−1 and αt

move the same color of type b (αt−1 + αt is a spherical root). For example, the

diagram of case 7.2 for r = q− 2 becomes as follows.

Whenever K has a factor of type Bt, where the diagram ends with a tail

(the corresponding simple root αs moving a color of type b, with αs+1, . . . , αt

belonging to Sp and 2(αs + · · ·+ αt) belonging to Σ) as in case 7.3, the given

diagram is for s < t. If s = t, then the simple root αt moves a color of type 2a

(2αt is a spherical root). For example, the diagram of the case 7.3 for r = p− 1

becomes as follows.
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Table 2. G= A2n−1, K = Cn (n≥ 2)

Signed partition Diagram of Ge ht(e) Diagram of Ke htp(e)Kecodim(Ke�Ke)Generators of Γ(K̃e)

1.1(2r,1n−2r), r ≥ 1

(0 . . .0︸ ︷︷ ︸
2r−1

10 . . .010 . . .0︸ ︷︷ ︸
2r−1

) if 2r < n

(0 . . .0︸ ︷︷ ︸
n−1

20 . . .0) if 2r = n
2

(0 . . .0︸ ︷︷ ︸
2r−1

10 . . .0) if 2r < n

(0 . . .02) if 2r = n

2 + 4(n− 2r+ 1) ω2, ω4, . . . , ω2r

Table 3. G= A2n, K = Bn (n≥ 1)

Signed partition Diagram of Ge ht(e)Diagram of Kehtp(e)Kecodim(Ke�Ke)Generators of Γ(K̃e)

2.1(2r,12n−2r+1), r ≥ 1(0 . . .0︸ ︷︷ ︸
r−1

10 . . .010 . . .0︸ ︷︷ ︸
r−1

) 2 (0 . . .0︸ ︷︷ ︸
r−1

10 . . .0) 2 + 2(n− r+ 1) 2�1, . . . ,2�r

Table 4. G= A2n−1, K =Dn (n≥ 2)

Signed partition Diagram of Ge ht(e) Diagram of Ke htp(e)Kecodim(Ke�Ke) Generators of Γ(K̃e)

3.1

r < n
(2r,12n−2r), r ≥ 1(0 . . .0︸ ︷︷ ︸

2r−1

10 . . .010 . . .0︸ ︷︷ ︸
2r−1

) 2
(0 . . .0︸ ︷︷ ︸

r−1

10 . . .0) if r < n− 1

(0 . . .011) if r = n− 1

2 + 2(n− r) + 1 2�1, . . . ,2�r

3.1

r = n

(2n)

(I) or (II)
(0 . . .0︸ ︷︷ ︸

n−1

20 . . .0) 2
(I) (0 . . .002)

(II) (0 . . .020)
2 + 1

(I) 2�1, . . . ,2�n−1,4ωn

(II) 2�1, . . . ,2�n−1,4ωn−1
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Table 6. G= Bn, K =Dn (n≥ 2)

Signed partitionDiagram of Geht(e) Diagram of Ke htp(e)Kecodim(Ke�Ke)Generators of Γ(K̃e)

5.1 (+3,+12n−2) (2,0, . . . ,0) 2
(10 . . .0) if n > 2

(11) if n= 2
2 + 2n− 1

ω1 if n > 2

ω+ ω′ if n= 2

Table 7. G=Dn+1, K = Bn (n≥ 1)

Signed partitionDiagram of Geht(e)Diagram of Kehtp(e)Kecodim(Ke�Ke)Generators of Γ(K̃e)

6.1 (+3,+12n−1) (2,0, . . . ,0) 2 (10 . . .0) 2 + 2n
ω1 if n > 1

2ω if n= 1
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Table 11. G= A2n−1, K = Cn (n≥ 2)

Signed partition Diagram of P(Ke) Spherical roots

1.1(2r,1n−2r), r ≥ 1
α2i−1 + 2α2i + α2i+1

(i= 1, . . . , r− 1)

Table 12. G= A2n, K = Bn (n≥ 1)

Signed partition Diagram of P(Ke) Spherical roots

2.1(2r,12n−2r+1), r ≥ 1 2α1, . . . ,2αr−1

Table 13. G= A2n−1, K =Dn (n≥ 2)

Signed partition Diagram of P(Ke) Spherical roots

3.1
(2r,12n−2r), r ≥ 1

(I) or (II) if r = n

2α1, . . . ,2αr−1 if r < n

2α1, . . . ,2αn−1 if r = n (I)

2α1, . . . ,2αn−2, 2αn if r = n (II)
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Table 15. G= Bn, K =Dn (n≥ 2)

Signed partition Diagram of P(Ke) Spherical roots

5.1 (+3,+12n−2) none

Table 16. G=Dn+1, K = Bn (n≥ 1)

Signed partition Diagram of P(Ke) Spherical roots

6.1 (+3,+12n−1) none
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	(-32,+12p-2,-12q-4)
	(+32,+22,+12p-6,-12q-4)
	(-32,+22,+12p-4,-12q-6)
	(+34,+12p-8), q=2
	(-34,-12q-8), p=2

	so(2n+1)/so(2n)
	(+3,+12n-2)

	so(2n+2)/so(2n+1)
	(+3,+12n-1)

	so(2p+2q+1)/so(2p+1) + so(2q)
	(+22r,+12p+1-2r,-12q-2r), r >=1
	(+3,+22r,+12p-1-2r,-12q-1-2r)
	(-3,+22r,+12p-2r,-12q-2-2r)

	so(2p+2q+2)/so(2p+1) + so(2q+1)
	(+22r,+12p+1-2r,-12q+1-2r), r>=1
	(+3,+22r,+12p-1-2r,-12q-2r)
	(-3,+22r,+12p-2r,-12q-1-2r)

	so(2p+2q)/so(2p) + so(2q)
	(+22r,+12p-2r,-12q-2r), r >=1
	(+3,+22r,+12p-2-2r,-12q-1-2r)
	(-3,+22r,+12p-1-2r,-12q-2-2r)
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