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Abstract We discuss generalizations of some results on lattice polygons to certain

piecewise linear loops which may have a self-intersection but have vertices in the lattice

Z2. We first prove a formula on the rotation number of a unimodular sequence in Z2.

This formula implies the generalized twelve-point theorem of Poonen and Rodriguez-

Villegas.We then introduce thenotion of latticemultipolygons,which is a generalization

of lattice polygons, state the generalized Pick’s formula, and discuss the classification of

Ehrhart polynomials of lattice multipolygons and also of several natural subfamilies of

lattice multipolygons.

Introduction

Lattice polygons are an elementary but fascinating object. Many interesting

results such as Pick’s formula are known for them. The results are interesting in

themselves, but there are also a variety of proofs of the results that use advanced

mathematics such as toric geometry, complex analysis, and modular forms (see,

e.g., [4], [3], [9], [11]). These proofs are unexpected and make the study of lattice

polygons more fruitful and intriguing.

Some of the results on lattice polygons are generalized to certain generalized

polygons. For instance, Pick’s [10] formula

A(P ) = �P ◦ +
1

2
B(P )− 1

for a lattice polygon P , where A(P ) is the area of P and �P ◦ (resp., B(P ))

is the number of lattice points in the interior (resp., on the boundary) of P , is

generalized in several directions. One of the generalizations is to certain piecewise

linear loops which may have a self-intersection but have vertices in Z
2 (see [5],

[8]). As is well known, Pick’s formula has an interpretation in toric geometry when

P is convex (see [4], [9]), but the proof using toric geometry is not applicable

when P is concave. However, once we develop toric geometry from the topological

point of view, that is, toric topology, Pick’s formula can be proved along the same

line in full generality as is done in [8].
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Another such result on lattice polygons is the twelve-point theorem. It says

that if P is a convex lattice polygon which contains the origin in its interior as a

unique lattice point, then

B(P ) +B(P∨) = 12,

where P∨ is the lattice polygon dual to P . Several proofs are known to the

theorem, and one of them again uses toric geometry. B. Poonen and F. Rodriguez-

Villegas [11] provided a new proof by using modular forms. They also formulate

a generalization of the twelve-point theorem and claim that their proof works in

the general setting. It is mentioned in [11] that the proof using toric geometry is

difficult to generalize, but a slight generalization of the proof of [8, Theorem 5.1],

which uses toric topology and is along the same line of the proof using toric

geometry, implies the generalized twelve-point theorem.

The generalized polygons considered in the generalization of the twelve-point

theorem are called legal loops. A legal loop may have a self-intersection and is

associated to a unimodular sequence of vectors v1, . . . , vd in Z
2. Here unimodular

means that any consecutive two vectors vi, vi+1 (i = 1, . . . , d) in the sequence

form a basis of Z2, where vd+1 = v1. Therefore, εi = det(vi, vi+1) is ±1. One sees

that there is a unique integer ai satisfying

εi−1vi−1 + εivi+1 + aivi = 0

for each i= 1, . . . , d. Note that |ai| is twice the area of the triangle with vertices

vi−1, vi+1, and the origin. We prove that the rotation number of the unimodular

sequence v1, . . . , vd around the origin is given by (see Theorem 1.2)

1

12

( d∑
i=1

ai + 3

d∑
i=1

εi

)
.

The generalized twelve-point theorem easily follows from this formula. This for-

mula was originally proved using toric topology, but after that, an elementary

and combinatorial proof was found. We give it in Section 1 and the original proof

in the Appendix. A different elementary proof of the above formula appeared in

[14] while we were revising this article.

We also introduce the notion of lattice multipolygons. A lattice multipolygon

is a piecewise linear loop with vertices in Z
2 together with a sign function which

assigns either + or − to each side and satisfies some mild condition. The piece-

wise linear loop may have a self-intersection, and we think of it as a sequence of

points in Z
2. A lattice polygon can naturally be regarded as a lattice multipoly-

gon. The generalized Pick’s formula holds for lattice multipolygons, so Ehrhart

polynomials can be defined for them. The Ehrhart polynomial of a lattice mul-

tipolygon is of degree at most 2. The constant term is the rotation number of

normal vectors to sides of the multipolygon and not necessarily 1 as it would be

for ordinary Ehrhart polynomials. The other coefficients have geometric mean-

ings similar to the ordinary ones, but they can be zero or negative unlike the

ordinary ones. The family of lattice multipolygons has some natural subfamilies,



Lattice multipolygons 809

for example, the family of all convex lattice polygons. We discuss the characteri-

zation of Ehrhart polynomials of not only all lattice multipolygons but also some

natural subfamilies.

The structure of the present article is as follows. In Section 1, we give the

elementary proof of the formula which describes the rotation number of a uni-

modular sequence of vectors in Z
2 around the origin. Here the vectors in the

sequence may go back and forth. The proof using toric topology is given in

the Appendix. In Section 2, we observe that the formula implies the general-

ized twelve-point theorem. In Section 3, we introduce the notion of a lattice

multipolygon and state the generalized Pick’s formula for lattice multipoly-

gons. In Section 4, we discuss the characterization of Ehrhart polynomials of

lattice multipolygons and also of several natural subfamilies of lattice multi-

polygons.

1. Rotation number of a unimodular sequence

We say that a sequence of vectors v1, . . . , vd in Z
2 (d≥ 2) is unimodular if each

triangle with vertices 0, vi, and vi+1 contains no lattice point except the vertices,

where 0= (0,0) and vd+1 = v1. The vectors in the sequence are not necessarily

counterclockwise or clockwise. They may go back and forth. We set

(1.1) εi = det(vi, vi+1) for i= 1, . . . , d.

In other words, εi = 1 if the rotation from vi to vi+1 (with angle less than π) is

counterclockwise and εi =−1 otherwise. Since each successive pair (vj , vj+1) is

a basis of Z2 for j = 1, . . . , d, one has

(vi, vi+1) = (vi−1, vi)

(
0 −εi−1εi
1 −εiai

)

with a unique integer ai for each i. This is equivalent to

(1.2) εi−1vi−1 + εivi+1 + aivi = 0.

Note that |ai| is twice the area of the triangle with vertices 0, vi−1, and vi+1.

EXAMPLE 1.1

(a) Take a unimodular sequence (see Figure 1 in Section 2)

P = (v1, . . . , v5) =
(
(1,0), (0,1), (−1,0), (0,−1), (−1,−1)

)
.

Then

ε1 = ε2 = ε3 = ε5 = 1, ε4 =−1, and a1 = a4 = a5 = 1, a2 = a3 = 0,

and the rotation number of P around the origin is 1.

(b) Take another unimodular sequence (see Figure 2 in Section 2)

Q= (v1, . . . , v6) =
(
(1,0), (−1,1), (0,−1), (1,1), (−1,0), (1,−1)

)
.

Then
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ε1 = · · ·= ε6 = 1 and a1 = a6 = 0, a2 = a4 = 1, a3 = a5 = 2,

and the rotation number of Q around the origin is 2.

Our main result in this section is the following.

THEOREM 1.2

The rotation number of a unimodular sequence v1, . . . , vd (d≥ 2) around the ori-

gin is given by

(1.3)
1

12

( d∑
i=1

ai + 3

d∑
i=1

εi

)
,

where the εi’s and ai’s are the integers defined in (1.1) and (1.2).

For our proof of this theorem, we prepare the following lemma.

LEMMA 1.3

Let v1, . . . , vd be a unimodular sequence, and let vj be a vector whose Euclidean

norm is maximal among the vectors in the sequence, where 1≤ j ≤ d. Then aj = 0

or ±1.

Proof

It follows from (1.2) and the maximality of the Euclidean norm of vj that we

have

(1.4) ‖ajvj‖= ‖ − εj−1vj−1 − εjvj+1‖ ≤ ‖vj−1‖+ ‖vj+1‖ ≤ ‖vj‖+ ‖vj‖,

where ‖ · ‖ denotes the Euclidean norm on R2. Therefore, |aj | ≤ 1 or |aj |= 2 and

the equality holds in (1.4). However, the latter case does not occur because the

vectors vj−1, vj , vj+1 are not parallel, proving the lemma. �

Proof of Theorem 1.2

We give a proof by induction on d.

When d = 2, the rotation number of v1, v2 is zero while a1 = a2 = 0 and

ε1 + ε2 = 0. Therefore, the theorem holds in this case.

When d = 3, we may assume that (v1, v2) = ((1,0), (0,1)) or (v1, v2) =

((0,1), (1,0)) through an (orientation-preserving) unimodular transformation on

R
2, and then v3 is one of (1,1), (−1,1), (1,−1), and (−1,−1). Now, it is imme-

diate to check that the rotation number of each unimodular sequence coincides

with (1.3).

Let d≥ 4, and assume that the theorem holds for any unimodular sequence

with at most d − 1 vectors. Let vj be a vector in the unimodular sequence

v1, . . . , vd whose Euclidean norm is maximal among the vectors in the sequence.

Then Lemma 1.3 says that aj = 0 or ±1.
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The case where aj = 0, that is,

(1.5) εj−1vj−1 + εjvj+1 = 0.

In this case, we consider a subsequence v1, . . . , vj−2, vj+1, . . . , vd obtained by

removing two vectors vj−1 and vj from the given unimodular sequence. Since∣∣det(vj−2, vj+1)
∣∣= ∣∣det(vj−2,−εj−1εjvj−1)

∣∣= 1,

the subsequence is also unimodular. Set

(1.6) v′i =

{
vi for 1≤ i≤ j − 2,

vi+2 for j − 1≤ i≤ d− 2,

and define ε′i and a′i for the unimodular sequence v′1, . . . , v
′
d−2 similarly to (1.1)

and (1.2); that is,

(1.7) ε′i = det(v′i, v
′
i+1), ε′i−1v

′
i−1 + ε′iv

′
i+1 + a′iv

′
i = 0.

Then, it follows from (1.5)–(1.7) and (1.1) that

(1.8) ε′i =

⎧⎪⎪⎨
⎪⎪⎩
εi for 1≤ i≤ j − 3,

−εj−2εj−1εj for i= j − 2,

εi+2 for j − 1≤ i≤ d− 2.

It also follows from (1.5)–(1.8) and (1.2) that

a′j−2vj−2 = a′j−2v
′
j−2 =−ε′j−3v

′
j−3 − ε′j−2v

′
j−1

=−εj−3vj−3 − (−εj−2εj−1εj)(−εj−1εjvj−1)

=−εj−3vj−3 − εj−2vj−1 = aj−2vj−2

and

a′j−1vj+1 = a′j−1v
′
j−1 =−ε′j−2v

′
j−2 − ε′j−1v

′
j

= εj−2εj−1εjvj−2 − εj+1vj+2

=−εj−1εj(−εj−2vj−2 − εj−1vj)− εjvj − εj+1vj+2

=−εj−1εjaj−1vj−1 + aj+1vj+1

= aj−1vj+1 + aj+1vj+1 = (aj−1 + aj+1)vj+1.

Therefore,

(1.9) a′i =

⎧⎪⎪⎨
⎪⎪⎩
ai for 1≤ i≤ j − 2,

aj−1 + aj+1 for i= j − 1,

ai+2 for j ≤ i≤ d− 2.
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Since aj = 0, it follows from (1.8) and (1.9) that

1

12

( d∑
i=1

ai + 3

d∑
i=1

εi

)
− 1

12

(d−2∑
i=1

a′i + 3

d−2∑
i=1

ε′i

)

=
1

4
(εj−2 + εj−1 + εj − ε′j−2) =

1

4
(εj−2 + εj−1 + εj + εj−2εj−1εj),

(1.10)

which is +1 (resp., −1) if εj−2, εj−1, and εj are all +1 (resp., −1), and 0 oth-

erwise. On the other hand, one can see that if the rotation number of v1, . . . , vd
is r, then that of v′1, . . . , v

′
d−2 is equal to r − 1 (resp., r + 1) if εj−2, εj−1, and

εj are all +1 (resp., −1), and r otherwise. This result, the hypothesis of induc-

tion, and (1.10) show that 1
12 (

∑d
i=1 ai + 3

∑d
i=1 εi) is the rotation number of

v1, . . . , vd.

The case where aj =±1, we have

(1.11) εjvj+1 + εj−1vj−1 + ajvj = 0.

In this case, we consider a subsequence v1, . . . , vj−1, vj+1, . . . , vd obtained by

removing the vj from the given unimodular sequence. Since∣∣det(vj−1, vj+1)
∣∣= ∣∣det(vj−1,−εjεj−1vj−1 − εjajvj)

∣∣= ∣∣det(vj−1, vj)
∣∣= 1,

the subsequence is also unimodular. Set

(1.12) v′i =

{
vi for 1≤ i≤ j − 1,

vi+1 for j ≤ i≤ d− 1,

and define ε′i and a′i for the unimodular sequence v′1, . . . , v
′
d−1 as before by (1.7).

Then, it follows from (1.7), (1.11), (1.12), and (1.1) that

(1.13) ε′i =

⎧⎪⎪⎨
⎪⎪⎩
εi for 1≤ i≤ j − 2,

−εj−1εjaj for i= j − 1,

εi+1 for j ≤ i≤ d− 1.

It also follows from (1.11)–(1.13), (1.7), and (1.2) that

a′j−1vj−1 = a′j−1v
′
j−1 =−ε′j−2v

′
j−2 − ε′j−1v

′
j

=−εj−2vj−2 + εj−1εjajvj+1

=−εj−2vj−2 + εj−1aj(−ajvj − εj−1vj−1)

=−εj−2vj−2 − εj−1vj − ajvj−1

= aj−1vj−1 − ajvj−1 = (aj−1 − aj)vj−1

and

a′jvj+1 = a′jv
′
j =−ε′j−1v

′
j−1 − ε′jv

′
j+1

= εj−1εjajvj−1 − εj+1vj+2

= εjaj(−ajvj − εjvj+1)− εj+1vj+2
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=−ajvj+1 − εjvj − εj+1vj+2

=−ajvj+1 + aj+1vj+1 = (aj+1 − aj)vj+1.

Therefore,

(1.14) a′i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ai for 1≤ i≤ j − 2,

aj−1 − aj for i= j − 1,

aj+1 − aj for i= j,

ai+1 for j + 1≤ i≤ d− 1.

It follows from (1.13) and (1.14) that

1

12

( d∑
i=1

ai + 3

d∑
i=1

εi

)
− 1

12

(d−1∑
i=1

a′i + 3

d−1∑
i=1

ε′i

)

=
1

4
(aj + εj−1 + εj − ε′j−1) =

1

4

(
(1 + εj−1εj)aj + εj−1 + εj

)
,

(1.15)

which is aj if both εj−1 and εj are aj and 0 otherwise. On the other hand, one

can see that if the rotation number of v1, . . . , vd is r, then that of v′1, . . . , v
′
d−1

is equal to r − aj if both εj−1 and εj are aj and r otherwise. This result,

the hypothesis of induction, and (1.15) show that 1
12 (

∑d
i=1 ai + 3

∑d
i=1 εi) is

the rotation number of v1, . . . , vd. This completes the proof of the theorem.

�

REMARK

A different elementary proof of Theorem 1.2 is given in [14].

2. Generalized twelve-point theorem

Let P be a convex lattice polygon whose only interior lattice point is the origin.

Then the dual P∨ to P is also a convex lattice polygon whose only interior lattice

point is the origin. Let B(P ) denote the total number of lattice points on the

boundary of P . The following fact is well known.

THEOREM 2.1 (TWELVE-POINT THEOREM)

We have that B(P ) +B(P∨) = 12.

Several proofs are known for this theorem (see [2], [12], [11]). Poonen and

Rodriguez-Villegas [11] gave a proof using modular forms. They also formulated

a generalization of the twelve-point theorem and claimed that their proof works

in the general setting. In this section, we will explain the generalized twelve-point

theorem and observe that it follows from Theorem 1.2.

If P is a convex lattice polygon whose only interior lattice point is the origin

and v1, . . . , vd are the vertices of P arranged counterclockwise, then every vi is

primitive and the triangle with the vertices 0, vi, and vi+1 has no lattice point
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in the interior for each i, where vd+1 = v1 as usual. This observation motivates

the following definition (see [11], [2]).

DEFINITION

A sequence of vectors P = (v1, . . . , vd), where v1, . . . , vd are in Z
2 and d ≥ 2, is

called a legal loop if every vi is primitive and, whenever vi �= vi+1, vi and vi+1 are

linearly independent (i.e., vi �= −vi+1) and the triangle with the vertices 0, vi,

and vi+1 has no lattice point in the interior. We say that a legal loop is reduced if

vi �= vi+1 for any i. A (nonreduced) legal loop P naturally determines a reduced

legal loop, denoted Pred, by dropping all the redundant points. We define the

winding number of a legal loop P = (v1, . . . , vd) to be the rotation number of the

vectors v1, . . . , vd around the origin.

Joining successive points in a legal loop P = (v1, . . . , vd) by straight lines forms

a lattice polygon which may have a self-intersection. A unimodular sequence

v1, . . . , vd determines a reduced legal loop. Conversely, a reduced legal loop P =

(v1, . . . , vd) determines a unimodular sequence by adding all the lattice points on

the line segment vivi+1 (called a side of P) connecting vi and vi+1 for every i.

To each side vivi+1 with vi �= vi+1, we assign the sign of det(vi, vi+1), denoted

sgn(vi, vi+1).

For a reduced legal loop P = (v1, . . . , vd), we set

(2.1) wi =
vi − vi−1

det(vi−1, vi)
for i= 1, . . . , d,

where v0 = vd. Note that wi is integral and primitive, and define P∨ =

(w1, . . . ,wd) following [11] (see also [2]). It is not difficult to see that P∨ =

(w1, . . . ,wd) is again a legal loop, although it may not be reduced (see the proof

of Theorem 2.3 below). If a legal loop P is not reduced, then we define P∨ to be

(Pred)
∨. When the vectors v1, . . . , vd are the vertices of a convex lattice polygon

P with only the origin as an interior lattice point and are arranged in counter-

clockwise order, the sequence w1, . . . ,wd is also in counterclockwise order and

the convex hull of w1, . . . ,wd is the 180 degree rotation of the polygon P∨ dual

to P .

EXAMPLE 2.2

Let us consider P and Q as described in Example 1.1. Then those are reduced

legal loops.

(a) We have

P∨ =
(
(2,1), (−1,1), (−1,−1), (1,−1), (1,0)

)
.

(b) Similarly,

Q∨ =
(
(0,1), (−2,1), (1,−2), (1,2), (−2,−1), (2,−1)

)
.
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Figure 1. Legal loops P and P∨ and sides with signs.

Figure 2. Legal loops Q and Q∨.

DEFINITION

Let |vivi+1| be the number of lattice points on the side vivi+1 minus 1, so

|vivi+1|= 0 when vi = vi+1. Then we define

B(P) =

d∑
i=1

sgn(vi, vi+1)|vivi+1|.

Clearly, B(P) =B(Pred).

THEOREM 2.3 (GENERALIZED TWELVE-POINT THEOREM [11, SECTION 9.1])

Let P be a legal loop, and let r be the winding number of P . Then B(P)+B(P∨) =

12r.

Proof

We may assume that P is reduced. As remarked before, the reduced legal loop

P = (v1, . . . , vd) determines a unimodular sequence by adding all the lattice points

on the side vivi+1 for every i, and the unimodular sequence determines a reduced

legal loop, say, Q. Clearly, B(P) = B(Q) and (P∨)red = (Q∨)red. In the rest of

the section, we may assume that the vectors v1, . . . , vd in our legal loop P form

a unimodular sequence.

Since the sequence v1, . . . , vd is unimodular, sgn(vi, vi+1) = εi and |vivi+1|= 1

for any i. Therefore,

(2.2) B(P) =

d∑
i=1

sgn(vi, vi+1)|vivi+1|=
d∑

i=1

εi.
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On the other hand, it follows from (2.1) and (1.2) that

wi+1 −wi = εi(vi+1 − vi)− εi−1(vi − vi−1)

= εivi+1 + εi−1vi−1 − (εi + εi−1)vi

=−(ai + εi + εi−1)vi

(2.3)

and that

det(wi,wi+1) = εi−1εi det(vi − vi−1, vi+1 − vi)

= εi−1εi det(vi − vi−1,−εi−1εivi−1 − εiaivi − vi)

= εi−1εi
(
det(vi,−εi−1εivi−1) + det(−vi−1,−εiaivi − vi)

)
= εi−1 + ai + εi.

(2.4)

Since vi is primitive, (2.3) shows that |wiwi+1|= |εi−1+εi+ai|, and this together

with (2.4) shows that

sgn(wi,wi+1)|wiwi+1|= εi−1 + εi + ai.

Therefore,

(2.5) B(P∨) =
d∑

i=1

sgn(wi,wi+1)|wiwi+1|=
d∑

i=1

(εi−1 + εi + ai).

It follows from (2.2) and (2.5) that

B(P) +B(P∨) =
d∑

i=1

εi +

d∑
i=1

(εi−1 + εi + ai)

= 3

d∑
i=1

εi +

d∑
i=1

ai,

which is equal to 12r by Theorem 1.2, proving the theorem. �

EXAMPLE 2.4

Let us consider again the legal loops P and Q in the previous example.

(a) On the one hand, B(P) = 1 + 1 + 1 − 1 + 1 = 3. On the other hand,

B(P∨) = 3+2+2+1+1 = 9. Thus, we have B(P)+B(P∨) = 12. The left-hand

side (resp., right-hand side) of Figure 1 depicted in Example 2.2 shows P (resp.,

P∨) together with signs, where the symbols ◦ and × stand for lattice points

in Z
2.

(b) On the one hand, B(Q) = 6. On the other hand, B(Q∨) = 18. Hence,

B(Q)+B(Q∨) = 24. The left-hand side (resp., right-hand side) of Figure 2 shows

Q (resp., Q∨). Note that the signs on the sides of Q and Q∨ are all +.

REMARK

Kasprzyk and Nill [7, Corollary 2.7] pointed out that the generalized twelve-point
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theorem can further be generalized to what are called �-reflexive loops, where �

is a positive integer and a 1-reflexive loop is a legal loop.

3. Generalized Pick’s formula for lattice multipolygons

In this section, we introduce the notion of a lattice multipolygon and state the

generalized Pick’s formula for lattice multipolygons, which is essentially proved

in [8, Theorem 8.1]. Moreover, from this formula, we can define the Ehrhart

polynomials for lattice multipolygons.

We begin with the well-known Pick’s [10] formula for lattice polygons. Let

P be a (not necessarily convex) lattice polygon, let ∂P be the boundary of P ,

and let P ◦ = P\∂P . We define

A(P ) = the area of P , B(P ) = |∂P ∩Z
2|, �P ◦ = |P ◦ ∩Z

2|,

where |X| denotes the cardinality of a finite set X . Then Pick’s formula says that

(3.1) A(P ) = �P ◦ +
1

2
B(P )− 1.

We may rewrite (3.1) as

�P ◦ =A(P )− 1

2
B(P ) + 1 or �P =A(P ) +

1

2
B(P ) + 1,

where �P = |P ∩Z
2|.

In [5], the notion of shaven lattice polygon is introduced, and Pick’s formula

(3.1) is generalized to shaven lattice polygons. The generalization of Pick’s for-

mula discussed in [8] is similar to that in [5] but a bit more general, which we

shall explain.

Let P = (v1, . . . , vd) be a sequence of points v1, . . . , vd in Z
2. One may regard

P as an oriented piecewise linear loop by connecting all successive points from vi
to vi+1 in P by straight lines as before, where vd+1 = v1. To each side vivi+1, we

assign a sign + or −, denoted ε(vivi+1). In Section 2, we assigned sgn(vi, vi+1),

which is the sign of det(vi, vi+1), to vivi+1, but ε(vivi+1) may be different from

sgn(vi, vi+1). However, we require that the assignment ε of signs satisfies the

following condition (�):

(�) when there are consecutive three points vi−1, vi, vi+1 in P lying on a line,

we have

(1) ε(vi−1vi) = ε(vivi+1) if vi is in between vi−1 and vi+1;

(2) ε(vi−1vi) �= ε(vivi+1) if vi−1 lies on vivi+1 or vi+1 lies on vi−1vi.

A lattice multipolygon is P equipped with the assignment ε satisfying (�).

We need to express a lattice multipolygon as a pair (P , ε) to be precise, but we

omit ε and express a lattice multipolygon simply as P in the following. Reduced

legal loops introduced in Section 2 are lattice multipolygons.

REMARK

Lattice multipolygons such that three consecutive points are not on the same
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line are introduced in [8, Section 8]. But if we require the condition (�), then the

argument developed there works for any lattice multipolygon. A shaven polygon

introduced in [5] is a lattice multipolygon with ε=+ in our terminology, so that

vi is allowed to lie on the line segment vi−1vi+1 but vi−1 (resp., vi+1) is not

allowed to lie on vivi+1 (resp., vi−1vi) by (2) of (�); that is, there is no whisker.

Let P be a multipolygon with a sign assignment ε. We think of P as an oriented

piecewise linear loop with signs attached to sides. For i= 1, . . . , d, let ni denote a

normal vector to each side vivi+1 such that the 90 degree rotation of ε(vivi+1)ni

has the same direction as vivi+1. The winding number of P around a point

v ∈R
2 \P , denoted dP(v), is a locally constant function on R

2 \P , where R
2 \P

means the set of elements in R
2 which does not belong to any side of P .

Following [8, Section 8], we define

A(P) :=

∫
v∈R2\P

dP(v)dv,

B(P) :=

d∑
i=1

ε(vivi+1)|vivi+1|,

C(P) := the rotation number of the sequence of n1, . . . , nd.

Notice that A(P) and B(P) can be 0 or negative. If P arises from a lattice polygon

P , namely, P is a sequence of the vertices of P arranged in counterclockwise order

and ε=+, then A(P) =A(P ), B(P) =B(P ), and C(P) = 1.

Now, we define �P in such a way that if P arises from a lattice polygon P ,

then �P = �P . Let P+ be an oriented loop obtained from P by pushing each

side vivi+1 slightly in the direction of ni. Since P satisfies the condition (�), P+

misses all lattice points, so the winding numbers dP+(u) can be defined for any

lattice point u by using P+. Then we define

�P :=
∑
u∈Z2

dP+(u).

As remarked before, the lattice multipolygons treated in [8] require that

three consecutive points vi−1, vi, vi+1 do not lie on the same line. But if the sign

assignment ε satisfies the condition (�) above, then the argument developed in

[8, Section 8] works, and we obtain the following generalized Pick’s formula for

lattice multipolygons.

THEOREM 3.1 (CF. [8, THEOREM 8.1])

We have that �P =A(P) + 1
2B(P) +C(P).

Proof

Let P = (v1, . . . , vd) be a lattice multipolygon. Similarly to the proof of [8, Theo-

rem 8.1], we construct the multifan from P and apply the results in [8, Section 7].

Assume that P contains three consecutive points lying on a line, say, v1,

v2, and v3. Let ni denote the primitive normal vector to each side vivi+1 such
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that 90 degree rotation of ε(vivi+1)ni has the same direction as vivi+1. Then the

condition (�) implies that n1 = n2. Let n12 denote the primitive vector such that

n12 is orthogonal to n1. We add the new lattice vector n12 between n1 and n2,

and the remaining method for the construction of the multifan associated with

P is the same as in the proof of [8, Theorem 8.1]. Now, by applying the results

in [8, Section 7], we can see that the required formula also holds for P . �

If we define P◦ to be P with −ε as a sign assignment, then

(3.2) �P◦ =A(P)− 1

2
B(P) +C(P),

and if P arises from a lattice polygon P , then �P◦ = �P ◦.

Given a positive integer m, we dilate P by m times, denoted mP ; in other

words, if P is (v1, . . . , vd) with a sign assignment ε, then mP is (mv1, . . . ,mvd)

with ε(vivi+1) as the sign of the side mvimvi+1 of mP for each i. Then we have

(3.3) �(mP) =A(P)m2 +
1

2
B(P)m+C(P);

that is, �(mP) is a polynomial in m of degree at most 2 whose coefficients are as

above. Moreover, the equality

�(mP◦) =A(P)m2 − 1

2
B(P)m+C(P) = (−1)2�(−mP)

holds, so that the reciprocity holds for lattice multipolygons. We call the poly-

nomial (3.3) the Ehrhart polynomial of a lattice multipolygon P . We refer the

reader to [1] for an introduction to the theory of Ehrhart polynomials of general

convex lattice polytopes.

REMARK

In [6], lattice multipolytopes P of dimension n are defined, and it is proved

that �(mP) is a polynomial in m of degree at most n which satisfies �(mP◦) =

(−1)n�(−mP), whose leading coefficient and constant term have similar geomet-

ric meanings to those in the 2-dimensional case above.

4. Ehrhart polynomials of lattice multipolygons

In this section, we will discuss which polynomials appear as the Ehrhart polyno-

mials of lattice multipolygons. By virtue of (3.3), studying whether a polynomial

am2 + bm+ c is the Ehrhart polynomial of some lattice multipolygon is equiva-

lent to classifying the triple (A(P), 12B(P),C(P)) for lattice multipolygons P . In

the remainder of the section, we will discuss this triple for lattice multipolygons

and their natural subfamilies.

If the triple (a, b, c) is equal to (A(P), 12B(P),C(P)) of some lattice multi-

polygon P , then (a, b, c) must be in the set

A=
{
(a, b, c) ∈ 1

2
Z× 1

2
Z×Z : a+ b ∈ Z

}
,
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because

B(P) ∈ Z, C(P) ∈ Z, A(P) +
1

2
B(P) +C(P) = �P ∈ Z.

The following theorem shows that this condition is sufficient.

THEOREM 4.1

The triple (a, b, c) is equal to (A(P), 12B(P),C(P)) of some lattice multipolygon

P if and only if (a, b, c) ∈A.

Proof

It suffices to prove the “if” part. We pick up (a, b, c) ∈ A. Then one has an

expression

(4.1) (a, b, c) = a′(1,0,0) + b′
(1
2
,
1

2
,0
)
+ c′(0,0,−1)

with integers a′, b′, c′ because a′ = a−b, b′ = 2b, and c′ =−c. One can easily check

that (1,0,0), (12 ,
1
2 ,0), and (0,0,−1) are, respectively, equal to (A(Pj),

1
2B(Pj),

C(Pj)) of the lattice multipolygons Pj (j = 1,2,3) shown in Figure 3, where the

sign of vivi+1 is given by the sign of det(vi, vi+1) for Pj .

Moreover, reversing both the order of the points and the signs on the sides

for P1, P2, and P3, we obtain lattice multipolygons P ′
1, P ′

2, and P ′
3 whose triples

are, respectively, (−1,0,0), (−1
2 ,−

1
2 ,0), and (0,0,1). Since all six of these lattice

multipolygons have a common lattice point (1,1), one can produce a lattice

multipolygon by joining as many of them as we want at the common point,

and since the triples behave additively with respect to the join operation, this

together with (4.1) shows the existence of a lattice multipolygon with the desired

(a, b, c). �

In the rest of the article, we shall consider several natural subfamilies of lattice

multipolygons and discuss the characterization of their triples. We note that

if (a, b, c) = (A(P), 12B(P),C(P)) for some lattice multipolygon P , then (a, b, c)

must be in the set A.

Figure 3. Lattice multipolygons P1, P2, and P3 from the left.
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4.1. Lattice polygons
One of the most natural subfamilies of lattice multipolygons is the family of

convex lattice polygons. Their triples were essentially characterized by Scott [13]

as follows.

THEOREM 4.2 ([13])

A triple (a, b, c) ∈A is equal to (A(P ), 12B(P ),C(P )) of a convex lattice polygon

P if and only if c= 1 and (a, b) satisfies one of the following:

(1) a+ 1= b≥ 3
2 ;

(2) a
2 + 2≥ b≥ 3

2 ;

(3) (a, b) = ( 92 ,
9
2 ).

If we do not require convexity, then the characterization becomes simpler than

Theorem 4.2.

PROPOSITION 4.3

A triple (a, b, c) ∈A is equal to (A(P ), 12B(P ),C(P )) of a (not necessarily convex)

lattice polygon P if and only if c= 1 and a+ 1≥ b≥ 3
2 .

Proof

If P is a lattice polygon, then we have

C(P ) = 1, B(P )≥ 3, A(P )− 1

2
B(P ) + 1 = �P ◦ ≥ 0,

and this implies the “only if” part. On the other hand, let (a, b,1) ∈ A with

a+ 1≥ b≥ 3
2 . Thanks to Theorem 4.2, we may assume that b > a

2 + 2; that is,

4b− 2a− 6> 2. Let P be the lattice polygon shown in Figure 4. Then, one has

A(P ) = 2(a− b+ 2) +
1

2
(4b− 2a− 8) = a

and

B(P ) = (a− b+ 2) + 2+ (a− b+ 1) + 1+ 4b− 2a− 6 = 2b.

This shows that (A(P ), 12B(P ),C(P )) = (a, b, c), as desired. �

Figure 4. Lattice polygon P with (A(P ), 1
2B(P ),C(P )) = (a, b, c).
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4.2. Unimodular lattice multipolygons
We say that a lattice multipolygon P = (v1, . . . , vd) is unimodular if the sequence

(v1, . . . , vd) is unimodular and the sign assignment ε is defined by ε(vivi+1) =

det(vi, vi+1) for i = 1, . . . , d, where vd+1 = v1. When a unimodular lattice mul-

tipolygon P arises from a convex lattice polygon, P is essentially the same as

a so-called reflexive polytope of dimension 2, which is completely classified (16

polygons up to equivalence; see, e.g., [11, Figure 2]) and the triples (A(P ), 12B(P ),

C(P )) of reflexive polytopes P are characterized by the condition that c= 1 and

a= b ∈ {3
2 ,2,

5
2 ,3,

7
2 ,4,

9
2}.

We can characterize (A(P ), 12B(P ),C(P )) of unimodular lattice multipoly-

gons P as follows.

THEOREM 4.4

A triple (a, b, c) ∈ A is equal to (A(P), 12B(P),C(P)) of a unimodular lattice

multipolygon P if and only if a= b.

Proof

If P is a unimodular lattice multipolygon arising from a unimodular sequence

v1, . . . , vd, then one sees that

A(P) =
1

2

d∑
i=1

det(vi, vi+1),

B(P) =

d∑
i=1

det(vi, vi+1)|vivi+1|=
d∑

i=1

det(vi, vi+1),

and this implies the “only if” part. Conversely, if (a, b, c) ∈A satisfies a= b, then

one has an expression

(a, b, c) = a′
(1
2
,
1

2
,0
)
+ c′(0,0,−1)

with integers a′, c′ because a′ = 2a and c′ = −c. We note that the lattice mul-

tipolygons P2, P3, P ′
2, and P ′

3 in the proof of Theorem 4.1 are unimodular

lattice multipolygons. Therefore, joining as many of them as we want at the com-

mon point (1,1), we can find a unimodular lattice multipolygon (A(P ), 12B(P ),

C(P )) = (a, b, c), as required. �

EXAMPLE 4.5

The P and Q in Example 1.1 are unimodular lattice multipolygons, and we

have(
A(P),

1

2
B(P),C(P)

)
=
(3
2
,
3

2
,1
)
and

(
A(Q),

1

2
B(Q),C(Q)

)
= (3,3,2).
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Figure 5. Lattice multipolygons P4, P5, and P6 from the left.

4.3. Some other subfamilies of lattice multipolygons

EXAMPLE 4.6 (LEFT-TURNING (RIGHT-TURNING) LATTICE MULTIPOLYGONS)

We say that a lattice multipolygon P is left-turning (resp., right-turning) if

det(v− u,w− u) is always positive (resp., negative) for three consecutive points

u, v,w in P arranged in this order and not lying on the same line. In other words,

w lies on the left-hand side (resp., right-hand side) with respect to the direction

from u to v. For example, P1, P2, and P3 in Figure 3 and Q in Example 1.1(b)

are all left-turning.

Somewhat surprisingly, the left-turning (or right-turning) condition does not

give any restriction on the triple (A(P), 12B(P),C(P)); that is, every (a, b, c) ∈A
can be equal to (A(P), 12B(P),C(P)) of a left-turning (or right-turning) lattice

multipolygon P . A proof is given by using the lattice multipolygons P1,P2,P3

shown in Figure 3 together with P4,P5,P6 shown in Figure 5. We remark that

the signs of P4, P5, and P6 do not always coincide with the sign of det(vi, vi+1).

EXAMPLE 4.7 (LEFT-TURNING LATTICE MULTIPOLYGONS WITH ALL + SIGNS)

We consider left-turning lattice multipolygons P and impose one more restriction

that the signs on the sides of P are all +. In this case, some interesting phenomena

happen. For example, a simple observation shows that

(4.2) B(P)≥ 2C(P) + 1 and C(P)≥ 1.

We note that C(P) = 1 if and only if P arises from a convex lattice polygon,

and those (A(P), 12B(P),C(P)) are characterized by Theorem 4.2. Therefore, it

suffices to treat the case where C(P)≥ 2, and we can see that a triple (a, b, c) ∈A
is equal to (A(P), 12B(P),C(P)) of a left-turning lattice multipolygon P with all

+ signs if

b≥ c+ 1 and c≥ 2.

This condition is equivalent to B(P)≥ 2C(P)+ 2 for a lattice multipolygon. On

the other hand, we have B(P)≥ 2C(P)+1 for a left-turning lattice multipolygon

P with all + signs by (4.2). Therefore, the case where B(P) = 2C(P) + 1 is not

covered above, and this extreme case is exceptional. In fact, one can observe that
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if P is a left-turning lattice multipolygon with all + signs and B(P) = 2C(P)+1,

then �P◦ ≥ 0; that is, A(P)≥ 1
2 .

EXAMPLE 4.8 (LATTICE MULTIPOLYGONS WITH ALL + SIGNS)

Finally, we consider lattice multipolygons P with all + signs; namely, we do not

assume that P is either left-turning or right-turning. However, this case is simi-

lar to the previous one (left-turning lattice multipolygons with all + signs). For

example, when C(P) �= 0, we still have B(P)≥ 2|C(P)|+ 1. Thus, we also have

that a triple (a, b, c) ∈A is equal to (A(P), 12B(P),C(P)) of a lattice multipoly-

gon P with all + signs if

b≥ |c|+ 1 and |c| ≥ 2.

Moreover, when B(P) = 2|C(P)| + 1, P must be left-turning or right-turning

depending on whether C(P) > 0 or C(P) < 0. Hence, we can say that, when

we discuss (A(P), 12B(P),C(P)) of lattice multipolygons P with all + signs,

it suffices to consider those of left-turning or right-turning ones when C(P) /∈
{−1,0,1}.

On the other hand, on the remaining exceptional cases where C(P) = 0 or

C(P) =±1, we can characterize the triples completely as follows. Let (a, b, c) ∈A.

(a) When c= 0, (a, b, c) is equal to (A(P), 12B(P),C(P)) of a lattice multi-

polygon P with all + signs if and only if b≥ 2 (see Figure 6).

(b) When c= 1, (a, b, c) is equal to (A(P), 12B(P),C(P)) of a lattice multi-

polygon P with all + signs if and only if either b≥ 5
2 or 3

2 ≤ b≤ 2 and a−b+1≥ 0

(see Figure 7 and Proposition 4.3).

(c) When c=−1, (a, b, c) is equal to (A(P), 12B(P),C(P)) of a lattice multi-

polygon P with all + signs if and only if either b≥ 5
2 or 3

2 ≤ b≤ 2 and a+b−1≤ 0.

One can simply reverse the order of the vertices and flip the sign of a of the exam-

ple in Figure 7.

Figure 6. Lattice multipolygons with all + signs whose triples equal (a, b,0) when a+ b≥ 2 and a+ b≤ 2,

respectively.
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Figure 7. Lattice multipolygon with all + signs whose triple equals (a, b,1) when b≥ 5
2 .

Appendix: Proof of Theorem 1.2 using toric topology

Theorem 1.2 was originally proved using toric topology. In fact, it is proved in [8,

Section 5] when εi = 1 for every i, and the argument there works in our general

setting with a little modification, which we shall explain.

We identify Z
2 with H2(BT ), where T = (S1)2 and BT is the classifying

space of T . We may think of BT as (CP∞)2. For each i (i= 1, . . . , d), we form

a cone ∠vivi+1 in R2 spanned by vi and vi+1 and attach the sign εi to the

cone. The collection of cones ∠vivi+1 with signs εi attached form a multifan

aj , and the same construction as in [8, Section 5] produces a real 4-dimensional

closed connected smooth manifold M with an action of T satisfying the following

conditions:

(1) Hodd(M) = 0.

(2) M admits a unitary (or weakly complex) structure preserved under the

T -action, and the multifan associated to M with this unitary structure is the

given aj .

(3) Let Mi (i= 1, . . . , d) be the characteristic submanifold of M correspond-

ing to the edge vector vi; that is, Mi is a real codimension 2 submanifold of M

fixed pointwise under the circle subgroup determined by the vi. Then Mi does

not intersect with Mj unless j = i− 1, i, i+1 and the intersection numbers of Mi

with Mi−1 and Mi+1 are εi−1 and εi, respectively.

Choose an arbitrary element v ∈R
2 not contained in any 1-dimensional cone

in the multifan aj . Then [8, Theorem 4.2] says that the Todd genus T [M ] of M

is given by

(A.1) T [M ] =
∑
i

εi,

where the sum above runs over all i’s such that the cone ∠vivi+1 contains the

vector v. Clearly, the right-hand side of (A.1) agrees with the rotation number of

the sequence v1, . . . , vd around the origin. In the rest of the section, we compute

the Todd genus T [M ].
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Let ET →BT be the universal principal T -bundle, and let MT be the quo-

tient of ET ×M by the diagonal T -action. The space MT is called the Borel

construction of M , and the equivariant cohomology Hq
T (M) of the T -space M

is defined to be Hq(MT ). The first projection from ET ×M onto ET induces a

fibration

π : MT →ET/T =BT

with fiber M . The inclusion map ι of the fiber M to MT induces a surjective

homomorphism ι∗ : Hq
T (M)→Hq(M).

Let ξi ∈ H2
T (M) be the Poincaré dual to the cycle Mi in the equivariant

cohomology. Then ξi restricts to the ordinary Poincaré dual xi ∈H2(M) to the

cycle Mi through ι∗. By [8, Lemma 1.5], we have

(A.2) π∗(u) =
d∑

j=1

〈u, vj〉ξj for any u ∈H2(BT ),

where 〈·, ·〉 denotes the natural pairing between cohomology and homology. Mul-

tiplying both sides of (A.2) by ξi and restricting the resulting identity to the

ordinary cohomology by ι∗, we obtain

(A.3) 0 = 〈u, vi−1〉xi−1xi + 〈u, vi〉x2
i + 〈u, vi+1〉xi+1xi for all u ∈H2(BT ),

because Mi does not intersect with Mj unless j = i− 1, i, i+1, where xd+1 = x1.

We evaluate both sides of (A.3) on the fundamental class [M ] of M . Since the

intersection numbers of Mi with Mi−1 and Mi+1 are, respectively, εi−1 and εi as

mentioned above, the identity (A.3) reduces to

(A.4) 0 = 〈u, vi−1〉εi−1 + 〈u, vi〉
〈
x2
i , [M ]

〉
+ 〈u, vi+1〉εi for all u ∈H2(BT )

and further reduces to

(A.5) 0 = εi−1vi−1 +
〈
x2
i , [M ]

〉
vi + εivi+1,

because (A.4) holds for any u ∈H2(BT ). Comparing (A.5) with (1.2), we con-

clude that 〈x2
i , [M ]〉= ai. Summing up the above argument, we have

(A.6)
〈
xixj , [M ]

〉
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εi−1 if j = i− 1,

ai if j = i,

εi if j = i+ 1,

0 otherwise.

By [8, Theorem 3.1] the total Chern class c(M) of M with the unitary struc-

ture is given by
∏d

i=1(1 + xi). Therefore,

c1(M) =
d∑

i=1

xi, c2(M) =
∑
i<j

xixj ,
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and hence,

T [M ] =
1

12

〈
c1(M)2 + c2(M), [M ]

〉

=
1

12

〈( d∑
i=1

xi

)2

+
∑
i<j

xixj , [M ]
〉

=
1

12

( d∑
i=1

ai + 3

d∑
i=1

εi

)
,

where the first identity is known as Noether’s formula when M is an algebraic

surface and is known to hold even for unitary manifolds, and we used (A.6) at

the last identity. This proves the theorem because T [M ] agrees with the desired

rotation number as remarked in (A.1).
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