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Abstract In this article, we discuss the coefficient regions of analytic self-maps of the

unit disk with a prescribed fixed point. As an application, we solve the Fekete–Szegő

problem for normalized concave functions with a pole in the unit disk.

1. Introduction

Let D= {z ∈C : |z|< 1} denote the unit disk in the complex plane C. The class Bp

for p ∈D will denote the set of holomorphic maps ϕ :D→D satisfying ϕ(p) = p.

In what follows, we will always assume without loss of generality that 0≤ p < 1.

A function ϕ ∈ Bp can be expanded near the origin in the form

(1.1) ϕ(z) = c0 + c1z + c2z
2 + · · ·=

∞∑
n=0

cnz
n.

Note that |cn| ≤ 1 for each n. We define the coefficient body Xn(F) of order

n≥ 0 for a class F of analytic functions at the origin as the set{
(c0, c1, . . . , cn) ∈C

n+1 : ϕ(z) = c0+ c1z+ · · ·+ cnz
n+O(zn+1) for some ϕ ∈ F

}
.

Note that πm,n(Xn(F)) =Xm(F) for 0≤m< n, where πm,n : Cn+1 → C
m+1 is

the projection (c0, c1, . . . , cn) �→ (c0, c1, . . . , cm).

Obviously, X0(B0) = {0} and X1(B0) = {(0, c) : |c| ≤ 1}. In the present arti-

cle, we describe Xn(Bp) for n = 0,1 and 0 < p < 1. Note that the authors [12]

describe X2(Bp) to investigate the second Hankel determinant. In the following,

it is convenient to put

P = p+
1

p
=

1+ p2

p
.

Note that P > 2.

Kyoto Journal of Mathematics, Vol. 58, No. 2 (2018), 227–241

First published online June 9, 2017.

DOI 10.1215/21562261-2017-0015, © 2018 by Kyoto University

Received December 11, 2015. Accepted June 17, 2016.

2010 Mathematics Subject Classification: Primary 30C45.

https://doi.org/10.1215/21562261-2017-0015
http://www.ams.org/msc/


228 Rintaro Ohno and Toshiyuki Sugawa

THEOREM 1

Let p ∈ (0,1).

(i) X0(Bp) = {c0 ∈ C : |c0 − P−1| ≤ P−1}. For a function ϕ(z) = c0 + c1z +

· · · in Bp, c0 ∈ ∂X0(Bp) if and only if ϕ is an analytic automorphism of D.

(ii) X1(Bp) = {(c0, c1) ∈ C
2 : |c1 − (1− Pc0 + c20)| ≤ P [P−2 − |c0 − P−1|2]}.

In other words, a pair (c0, c1) of complex numbers is contained in X1(Bp) if and

only if

(1.2)
c0 = P−1(1− σ0) and

c1 = P−2
[
1 + (P 2 − 2)σ0 + σ2

0

]
+ P−1

(
1− |σ0|2

)
σ1

for some σ0, σ1 ∈D.

Moreover, for a function ϕ(z) = c0 + c1z + · · · in Bp, (c0, c1) ∈ ∂X1(Bp) if

and only if ϕ is either an analytic automorphism of D or a Blaschke product of

degree 2.

Our motivation for the present study comes from an intimate relation between

Bp and the class Cop of concave functions f normalized by f(0) = f ′(0)− 1 = 0

with a pole at p. Here, a meromorphic function f on D is said to be concave if it

maps D conformally onto a concave domain in the Riemann sphere Ĉ=C∪{∞};
in other words, f is a univalent meromorphic function on D such that C \ f(D) is
convex. The class Cop has been intensively studied in recent years by Avkhadiev,

Bhowmik, Pommerenke, Wirths, and others (see, e.g., [1]–[6]).

The following representation of concave functions in terms of functions in Bp

belongs to the first author [11].

THEOREM A

Let 0< p< 1, and put P = p+1/p. A meromorphic function f on D with f(0) = 0

is contained in the class Cop if and only if there exists a function ϕ ∈ Bp such

that

(1.3) f ′(z) = (1− Pz + z2)−2 exp

∫ z

0

−2ϕ(ζ)

1− ζϕ(ζ)
dζ.

For a given function f ∈ Cop with the expansion

(1.4) f(z) = z + a2z
2 + a3z

3 + · · ·=
∞∑

n=1

anz
n, |z|< p,

we consider the Fekete–Szegő functional

Λμ(f) = a3 − μa22

for a real number μ. For example, Λ1(f) = a3 − a22 = Sf (0)/6, where Sf = (f ′′/

f ′)′ − (f ′′/f ′)2/2 is the Schwarzian derivative of f . For some background on the

Fekete–Szegő functional, the reader may refer to [7] and references therein. As

an application of Theorem 1, we will prove the following.
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THEOREM 2

Let 0< p < 1 and μ ∈ R, and put P = p+ 1/p. Then the maximum Φ(μ) of the

Fekete–Szegő functional |Λμ(f)| over f ∈ Cop is given as follows:

Φ(μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− μ)P 2 − 1 if μ≤ μ1(P ),

−1
3 (P

3 − 2P + 3) + (P+2)2(2P−1)2

12(P+3μ) if μ1(P )≤ μ≤ μ2(P ),

Ψ(P,μ) if μ2(P )≤ μ≤ μ4(P ),

(μ− 1)P 2 + 1 if μ4(P )≤ μ.

Here,

Ψ(P,μ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P 2 − 3− μ(P 2 − 4 + 4P−2)

if either P2 ≤ P ≤ P∗, μ
−
3 (P )≤ μ≤ μ+

3 (P ),

or P∗ ≤ P,μ2(P )≤ μ≤ μ+
3 (P ),

(1− μ)P (P 2 − 2)
√

P 2−4μ
4μ{(1−μ)(P 2−1)2−1} otherwise,

and

μ1(P ) =
1

2
− 1

3P
,

μ2(P ) =

⎧⎪⎪⎨⎪⎪⎩
1
72 (4 + P 2

+ 4P 4 −
√
16P 8 + 8P 6 − 543P 4 + 1160P 2 + 16) if P ≤ P∗,

P (3P+2)
6(P 2−2) if P∗ ≤ P,

μ±
3 (P ) =

P 2(3P 4 − 12P 2 + 14)± P 2
√
P 8 − 16P 6 + 84P 4 − 176P 2 + 132

4(P 2 − 1)(P 2 − 2)2
,

μ4(P ) =
3P 4 − 4P 2 − 2 +

√
P 8 − 12P 4 + 16P 2 + 4

4P 2(P 2 − 1)
,

where P∗ ≈ 2.88965 is the unique zero of the polynomial

U(P ) = 6P 4 − P 3 − 38P 2 − 28P + 4

on the interval 2<P <+∞ and P2 ≈ 2.82343 is the largest zero of the polynomial

V (P ) = P 8 − 16P 6 + 84P 4 − 176P 2 + 132

on the positive real axis. Moreover,

1

3
< μ1 <

1

2
< μ2 < μ4 <

8

9

on the interval 2 < P , and μ2 < μ−
3 < μ+

3 < μ4 on P2 < P < P∗, whereas μ−
3 <

μ2 < μ+
3 < μ4 on P∗ <P .

We see numerically that p∗ ∈ (0,1) satisfying P∗ = p∗ + 1/p∗ is approximately

0.401984. Also, we have p2 ≈ 0.415252 for p2 ∈ (0,1) with P2 = p2 + 1/p2. The

behavior of μ1(P ), μ2(P ), μ±
3 (P ), and μ4(P ) can be observed in Figure 1.

The Fekete–Szegő problem was solved by Bhowmik, Ponnusamy, and Wirths

[6] for the different but related classes Co(α) for 1<α≤ 2. Here, the class Co(α)
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Figure 1. The graphs of μ1(P ), μ2(P ), μ±
3 (P ), and μ4(P ) in the Pμ-plane.

consists of functions f analytic and univalent on D with f(0) = f ′(0)− 1 = 0 and

f(1) =∞ such that C \ f(D) is convex and such that the opening angle of the

image f(D) at ∞ is at most πα. It is interesting to observe that the case α= 2 of

their main theorem in [6, p. 438] agrees with the limiting case of our Theorem 2

as p→ 1− (equivalently, P → 2+).

With the special choice μ= 0, we have the following known fact.

COROLLARY 3

Let f(z) = z + a1z + a2z
2 + · · · be a function in Cop. Then the following sharp

inequality holds:

|a3| ≤ P 2 − 1 = p2 + 1+
1

p2
.

Indeed, the above inequality is still valid as long as f is a univalent meromorphic

function on D with a pole at p (see Jenkins [10]). Avkhadiev, Pommerenke, and

Wirths [1] (see also [5]) proved the even stronger result that the variability region

of a3 over f ∈ Cop is given as |a3 − P 2 + 2| ≤ 1. (This can also be proved by our

method given below.)

Since Φ(1) = 1 by Theorem 2, we get another corollary.

COROLLARY 4

Let 0< p< 1, and suppose that f(z) = z+ a1z+ a2z
2 + · · · is a function in Cop.

Then the following sharp inequality holds:

|a3 − a22| ≤ 1.
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Recall that 6(a3 − a22) = Sf (0) is the Schwarzian derivative of f evaluated at

z = 0. The inequality |a3 − a22| ≤ 1 is valid for a univalent holomorphic function

f(z) = z + a2z
2 + a3z

3 + · · · on D (see, e.g., [9, Example 1, p. 70]). Indeed, it

is obtained by a simple application of Gronwall’s area theorem for the function

1/f(1/w). Since the Schwarzian derivative Sf is unchanged under the postcom-

position with Möbius transformations, the above corollary can also be obtained

from this classical result.

In the final section, we will focus on the variability region of Λ1(f) = a3− a22
over f ∈ Cop. Section 2 will be devoted to the proof of Theorem 1. To apply The-

orem 1 to concave functions, in Section 3 we consider a maximum value problem

for a quadratic polynomial over the closed unit disk. The proof of Theorem 2 will

be given in Section 4.

2. Proof of Theorem 1

For the proof of Theorem 1, we recall a useful lemma due to Dieudonné [8,

pp. 351–352]. The following form is due to Duren [9, p. 198]. To clarify the

equality case in the lemma, we will give an outline of the proof. Throughout this

section, it is helpful to use the special automorphism

(2.1) Ta(z) =
a− z

1− āz

of D for a ∈ D. This is indeed an analytic involution of D and interchanges 0

and a. Moreover,

T ′
a(z) =

|a|2 − 1

(1− āz)2
.

In particular,

T ′
a(0) = |a|2 − 1 and T ′

a(a) =
1

|a|2 − 1
.

LEMMA 5 (DIEUDONNÉ’S LEMMA)

Let z0,w0 ∈D with |w0|< |z0|. Then the region of values of w = g′(z0) for holo-

morphic functions g :D→D with g(0) = 0 and g(z0) =w0 is given as the closed

disk

(2.2)
∣∣∣w− w0

z0

∣∣∣≤ |z0|2 − |w0|2
|z0|(1− |z0|2)

.

Equality holds if and only if g is a Blaschke product of degree 2 fixing 0.

Proof

The function h(z) = g(z)/z is an analytic endomorphism of D which sends z0
to ω0 = w0/z0 ∈ D. Thus, H = Tω0 ◦ h ◦ Tz0 belongs to B0. The Schwarz lemma

now gives |H ′(0)| ≤ 1, which turns out to be equivalent to (2.2) with w = g′(z0).

Moreover, equality holds if and only if H(z) = ζz for some ζ ∈ ∂D, which means
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that h is an analytic automorphism of D. Then,

g(z) = zTω0

(
ζTz0(z)

)
is certainly a Blaschke product of degree 2 fixing 0. Allowing ζ ∈D in this form of

g(z), we see that the disk in the assertion is filled with the values of the derivative

g′(z0) at z0. �

We are now ready to prove Theorem 1.

Proof of Theorem 1

For a function ϕ ∈ Bp, we consider ψ = Tp ◦ ϕ ◦ Tp : D→ D. Then ψ ∈ B0. The

Schwarz lemma implies |ψ(p)| ≤ p. Namely,∣∣Tp(c0)
∣∣= ∣∣∣ p− c0

1− pc0

∣∣∣≤ p,

which is equivalent to

(2.3) 0≤ |1− pc0|2 −
∣∣∣1− c0

p

∣∣∣2 = 1− p4

p2

[( p

1 + p2

)2

−
∣∣∣c0 − p

1 + p2

∣∣∣2].
The range is optimal because the function ϕ corresponding to ψ(z) = Tp(c0)z/p

belongs to Bp. Suppose now that c0 ∈ ∂X0(Bp). Then, by the above argument, we

have ψ(z) = ζz, where ζ = Tp(c0)/p ∈ ∂D. Thus, ϕ(z) = Tp(ζTp(z)) is an analytic

automorphism of D fixing p. Hence, the first assertion follows.

For the second assertion, we use Dieudonné’s lemma. Note that

ψ′(p) = T ′
p(c0) ·ϕ′(0) · T ′

p(p) =
c1

(1− pc0)2
.

Applying Dieudonné’s lemma to the function ψ with the choices z0 = p and

w0 = ψ(p) = Tp(c0), we get∣∣∣ c1
(1− pc0)2

− p− c0
p (1− pc0)

∣∣∣≤ p2 − | p−c0
1−pc0

|2

p (1− p2)
.

Here, if |w0| = p = |z0|, then the above inequality (in fact, equality) obviously

holds. Note that the above range of c1 for a fixed c0 is optimal by Dieudonné’s

lemma. Using the identity in (2.3), we obtain the first description of the set

X1(Bp). The second description of X1(Bp) is obtained by letting σ0 = P (P−1 −
c0) = 1 − Pc0 and σ1 = (c1 − (1 − Pc0 + c20))/(P

−1 − P |c0 − P−1|2) = P (c1 −
P−2(1 + (P 2 − 2)σ0 + σ2

0))/(1− |σ0|2).
We now prove the final assertion. Suppose that (c0, c1) ∈ ∂X1(Bp) for a func-

tion ϕ(z) = c0 + c1z+ · · · in Bp. By Theorem 1(i), we know that c0 ∈ ∂X0(Bp) if

and only if ϕ is an analytic automorphism of D fixing p. Thus, we may assume

that c0 is an interior point of X0(Bp); namely, |Tp(c0)|< p. Then, by the equality

case in Dieudonné’s lemma, ψ = Tp ◦ ϕ ◦ Tp is a Blaschke product of degree 2

fixing 0. Therefore, we have proved the “only if” part. The “if” part is easy to

check. �
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3. Maximum value problem for a quadratic polynomial

To apply Theorem 1 for concave functions, we consider the following problem:

What is the value of the quantity

(3.1) Y (a, b, c) =max
z∈D

(
|a+ bz + cz2|+ 1− |z|2

)
for real numbers a, b, c?

In fact, a more general and symmetric problem was considered in [7]. Let

Ω(A,B,K,L,M) = max
u,v∈D

{
|A|

(
1− |u|2

)
+ |B|

(
1− |v|2

)
+ |Ku2 + 2Muv+Lv2|

}
for A,B,K,L,M ∈C. WhenK, L,M are all real numbers, the value of Ω(A,B,K,

L,M) was computed in [7, Theorem 3.1]. By virtue of the maximum modulus

principle, one can see that

Ω(1,0, c, a, b/2) = max
u∈D,v∈∂D

{(
1− |u|2

)
+ |cu2 + buv+ av2|

}
= Y (a, b, c).

As an immediate consequence of [7, Theorem 3.1], we obtain the following result.

(Note that, under the notation adopted in [7], max{Φ1,Φ2} ≥ 0 because of B = 0

so that S ≥ |A|+ |B|= 1 in [7, Theorem 3.1(3c)].)

PROPOSITION 6

Let Y (a, b, c) be the quantity defined in (3.1) for real numbers a, b, c. When

ac≥ 0,

Y (a, b, c) =

{
|a|+ |b|+ |c| if |b| ≥ 2(1− |c|),
1 + |a|+ b2

4(1−|c|) if |b|< 2(1− |c|).

When ac < 0,

(3.2)

Y (a, b, c) =

⎧⎪⎪⎨⎪⎪⎩
1− |a|+ b2

4(1−|c|) if − 4ac(c−2 − 1)≤ b2 and |b|< 2(1− |c|),
1 + |a|+ b2

4(1+|c|) if b2 <min{4(1 + |c|)2,−4ac(c−2 − 1)},
R(a, b, c) otherwise,

where

(3.3) R(a, b, c) =

⎧⎪⎪⎨⎪⎪⎩
|a|+ |b| − |c| if |c|(|b|+ 4|a|)≤ |ab|,
−|a|+ |b|+ |c| if |ab| ≤ |c|(|b| − 4|a|),
(|c|+ |a|)

√
1− b2

4ac otherwise.

4. Proof of Theorem 2

Let p ∈ (0,1), and put P = p+ 1/p as before. For a given function f ∈ Cop with

expansion (1.4), there is a unique function ϕ ∈ Bp with expansion (1.1) such that

the representation formula (1.3) holds. A straightforward computation yields

a2 = P − c0 and a3 = P 2 − 1

3
(c1 − c20 + 4Pc0 + 2).
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For μ ∈R, by substituting the expressions in (1.2), we obtain

(4.1)

a3 − μa22 =
1

3

[
(1− 3μ)c20 + 2(3μ− 2)Pc0 − c1 + (3− μ)P 2 − 2

]
= P 2 − 2− μ(P − P−1)2

+
(
1− 2μ(1− P−2)

)
σ0 − μP−2σ2

0 −
(1− |σ0|2)σ1

3P
.

Since σ1 is an arbitrary point in D, we get the sharp inequality

|a3 − μa22| ≤
1

3P

{
|a+ bσ0 + cσ2

0 |+ 1− |σ0|2
}
,

where

a= 3P
[
P 2 − 2− μ(P − P−1)2

]
,

b= 3P − 6μ(P − P−1), and c=−3μP−1.

Therefore, in terms of the quantity introduced in the last section, we can express

Φ(μ) by

Φ(μ) = sup
f∈Cop

Λμ(f) =
1

3P
Y (a, b, c).

Observe that a changes its sign at μ = μa := (P 2 − 2)/(P − P−1)2 > 0,

whereas c changes its sign at μ= 0. It is easy to verify

8

9
< μa < 1.

Furthermore, b changes its sign at μ= μb := P/2(P − P−1) ∈ (1/2,2/3).

Case when μ≤ 0. In this case, a≥ 0, c≥ 0, and b≥ 0. Since 2(1− |c|)− |b|=
2− 3P + 6Pμ< 0, Proposition 6 leads to

Φ(μ) =
1

3P
(a+ b+ c) = (1− μ)P − 1.

Case when μ≥ μa. In this case, a≤ 0, b≤ 0, and c≤ 0, and thus ac≥ 0. Since

2(1− |c|)− |b|= 2+3P − 6Pμ< 0 for μ≥ μa > 1/2+ 1/3P , by Proposition 6 we

have

Φ(μ) =
1

3P
(−a− b− c) = (μ− 1)P + 1.

Case when 0< μ< μa. In this case, a > 0, c < 0, and thus ac < 0. We compute

b2 + 4ac(c−2 − 1) =H(μ)/μ, where H is a quadratic polynomial in μ given by

H(μ) =−36μ2 + (4+ P 2 + 4P 4)μ− 4P 2(P 2 − 2).

The zeros of H(μ) are given by

μ±
0 =

1

72
(4 + P 2 + 4P 4 ±

√
16P 8 + 8P 6 − 543P 4 + 1160P 2 + 16).

SinceH(2/3) =−2(P 2−4)(2P 2−5)/3< 0,H(μa) = 9P 4(P 2−3)2(P 2−2)/(P 2−
1)4 > 0, and H(4/3) = 4(P 2 − 4)(P 2 + 11)/3 > 0, the zeros are real and satisfy

2/3 < μ−
0 < μa < 4/3 < μ+

0 . Note that H(μ) < 0 for μ ∈ (−∞, μ−
0 ) ∪ (μ+

0 ,+∞),
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and note that H(μ) ≥ 0 for μ ∈ [μ−
0 , μ

+
0 ]. Since 2(1− |c|)− |b| = 2(1 + c) + b =

2 + (3 − 6μ)P < 2 − P < 0 for μ ≥ μ−
0 (> 2/3), the first case in (3.2) does not

occur.

We now analyze the condition b2 < 4(1 + |c|)2, which is equivalent to |b| <
2(1+ |c|) = 2(1− c) in the present case, and we observe that b < 2(1− c) precisely

when μ > μ1 = 1/2 − 1/3P , whereas −b < 2(1 − c) precisely when μ < μ′
1 :=

P (3P + 2)/6(P 2 − 2). Note here that 1/3 < μ1 < 1/2 < μ′
1 < 4/3. Hence, for

μ ∈ (0, μa), we see that b2 < 4(1 + |c|)2 if and only if μ1 < μ< μ′
1. Hence, by the

second case of (3.2), we obtain

Φ(μ) =
1

3P

(
1 + a+

b2

4(1− c)

)
for μ1 < μ < μ2 = min{μ−

0 , μ
′
1}. Substituting the explicit forms of a, b, c, we

obtain the expression in the theorem. Here, keeping μ′
1 < 4/3 in mind, we see

that μ′
1 > μ−

0 if and only if

H(μ′
1) =−P (2P − 1)(P 2 − 4)U(P )

6(P 2 − 2)2
> 0,

where U(P ) is the quartic polynomial given in Theorem 2. One can check that

the polynomial U(P ) has a unique zero P∗ ≈ 2.88965 in the interval 2<P <+∞.

Thus, μ2 = μ−
0 if 2<P ≤ P∗ and μ2 = μ′

1 if P∗ ≤ P <+∞.

When either 0 < μ ≤ μ1 or μ2 ≤ μ < μa, we have Y (a, b, c) = R(a, b, c) in

(3.2). We shall take a closer look at these cases.

Subcase when 0 < μ < μ1. Since μ1 < 1/2 < μb, we have b > 0 in this case.

We compute

|ab| − |c|
(
|b|+ 4|a|

)
= ab+ c(b+ 4a)

= 9
[
2P 2(P 2 − 1)μ2 − (3P 4 − 4P 2 − 2)μ+ P 2(P 2 − 2)

]
.

Note that the above quadratic polynomial in μ is convex and has the axis of sym-

metry at μ= (3P 4−4P 2−2)/4P 2(P 2−1)> 1/2> μ1. Therefore, it is decreasing

in 0< μ< μ1, and thus,

|ab| − |c|
(
|b|+ 4|a|

)
≥ 9

[
2P 2(P 2 − 1)μ2

1 − (3P 4 − 4P 2 − 2)μ1 + P 2(P 2 − 2)
]

=
9

2P
(6P 4 − 5P 3 − 12P 2 + 14P − 12)> 0

for P > 2. Hence, by the first case of (3.3) in Proposition 6, we have Φ(μ) =

R(a, b, c)/3P = (a+ b+ c)/3P = (1− μ)P 2 − 1.

Subcase when μ2 < μ< μa. First note that μ
′
1−μb = P (P+2)(2P−1)/6(P 2−

1)(P 2 − 2) > 0. We also have μb < 2/3 < μ−
0 . Thus, we observe that μb < μ2 =

min{μ−
0 , μ

′
1}, which implies that b < 0 in this case. Therefore, |ab| − |c|(|b| +

4|a|) =−ab+ c(−b+ 4a) =−9P−2F (μ), where

F (μ) = 2(P 2 − 1)(P 2 − 2)2μ2 − P 2(3P 4 − 12P 2 + 14)μ+ P 4(P 2 − 2).

The discriminant of F (μ) is D = P 4V (P ), where V (P ) is given in Theorem 2.

One can see that the polynomial D in P has exactly two zeros P1, P2 in the



236 Rintaro Ohno and Toshiyuki Sugawa

interval 2<P <+∞ with P1 ≈ 2.05313<P2 ≈ 2.82343 and that D ≥ 0 on P > 2

if and only if either 2 < P ≤ P1 or P2 ≤ P . The axis of symmetry of F (μ) is

μ= μF := P 2(3P 4 − 12P 2 + 14)/4(P 2 − 1)(P 2 − 2)2. Since

μF − 1 =
P 2(−P 6 + 8P 4 − 18P 2 + 16)

4(P 2 − 1)(P 2 − 2)2
> 0 (2<P ≤ 2.2),

we have F (μ) > F (1) = 2(P 2 − 4) > 0 for μ < 1 and 2 < P ≤ P1. Since F (μ) >

0 for all μ ∈ R when P1 < P < P2, we conclude that |ab| − |c|(|b| + 4|a|) =
−9P−2F (μ)< 0 for μ < μa(< 1) and 2<P < P2.

Solving the equation F (μ) = 0, we write the solutions as

μ±
3 =

P 2(3P 4 − 12P 2 + 14)± P 2
√
P 8 − 16P 6 + 84P 4 − 176P 2 + 132

4(P 2 − 1)(P 2 − 2)2

for P ∈ [P2,+∞). Note that F (μ) > 0 for μ ∈ (−∞, μ−
3 ) ∪ (μ+

3 ,+∞) and that

F (μ)≤ 0 for μ ∈ [μ−
3 , μ

+
3 ]. As above, we compute

μa − μF =
P 2(P 6 − 9P 4 + 22P 2 − 18)

4(P 2 − 1)2(P 2 − 2)2
> 0 (2.5<P )

and

F (μa) =
P 4(P 2 − 2)(P 2 − 3)

(P 2 − 1)3
> 0,

both of which imply that μ+
3 < μa for P2 ≤ P . On the other hand, for 2<P , we

see that

F (μ′
1) =−P 2(P − 2)(6P 4 − P 3 − 38P 2 − 28P + 4)

18(P 2 − 2)

=−P 2(P − 2)U(P )

18(P 2 − 2)
≤ 0

if and only if P∗ ≤ P , where P∗ is the unique zero of U(P ) in 2<P <+∞ as was

introduced above. Hence, μ−
3 ≤ μ′

1 = μ2 ≤ μ+
3 when P∗ ≤ P , and either μ′

1 < μ−
3

or μ+
3 < μ′

1 when P2 ≤ P < P∗. In view of the fact that

(μ−
3 − μ′

1)|P=P2 =
P 2
2 (3P

4
2 − 12P 2

2 + 14)

4(P 2
2 − 1)(P 2

2 − 2)2
− P2(3P2 + 2)

6(P 2
2 − 2)

=
P2(3P

5
2 − 4P 4

2 − 18P 3
2 + 12P 2

2 + 30P2 − 8)

12(P 2
2 − 1)(P 2

2 − 2)2

≈ 0.049> 0,

we can conclude, by continuity, that μ2 = μ′
1 < μ−

3 for P2 ≤ P < P∗. (In particular,

we see that μ0 = μ′
1 = μ−

3 at P = P∗. Look around the point (P∗, μ2(P∗)) in

Figure 1. We wonder if this is just an incidence.)

Similarly, we have |c|(|b|−4|a|)−|ab|=−c(−b−4a)+ab= 9P−1G(μ), where

G(μ) = 2P 2(P 2 − 1)μ2 − (3P 4 − 4P 2 − 2)μ+ P 2(P 2 − 2).
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Solving the equation G(μ) = 0, we write the solutions as

μ±
4 =

3P 4 − 4P 2 − 2±
√
P 8 − 12P 4 + 16P 2 + 4

4P 2(P 2 − 1)
, 2<P.

Here, we note that P 8 − 12P 4 + 16P 2 + 4 = (P 4 − 6)2 + 16P 2 − 32 > 132 for

2<P . We now compute G(μa) = P 2(P−2)(P 2−3)/(P 2−1)3 > 0. Since the axis

μ= μG := (3P 4−4P 2−2)/4P 2(P 2−1) of G(μ) satisfies μG < 3/4< μa, we have

μ+
4 < μa. On the other hand, since

μ−
4 − 1

2
=

−P 4 − 2P 2 − 2−
√
P 8 − 12P 4 + 16P 2 + 4

4P 2(P 2 − 1)
< 0,

we get μ−
4 < 1/2 < μ2 for 2 < P . We now show that μ−

0 < μ+
4 for 2 < P , from

which the inequality μ2 < μ+
4 will follow. Since 16P 8 +8P 6 − 543P 4 +1160P 2 +

16− (4P 4 − 8P 2 − 8)2 = 3(P 2 − 4)(24P 4 − 85P 2 + 4)> 0, we have

72μ+
0 > 4 + P 2 + 4P 4 +

√
(4P 4 − 8P 2 − 8)2 = 8P 4 − 7P 2 − 4> 0

for P > 2. Therefore,

μ−
0 =

P 2(P 2 − 2)

9μ+
0

<
8P 2(P 2 − 2)

8P 4 − 7P 2 − 4
.

On the other hand, since P 8 − 12P 4 + 16P 2 + 4 = (P 4 − 6)2 + 16(P 2 − 2) >

(P 4 − 6)2, we obtain

μ+
4 >

3P 4 − 4P 2 − 2 + (P 4 − 6)

4P 2(P 2 − 1)
=

(P 2 + 1)(P 2 − 2)

P 2(P 2 − 1)
.

Because

(P 2 + 1)(P 2 − 2)

P 2(P 2 − 1)
− 8P 2(P 2 − 2)

8P 4 − 7P 2 − 4
=

(P 2 − 2)(9P 4 − 11P 2 − 4)

P 2(P 2 − 1)(8P 4 − 7P 2 − 4)
> 0

for P > 2, the inequality μ−
0 < μ+

4 follows as required.

We now summarize the above observations. Let D = {(P,μ) : 2<P,μ2(P )<

μ < μa(P )}. Here, we write μ2 and so on as functions of P . We divide D into

three partsD1,D2,D3 according to whether the first, second, or third case occurs

in (3.3), respectively. Then, D1 = {(P,μ) : P2 ≤ P < P∗, μ
−
3 (P ) ≤ μ ≤ μ+

3 (P )} ∪
{(P,μ) : P∗ ≤ P,μ2(P ) < μ ≤ μ+

3 (P )} and D2 = {(P,μ) : μ+
4 (P ) ≤ μ < μa(P )}.

Since D1 and D2 are disjoint, we necessarily have that μ+
3 < μ+

4 for P2 ≤ P . Note

here that Φ(μ) = (a− b+ c)/3P = P 2 − 3− μ(P 2 − 2)2/P 2 for (P,μ) ∈D1, that

Φ(μ) = (−a− b− c)/3P = (μ− 1)P 2 + 1 for (P,μ) ∈D2, and that

Φ(μ) =
(a− c)

3P

√
1− b2

4ac

= (1− μ)P (P 2 − 2)

√
P 2 − 4μ

4μ{(1− μ)(P 2 − 1)2 − 1}

for (P,μ) ∈D3.

Finally, setting μ4 = μ+
4 for simplicity, we complete the proof of Theorem 2.
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5. Variability region of a3 − a22

We first note that the class Cop is not rotationally invariant for 0< p< 1 due to

the presence of a pole at p. It is therefore more natural to consider the variability

region of the Fekete–Szegő functional Λμ over Cop rather than its modulus only.

The present section will be devoted to the study of the variability region of

Λ1(f) = a3 − a22 because of its importance. Let

Wp =
{
Λ1(f) : f ∈ Cop

}
for 0< p< 1.

In the following, we fix p ∈ (0,1) and put P = p+ 1/p > 2. Let

fζ(z) =
z − Tp(pζ)z

2

(1− z/p)(1 + pz)
=

∞∑
n=1

1− p2nζ

pn−1(1− p2ζ)
zn =

∞∑
n=1

An(ζ)z
n

for z ∈D and ζ ∈D. Here, Tp is defined in (2.1). One can check that fζ belongs

to Cop and corresponds to ϕ(z) = Tp(ζTp(z)) through (1.3). As Avkhadiev and

Wirths [5] pointed out, the function fζ with |ζ| = 1 is extremal in important

problems for the class Cop. Indeed, they proved that the closed disk An(D) is the

variability region of the coefficient functional an(f) for f ∈ Cop (see also [12]).

We now compute

Λ1(fζ) =A3(ζ)−A2(ζ)
2 =− (1− p2)2ζ

(1− p2ζ)2
=−(P 2 − 4)K(p2ζ),

where K(z) = z/(1−z)2 is the Koebe function. One might expect that the image

Ωp =
{
−(P 2 − 4)K(p2z) : |z| ≤ 1

}
would coincide with the variability region Wp. By accident, the form of A3 −A2

2

is the same as the second Hankel determinant a2a4−a23 of order 2 for fζ ; namely,

A2(ζ)A4(ζ)−A3(ζ)
2 =− (1− p2)2ζ

(1− p2ζ)2
=A3(ζ)−A2(ζ)

2.

The authors [12] investigated the set Ωp in the context of the second Hankel

determinant and found that Ωp ⊂Ωq for 0< q < p < 1 and that⋃
0<p<1

Ωp =D∪ {−1} and
⋂

0<p<1

Ωp =
{
−(1 + z)2/4 : |z| ≤ 1

}
.

Note that {−(1+z)2/4 : |z| ≤ 1} is a closed Jordan domain bounded by a cardioid

(see Figure 2). We [12] also observed that the variability region of a2a4 − a23 for

Cop is properly larger than Ωp. In the case of a3 − a22, rather surprisingly, the

expected result partially holds, and a phase transition occurs.

THEOREM 7

Let 0< p< 1. The variability region Wp of a3−a22 for Cop satisfies Ωp ⊂Wp ⊂D.

Moreover, Wp =Ωp for 0< p≤ p0 and Wp =Ωp for p0 < p< 1, where

p0 =
1+

√
37−

√
2(1 +

√
37)

6
≈ 0.553175.
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Figure 2. A couple of Ωp’s (the inside of dotted and dashed curves), the intersection cardioid, and the unit

disk.

Proof

Letting σ = Tp2(ζ), we have the representation

A3(ζ)−A2(ζ)
2 =− p2

(1 + p2)2
[
1− (p2 + p−2)σ+ σ2

]
=−P−2h(σ),

where

h(σ) = 1− tσ+ σ2, t= P 2 − 2> 2.

Hence, Ωp =−P−2h(D). One can easily check that h is univalent on D. Let Δr

be the image of the closed disk |z| ≤ r under the mapping h for 0 ≤ r ≤ 1. For

ζ,ω ∈ ∂D, the sharp inequality∣∣h(ζ)− h(rω)
∣∣= |ζ − rω||ζ + rω− t| ≥ (1− r)(t− 1− r) = h(r)− h(1)

holds. Hence, the Euclidean distance δr between ∂Δr and ∂Δ1 is given as (1−
r)(t− 1− r) = (1− r)(P 2 − 3− r) for 0≤ r ≤ 1. Note that if |w− h(σ)| ≤ δr for

some σ ∈C with |σ|= r, then w ∈Δ1.

Letting μ = 1 in (4.1), we obtain the following representation of Λ1(f) for

f(z) = z + a2z
2 + a3z

3 + · · · ∈ Cop:

a3 − a22 =−P−2 + (2P−2 − 1)σ0 − P−2σ2
0 −

(1− |σ0|2)σ1

3P

=−P−2
[
h(−σ0) +

(
1− |σ0|2

)
σ1P/3

]
,

for some σ0, σ1 ∈D. Put r = |σ0|. Then h(−σ0) ∈ ∂Δr. If (1− r2)P/3≤ δr, then

we have a3 − a22 ∈−P−2Δ1 =Ωp. Since

δr − (1− r2)P/3 =
1− r

3

[
3P 2 − (1 + r)P − 9− 3r

]
≥ 1− r

3
[3P 2 − 2P − 12],
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we have (1 − r2)P/3 ≤ δr for P ≥ P0 := (1 +
√
37)/3 ≈ 2.36092, which is the

larger zero of the polynomial 3P 2 − 2P − 12. Note that p0 is determined by

P0 = p0 + 1/p0. Thus, we have shown that Wp ⊂Ωp for 0< p≤ p0.

We next assume that 2<P < P0. Since 3P
2−2P −12< 0, we can find an r ∈

(0,1) such that h(r)−h(1)− (1−r2)P/3 = (1−r)[3P 2− (1+r)P −9−3r]/3< 0.

We choose σ0 =−r and σ1 = 1. Then there is a function f(z) = z+a2z
2+a3z

3+

· · · in Cop satisfying (4.1) with μ= 1:

a3 − a22 =−P−2
[
h(r) + (1− r2)P/3

]
.

Therefore, we get

a3 − a22 =−P−2
[
h(1) +

{
h(r)− h(1) + (1− r2)P/3

}]
>−P−2h(1) = 1− 4P−2,

which implies that a3 − a22 ∈Wp \Ωp because Ωp ∩R= [−1,1− 4P−2]. �
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