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Abstract There are countably many equivalence classes of principal Sp(2)-bundles
over S4, classified by the integer value of the second Chern class. We show that the corre-
spondinggauge groups Gk have theproperty that if there is ahomotopy equivalence Gk �
Gk′ , then (40, k) = (40, k′), and we prove a partial converse by showing that if (40, k) =

(40, k′), then Gk and Gk′ are homotopy equivalent when localized rationally or at any
prime.

1. Introduction

Let M be a simply connected, compact 4-manifold, let G be a simple, simply
connected, compact Lie group, and let P −→S4 be a principal G-bundle. The
gauge group of this bundle is the group of G-equivariant automorphisms of P

which fix M . As [M,BG] = Z, there are countably many equivalence classes of
principal G-bundles over M . Each has a gauge group, so there are potentially
countably many distinct gauge groups. However, in [CS] it was shown that these
gauge groups have only finitely many distinct homotopy types. It has been a
subject of recent interest to determine the precise number of homotopy types in
special cases. Notably, it is known that there are six homotopy types of S3-gauge
groups over S4 (see [K]); either six or four homotopy types of S3-gauge groups
over M , depending on the signature of M (see [KT]); 12 homotopy types of
SU(3)-gauge groups over S4 (see [HK]); and 12 homotopy types of SO(3)-gauge
groups over S4 (see [KKKT]).

In this article we consider the case of Sp(2)-gauge groups over S4. To state
our results, let P −→ S4 be a principal Sp(2)-bundle. It is classified by an element
in [S4,B Sp(2)] ∼= Z, where the specific integer is determined by the second Chern
class. Let Gk be the gauge group of this principal bundle. If a, b are two integers,
let (a, b) be the greatest common divisor of |a| and |b|.

THEOREM 1.1

The following hold:
(a) if there is a homotopy equivalence Gk � Gk′ , then (40, k) = (40, k′);
(b) if (40, k) = (40, k′), then Gk and Gk′ are homotopy equivalent when local-

ized rationally or at any prime.
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Theorem 1.1 improves on what was previously known. In [S] it was shown that
if there is a homotopy equivalence Gk � Gk′ , then (10, k) = (10, k′). Recent work
in [CHM] suggested that (40, k) = (40, k′) implies Gk � Gk′ . In fact, this is claimed
to be proved. However, the proof relies on a result of [HK] which involves a map
into a target space with the property that all of its homotopy groups are finite,
and this is applied to a map into the target Ω3

0 Sp(2) which has an integral sum-
mand in π4. We conjecture that Theorem 1.1 can be improved to the following:
Gk � Gk′ if and only if (40, k) = (40, k′). This seems to be problematic, involving
a delicate application of Sullivan’s arithmetic square.

The methods in this article are different from those in [K] and [HK], which
have set the standard for calculating numbers of gauge groups. It is expected
that our methods will also have other applications.

2. Preliminary homotopy theory

In this section we state known facts about the homotopy theory of Sp(2) and the
gauge groups of principal Sp(2)-bundles. Recall that H∗(Sp(2);Z) ∼= Λ(x3, x7)
and that Sp(2) can be given the CW-structure of a three-cell complex Sp(2) =
S3 ∪ e7 ∪ e10. Let A be the 7-skeleton of Sp(2), and let ı : A −→ Sp(2) be the
skeletal inclusion. Then A is a two-cell complex, and there is a homotopy cofibra-
tion sequence

S6 f−→ S3 −→ A
π−→ S7,

where f is the attaching map for A and π is the pinch map to the top cell. The
map f represents a generator of π6(S3) ∼= Z/12Z. The following decomposition
is due to Mimura [M, Lemma 2.1(ii)].

LEMMA 2.1

The map Σ2ı has a left homotopy inverse, implying that there is a homotopy
equivalence Σ2 Sp(2) � Σ2A ∨ S12.

Next, consider the canonical fibration S3 i−→ Sp(2)
q−→ S7, where i is the inclu-

sion of the bottom cell and q is the quotient map to Sp(2)/Sp(1) = S7. In
Lemma 2.2 we collect some information from [MT] regarding the homotopy
groups of Sp(2).

LEMMA 2.2

The following hold:
(a) π6(Sp(2)) = 0;
(b) π7(Sp(2)) ∼= Z;
(c) π8(Sp(2)) = 0;
(d) π10(Sp(2)) ∼= Z/120Z;
(e) π13(Sp(2)) ∼= Z/4Z ⊕ Z/2Z.
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Now we turn our attention to gauge groups. By [AB], there is a homotopy equiv-
alence BGk � Mapk(S4,B Sp(2)) between the classifying space BGk of Gk and
the component of the space of continuous maps from S4 to B Sp(2) which con-
tains the map inducing P . Further, there is a fibration Map∗

k(S4,B Sp(2))−→
Mapk(S4,B Sp(2)) ev−→ B Sp(2), where ev evaluates a map at the basepoint of S4

and Map∗
k(S4,B Sp(2)) is the k-th component of the space of pointed continuous

maps from S4 to B Sp(2). It is well known that there is a homotopy equiva-
lence Map∗

k(S4,B Sp(2)) � Map∗
0(S

4,B Sp(2)) for every k ∈ Z; the latter space is
usually written as Ω3

0 Sp(2). Putting all this together, for each k the evaluation
fibration induces a homotopy fibration sequence

Sp(2) ∂k−→ Ω3
0 Sp(2) bk−→ BGk

ev−→ B Sp(2),

where bk is just a name for the map from the fiber to the total space and ∂k is
the fibration connecting map.

The following lemma describes the triple adjoint of ∂k and was proved in [L,
Theorem 2.6]. Recall that S3 i−→ Sp(2) is the inclusion of the bottom cell. Let
1 : Sp(2) −→ Sp(2) be the identity map.

LEMMA 2.3

The adjoint of the map Sp(2) ∂k−→ Ω3
0 Sp(2) is homotopic to the Samelson product

S3 ∧ Sp(2)
〈ki,1〉−→ Sp(2).

The linearity of the Samelson product implies that 〈ki,1〉 � k〈i,1〉. Adjointing
therefore implies the following.

COROLLARY 2.4

There is a homotopy ∂k � k ◦ ∂1.

We also need to know how ∂k behaves with respect to π7. Let φ : S7 −→ Sp(2) be
a generator of π7(Sp(2)) ∼= Z. By [MT], this has the property that the composite

S7 φ−→ Sp(2)
q−→ S7 has degree 12. Refining a bit, since the inclusion A

ı−→ Sp(2)

is 9-connected, φ factors as a composite S7 φ′

−→ A
ı−→ Sp(2) for some map φ′.

The following lemma was proved in [S] and stated in terms of φ. We restate it
in terms of φ′.

LEMMA 2.5

The composite S7 φ′

−→ A
ı−→ Sp(2) ∂1−→ Ω3

0 Sp(2) has order 10.

Lemma 2.5 was used in [S] to prove the following.

LEMMA 2.6

There is an isomorphism π7(BGk) ∼= Z/12(10, k)Z, and the map π7(Ω3
0 Sp(2)) ∼=
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Z/120Z
(bk)∗−→ π7(BGk)) ∼= Z/12(10, k)Z is an epimorphism. Consequently, if Gk �

Gk′ , then (10, k) = (10, k′).

3. A counting lemma

Let Y be an H-space with a homotopy inverse. Then there are power maps
Y

k−→ Y for every integer k. Suppose that there is a map f : X −→ Y , where X

is a space and f has finite order. Let Fk be the homotopy fiber of k ◦ f . A basic
problem is to determine when Fk and Fk′ are homotopy equivalent. Integrally,
it seems to be difficult to give an easily checked condition for when this is true.
In Lemma 3.1 we give a simple criterion for when homotopy equivalences exist
after localizing rationally or at any prime.

LEMMA 3.1

Let X be a space, and let Y be an H-space with a homotopy inverse. Suppose that
there is a map X

f−→ Y of order m, where m is finite. If (m,k) = (m,k′), then
Fk and Fk′ are homotopy equivalent when localized rationally or at any prime.

Proof
Since f has order m, the homotopy class of f generates a cyclic subgroup
S = Z/mZ in [X,Y ]. Suppose (m,k) = (m,k′) = l. Then k = lt and k′ = lt′

for integers t and t′ which are units in Z/mZ. Let s and s′ be integers such
that st ≡ 1 (mod m) and s′t′ ≡ 1 (mod m). Observe that ks ≡ l (mod m) and

k′s′ ≡ l (mod m). Thus the composites X
f−→ Y

ks−→ Y and X
f−→ Y

k′s′
−→ Y both

represent the homotopy class [l] in S. That is, ks ◦ f is homotopic to k′s′ ◦ f .
Consequently, Fks � Fk′s′ . Note that this holds integrally.

Now fix a prime p, and localize at p. There are two cases. First, suppose
that (m,p) = 1. Then m and p have no common factors, so m is a unit mod-p.
Thus the power map Y

m−→ Y is a homotopy equivalence, implying that f has
order 1. In other words, f is null homotopic. Therefore k ◦ f is null homotopic
for any integer k, implying that Fk � X × ΩY . Hence Fk � Fk′ for any integers k

and k′. Second, suppose that (m,p) = p. Since s is a unit in Z/mZ, we have
(m,s) = 1. Therefore (s, p) = 1, which implies that s is a unit mod p. Thus
the power map Y

s−→ Y is a homotopy equivalence. This implies that there is a
homotopy pullback diagram

Fk Fks ∗

Fk X
k◦f

ks◦f

Y

s

Y Y
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The homotopy fibration along the top row implies that Fk � Fks. Similarly, as
s′ is a unit in Z/mZ, we obtain Fk′ � Fk′s′ . Hence there is a string of homotopy
equivalences Fk � Fks � Fk′s′ � Fk′ .

Finally, consider the rational case. Since m is a unit in Q, arguing as in the
first case above shows that Fk � X × Ω � Fk′ for any integers k and k′. �

4. A factorization of ∂1

Consider the homotopy cofibration S3 i−→ Sp(2) c−→ C which defines the space C

and the map c. Observe that the CW-structure of Sp(2) implies that C is a
two-cell complex with cells in dimensions 7 and 10. Thus there is a homotopy
cofibration S9 θ−→ S7 −→ C for some map θ. We claim that θ is null homotopic.
To see this, observe that the homotopy decomposition of Σ2 Sp(2) in Lemma 2.1
implies that Σ2C � Σ2S7 ∨ S12. Thus Σ2θ is null homotopic. But θ is in the
stable range, and so θ is null homotopic. Hence C � S7 ∨ S10.

PROPOSITION 4.1

There is a homotopy commutative square

Sp(2)
∂1

c

Ω3
0 Sp(2)

S7 ∨ S10
g+h

Ω3
0 Sp(2)

where the adjoint of g represents a generator of π10(Sp(2)) ∼= Z/120Z and the
adjoint of h is some element of π13(Sp(2)) ∼= Z/4Z ⊕ Z/2Z.

Proof

By Lemma 2.3, the triple adjoint of ∂1 is the Samelson product S3 ∧ Sp(2)
〈i,1〉−→

Sp(2). Consider the homotopy fibration Ω(Sp(∞)/Sp(2)) −→ Sp(2) h−→ Sp(∞),
where h is the canonical group homomorphism. Since h is a loop map, h ◦ 〈i,1〉 is
homotopic to the Samelson product 〈h ◦ i, h〉. As Sp(∞) is an infinite loop space,
it is homotopy commutative, and so the commutator 〈h ◦ i, h〉 is null homotopic.
Thus there is a lift

S3 ∧ Sp(2)
〈i,1〉

λ

Sp(2)

Ω(Sp(∞)/Sp(2))

for some map λ. Since Ω(Sp(∞)/Sp(2)) is 6-connected, the composite S3 ∧
S3 Σ3i−→ S3 ∧ Sp(2) λ−→ Ω(Sp(∞)/Sp(2)) is null homotopic. Thus λ extends
through Σ3c to a map λ′ : S10 ∨ S13 −→ Ω(Sp(∞)/Sp(2)). Let a and b be the



596 Stephen D. Theriault

restrictions of λ′ to S10 and S13, respectively. The universal property for maps
out of a wedge implies that λ′ � a + b. Thus there is a homotopy commutative
diagram

(1)

S3 ∧ Sp(2)
〈i,1〉

Σ3c

Sp(2)

S10 ∨ S13
a+b

Ω(Sp(∞)/Sp(2))

Let g be the triple adjoint of the composite S10 a−→ Ω(Sp(∞)/Sp(2)) −→ Sp(2),
and let h be the triple adjoint of the composite S13 b−→ Ω(Sp(∞)/Sp(2)) −→
Sp(2). Then the homotopy commutative diagram asserted by the lemma is
obtained by adjointing (1).

It remains to show that the triple adjoint of g represents a generator of
π10(Sp(2)). Let � : S10 −→ Ω(Sp(∞)/Sp(2)) be the inclusion of the bottom cell.
Then the composite S10 �−→ Ω(Sp(∞)/Sp(2)) −→ Sp(2) represents a generator
of π10(Sp(2)). By connectivity, a is homotopic to t� for some integer t. There-
fore, to show that the adjoint of g represents a generator of π10(Sp(2)), it is
equivalent to show that t = ±1. We argue as in [T, Lemma 5.2], which fac-
tored the composite ∂1 ◦ ı rather than ∂1 itself. Let φ : S7 −→ Sp(2) represent
a generator of π7(Sp(2)) ∼= Z. By [MT], φ can be chosen so that the composite

S7 φ−→ Sp(2)
q−→ S7 has degree 12. Consider the diagram

(2)

S3 ∧ S7
1∧φ

12

S3 ∧ Sp(2)
〈i,1〉

Σ3c

Sp(2)

S10
i1

S10 ∨ S13
t�+b

Ω(Sp(∞)/Sp(2))

where i1 is the inclusion. The left square homotopy commutes by connectivity
and the fact that q ◦ φ has degree 12. The right square is (1) with t� substituted
for a. Thus the entire diagram homotopy commutes. The composition 〈i,1〉 ◦
(1 ∧ φ) along the top row is the Samelson product 〈i, φ〉, which Bott [B] showed
to have order a multiple of 10. On the other hand, � represents a generator of
π10(Sp(2)) ∼= Z/120Z. So the composite t�′ ◦ 12 along the lower direction of the
diagram has order 10/t. The commutativity of the diagram therefore implies
that t = ±1, as required. �

We record a corollary of Proposition 4.1 which is useful later on. Precompos-
ing the diagram in Proposition 4.1 with the inclusion A

ı−→ Sp(2), we obtain a
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homotopy commutative square

A
ı

π

Sp(2)
∂1

Ω3
0 Sp(2)

S7
g

Ω3
0 Sp(2)

where π is the pinch map to the top cell. By Corollary 2.4, ∂k � k ◦ ∂1. Since
A is a co-H-space, the group structure in [A,Ω3

0 Sp(2)] induced by the loop mul-
tiplication on Ω3

0 Sp(2) is the same as that induced by the co-H-space structure
on A. Thus ∂k ◦ ı � k ◦ ∂1 ◦ ı � ∂1 ◦ ı ◦ k. Combining this with the previous
diagram and reorienting, we obtain the following.

COROLLARY 4.2

For each k ∈ Z, there is a homotopy commutative square

A
kπ

ı

S7

g

Sp(2)
∂k

Ω3
0 Sp(2)

5. Counting Sp(2)-gauge groups

In this section we count the number of homotopy types of Sp(2)-bundles over
S4 by studying the map ∂k in the homotopy fibration Gk −→ Sp(2) ∂k−→ Ω3

0 Sp(2).
We begin in Proposition 5.1 by determining that the order of ∂1 is 40. Note
that Corollary 2.4 then implies that the order of ∂k � k ◦ ∂1 is 40/(40, k). It is
interesting to note that in [CHM] it was shown that [Sp(2),Ω3

0 Sp(2)] ∼= Z/40Z ⊕
Z/4Z ⊕ Z/2Z. Thus ∂1 is an element of highest order in [Sp(2),Ω3

0 Sp(2)].

PROPOSITION 5.1

The following hold:

(a) the composite A
ı−→ Sp(2) ∂1−→ Ω3

0 Sp(2) has order 40;
(b) the map Sp(2) ∂1−→ Ω3

0 Sp(2) has order 40.

Proof
We first show that the order of ∂1 divides 40. This implies that the order of ∂1 ◦ ı

also divides 40. We then show that 40 divides the order of ∂1 ◦ ı, implying that
40 also divides the order of ∂1. Putting these together, both ∂1 and ∂1 ◦ ı have
order 40.

By Proposition 4.1, ∂1 factors through the map S7 ∨ S10 g+h−→ Ω3
0 Sp(2), where

g represents a generator of π10(Sp(2)) ∼= Z/120Z and h represents some element
in π13(Sp(2)) ∼= Z/4Z ⊕ Z/2Z. In particular, g + h has order 120. Therefore the
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order of ∂1 divides 120 = 23 · 3 · 5. On the other hand, by Lemma 2.3, the triple

adjoint of ∂1 is the Samelson product S3 ∧ Sp(2)
k〈i,1〉−→ Sp(2). By [Mc], Sp(2)

is homotopy commutative at the prime 3, and so 〈i,1〉 is null homotopic when
spaces and maps are localized at 3. This implies that the order of 〈i,1〉 is not
divisible by 3. Adjointing, the order of ∂1 is not divisible by 3. Thus the order
of ∂1 divides 40.

Next, to show that 40 divides the order of ∂1 ◦ ı, we show that both 5 and 8

divide the order of ∂1 ◦ ı. By Lemma 2.5, the composite S7 φ′

−→ A
ı−→ Sp(2) ∂1−→

Ω3
0 Sp(2) has order 10. In particular, 5 divides the order of ∂1 ◦ ı ◦ φ′, implying

that 5 divides the order of ∂1 ◦ ı. The same argument also shows that 2 divides
the order of ∂1 ◦ ı. However, to show that 8 divides the order of ∂1 ◦ ı, we have
to work harder.

Suppose that the order of ∂1 ◦ ı is m. Recall that there is a homotopy
cofibration sequence S6 f−→ S3 −→ A

π−→ S7, where f is a stable class of order
12. Consider the diagram

S3 ∧ A
m

Σ3π

S3 ∧ A
1∧ı

Σ3π

S3 ∧ Sp(2)
〈i,1〉

Sp(2)

S10
m

S10
g

Sp(2)

Since Σ3π is a co-H-map, it commutes with degree maps, implying that the left
square homotopy commutes. The right rectangle is obtained by adjointing the
k = 1 case of Corollary 4.2 and using Lemma 2.3 to identify the adjoint of ∂1

as 〈i,1〉. Since the order of ∂1 ◦ ı is assumed to be m, its adjoint 〈i,1〉 ◦ (1 ∧ ı)
also has order m. That is, the composite 〈i,1〉 ◦ (1 ∧ ı) ◦ m is null homotopic.
The homotopy commutativity of the previous diagram therefore implies that
g ◦ m ◦ Σ3π is null homotopic.

The null homotopy for g ◦ m ◦ Σ3π implies, with respect to the homotopy

cofibration S3 ∧ A
Σ3π−→ S10 Σ4f−→ S7, that g ◦ m extends through S10 Σ4f−→ S7 to a

map l : S7 −→ Sp(2). This gives the homotopy commutativity of the square in
the following diagram:

S10
m

Σ4f

S10

g
ν

S7
l

Sp(2)
q

S7

The map ν is defined as q ◦ g, so the triangle homotopy commutes as well.
By [MT], ν is a class of order 8. Thus ν ◦ m has order 8/(8,m). The homotopy
commutativity of the preceding diagram therefore implies that q ◦ l ◦ Σ4f has
order 8/(8,m). Suppose that (8,m) �= 8. Then the order of q ◦ l ◦ Σ4f is not
1, and so this composite is nontrivial. This implies that l is nontrivial. Let
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φ : S7 −→ Sp(2) represent a generator of π7(Sp(2)) ∼= Z. The nontriviality of l

implies that l = nφ for some nonzero integer n. By [MT], q ◦ φ is of degree 12,
so q ◦ l is of degree 12n. Thus, as Σ4f has order 12, q ◦ l ◦ Σ4f is null homotopic.
That is, q ◦ l ◦ Σ4f has order 1, a contradiction. Hence (8,m) = 8. Since m is
the order of ∂1 ◦ ı, we have therefore shown that 8 divides the order of ∂1 ◦ ı, as
asserted. �

Applying Lemma 3.1 to the map Sp(2) ∂1−→ Ω3
0 Sp(2), which we now know is of

order 40, we immediately obtain the following.

PROPOSITION 5.2

If (40, k) = (40, k′) then Gk and Gk′ are homotopy equivalent when localized ratio-
nally or at any prime.

REMARK

The referee has pointed out that the methods in [HKK] may potentially provide
a different means of proving Proposition 5.2.

Next, we show that a homotopy equivalence Gk � Gk′ implies that (40, k) =
(40, k′). Lemma 2.6 gives a weaker result: if Gk � Gk′ , then (10, k) = (10, k′).
To improve from (10, k) = (10, k′) to (40, k) = (40, k′), we pass from the homo-
topy group calculation in Lemma 2.6, involving an S6 mapping into Gk, to a
certain three-cell complex mapping into Gk which captures more information.

For k ∈ Z, define the space Ck and the maps sk and ik by the homotopy
pushout

S6
f

k

S3

ik

S6
sk

Ck

where f is the attaching map for A. This induces a homotopy cofibration diagram

S6
f

k

S3

ik

A
π

S7

k

S6
sk

Ck A
kπ

S7

The focus is on the homotopy cofibration along the bottom row.
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We construct a map Ck −→ Gk which is compatible with a map S6 −→
Ω4

0 Sp(2) representing a generator of π6(Ω4
0 Sp(2)) ∼= Z/120Z. Consider the dia-

gram

(3)

A
kπ

ı

S7
Σsk

g

ΣCk

ek

ΣA

ı̄

Sp(2)
∂k

Ω3
0 Sp(2)

bk

BGk B Sp(2)

where ek is defined momentarily and ı̄ is the adjoint of ı. The left square homo-
topy commutes by Corollary 4.2. The homotopy commutativity of this square
combined with the fact that the bottom row is a homotopy fibration implies that
the composite bk ◦ g ◦ kπ is null homotopic. Thus there is an extension of bk ◦ g

through Σsk, which defines the map ek and makes the middle square homotopy
commute. By [H, Ch. 3], the extension can be chosen so that the right square
homotopy also commutes.

Since Σsk is a suspension, the middle square in (3) can be adjointed to obtain
a homotopy commutative diagram

S6
sk

ga

Ck

ea
k

Ω4
0 Sp(2)

Ωbk

Gk

where ga and ea
k are the adjoints of g and ek, respectively. Since ga represents a

generator of π6(Ω4
0 Sp(2)), the adjoint of Lemma 2.6 implies the following.

LEMMA 5.3

The composite S6 sk−→ Ck
ea

k−→ Gk represents a generator of π6(Gk) ∼= Z/12(10, k)Z.

We need to establish some additional properties of the map ea
k.

LEMMA 5.4

The composite S3 ik−→ Ck
ea

k−→ Gk −→ Sp(2) is homotopic to the inclusion of the
bottom cell.

Proof
It is equivalent to adjoint and show that the composite S4 −→ ΣCk

ek−→ BGk −→
B Sp(2) is the inclusion of the bottom cell. The right square in (3) implies that

this composite is homotopic to the composite S4 j−→ ΣA
ı̄−→ B Sp(2), where j is

the inclusion of the bottom cell. Since ı is a skeletal inclusion, it is the inclusion
on the bottom cell, and therefore its adjoint ı̄ is also an inclusion on the bottom
cell. Hence ı̄ ◦ j is the inclusion of the bottom cell. �
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Consider the map Gk −→ Sp(2). Lemma 5.4 implies that the bottom cell of Sp(2)
lifts to Gk, and one choice of a lift is given by ea

k ◦ ik. We now use this lift to give
a choice of a low-dimensional homotopy decomposition of Gk. Let μ be the loop
multiplication on Gk.

LEMMA 5.5

The composite

S3 × Ω4
0 Sp(2)

(ea
k ◦ik)×Ωbk−−−−−−−→ Gk × Gk

μ−−−−−−−→ Gk

is a homotopy equivalence in dimensions ≤ 5.

Proof
The 6-skeleton of Sp(2) is S3. Therefore taking 6-skeletons in the homotopy fibra-
tion Ω4

0 Sp(2) Ωbk−→ Gk −→ Sp(2) we obtain a sequence (Ω4
0 Sp(2))6

Ωbk−→ (Gk)6 −→
S3 which induces a long exact sequence in homotopy groups in dimensions ≤ 5.
Thus, as ea

k ◦ ik is a right homotopy inverse of the map (Gk)6 −→ S3, the compos-
ite μ ◦ ((ea

k ◦ ik) × Ωbk) in the statement of the lemma induces an isomorphism
in homotopy groups in dimensions ≤ 5. The lemma follows. �

By Corollary 2.4, ∂k � k ◦ ∂1, and by Proposition 5.1, ∂1 has finite order. Thus ∂k

has finite order. Therefore in the homotopy fibration Ω4
0 Sp(2) Ωbk−→ Gk −→ Sp(2),

we have π3(Gk) ∼= Z ⊕ Z with one summand coming from π3(Ω4
0 Sp(2)) ∼= Z and

the other coming from π3(Sp(2)) ∼= Z. If there is a homotopy equivalence Gk �
Gk′ , it may be possible that the induced isomorphism in π3 interchanges the Z

summands, so that the composite S3 ea
k ◦ik−→ Gk

e−→ Gk′ −→ Sp(2) is null homotopic.
In the following lemma we show that this cannot occur. Let Z(2) be the 2-local
integers.

LEMMA 5.6

Suppose that there is a homotopy equivalence Gk
e−→ Gk′ . Then 2-locally, the

composite S3 ea
k ◦ik−→ Gk

e−→ Gk′ −→ Sp(2) has degree u, where u is a unit in Z(2).

Proof
By Lemma 5.5, there is an isomorphism π4(Gk) ∼= π4(S3) ⊕ π4(Ω4

0 Sp(2)). It is
well known that π4(S3) ∼= Z/2Z, and by Lemma 2.2, π4(Ω4

0 Sp(2)) = 0. Thus
π4(Gk) ∼= π4(S3). Further, the homotopy decomposition in Lemma 5.5 implies

that the maps S3 ea
k ◦ik−→ Gk and Gk −→ Sp(2) induce isomorphisms on π4. Similarly,

π4(Gk′ ) ∼= π4(S3), and the map Gk′ −→ Sp(2) induces an isomorphism on π4.
Since e is a homtopy equivalence, it too induces an isomorphism on π4. Thus the

composite S3 ea
k ◦ik−→ Gk

e−→ Gk′ −→ Sp(2) is an isomorphism on π4. Restricting to
5-skeletons, we obtain a self-map γ : S3 −→ S3 which induces an isomorphism
on π4(S3) ∼= Z/2Z. Therefore the degree of γ cannot be divisible by 2. In other
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words, 2-locally γ has degree u, where u is a unit in Z(2). Hence 2-locally e ◦ ea
k ◦ ik

has degree u. �

Now suppose that there is a homotopy equivalence e : Gk −→ Gk′ . Consider the

composite Ck
ea

k−→ Gk
e−→ Gk′ . By Lemma 5.3, the composite S6 sk−→ Ck

ea
k−→ Gk

represents a generator of π6(Gk). Since e is a homotopy equivalence, it induces
an isomorphism in homotopy groups. Thus e ◦ ea

k ◦ sk represents a genera-
tor of π6(Gk′ ). Adjointing the map in Lemma 2.6, there is an epimorphism

π6(Ω4
0 Sp(2))

(Ωbk′ )∗−−−−→ π6(Gk′ ). Thus e ◦ ea
k ◦ sk lifts through Ωbk, giving a homo-

topy commutative square

S6
sk

g′

Ck

e◦ea
k

Ω4
0 Sp(2)

Ωbk′

Gk′

for some map g′ which represents a generator of π6(Ω4
0 Sp(2)) ∼= Z/120Z. Arguing

as for (3), this square induces a homotopy commutative diagram

(4)

S6
sk

g′

Ck

e◦ea
k

A
kπ

λ

S7

ḡ′

Ω4
0 Sp(2)

Ωbk′

Gk′ Sp(2)
∂k′

Ω3
0 Sp(2)

for some map λ, where ḡ′ is the adjoint of g′. Since A has dimension 7, λ factors
through the 7-skeleton of Sp(2), which is A. Thus λ is homotopic to a composite

A
λ′

−→ A
ı−→ Sp(2) for some map λ′.

LEMMA 5.7

The map A
λ′

−→ A is a homotopy equivalence when localized at 2.

Proof
The homotopy pushout defining Ck implies that the composite iA : S3 ik−→ Ck −→
A is the inclusion of the bottom cell. Thus Lemma 5.6 and the homotopy commu-
tativity of the middle square in (4) imply that the composite S3 iA−→ A

λ−→ Sp(2)

has degree u, where u is a unit in Z(2). Therefore the composite S3 iA−→ A
λ′

−→ A
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also has degree u. From this we obtain a homotopy fibration diagram

F

θ

S3
iA

u

A

λ′

F S3
iA

A

which defines the space F and the map θ. A Serre spectral sequence calculation
implies that the 8-skeleton of F is S6. Note that the composite S6 −→ F −→ S3

is f , the attaching map for A. By the Serre exact sequence, when the homo-
topy fibration F −→ S3 −→ A is restricted to 8-skeletons, we obtain a homotopy
cofibration S6 f−→ S3 −→ A. Moreover, when the map of fibration sequences in
the previous diagram is restricted to 8-skeletons, we obtain a map of cofibration
sequences. That is, there is a homotopy cofibration diagram

(5)

S6
f

θ′

S3
iA

u

A

λ′

S6
f

S3
iA

A

where θ′ is the restriction of θ to F8.
Observe that as S3 is an H-space, the group structure in [S6, S3] induced

by the co-H-structure on S6 is the same as that induced by the group structure
on S3. Thus u ◦ f � f ◦ u. Therefore f ◦ (u − θ′) is null homotopic. Let G be the
homotopy fiber of f . The null homotopy for f ◦ (u − θ′) implies that there is a
lift

S6

u−θ′
ψ

G
γ

S6
f

S3

for some map ψ. Observe that in dimensions ≤ 10 the homotopy fibration
G

γ−→ S6 f−→ S3 is identical to the homotopy fibration ΩSp(2)
Ωq−→ ΩS7 −→ S3

because the fibration connecting map ΩS7 −→ S3 is f through dimension 11.
In particular, π6(G) ∼= π6(ΩSp(2)) ∼= Z. Let φ be a generator of π6(ΩSp(2)).
By [MT], Ωq ◦ φ has degree 4 (2-locally). As ψ � nφ for some integer n, we have
γ ◦ ψ � 4n. That is, u − θ′ � 4n. This implies that in mod-2 homology, θ′ and u

induce the same map. Since u is a unit in Z(2), it induces the degree 1 map in
mod-2 homology, and hence so does θ′. Thus when mod-2 homology is applied
to the homotopy cofibration diagram in (5), the 5-lemma implies that (λ′)∗ is an
isomorphism. Hence the 2-local version of Whitehead’s theorem implies that λ′

is a homotopy equivalence. �
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PROPOSITION 5.8

If Gk � Gk′ then (40, k) = (40, k′).

Proof
By Lemma 2.6, if Gk � Gk′ then (10, k) = (10, k′). In particular, (5, k) = (5, k′).
We will show that such a homotopy equivalence also implies that (8, k) = (8, k′).
Hence (40, k) = (40, k′).

Consider the right square in (4),

A
kπ

λ

S7

ḡ′

Sp(2)
∂k′

Ω3
0 Sp(2)

By Lemma 5.7, λ is homotopic to ı up to a self-equivalence of A. Therefore
Proposition 5.1 implies that ∂1 ◦ λ has order 8 (2-locally). By Corollary 2.4, ∂k′ �
k′ ◦ ∂1. Thus ∂k′ ◦ λ has order 8/(8, k′). On the other hand, by Corollary 4.2, the

composite A
kπ−→ S7 ḡ′

−→ Ω3
0 Sp(2) is homotopic to the composite A

ı−→ Sp(2) ∂k−→
Ω3

0 Sp(2). Since ∂k � k ◦ ∂1 and ∂1 ◦ ı has order 8, ∂k ◦ ı has order 8/(8, k).
Thus ḡ′ ◦ kq has order 8/(8, k). Since ∂k′ ◦ λ and ḡ′ ◦ kq are homotopic, they
have the same order. Hence 8/(8, k′) = 8/(8, k), implying that (8, k′) = (8, k), as
asserted. �

Proof of Theorem 1.1
Combine Propositions 5.2 and 5.8. �
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