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Abstract We completely determine the range of Sobolev regularity for the Dirac-
Klein-Gordon system, the quadratic nonlinearDirac equations, and thewave-map equa-
tion to be well posed locally in time on the real line. For the Dirac-Klein-Gordon sys-
tem, we can continue those local solutions in nonnegative Sobolev spaces by the charge
conservation. In particular, we obtain global well-posedness in the space where both the
spinor and scalar fields are only in L2(R). Outside the range for well-posedness, we show
either that some solutions exit the Sobolev space instantly or that the solutionmap is not
twice differentiable at zero.
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1. Introduction

Our primary purpose in this article is to study the Cauchy problem of the Dirac-
Klein-Gordon system (DKG) in one spatial dimension:
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(1.1) DKG

{
(iγ0∂t + γ1∂x)ψ + mψ = φψ,

(∂2
t − ∂2

x + M2)φ = ψ∗γ0ψ,

where ψ(t, x) : R1+1 → C2 is a 2-spinor field, φ(t, x) : R1+1 → R is a scalar field,
m and M are nonnegative mass constants, and ∗ denotes the adjoint (transposed
complex conjugate); γ0 and γ1 are fixed 2 × 2 Hermitian matrices satisfying

(1.2) γjγk + γkγj = 2δj,kI2

for j, k ∈ {0,1}, so that we have (iγ0∂t + γ1∂x)2 = (−∂2
t + ∂2

x)I2. For example,
we can choose γ0 and γ1 from the Pauli matrices:

(1.3) σ0 =
(

0 1
1 0

)
, σ1 =

(
0 −i

i 0

)
, σ2 =

(
1 0
0 −1

)
.

We investigate time-local well-posedness of the Cauchy problem for the above
system with the initial data

(1.4) ψ(0, x) ∈ Ha, φ(0, x) ∈ Hs, ∂tφ(0, x) ∈ Hs−1,

for all possible choices of (a, s) ∈ R2, where Hs = Hs(R) denotes the usual L2

Sobolev space on R. There have been many results on this problem (even
restricted to the one-dimensional case; see [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [15], [19], [20], [21], [22], [23], [25], [26]). Except for some earlier
works, they all exploit the null structure of nonlinearity, estimating the solutions
in the Fourier restriction norms, which allow them to work with rough regularity.
However, the following cases have been left unsolved:

(1) low regularity: a ≤ −1/4,
(2) endpoint: (a, s) = (0,0).

They are concerned, respectively, with the trace to a fixed time slice and the
Sobolev embedding into L∞, both of which are due to the L2 nature of the
space-time norms of the Fourier restriction. We resolve these problems by quite
simple ideas, and thereby completely determine the region of (a, s) where DKG
is locally well posed. By using the L2 conservation of the spinor field, we also
obtain global well-posedness.

THEOREM 1.1

Let (a, s) ∈ R2 satisfy a > −1/2, |a| ≤ s ≤ a + 1. Then DKG is time-locally well
posed in the space (ψ,φ, ∂tφ) ∈ Ha × Hs × Hs−1. If in addition a ≥ 0, then it is
globally well posed.

In particular, DKG is globally well posed in L2 × L2 × H−1. The following two
theorems show that the above local well-posedness is optimal: in the other region
of exponents, it is either ill posed or the solution map (if it exists) is not regular.
On the other hand, the global well-posedness part is not optimal. It is already
proved in [25] that one can go slightly below L2 for ψ (for s ≥ |a| > 0). With
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the improved local well-posedness, we can probably improve the global result as
well, but we do not pursue it here.

THEOREM 1.2

DKG is ill posed if either a > max(0, s) or s > max(a + 1,1/2). More precisely,
there is a local solution (ψ,φ), given by Theorem 1.1 with some different regularity
exponent (a′, s′) in the well-posedness region, which satisfies (ψ(0), φ(0), ∂tφ(0)) ∈
Ha × Hs × Hs−1 but does not stay there for any small t �= 0.

If a > s ≥ 0 or s > a + 1 > 1/2, then we can choose a′ ≤ a and s′ ≤ s, so that we
have ill-posedness at (a, s) by nonexistence. Otherwise, we can choose a sequence
of smooth initial data which converge (in both spaces) to that in the theorem, and
thus we deduce ill-posedness at least by discontinuity of the solution map (from
the initial data at (a, s) to the solution, even in the space-time distributions). In
the remaining region we have the following.

THEOREM 1.3

Let a + s < 0, or let (a, s) = (−1/2,1/2). Then for any small T > 0, the flow
map of DKG : (ψ(0), φ(0), ∂tφ(0)) → (ψ,φ, ∂tφ) cannot be twice differentiable (at
zero) from Ha × Hs × Hs−1 to C([0, T ];Ha × Hs × Hs−1).

Here we consider the second derivative in the sense of Fréchet.

DEFINITION 1.4

Let X,Y be normed spaces. We say that N is twice differentiable at zero from X

to Y if N is a map from a zero neighborhood of X to Y and there exist N ′
0 : X →

Y bounded linear and N ′ ′
0 : X2 → Y bounded symmetric bilinear such that

(1.5)
∥∥∥N(u) − N(0) − N ′

0(u) − 1
2
N ′ ′

0 (u,u)
∥∥∥

Y
= o(‖u‖2

X)

as u → 0 in X . (It is clear that N ′
0 and N ′ ′

0 are unique.)

Theorem 1.3 does not really imply ill-posedness but precludes proofs of well-
posedness by the simple iteration argument. We mention that Holmer [16] had
obtained similar ill-posedness results for the 1-dimensional Zakharov system.

To prove the well-posedness result Theorem 1.1, we give two types of ap-
proach. Both cases are based on the Sobolev spaces on the null coordinates:

(1.6) Hs1
α Hs2

β , (α,β) := (t + x, t − x).

It turns out that the low regularity problem for a ≤ −1/4 consists in transfer from
the space-time Sobolev spaces on the null coordinates to the Sobolev spaces on
each time slice, especially to the initial time, namely, in the trace operator. Let
us explain more details about it.

Solving the Klein-Gordon equation with a given source term is used essentially
to integrate in both the two null directions α and β, which adds one regularity
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to each direction in the Sobolev norms. However, since we are dealing with the
initial data problem, we have to impose some condition at t = 0, which requires
us to take the trace after each integration. Hence if we start with the Sobolev
space with the critical regularity −1/4 in both directions, then we need the trace
in the Sobolev space H−1/4H3/4 or H3/4H−1/4. But the trace operator to t = 0
requires that s1 + s2 > 1/2, and so we need a > −1/4 in this way. Thus the
linear estimate fails at a = −1/4 in the Sobolev spaces Hs1

α Hs2
β , even though the

product estimate in these spaces do not encounter any difficulty at this regularity.
Note that the Sobolev space with a slightly different weight,

(1.7) ‖ 〈ξ〉s0 〈|τ | + |ξ| 〉s1 〈|τ | − |ξ| 〉s2 Ft,xu(τ, ξ)‖L2
τ,ξ

,

suffers essentially the same problem. More precisely, the above trace problem
forces one to choose s1+s2 > 3/2 while reducing s0. Since in the bilinear estimate
the high-high interaction of the Dirac fields getting into low |ξ|- and high |τ |-
frequencies has the order |τ | −2a−2L2

τ,ξ , one needs 2a+2 ≥ s1 + s2 > 3/2, namely,
a > −1/4 (see [26] for a counterexample of the bilinear estimate in the above
norm for a ≤ −1/4).

In our first approach to resolving the above problem, we divide the solution
into the free part and the nonlinear part, and we estimate their contributions
separately in the nonlinear terms. Then we take advantage of the fact that the
null structure works more effectively on the free part while the nonlinear part
has more regularity. Thus the remaining task is reduced to the standard product
estimate and the trace estimate with sufficient regularity. At the endpoint (a, s) =
(0,0), we replace the Sobolev spaces with mixed Lp spaces, but the proof remains
quite elementary. A similar approach was used for the 3D cubic wave equation
in [24].

The second approach is to recover the trace estimate in the lower regularity
by adding to the norm another component, which is L1 in the time Fourier
variable. This approach works except for the endpoint (a, s) = (0,0). It requires
more work to prove the bilinear estimates but not so much regularity of the
nonlinear terms. In particular, it can be applied to other similar equations, for
example, nonlinear Dirac equations with quadratic terms (QD):

(1.8) (iγ0∂t + γ1∂x)ψ + mψ = C(ψ∗γ0ψ),

where ψ : R1+1 → C2, and C is a constant 2 × 2 complex matrix, or the wave
map equation (WM):

(1.9) (∂2
t − ∂2

x)φj =
∑
k,l

g(φ)k,l
j (∂tφk∂tφl − ∂xφk∂xφl),

where φ : R1+1 → RN , N ∈ N, and g : RN → RN3
is a fixed smooth function.*

Now we state our results for QD and WM.

*For regularity of g, it suffices to have g ∈ C2r+1 for some N � r ≥ s (cf. Theorem 4.5.)
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THEOREM 1.5

QD is time-locally well posed for any C in the space ψ ∈ Ha if and only if a >

−1/2. For the ill-posedness, there are some C and a local solution ψ which
satisfies ψ(0) ∈ H−1/2, but ψ(t) �∈ H−1/2 for any small t �= 0.

THEOREM 1.6

WM is time-locally well posed for any N and any g in the space (φ,∂tφ) ∈ Hs ×
Hs−1 if and only if s > 1/2. For the illposedness, there are some g and a local
solution φ which satisfies (φ(0), ∂tφ(0)) ∈ H1/2 × H−1/2, but φ(t) �∈ H1/2 for any
small t �= 0.

The ill-posedness part is essentially known. There have been a few well-posedness
results on QD (see [3], [19], [20]), with the same regularity restriction a > −1/4 .
Here we should remark that Keel and Tao in [17] claimed the local well-posedness
for WM in the space (φ,∂tφ) ∈ Hs × Hs−1 for s > 1/2, but their proof has a gap
for s ≤ 3/4 by the same problem as explained above (see Remark 2.6 for more
details).

We conclude the introduction with some notation used throughout the arti-
cle. We denote the null coordinate and its dual (the Fourier variable) by

(1.10) (α,β) = (t + x, t − x), (μ, ν) =
(τ + ξ, τ − ξ)

2
,

where (τ, ξ) denotes the Fourier variable for (t, x). Hence we have

(1.11) (∂α, ∂β) =
(∂t + ∂x, ∂t − ∂x)

2
, (∂μ, ∂ν) = (∂τ + ∂ξ, ∂τ − ∂ξ).

To switch the coordinates, we use the following convention:

f(α,β)× := f
( (α + β)

2
,
(α − β)

2

)
(=f(t, x)),

(1.12)
g(μ, ν)× := g(μ + ν,μ − ν) (=g(τ, ξ)).

Using (α,β), we can rewrite the system DKG in a simpler form. Choosing
(γ0, γ1) = (σ0, σ1) in (1.3) and putting ψ = (u, v), we get*

2∂αu = i(m − φ)v, 2∂βv = i(m − φ)u,
(1.13)

4∂α∂βφ = −M2φ + 2�(uv).

We denote the Fourier transform in one and two variables, respectively, by

(1.14) ϕ̂(ξ) =
∫

R

ϕ(x)e−ixξ dx, f̃(ξ, η) =
∫ ∫

R2
f(x, y)e−ixξ−iyη dxdy.

*For any pair of Hermitian matrices (γ0, γ1) satisfying (1.2), there is a unitary matrix U

such that U ∗γjU = σj (j = 0,1). Hence (Uψ,φ) satisfies DKG with the above choice (γ0, γ1) =

(σ0, σ1), and so it suffices to treat this special case.
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Then we have in the null coordinate

(1.15) f̃(μ, ν)× =
1
2

∫ ∫
R2

f(α,β)×e−iαμ−iβν dαdβ.

The constant multiple 1/2 plays no role. The Sobolev spaces on these coordinate
systems are defined by the norms

(1.16) ‖ϕ‖Hs
x

= ‖ 〈ξ〉ϕ̂(ξ)‖L2
ξ(R), ‖f ‖H

s1
α H

s2
β

= ‖〈μ〉s1 〈ν〉s2 f̃(μ, ν)× ‖L2
μ,ν(R2),

where 〈x〉 =
√

1 + |x|2. We often abbreviate

(1.17) ‖u‖s1,s2 := ‖u‖H
s1
α H

s2
β

.

We denote the solution for DKG by

(1.18) u(t) :=
(
u(t), v(t), φ(t), ∂tφ(t)

)
and its space by

(1.19) Ha,s := Ha × Ha × Hs × Hs−1.

For the product and trace estimates, we define the following relation between
any three real numbers a, b, c:

(1.20) c ≺ {a, b}

holds true if and only if

(1.21) a + b ≥ 0, c ≤ a, c ≤ b, c ≤ a + b − 1
2
,

and

(1.22) c = a + b − 1
2

=⇒ a + b > 0, c < a, c < b.

The above relation gives the necessary and sufficient condition for the product
estimate in the Sobolev space (see Lemma 2.2).

2. Local well-posedness of DKG: First proof

In this section, we prove the local well-posedness part of Theorem 1.1 separately
in the three cases s > −a, s = −a > 0, and s = −a = 0 by the first approach,
decomposing the solution into the free and the nonlinear parts. We recall that
the second proof does not work at the endpoint s = a = 0.

2.1. Integral equations
First, note that we can make the initial norm and the mass constants m,M as
small as we want by the rescaling

ψ(t, x) �→ λ3/2ψ(λt,λx), φ(t, x) �→ λφ(λt,λx),
(2.1)

m �→ λm, M �→ λM

with λ → +0. The critical exponent is (a, s) = (−1, −1/2), which is quite below
the well-posedness region.
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Next, we recall that we may localize the problem in space-time thanks to
the finite propagation property. More precisely, let χ(x) ∈ C∞(R) be a cutoff
function satisfying

(2.2) χ(−x) = χ(x), χ(x) =

{
1, (|x| ≤ 1),

0, (|x| ≥ 2),

and χT (x) = χ(x/T ) for any T > 0.
For any T > 0 and k ∈ Z, let uk(t) be a solution for |t| < 2T satisfying

(2.3) uk(0) = χ2T (x − kT )u(0).

If we can construct uk(t) by the iteration or the fixed point argument, then the
finite propagation property is inherited from the linear Dirac and Klein-Gordon
equations; hence we have

(2.4) |t| ≤ T, |x − kT | ≤ T =⇒ uk(t, x) = u(t, x).

At any (a, s) ∈ R2, (2.3) and (2.4), respectively, imply that

(2.5)
∑
k∈Z

‖uk(0)‖2
Ha,s ∼ ‖u(0)‖2

Ha,s , ‖u(t)‖2
Ha,s �

∑
k∈Z

‖uk(t)‖2
Ha,s ,

for |t| ≤ T uniformly in T > 0. Hence, for the local well-posedness, it suffices to
solve uk by the iteration argument, and so, after translation in space-time, we
may assume that the initial data is compactly supported around zero.

Next, we rewrite the equations by using the following integral and trace
operators:

Jαf(α,β)× :=
∫ α

0

f(γ,β)× dγ, Jβf(α,β)× :=
∫ β

0

f(α, δ)× dδ,

(2.6)
Rαf(α,β)× := f(0, α), Rβf(α,β)× := f(0, −β).

Let uF , vF , φF denote the free parts of the solution given by

uF = Rβu, vF = Rαv, φF (α,β)× = φ+(α) + φ−(β),
(2.7)

φ±(x) = φ(0, ±x) ±
∫ ±x

0

∂tφ(0, y)dy.

Then the system (1.13) is equivalent to

u(α,β)× = uF + (1 − Rβ)Jα(c1v + c2φv),

v(α,β)× = vF + (1 − Rα)Jβ(c3u + c4φu),(2.8)

φ(α,β)× = φF + (JαJβ − JαRαJβ − JβRβJα)(c5φ + c6uv),

with some complex constants c1–c6, satisfying |c1| + |c3| � m, |c5| � M2. It
suffices to solve its localized version. We consider the system

u = χT (α)[uF + χT (β)Iα(c1v + c2φv)],

v = χT (β)[vF + χT (α)Iβ(c3u + c4φu)],(2.9)
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φ = χT (α,β)[φF + Iα,β(c5φ + c6uv)],

where χT (α,β) := χT (α)χT (β) and the operators Iα, Iβ , Iα,β are defined by

Iα = (1 − Rβ)Jα, Iβ = (1 − Rα)Jβ ,
(2.10)

Iα,β = IαIβ = IβIα = JαJβ − JαRαJβ − JβRβJα.

For the term with Rα, we use the identities

(2.11) χT (α)Jα = χT (α)Jαχ2T (α), χT (α)Rα = RαχT (β).

The following inequality is convenient to dispose of a cutoff in the Fourier
space: for any s,x, y ∈ R, we have

(2.12) 〈x + y〉s � 〈x〉 |s| 〈y〉s
.

2.2. Basic estimates
To solve the above integral equation, we need only estimates for the localized
integrals, the products, and the restrictions in the Sobolev spaces. We state the
first two estimates without proof for they are quite well known.

LEMMA 2.1

Let s > 1/2. Then

(2.13)
∥∥∥χ(x)

∫ x

0

f(t)dt
∥∥∥

Hs
� ‖f ‖Hs−1 .

LEMMA 2.2

Let (a, b, c) ∈ R3. Then we have the bilinear estimate

(2.14) ‖fg‖Hc � ‖f ‖Ha ‖g‖Hb

if and only if c ≺ {a, b}.

For a product with smooth functions, we have the following.

LEMMA 2.3

For any a, b ∈ R and any λ(t, x), we have

(2.15) ‖λu‖Ha
αHb

β
� ‖ 〈τ 〉N 〈ξ〉N

λ̃(τ, ξ)‖M(R2)‖u‖Ha
αHb

β

for any N ≥ |a| + |b|, where M(R2) denotes the Banach space of complex Radon
measures on R2 normed by the total variation.

In particular, this allows multiplication with arbitrary C∞
0 functions of x, t or

(t, x) in Ha
αHb

β .

Proof of Lemma 2.3
The Fourier transform is

(2.16) λ̃u =
∫ ∫

λ̃(τ − σ, ξ − η)ũ(σ, η)dσ dη,
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and by (2.12), we have

(2.17) 〈τ ± ξ〉s � 〈τ − σ〉N 〈ξ − η〉N 〈σ ± η〉s

if N ≥ |s|. Hence we get the desired estimate by Minkowski. �

The following trace estimate is also quite elementary.

LEMMA 2.4

Let a, b, c ∈ R3. Then we have the linear estimate

(2.18) ‖f(x,x)‖Hc
x

� ‖f(x, y)‖Ha
xHb

y

if and only if c ≺ {a, b} and a + b > 1/2.

Proof
The necessity is easily seen by applying the estimate to functions of the forms
f(x, y) = g(x)h(y) and f(x, y) = χT (x)g(x − y) with T � 1, respectively, for c ≺
{a, b} and a + b > 1/2. More precisely, it is reduced to the necessity for the
above product estimate and that for the Sobolev embedding Ha+b(R) ⊂ L∞

loc,
respectively.

For sufficiency, we use the Fourier transform∫
R

e−ixξf(x,x)dx

=
∫

R2
e−ixξf(x, y)δ(x − y)dy dx

(2.19)
=

1
2π

∫
R3

e−ixξ+iη(x−y)f(x, y)dη dy dx

=
1
2π

∫
R

f̃(ξ − η, η)dη.

By setting F (ξ, η) = 〈ξ〉a〈η〉b
f̃(ξ, η), the boundedness is equivalent to the estimate

(2.20)
∥∥∥〈ξ〉c

∫
〈ξ − η〉 −a〈η〉−b

F (ξ − η, η)dη
∥∥∥

L2
ξ

� ‖F ‖L2
ξ,η

.

Applying Schwarz to the integral in η, the left-hand side is bounded by

(2.21)
∫ ∫

|F (ξ − η, η)|2 dη
[∫

〈ξ〉2c〈ξ − η〉 −2a〈η〉−2b
dη
]
dξ.

This is bounded by ‖F ‖2
L2 , provided that the second integral in η is uniformly

bounded in ξ, which is true if a + b > 1/2 and c ≺ {a, b}. �

Combining the above estimates, we obtain the following estimates on the Dirac
and the Klein-Gordon equations.
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LEMMA 2.5

Let s1, s2 ∈ R and T > 0. Then we have the linear estimates

‖χT (α,β)Iαf ‖H
s1
α H

s2
β

� ‖f ‖
H

s1−1
α H

s2
β

,

(2.22)
‖χT (α,β)Iβf ‖H

s2
α H

s1
β

� ‖f ‖
H

s2
α H

s1−1
β

if and only if

(2.23) s1 >
1
2
, s1 ≥ s2, s1 + s2 >

1
2
.

We have the linear estimate

(2.24) ‖χT (α,β)Iα,βf ‖H
s1
α H

s2
β

� ‖f ‖
H

s1−1
α H

s2−1
β

if and only if

(2.25) s1 >
1
2
, s2 >

1
2
, |s1 − s2| ≤ 1, s1 + s2 >

3
2
.

These estimates are essentially known in previous works. Here we are more
concerned with the necessary conditions. (In fact, we do not use (2.24) in our
proof.)

Proof
For the estimate on Iα, we have, by using (2.11) and (2.15),

‖χT (α,β)(1 − Rβ)Jαf ‖H
s1
α H

s2
β

� ‖χT (β)χT (α)Jαf ‖H
s1
α H

s2
β

+ ‖χT (α)RβχT (α)Jαf ‖H
s1
α H

s2
β

(2.26)

� ‖χT (α)Jαf ‖H
s1
α H

s2
β

+ ‖RβχT (α)Jαf ‖H
s2
β

for any s1, s2. Then it is bounded by ‖f ‖
H

s1−1
α H

s2
β

, by Lemmas 2.1 and 2.4, if

(2.27) s1 >
1
2
, s2 ≺ {s1, s2}, s1 + s2 >

1
2
,

which is equivalent to (2.23). The estimate on Iβ is obtained in the same way.
Similarly, the estimate on Iα,β is obtained as follows. We have, by (2.11),

χT (α,β)Iα,βf = χT (α)JαχT (β)Jβf

− χT (β)χT (α)JαRαχ2T (β)Jβf(2.28)

− χT (α)χT (β)JβRβχ2T (α)Jαf.

Hence using Lemmas 2.1, 2.4, and 2.3, we obtain (2.24) if s1 > 1/2, s2 > 1/2,
and

(2.29) s1 − 1 ≺ {s1 − 1, s2}, s2 − 1 ≺ {s1, s2 − 1}, s1 + s2 − 1 >
1
2
,

which are satisfied under the conditions (2.25).
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It remains to check the necessity. For the first estimate, let f = g′(α)h(β)
with g ∈ Hs1 and h ∈ Hs2 . Then f ∈ Hs1−1

α Hs2
β and

(2.30) χT (α,β)Iαf = χT (α,β)g(α)h(β) − χT (α,β)g(−β)h(β),

where the first term on the right-hand side is in Hs1
α Hs2

β . To have the last term
in Hs1

α Hs2
β for all g and h, we need g(−β)h(β) ∈ Hs2 , for which, by Lemma 2.2,

we need s2 ≺ {s1, s2}. This requires s1 > 1/2 and s1 ≥ s2.
To see the remaining condition, let f = g′(t)χ2T (x) with g ∈ Hs1+s2 . Then

‖f ‖
H

s1−1
α H

s2
β

∼ ‖ 〈τ + ξ〉s1−1〈τ − ξ〉s2 ĝ′(τ)χ̂2T (ξ)‖L2
τ,ξ

(2.31)
� ‖ 〈τ 〉s1+s2−1

ĝ′(τ)‖L2
τ

‖〈ξ〉N
χ̂2T (ξ)‖L2

ξ
� ‖g′ ‖Hs1+s2−1 < ∞,

where N ≥ |s1 − 1| + |s2| and we used (2.12). On the other hand, we have

(2.32) χT (α,β)Iαf = χT (α,β)g(t) − χT (α,β)g(0),

where the first term on the right-hand side belongs to Hs1
α Hs2

β by the same
computation as above, while the last term is bounded for g ∈ Hs1+s2 only if
s1 + s2 > 1/2. The necessity for Iβ is seen by the symmetry.

Next, we check the necessity of (2.25). Let

(2.33) f = χ2T (x)g′ ′(t), g ∈ Hs1+s2(R).

Then we have ‖f ‖
H

s1−1
α H

s2−1
β

� ‖g′ ′ ‖Hs1+s2−2 < ∞ as in (2.31), and

χT (α,β)Iα,βf = χT (α,β)
∫ t

0

(t − s)g′ ′(s)ds

(2.34)
= χT (α,β)[g(t) − g(0) − tg′(0)],

which is bounded for g ∈ Hs1+s2 only if s1 + s2 − 1 > 1/2. To see the remaining
conditions, let f = g′(α)h′(β) with g ∈ Hs1 , h ∈ Hs2 , assuming that

(2.35) s1 + s2 >
3
2
, s1 ≤ s2.

Then we have f ∈ Hs1−1
α Hs2−1

β and

(2.36) Iα,βf = g(α)h(β) − g(α)h(−α) −
∫ β

−α

g(−γ)h′(γ)dγ,

where the first term on the right-hand side is bounded in Hs1
α Hs2

β , so is the
second term after the cutoff by χT (β) since (2.35) implies s1 ≺ {s1, s2}. Let
H(x) =

∫ x

0
g(−y)h′(y)dy. Then the last term equals H(β) − H(−α); hence for

the bound (2.24) we need

(2.37) ‖f ‖
H

s1−1
α H

s2−1
β

� ‖χT (α)H(β)‖H
s1
α H

s2
β

� ‖H‖Hs2 � ‖g(−x)h′(x)‖Hs2−1 ,

which requires s2 − 1 ≺ {s1, s2 − 1}, so we need s1 > 1/2 and s1 ≥ s2 − 1. By
symmetry, we also need s2 > 1/2 and s2 ≥ s1 − 1 and thus all of (2.25). �
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REMARK 2.6

The conditions s1 +s2 > 1/2 in (2.23) and s1 +s2 > 3/2 in (2.25) were the source
for the lower bounds on the regularity in the previous works, a > −1/4 for DKG
and QD, s > 3/4 for WM. Here we explain the problem for WM in the context
of [17]. Neglecting some unnecessary computations, we can extract the following
estimate as the essence of their proof (see, e.g., [17, p. 1131])

‖χT (t)Iα,β(∂αφ∂βφ)‖Hs
αHs

β
� ‖∂αφ∂βφ‖Hs−1

α Hs−1
β

(2.38)
� ‖∂αφ‖Hs−1

α Hs
β

‖∂βφ‖Hs
αHs−1

β
� ‖φ‖2

Hs
αHs

β
.

The second inequality follows from (2.14) for s > 1/2, while the last one is trivial.
However, the first inequality requires 2s > 3/2 by (2.25). The example in (2.33)
is sufficient to see this condition. The authors in [17] claimed the above estimates
for all s > 1/2 and claimed more explicitly in [17, Lemma 3.5] that they had

(2.39) ‖χT (t)Iα,βφ‖H
s1
α H

s2
β

� ‖φ‖
H

s1−1
α H

s2−1
β

for all s1, s2 ≥ 1/2, which is far from the correct condition (2.25). The error is in
the second-to-last step of their proof, where they overlooked the region |ξ| � |τ |
for φ. Hence their proof of well-posedness works only for s > 3/4.

2.3. DKG for s + a > 0
First, we prove the local well-posedness of DKG in the subcritical case s+ a > 0.

THEOREM 2.7

Let (a, s) ∈ R2 satisfy

(2.40) a ≤ s ≤ a + 1, s + a > 0, a > − 1
2
.

Then for any initial data u(0) ∈ Ha,s, there exists T = T (‖u(0)‖Ha,s) > 0 such
that (2.9) have a unique solution (u, v,φ) satisfying

u, v ∈ C(Ha), φ ∈ C(Hs), ∂tφ ∈ C(Hs−1),

u ∈ Hn
αHa

β + Hb
αHs

β , v ∈ Ha
αHn

β + Hs
αHb

β ,(2.41)

φ ∈ Hn
αHs

β + Hs
αHn

β + Ha+1
α Ha+1

β

for any n and any b such that b − 1 ≺ {a, s}. The solution is unique if it is in
those spaces for some n and b satisfying (2.42).

REMARK 2.8

We solve the Cauchy problem locally in space-time by the fixed point argument.
Strictly speaking, we thus obtain local bounds on the space-time norms in the
statement (2.41). However, the fixed point argument implies that the space-time
norms are bounded in each localized region by the corresponding localized initial
data. Then taking the �2-sum over the decomposition by the same argument as
in (2.5), we can recover the spatially global norms.
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Proof
We may choose n and b (by increasing it if necessary) such that

(2.42) n > max(|a|, b) + 2, b >
1
2
, b ≥ s(= |s|), b − 1 ≺ {a, s},

thanks to (2.40). Note that b > 1/2 is impossible in the critical case a + s = 0,
which is treated separately.

We estimate the iteration map (u, v,φ) → (u�, v�, φ�) for (2.9) defined by

u� := u0 + u�
1, u0 := χT (α)uF , u�

1 := χT (α,β)Iα(c1v + c2φv),

v� := v0 + v�
1, v0 := χT (β)vF , v�

1 := χT (α,β)Iβ(c3u + c4φu),(2.43)

φ� := φ0 + φ�
1, φ0 := χT (α,β)φF , φ�

1 := χT (α,β)Iα,β(c5φ + c6uv),

in the following function spaces:

u = u0 + u1 ∈ Hb
αHa

β , u0 ∈ Hn
αHa

β , u1 ∈ Hb
αHs

β ,

v = v0 + v1 ∈ Ha
αHb

β , v0 ∈ Ha
αHn

β , v1 ∈ Hs
αHb

β ,(2.44)

φ = φ0 + φ1 ∈ Hs
αHs

β , φ0 ∈ Hs
αHs

β , φ1 ∈ Ha+1
α Ha+1

β .

Since the estimates on the free parts u0, v0, φ0 are trivial, it suffices to esti-
mate u�

1, v�
1, and φ�

1. The estimate on u�
1 is immediate from Lemmas 2.5 and 2.2:

(2.45) ‖χT (α,β)Iα(φv)‖b,s � ‖φv‖b−1,s � ‖φ‖s,s‖v‖a,b,

where we used

(2.46) b >
1
2
, b + s >

1
2
, s ≺ {b, s}, b − 1 ≺ {a, s},

which follows from the assumptions together with (2.42). We obtain the estimate
on v�

1 just by exchanging α and β.
For the estimate on φ�

1, the above argument does not work for lower regu-
larity. Instead, we expand Iα,β by (2.10) and also u and v, depending on the
direction of integrations. The term without restriction is estimated simply by

(2.47) ‖χT (α,β)JαJβuv‖a+1,a+1 � ‖uv‖a,a � ‖u‖b,a‖v‖a,b

since a > −1/2 and a ≺ {a, b}. For the term with Rα, we expand v = v0 + v1 and
use the identities in (2.11) and

(2.48) Rαχ2T (β)Jβ(uv) = vF Rαχ2T (β)Jβ

(
uχT (β)

)
+ Rαχ2T (β)Jβ(uv1),

where we used the fact that vF is independent of β. Then we get

‖χT (α,β)JαRαJβuv‖a+1,a+1

� ‖χ2T (α)RαJβuv‖Ha
α

(2.49)
�
∥∥vF Rαχ2T (β)Jβ

(
uχT (β)

)∥∥
Ha

α

+ ‖Rαχ2T (β)Jβ(uv1)‖Ha
α
.
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The second last term is bounded by using Lemmas 2.2, 2.4, and 2.1:∥∥vF Rαχ2T (β)Jβ

(
uχT (β)

)∥∥
Ha

α

� ‖vF ‖Ha
α

∥∥Rαχ2T (β)Jβ

(
uχT (β)

)∥∥
Hb

α

(2.50)
� ‖v(0)‖Ha

∥∥χ2T (β)Jβ

(
uχT (β)

)∥∥
Hb,a+1

� ‖v(0)‖Ha ‖uχT (β)‖Hb,a � ‖v(0)‖Ha ‖u‖Hb,a ,

where we used

(2.51) a ≺ {a, b}, b ≺ {b, a + 1}, b + a > − 1
2
, a > − 1

2
.

The last term in (2.49) is estimated by

‖Rαχ2T (β)Jβ(uv1)‖Ha
α

� ‖χ2T (β)Jβ(uv1)‖s,a+1 � ‖uv1‖s,a

(2.52)
� ‖u‖b,a‖v1‖s,b,

where we used

a ≺ {s, a + 1}, s + a > − 1
2
, a > − 1

2
, s ≺ {s, b}, a ≺ {a, b}.(2.53)

The estimate for the term with Rβ is obtained in the same way, and thus we
get the desired estimate for φ�.

Therefore we get a unique solution of (2.9) satisfying (2.44) by the iteration
argument. It remains to check the time continuity in (2.41). For u, it suffices to
estimate u1 since u0 ∈ C(Ha) is obvious. We define an operator Pt for any fixed
t ∈ R by the time translation

(2.54) (Ptf)(α,β)× := f(α − t, β − t)×.

By Lemma 2.4, we have a uniform bound for all t,

(2.55) ‖u1(t, x)‖Ha
x

∼ ‖RαPtu1‖Ha
α

� ‖Ptu1‖Hb
αHs

β
= ‖u1‖Hb

αHs
β

< ∞,

and the continuity follows from the fact that Pt → I strongly as t → 0. Thus we
get u ∈ C(Ha). The continuity of v and φ is proved in the same way. For that
of φt, it suffices to show

(2.56) ∂αφ,∂βφ ∈ Ct(Hs−1
x ),

because ∂tφ = ∂αφ+∂βφ. Again we treat only φ1 since φ0 is easy. After expand-
ing Iα,β in ∂αφ1 by (2.10), the term where ∂α hits χT (α) is treated by the same
estimates as for φ�. The other part is given by

RαPtχT (α,β)∂αIα,β(uv) = RαPtχT (α,β)Iβ(uv)

= RαPtχT (α,β)Jβ(uv)(2.57)

− [RαPtχT (α,β)][RαJβ(uv)],

which is estimated in Hs−1
α by the same argument as in (2.50)–(2.52) since s − 1 ≤

a. Thus we have the desired estimate for ∂αφ as well as the continuity. Since the
estimate for ∂βφ is the same, we obtain the property of φt in (2.41). �
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2.4. DKG for s + a = 0 and s > 0
Next, we prove local well-posedness in the critical case where s+a = 0 but s > 0.

THEOREM 2.9

Let (a, s) ∈ R2 satisfy

(2.58) s + a = 0, 0 < s <
1
2
.

Then for any initial data u(0) ∈ Ha,s, there exists T = T (‖u(0)‖Ha,s) > 0 such
that (2.9) have a unique solution (u, v,φ) satisfying

u, v ∈ C(Ha), φ ∈ C(Hs), φt ∈ C(Hs−1),

u ∈ Hn
αHa

β + H1−s
α Hr

β + Hb′

α Hb
β , v ∈ Ha

αHn
β + Hr

αH1−s
β + Hb

αHb′

β ,(2.59)

φ ∈ Hn
αHs

β + Hs
αHn

β + Hb
αHb

β ,

for any n, b < 1 − s, b′ < 1/2, and 0 < r < s. The uniqueness holds for the solution
in those spaces for some n, b, b′, r satisfying (2.60).

Proof
Since s < 1/2 and r < s, we may assume that

(2.60) b′ − s > b − 1
2

> 0, b′ + b + r > 1, b′ + s − r ≥ 1
2

by increasing b, b′, and r if necessary (e.g., let b′ = 1/2 − ε, b = 1 − s − 2ε, and
r = s − ε with ε > 0 sufficiently small).

As in Theorem 2.7, we solve (2.9) by iteration for (2.43) in the following
function spaces:

u = u0 + u1 ∈ Hb′

α Ha
β , u1 ∈ H1−s

α Hr
β + Hb′

α Hb
β ,

v = v0 + v1 ∈ Ha
αHb′

β , v1 ∈ Hr
αH1−s

β + Hb
αHb′

β ,(2.61)

φ = φ0 + φ1 ∈ Hs
αHs

β , φ1 ∈ Hb
αHb

β .

For the estimate on u�
1, we decompose φ and v differently as follows. Let

φ2 := χT (α,β)φ−(β) + φ1 ∈ Hb
αHs

β ,
φ = φ2 + φ3,(2.62)

φ3 := χT (α,β)φ+(α) ∈ Hs
αHb

β ,

where φ± are given in (2.7), and

v = v0 + v1 = v2 + v3, v1 = v′
1 + v3, v2 = v0 + v′

1,
(2.63)

v′
1 ∈ Hr

αH1−s
β , v2 ∈ Ha

αHb
β , v3 ∈ Hb

αHb′

β .

Lemma 2.1 is not applicable to the contribution of φ3v0, so we replace Jα with J̃α

defined by

(2.64) J̃αf = χ2T (α)
∫ α

− ∞
χ2T (γ)f(γ,β)× dγ,



418 Machihara, Nakanishi, and Tsugawa

which is bounded by Ha
αHb

β → Ha+1
α Hb

β for any a, b ∈ R. (It is easy for a ∈ N and
is extended to a ∈ R by duality and interpolation.) We have

(2.65) χT (α,β)Iα = χT (α,β)(1 − Rβ)J̃α,

so we can expand u�
1 as

‖χT (α,β)Iα(φv)‖H1−s
α Hr

β+Hb′
α Hb

β

(2.66)
� ‖χT (α)J̃αφv‖H1−s

α Hr
β+Hb′

α Hb
β

+ ‖RβχT (α)J̃αφv‖Hr
β
.

Lemma 2.4 implies that the last term is absorbed by the preceding one since

(2.67) r ≺ {1 − s, r}, r ≺ {b′, b}, 1 − s + r >
1
2
, b′ + b >

1
2
.

We estimate the main term by using the decompositions (2.62) and (2.63),
Lemma 2.2, and the regularity gain by J̃α,

‖χT (α)J̃αφ3v2‖b′,b � ‖φ3‖s,b‖v2‖ −s,b,

‖χT (α)J̃αφ3v3‖1+s,b′ � ‖φ3‖s,b‖v3‖b,b′ ,
(2.68)

‖χT (α)J̃αφ2v2‖1−s,s � ‖φ2‖b,s‖v2‖ −s,b,

‖χT (α)J̃αφ2v3‖1+b,r � ‖φ2‖b,s‖v3‖b,b′ ,

where we used

(2.69) b >
1
2

> b′ > s > 0, b′ − 1 ≺ {s, −s}, r ≺ {s, b′ }, c ≺ {c, b},

for c = b, s, b′. Thus we obtain

(2.70) ‖χ(α)J̃αφv‖H1−s
α Hr

β+Hb′
α Hb

β
� ‖φ‖Hb

αHs
β+Hs

αHb
β

‖v‖H−s
α Hb

β+Hb
αHb′

β

and the desired estimate for u�. The estimate for v� is the same by the symmetry.
Next, we estimate φ�

1, expanding Iα,β by (2.10). For the part without R∗,
we have, by Lemma 2.1,

‖χT (α,β)JαJβ(uv)‖b,b � ‖uv‖b−1,b−1

(2.71)
� ‖u‖Hb

αH−s
β +Hb′

α Hb
β

‖v‖H−s
α Hb

β+Hb
αHb′

β
,

where we used

(2.72) b > b′ > s > 0, b − 1 ≺ {b′, −s}.

For the term with Rα, we use (2.11) and (2.48). Then we estimate as in (2.49),

‖χT (α,β)JαRαJβuv‖b,b

(2.73)
�
∥∥vF Rαχ2T (β)Jβ

(
uχT (β)

)∥∥
Hb−1

α
+ ‖Rαχ2T (β)Jβ(uv1)‖Hb−1

α
.

The second last term is estimated by Lemma 2.2:

(2.74)
∥∥vF Rαχ2T (β)Jβ

(
uχT (β)

)∥∥
Hb−1

α
� ‖vF ‖H−s

α

∥∥Rαχ2T (β)Jβ

(
uχT (β)

)∥∥
Hb′ ,
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where the last norm is bounded by

(2.75)
∥∥χ2T (β)Jβ

(
uχT (β)

)∥∥
Hb

αH1−s
β +Hb′

α H1+b
β

� ‖u‖Hb
αH−s

β +Hb′
α Hb

β
,

where we used Lemmas 2.4 and 2.1 with b > 1/2 > b′ > s > 0 and

(2.76) b − 1 ≺ {b′, −s}, b′ ≺ {b,1 − s}, b′ ≺ {b′,1 + b}.

The last term in (2.73) is dominated by

‖χ2T (β)Jβ(uv1)‖
H

b′+r−1/2
α Hb

β

(2.77)
� ‖uv1‖

H
b′+r−1/2
α Hb−1

β

� ‖u‖Hb
αH−s

β +Hb′
α Hb

β
‖v1‖Hr

αHb
β+Hb

αHb′
β

,

where we used Lemmas 2.4, 2.1, and 2.2 together with

b − 1 ≺
{

b′ + r − 1
2
, b
}
, b′ + r − 1

2
≺ {b′, r}, b − 1 ≺ {b′, −s},

(2.78)
b >

1
2

> b′ > s > r > 0.

Thus we obtain the desired estimate on φ� and so a unique solution by the
iteration argument.

It remains to check the time continuity in (2.59) by using Pt given in (2.54).
The free parts are easy and so omitted. First, we estimate u1,

(2.79) ‖u1(t, x)‖Ha
x

∼ ‖RαPtu1‖Ha
α

� ‖u1‖H1−s
α Hr

β+Hb′
α Hb

β
,

where we used Lemma 2.4 with the conditions

(2.80) a ≺ {1 − s, r}, a ≺ {b′, b}, r − s > − 1
2
, b′ + b >

1
2
.

Thus we get u1 ∈ Ct(Ha
x). The estimates for v1 and φ1 are similar.

The estimate for ∂tφ ∈ Ct(Hs−1
x ) is reduced to estimates similar to (2.74)–

(2.77) by the same argument as in (2.56)–(2.57). Thus we obtain (2.59). �

2.5. DKG for s = a = 0
Finally, we give local well-posedness at the endpoint s = a = 0.

THEOREM 2.10

For any initial data u(0) ∈ H0,0, there exists T = T (‖u(0)‖H0,0) > 0 such
that (2.9) has a unique solution (u, v,φ) satisfying

u, v ∈ C(L2), φ ∈ C(L2), φt ∈ C(H−1),
(2.81)

u ∈ L2
βL∞

α , v ∈ L2
αL∞

β , φ ∈ L2
βL∞

α + L2
αL∞

β .

Proof
We estimate the iteration map (2.43) in the above function spaces. The bounds
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on the free parts are obvious. For u�
1, we have, by Hölder and Minkowski,

‖χT (α,β)Iα(φv)‖L2
βL∞

α
� ‖χ2T (α,β)φv‖L2

βL1
α

� ‖χ2T (α,β)φ‖L2
αL2

β
‖v‖L∞

β L2
α

(2.82)

�
√

T ‖φ‖L2
βL∞

α +L2
αL∞

β
‖v‖L2

αL∞
β

,

and v�
1 is estimated in the same way. Similarly, for φ�

1,

‖χT (α,β)Iα,β(uv)‖L2
βL∞

α
� ‖χ2T (α,β)uv‖L1

αL1
β

≤ ‖χ2T (α)u‖L2
αL2

β
‖χ2T (β)v‖L2

αL2
β

(2.83)

� T ‖u‖L2
βL∞

α
‖v‖L2

αL∞
β

.

Thus we obtain a unique local solution by iteration.
It remains to show (2.81). For u, we have

(2.84) ‖u(t, x)‖L2
x

≤ ‖ sup
α

u(α, t − x)× ‖L2
x

� ‖u‖L2
βL∞

α
,

and the estimate for v is obtained in the same way; the same is true for φ after
decomposition into pieces in L2

βL∞
α and in L2

αL∞
β . For ∂tφ, it suffices to estimate

∂αφ and ∂βφ. We have

‖∂αφ1‖L∞
t L2

x
� ‖∂αφ1‖L2

αL∞
β +L2

βL∞
α

(2.85)
� ‖χ′

T (α)χT (β)Iα,β(uv)‖L2
βL∞

α
+ ‖χT (α,β)Iβ(uv)‖L2

αL∞
β

,

and then the last term is estimated as in (2.82), and the second last one as
in (2.83). Thus we obtain

(2.86) ‖∂αφ1‖L∞
t L2

x
� ‖u‖L2

βL∞
α

‖v‖L2
αL∞

β
,

and the continuity in (2.81) follows from the strong continuity of time translation
in the completion of C∞

0 (|x| + |t| < 2T ) in each space. �

2.6. Global well-posedness of DKG
Now we prove the global well-posedness part of Theorem 1.1 using the local
estimates obtained in Sections 2.3 and 2.5.

First, we consider the endpoint a = s = 0. We have the charge conservation
‖ψ(t)‖L2

x
= ‖ψ(0)‖L2

x
, and by the energy estimate for the Klein-Gordon equa-

tion,* we have, for any ε > 0 and any 0 < T � 1,

‖φ1(T )‖
H

1/2−ε
x

+ ‖∂tφ1(T )‖
H

−1/2−ε
x

� ‖ψ∗γ0ψ‖L1
t (0,T ;H−1/2−ε)

(2.87)

�
∫ T

0

‖ψ(t)‖2
L2

x
dt � T ‖ψ(0)‖2

L2
x
,

*In the massless case M = 0, we use | sin(t|ξ|)/|ξ| | � |t|.
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where φ1 := φ − φF denotes the nonlinear part. Thus we obtain an a priori bound
on u(t) in H0,0. Since the local existence time is bounded below in terms of the
H0,0-norm, we can extend the solution globally by the standard argument. Thus
we obtain the global well-posedness for a = s = 0.

It remains to show global persistence of regularity. In the following argument,
all norms should be considered locally in time (but without any restriction in
extent). By (2.81), we have also u ∈ L2

βL∞
α , v ∈ L2

αL∞
β , and hence uv ∈ L2

α,β .
Then by the same argument as in Section 2.3, we obtain φ1 ∈ H1

αH1
β ⊂ Ct(H1),

and so ∂tφ1 ∈ Ct(L2). In particular, if u(0) ∈ H0,s for some 0 < s ≤ 1, then
φ ∈ Hs

αHs
β ∩ Ct(Hs) and φt ∈ Ct(Hs−1), which implies global well-posedness at

(0, s).
Next, we consider the case a = s ∈ (0,1]. We already know that the solution

is global in H0,a, and moreover, φ ∈ Ha
αHa

β . This is sufficient for the estimate
on ψ in Section 2.3, and since the equation of ψ is linear in ψ, the estimate does
not blow up. Thus we obtain the global well-posedness in Ha,a for a ∈ [0,1].
Then the estimates in Section 2.3 imply that φ1 ∈ Ha+1

α Ha+1
β ⊂ Ct(Ha+1), and

so ∂tφ1 ∈ Ct(Ha). This gives the global well-posedness in Ha,s for s ∈ [a, a + 1]
as well.

Thus we have obtained global well-posedness in the regions 0 ≤ a ≤ 1 and
a ≤ s ≤ a + 1. We can extend this to k ≤ a ≤ k + 1 for all k ∈ N by induction or
by repeating the argument in the previous paragraph. �

3. Bilinear estimates

In this section we prove bilinear estimates that allow us to prove the local well-
posedness of DKG, QD, and WM. As explained in Remark 2.6, the Sobolev space
Ha

αHb
β is not sufficient by itself for the lower regularity because it fails to con-

trol restriction to a fixed t, which is included in the integral equation. However,
the product or the quadratic nonlinearity actually behaves better. In fact, if we
do not separate the estimate into the product part and the integral part, then
we can still control the restriction even in the lower regularity (except for the
endpoint). Hence if we add the information about the t trace to our norm, then
we can separate the estimate into the product and the integration. The minimal
addition in terms of |ũ| is obviously given by

(3.1) ‖ 〈ξ〉a
ũ‖L2

ξL1
τ

∼ ‖ F −1
t,x |ũ| ‖L∞

t Ha
x
.

Note that the supremum on the right is achieved by the trace to t = 0. We define
Banach space Y s,a,b ⊂ S ′(R2) for any s, a, b ∈ R by the norm

(3.2) ‖f ‖Y s,a,b := ‖ 〈ξ〉s〈τ + ξ〉a〈τ − ξ〉b
ũ‖L2

ξL1
τ
.

This norm has been used to supplement the Xs,b-spaces for b ≤ 1/2 already by
Bourgain [1] for the periodic KdV implicitly and also for the wave equation (the
Zakharov system) in [14] more explicitly.

The following embedding is clear from the Fourier transform:

(3.3) ‖u‖L∞
t Hs

x
� ‖u‖Y s,0,0 (∀s ∈ R),
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and the proof of Lemma 2.4 readily implies the following embedding.

LEMMA 3.1

Let a, b, c, a0, b0 ∈ R3. Then we have the linear estimate

(3.4) ‖u‖Y c,a,b � ‖u‖
H

a0
α H

b0
β

if and only if c ≺ {a0 − a, b0 − b} and a0 + b0 > a + b + 1/2.

Incarnating the Y norm, we can recover the bilinear estimates for DKG, QD,
and WM down to the lowest optimal regularity. For clarity and future use, we
give the linear and bilinear estimates by those norms in more general forms than
needed for the proof of well-posedness.

3.1. Linear estimates for integrals
First, we have the multiplication estimate by smooth functions:

(3.5) ‖λu‖Y s,a,b � ‖ 〈τ 〉N 〈ξ〉N
λ̃(τ, ξ)‖M(R2)‖u‖Y s,a,b

for any N ≥ |s| + |a| + |b|. We omit the proof since it is the same as for (2.15).
We will use two cutoff functions λ(t), λ(t) satisfying

λ,λ ∈ C∞
0 (R), ∃t− < 0 < ∃t+, s.t.

(3.6)
suppλ ⊂ [t−, t+], inf

t−<t<t+
λ(t) > 0.

For the Dirac equation, we have the following.

LEMMA 3.2

Let λ(t), λ(t) be any functions satisfying (3.6). Then for any a ∈ R and any space-
time function u(t, x), we have

‖λ(t)u‖Y a,0,0 � ‖u(0, x)‖Ha + ‖λ(t)∂αu‖Y a,−1,0 ,
(3.7)

‖λ(t)u‖Y a,0,0 � ‖u(0, x)‖Ha + ‖λ(t)∂βu‖Y a,0,−1 ,

and for any s1, s2 ∈ R, we have

‖λ(t)u‖H
s1
α H

s2
β

� ‖λ(t)u‖L2
t H

s2
x

+ ‖λ(t)∂αu‖
H

s1−1
α H

s2
β

,

(3.8)
‖λ(t)u‖H

s1
α H

s2
β

� ‖λ(t)u‖L2
t H

s1
x

+ ‖λ(t)∂βu‖
H

s1
α H

s2−1
β

.

Note that the L2
t H

sj
x -norms are dominated by Y sj ,0,0 because of the cutoff λ(t)

and that there is no restriction on the exponents. Conditions on the exponents
arise when we try to bound the Y -norm by the Sobolev norm, and also to estimate
products.

For the Klein-Gordon equation, we have the following.

COROLLARY 3.3

Let λ(t), λ(t) be any functions satisfying (3.6). Then for any s ∈ R and any
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space-time function w(t, x) we have

‖λ(t)w‖Y s,0,0 + ‖λ(t)(∂tw,∂xw)‖Y s−1,0,0

� ‖w(0, x)‖Hs
x

+ ‖∂tw(0, x)‖Hs−1
x

(3.9)

+ ‖λ(t)(∂2
t − ∂2

x)w‖Y s−1,−1,0∩Y s−1,0,−1 ,

and for any s1, s2, we have

‖λ(t)w‖H
s1
α H

s2
β

� ‖λ(t)w‖
L2

t H
max(s1,s2)
x

+ ‖λ(t)(∂tw,∂xw)‖
L2

t H
max(s1,s2)−1
x

(3.10)
+ ‖λ(t)(∂2

t − ∂2
x)w‖

H
s1−1
α H

s2−1
β

.

We first derive the corollary from the lemma.

Proof
Applying (3.7) to (∂t ± ∂x)w, we get the estimate (3.9) except for the first term
(w itself). For that term, we divide w in frequencies of x:

(3.11) w = wH + wL, ŵL(t, ξ) = χ1(ξ)ŵ(t, ξ).

Then we have

(3.12) ‖λ(t)wH ‖Y s,0,0 ∼ ‖λ(t)∂xwH ‖Y s−1,0,0 � ‖λ(t)∂xw‖Y s−1,0,0 ,

and by using (3.7) again,

‖λ(t)wL‖Y s,0,0 ∼ ‖λ(t)wL‖Y s−1,0,0

� ‖wL(0)‖Hs−1
x

+ ‖λ(t)∂αwL‖Y s−1,−1,0(3.13)

� ‖w(0)‖Hs
x

+ ‖λ(t)∂αw‖Y s−1,0,0 ,

so the bound on w is reduced to that on the other terms, which is already
obtained.

Next, using (3.8) twice, we get

‖λ(t)w‖H
s1
α H

s2
β

� ‖λ̌(t)w‖Y s2,0,0 + ‖λ̌(t)∂αw‖
H

s1−1
α H

s2
β

� ‖λ̌(t)w‖Y s2,0,0 + ‖λ(t)∂αw‖Y s1−1,0,0(3.14)

+ ‖λ(t)∂β∂αw‖
H

s1−1
α H

s2−1
β

,

where we chose an intermediate λ̌(t) ∈ C∞
0 (R) satisfying inft−<t<t+ λ̌(t) > 0 and

(3.15) ∃t′
− < t− < t+ < ∃t′

+, s.t. supp λ̌ ⊂ [t′
−, t′

+], inf
t′

−<t<t′
+

λ(t) > 0.

Since λ̌/λ ∈ C∞
0 (R), we can replace λ̌ with λ in the last line of (3.14) by (3.5). �

Proof of Lemma 3.2
By symmetry, it suffices to show the first line of each group of estimates. Let
v(t, x) = u(t, x + t). Then we have v(0, x) = u(0, x), ∂tv(t, x) = 2∂αu(t, x + t),
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ṽ(τ, ξ) = ũ(τ − ξ, ξ), and so

‖u‖Y s,a,b = ‖ 〈ξ〉s〈τ 〉a〈τ − 2ξ〉b
ṽ‖L2

ξL1
τ
,

(3.16)
‖u‖H

s1
α H

s2
β

= ‖ 〈τ 〉s1 〈τ − 2ξ〉s2 ṽ‖L2
ξL2

τ

by changing τ �→ τ + ξ.
First we prove (3.7), for which it suffices to show, fixing ξ,

(3.17) ‖ F (λv)‖L1
τ

� |v(0)| + ‖〈τ 〉−1F (λvt)‖L1
τ
.

Regarding v as a function of t only, we have

λ(t)v(t) = λ(t)v(0) + λ(t)
∫ t

0

w(s)ds

(3.18)

= λ(t)v(0) + F −1

∫
ŵ(σ)

λ̂(τ − σ) − λ̂(τ)
iσ

dσ,

where w(t) := λ̌(t)vt(t) with a cutoff λ̌(t) ∈ C∞
0 (R) chosen such that

(3.19) t− < t < t+ =⇒ λ̌(t) = 1, inf
t∈supp λ̌

λ > 0.

Hence we have

(3.20) ‖ F (λv)‖L1
τ

� ‖λ̂‖L1
τ

|v(0)| +
∫ ∫

|ŵ(σ)| |λ̂(τ − σ) − λ̂(τ)|
|σ| dσ dτ,

where the last integral is bounded by∫
|σ|>1

|ŵ(σ)|
‖λ̂‖L1

τ

|σ| dσ +
∫ ∫

|σ|<1

∫ 1

0

|ŵ(σ)| |λ̂τ (τ − θσ)| dθ dσ dτ

(3.21)
� (‖λ̂‖L1

τ
+ ‖λ̂τ ‖L1

τ
)‖ 〈σ〉−1

ŵ(σ)‖L1
σ
.

Since λ̌/λ ∈ C∞
0 , we have

(3.22) ‖ 〈τ 〉−1
ŵ(τ)‖L1

τ
� ‖〈τ 〉−1F (λvt)‖L1

τ

by the same argument as in (2.15). Thus we obtain (3.17) and so (3.7).
Next we prove (3.8). We decompose the Fourier transform

〈τ 〉s1 〈τ − 2ξ〉s2 F (λv)

= 〈τ 〉s1 〈τ − 2ξ〉s2χ1(τ)F (λv)(3.23)

+
(
1 − χ1(τ)

) 〈τ 〉
iτ

〈τ 〉s1−1〈τ − 2ξ〉s2 F (λ′v + λvt).

The first term on the right-hand side is bounded by 〈ξ〉s2 | F (λv)| since |τ | � 1 on
the support. Hence its L2

τ,ξ-norm is bounded by

(3.24) ‖λv‖L2
t H

s2
x

∼ ‖λu‖L2
t H

s2
x

� ‖λu‖L2
t H

s2
x

,

where we used λ/λ ∈ C∞
0 (R) and (2.15). The last term in (3.23) is bounded by

〈τ 〉s1−1〈τ − 2ξ〉s2 | F (λvt)| since |τ | � 1 on the support. Hence its L2
τ,ξ-norm is
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bounded by

(3.25) ‖ 〈τ 〉s1−1〈τ − 2ξ〉s2 F (λvt)‖L2
τ,ξ

∼ ‖λuα‖
H

s1−1
α H

s2
β

� ‖λuα‖
H

s1−1
α H

s2
β

,

where we used (2.15) again. It remains to estimate the second last term of (3.23),
bounded by

(3.26) 〈τ 〉s1−1〈τ − 2ξ〉s2 | F (λ′v)|,

for which we use an induction on s1. If s1 + |s2| ≤ 1, then using (2.12) we have

(3.27) 〈τ 〉s1−1〈τ − 2ξ〉s2 � 〈τ 〉s1+|s2|−1〈ξ〉s2 � 〈ξ〉s2 ,

and so the L2-norm of (3.26) is bounded by

(3.28) ‖λ′v‖L2
t H

s2
x

� ‖λu‖L2
t H

s2
x

since suppλ′ ⊂ suppλ; thus we obtain (3.8) for s1 + |s2| ≤ 1. Assume that for
some k ∈ N we have (3.8) for all s1 + |s2| ≤ k, and let s1 + |s2| ≤ k + 1. Then by
the above argument, we have

(3.29) ‖λu‖H
s1
α H

s2
β

� ‖λu‖L2
t Hs2 + ‖λuα‖

H
s1−1
α H

s2
β

+ ‖λ′u‖
H

s1−1
α H

s2
β

.

Since suppλ′ ⊂ suppλ and s1 − 1 + |s2| ≤ k, the last term is bounded by

(3.30) ‖λu‖L2
t H

s2
x

+ ‖λuα‖
H

s1−2
α H

s2
β

by using the assumption. Hence by induction on k ∈ N, we obtain (3.8) for all
s1, s2 ∈ R. �

3.2. Bilinear estimate for product
To close the bilinear estimates for the well-posedness proof, it remains to bound
the Y -norm for product. The following estimate is the main ingredient of this
section.

LEMMA 3.4

Let a1, a2, b1, b2, a, b, s ∈ R satisfy the following conditions: there exist a0, b0 ∈ R

such that

a0 ≺ {a1, a2}, b0 ≺ {b1, b2}, s ≺ {a0 − a, b0 − b},
(3.31)

a1 + b1 > a + b +
1
2
, a2 + b2 > a + b +

1
2
.

Then we have

(3.32) ‖fg‖Y s,a,b � ‖f ‖
H

a1
α H

b1
β

‖g‖
H

a2
α H

b2
β

.

REMARK 3.5

If we derive the above estimate by combining Lemmas 2.2 and 3.1,

(3.33) ‖fg‖Y s,a,b � ‖fg‖
H

a0
α H

b0
β

� ‖f ‖
H

a1
α H

b1
β

‖g‖
H

a2
α H

b2
β

,



426 Machihara, Nakanishi, and Tsugawa

then we need

a0 ≺ {a1, a2}, b0 ≺ {b1, b2}, s ≺ {a0 − a, b0 − b},
(3.34)

a0 + b0 > a + b +
1
2
.

The first three conditions are the same as in (3.31), but the last one is stronger
than the last two of (3.31) because a0 ≤ min(a1, a2) and b0 ≤ min(b1, b2), but
they are not necessarily equal.

REMARK 3.6

The condition (3.31) is almost optimal, but we could still extend it to some of the
borderline cases, where some of the inequalities are replaced with equality. We
do not pursue the optimal condition here because even just stating it could be
very complicated and much more for the proof (one can see below that treating
all the cases in (3.31) is already quite cumbersome), and anyway they would not
contribute to the well-posedness proof.

Proof of Lemma 3.4
By the Fourier transform and the duality argument, and after appropriate linear
changes of coordinates, the desired estimate is reduced to

|T (F,G,ϕ)| � ‖F ‖L2L2 ‖G‖L2L2 ‖ϕ‖L2 ,

T (F,G,ϕ) :=
∫∫∫∫

ζ+ξ+η=0,
ξ+ξ1+ξ2=0,
η+η1+η2=0

wF (ξ1, η1)G(ξ2, η2)ϕ(ζ)dv,(3.35)

w := 〈ζ〉s〈ξ〉a〈η〉b〈ξ1〉 −a1 〈η1〉 −b1 〈ξ2〉 −a2 〈η2〉 −b2

for arbitrary nonnegative functions F (ξ, η), G(ξ, η), and ϕ(ξ), where dv denotes
the volume element on the 4-dimensional hyperplane given by the 3 linear con-
straints in R7. Hence we can arbitrarily choose 4 independent variables to inte-
grate from the 7 variables.

Actually, we choose the 3 smallest variables to optimize the Hölder inequality.
(Here and after, smallness of variables means that in the absolute values.) We
decompose the integral region according to which is the smallest variable in
each constraint. To express such domains in short, we introduce the following
notation. For any variables x, y, z, we denote by [x : y, z] the following constraint:

(3.36) x + y + z = 0 and |x| ≤ min(|y|, |z|).

Then we have |y| ∼ |z|. Moreover, we denote the smallest variables by

(3.37) ζ0 ∈ {ζ, ξ, η}, ξ0 ∈ {ξ, ξ1, ξ2}, η0 ∈ {η, η1, η2}

among each set, and we let m := (ζ0, ξ0, η0). The integral region is decomposed
into 33 = 27 regions corresponding to the combination in m. By using the sym-
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metry under the two exchanges

(ξ, ξ1, ξ2, a, a1, a2) ↔ (η, η1, η2, b, b1, b2),
(3.38)

(ξ1, a1, η1, b1) ↔ (ξ2, a2, η2, b2),

we can reduce the number of domains to be considered. The remaining task is
a rather routine sequence of estimates. In order to treat the critical cases (i.e.,
when we have equalities in (3.31)), we also introduce the L2-norms on dyadic
pieces. For any functions ϕ(ζ), f(ξ, η), and (j, k) ∈ N2, we denote

fj·(η) = ‖f ‖L2
ξ(2j−2−1<|ξ|<2j+2), f·k(ξ) = ‖f ‖L2

η(2k−2−1<|η|<2k+2),

ϕj = ‖ϕ‖L2
ζ(2j−2−1<|ζ|<2j+2),(3.39)

fj,k = ‖f ‖L2
ξ,η(2j−2−1<|ξ|<2j+2,2k−2−1<|η|<2k+2),

and we assign the following dyadic parameters throughout the proof:

|ξ| ∼ 2j , |η| ∼ 2k, |ζ| ∼ 2l, |ξ1| ∼ 2j1 , |ξ2| ∼ 2j2 ,
(3.40)

|η1| ∼ 2k1 , |η2| ∼ 2k2 .

More precisely, j1 is the least positive integer such that |ξ1| ≤ 2j1 , and the other
numbers are defined in the same way.

Now we start with the cases where the 3 smallest variables are independent.
(I): The domain m = (ζ, ξ, η1). By symmetry, (ζ, ξ, η2), (ζ, ξ1, η), and (ζ, ξ2,

η) are also reduced to this case. The above m implies that

|ξ1| ∼ |ξ2| � |ξ| ∼ |η| ∼ |η2| � |ζ| ∨ |η1|,
(3.41)

w ∼ 〈ζ〉s〈ξ〉a+b−b2 〈ξ1〉 −a1−a2 〈η1〉 −b1

in this region, and we choose ξ1, ξ, ζ, η1 as the integral variables. First, we apply
the Schwarz inequality to F and G for the integral in ξ1 on each dyadic piece
2j1 ∼ |ξ1| ∼ |ξ2| � |ξ|. Then we obtain∫∫∫∫

[ζ:ξ,η][ξ:ξ1,ξ2][η1:η,η2]

wFGϕdξ1 dξ dζ dη1

�
∫ ∫ ∫

[ζ:ξ,η][η1:η,η2]

〈ζ〉s〈ξ〉a+b−b2 〈η1〉 −b1(3.42)

×
∑

2j1�|ξ|
2(−a1−a2)j1Fj1·(η1)Gj1·(η2)ϕ(ζ)dξ dζ dη1.

For the integral in ξ, we apply Schwarz to G and 1 on each dyadic piece 2j ∼
|ξ| ∼ |η| ∼ |η2| � |ζ| ∨ |η1|. Then (3.42) is bounded by

�
∫ ∫

R2
〈ζ〉s〈η1〉 −b1

(3.43)
×

∑
2j1�2j�|ζ|∨|η1|

2(1/2+a+b−b2)j−(a1+a2)j1Fj1·(η1)Gj1,jϕdζ dη1.
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Similarly, we apply Schwarz to ϕ and 1 for the integral on 2l ∼ |ζ|, and to F

and 1 on 2k1 ∼ |η1|. Then the above is bounded by

(3.44)
∑

k1∨l≤j+2≤j1+4

2(1/2+s)l+(1/2−b1)k1+(1/2+a+b−b2)j−(a1+a2)j1Fj1,k1Gj1,jϕl.

The exponent on 2 can be rearranged as

k1 ≥ l =⇒ −σ1(j1 − j) − σ2(j − k1) − σ3(k1 − l) − σ4l,

l ≥ k1 =⇒ −σ1(j1 − j) − σ2(j − l) − σ5(l − k1) − σ4k1,

σ1 = a1 + a2,

σ2 = a1 + a2 − 1
2

− a − b + b2,(3.45)

σ3 = a1 + a2 − 1
2

− a − b + b1 + b2 − 1
2
,

σ5 = a1 + a2 − 1
2

− a − b + b2 − s − 1
2
,

σ4 = a1 + a2 − 1
2

− a − b + b1 + b2 − 1
2

− s − 1
2
.

By the assumption, we have σ1 ≥ 0, σ2 ∧ σ3 ≥ a0 + b0 − a − b ≥ 0, and σ5 ∧ σ4 ≥
a0 + b0 − a − b − s − 1/2 ≥ 0. Moreover, we can observe that in each case at most
one coefficient σ∗ can be zero because equality after adding 1/2 implies strict
inequalities in the preceding steps, thanks to the exclusion rule (1.22) in the
product relation. For example, σ5 = 0 implies the exclusion rule for a0 ≺ {a1, a2}
and s ≺ {a0 − a, b0 − b}, and so σ1, σ2 > 0. Thus we can bound the sum (3.44) by

‖Fj1,k1Gj1,jϕl‖�1j1
�2j�2k1

�2l
∼ ‖Fj,k ‖�2j�2k

‖Gj,k ‖�2j�2k
‖ϕl‖�2l

(3.46)
∼ ‖F ‖L2

ξL2
η

‖G‖L2
ξL2

η
‖ϕ‖L2

ξ

by applying Hölder in some appropriate order for each discrete variable. More
precisely, if none of σ∗ vanishes, then we can use Hölder in arbitrary order. If one
of σ∗ vanishes, then we should start with the index among {j, k1, l} for which we
have only one exponential factor. For example, if σ2 = 0, then we should start
with Schwarz in j, but the remaining order is free. Hence (3.44) is bounded by,
for example,

(3.47) ‖W ‖�1k1
�1l �∞

j1
�2j

‖Fj1,k1Gj1,jϕl‖�2k1
�2l �1j1

�2j
� ‖Fj1,k1Gj1,jϕl‖�1j1

�2j�2k1
�2l

,

where W denotes the weight part in (3.44).
(II): The domain m = (ζ, ξ1, η1). This includes the case (ζ, ξ2, η2) by sym-

metry. Here we have

|ξ| ∼ |η| ∼ |ξ2| ∼ |η2| � |ζ| ∨ |ξ1| ∨ |η1|,
(3.48)

w ∼ 〈ζ〉s〈ξ〉a+b−a2−b2 〈ξ1〉 −a1 〈η1〉 −b1 .

Choosing ξ, ξ1, η1, ζ as the integral variables, we want to apply Schwarz inequal-
ity as in case (I). However, in this case we cannot start with the largest variable
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ξ because it is contained in the two variables of the same function G. Thus we
are forced to integrate first on the largest variable among ξ1, η1, ζ , for which we
apply Schwarz to one variable of G and either F or ϕ. Then we apply Schwarz
for the integrals in ξ and the remaining two from ξ1, η1, ζ , to the function 1 and
some of F,G,ϕ. Thus we get∫∫∫∫

[ζ:ξ,η],[ξ1:ξ,ξ2],[η1:η,η2]

wFGϕdξ dξ1 dη1 dζ

�
∑

j1∨k1≤l+2≤j+4

2sl+(1/2−a1)j1+(1/2−b1)k1+(1/2+a+b−a2−b2)jFj1,k1Gj,l

+
∑

k1∨l≤j1+2≤j+4

2(1/2+s)l+(−a1)j1+(1/2−b1)k1+(1/2+a+b−a2−b2)j

(3.49)
× Fj1,k1Gj1,jϕl

+
∑

l∨j1≤k1+2≤j+4

2(1/2+s)l+(1/2−a1)j1+(−b1)k1+(1/2+a+b−a2−b2)j

× Fj1,k1Gj,k1ϕl.

To bound the sum, we rearrange the exponent on 2 as in the previous domain.
For example, if j1 ≤ k1 ≤ l ≤ j, then we can rewrite it as

−σ6(j − l) − σ7(l − k1) − σ8(k1 − j1) − σ4j1,

σ6 = a2 + b2 − a − b − 1
2
, σ7 = a2 + b2 − a − b − s − 1

2
,(3.50)

σ8 = a2 + b1 + b2 − 1
2

− a − b − s − 1
2
,

and by the assumption, we have σ6 > 0, σ7 ∧ σ8 ≥ a0 − a + b0 − b − s − 1/2 ≥ 0.
In the other cases, we get a new coefficient σ9 = a2 + b1 + b2 − a − b − 1/2.

In all cases, the coefficients are all nonpositive and negative except for at
most one of the four, and hence the above sum is bounded, as desired by Hölder,
in the same way as the previous domain.

(III): The domain m = (ζ, ξ2, η1). This covers the case (ζ, ξ1, η2) by sym-
metry. Here we have

|ξ| ∼ |η| ∼ |ξ1| ∼ |η2| � |ζ| ∨ |ξ2| ∨ |η1|,
(3.51)

w ∼ 〈ζ〉s〈ξ〉a+b−a1−b2 〈ξ2〉 −a2 〈η1〉 −b1 .

Choosing ξ, ξ2, η1, ζ as the integral variable, we apply Schwarz as in case (I) to F

and G for the integral in ξ, to G and 1 in ξ2, to F and 1 in η1, and then to ϕ

and 1 in ζ , on each dyadic piece. Thus we obtain∫∫∫∫
[ζ:ξ,η],[ξ2:ξ,ξ1],[η1:η,η2]

wFGϕdξ dξ2 dη1 dζ

(3.52)
�

∑
j2∨k1∨l≤j+2

2(1/2+s)l+(1/2−a2)j2+(1/2−b1)k1+(a+b−a1−b2)jFj,k1Gj2,jϕl.
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Rearranging the exponent on 2 as in domains (I) and (II), we get the following
new coefficients:

σ11 = a1 + b2 − a − b, σ12 = a1 + b2 − a − b − s − 1
2
,

σ13 = a1 + b1 + b2 − 1
2

− a − b,(3.53)

σ14 = a1 + b1 + b2 − 1
2

− a − b − s − 1
2
,

and the summation estimate proceeds just as before.
(IV): The domain m = (ξ, ξ1, η). This includes (ξ, ξ2, η), (η, ξ, η1), and (η, ξ,

η2) by symmetry. We have

|η1| ∼ |η2| � |η| ∼ |ζ| � |ξ| ∼ |ξ2| � |ξ1|,
(3.54)

w ∼ 〈ξ〉a−a2 〈η〉s+b〈ξ1〉 −a1 〈η1〉 −b1−b2 .

Choosing η1, η, ξ, ξ1 as the integral variables, we apply Schwarz to F and G in η1,
to ϕ and 1 in η, to G and 1 in ξ, and then to F and 1 in ξ1, respectively, on
each dyadic piece. Thus we obtain∫∫∫∫

[ξ:η,ζ],[ξ1:ξ,ξ2],[η:η1,η2]

wFGϕdη1 dη dξ dξ1

�
∑

j1≤j+2≤k+4≤k1+6

2(1/2+a−a2)j+(1/2+s+b)k+(1/2−a1)j1−(b1+b2)k1(3.55)

× Fj1,k1Gj,k1ϕk.

We can rearrange the exponent on 2 as

−σ15(k1 − k) − σ16(k − j) − σ8(j − j1) − σ4j1,
(3.56)

σ15 = b1 + b2 ≥ 0, σ16 = b1 + b2 − 1/2 − b − s ≥ b0 − b − s ≥ 0,

and the rest of the argument is the same as before.
(V): The domain m = (ξ, ξ1, η1). By symmetry, we have the same for (ξ, ξ2,

η2), (η, ξ1, η1), and (η, ξ2, η2). Here we have

|ζ| ∼ |η| ∼ |η2| � |η1| ∨ |ξ|, |ξ| ∼ |ξ2| � |ξ1|,
(3.57)

w ∼ 〈ξ〉a−a2 〈η〉s+b−b2 〈ξ1〉 −a1 〈η1〉 −b1 .

Choosing η, η1, ξ, ξ1 as the integral variables, we apply Schwarz to G and ϕ in η,
to F and 1 in η1, to G and 1 in ξ, and to F and 1 in ξ1. Thus we obtain∫∫∫∫

[ξ:η,ζ],[ξ1:ξ,ξ2],[η1:η,η2]

wFGϕdη dη1 dξ dξ1

�
∑

j1≤j+2,j∨k1≤k+2

2(1/2+a−a2)j+(s+b−b2)k+(1/2−a1)j1+(1/2−b1)k1(3.58)

× Fj1,k1Gj,kϕk.
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The exponent is rearranged as follows. If j1 � j � k1, then

(3.59) −σ17(k − k1) − σ16(k1 − j) − σ8(j − j1) − σ4j1,

where

(3.60) σ17 := b2 − b − s ≥ b0 − b − s ≥ 0.

If j1 � k1 � j, then

(3.61) −σ17(k − j) − σ7(j − k1) − σ8(k1 − j1) − σ4j1,

and if k1 � j1 � j, then

(3.62) −σ17(k − j) − σ7(j − j1) − σ5(j1 − k1) − σ4k1.

In any case, we can bound the sum as in the previous domains.
(VI): The domain m = (ξ, ξ2, η1). From it the symmetry generates the cases

(ξ, ξ1, η2), (η, ξ1, η2), (η, ξ2, η1). Here we have

|ζ| ∼ |η| ∼ |η2| � |η1| ∨ |ξ|, |ξ| ∼ |ξ1| � |ξ2|,
(3.63)

w ∼ 〈ξ〉a−a1 〈η〉s+b−b2 〈ξ2〉 −a2 〈η1〉 −b1 .

Choosing η, η1, ξ, ξ2 as the integral variables, we obtain, in the same way as above,∫∫∫∫
[ξ:η,ζ],[ξ2:ξ,ξ1],[η1:η,η2]

wFGϕdη dη1 dξ dξ2

�
∑

j2≤j+2,j∨k1≤k+2

2(1/2+a−a1)j+(s+b−b2)k+(1/2−a2)j2+(1/2−b1)k1(3.64)

× Fj2,kGj,k1ϕk.

The exponent is rearranged as

j2 � j � k1 =⇒ −σ17(k − k1) − σ16(k1 − j) − σ13(j − j2) − σ4j2,

j2 � k1 � j =⇒ −σ17(k − k1) − σ12(j − k1) − σ13(k1 − j2) − σ4j2,(3.65)

k1 � j2 � j =⇒ −σ17(k − j) − σ12(j − j2) − σ5(j2 − k1) − σ4k1,

and so we can bound the sum as before.
Next we consider those cases where m is linearly dependent.
(VII): The domain m = (ζ, ξ, η). The symmetry does not produce any other

case from it. Here we have

|ζ| � |ξ| ∼ |η| �
{

|ξ1| ∼ |ξ2|,
|η1| ∼ |η2|,

(3.66)
w ∼ 〈ζ〉s〈ξ〉a+b〈ξ1〉 −a1−a2 〈η1〉 −b1−b2 .

Choosing η1, ξ1, ξ, ζ as the integral variables, we apply Schwarz to F and G for
the integrals in η1 and ξ1, and we simply integrate 1 for the integral in ξ, and
then apply Schwarz to ϕ and 1 in ζ , on each dyadic piece. Then we get∫∫∫∫

[ζ:ξ,η],[ξ:ξ1,ξ2],[η:η1,η2]

wFGϕdη1 dξ1 dξ dζ(3.67)



432 Machihara, Nakanishi, and Tsugawa

�
∑

l≤j+2≤j1+4≤k1+6

2(1/2+s)l+(1+a+b)j−(a1+a2)j1−(b1+b2)k1

× Fj1,k1Gj1,k1ϕl.

The exponent is rearranged as

(3.68) −σ15(k1 − j) − σ1(j1 − j) − σ3(j − l) − σ4l,

and the function part is bounded in

‖Fj1,k1Gj1,k1ϕl‖�1k1
�1j1

�2l �∞
j

� ‖Fj1,k1 ‖�2j1
�2k1

‖Gj1,k1 ‖�2j1
�2k1

‖ϕl‖�2l
(3.69)

∼ ‖F ‖L2
ξ,η

‖G‖L2
ξ,η

‖ϕ‖L2
ξ
.

Hence we need exponential decay factors only for j and l. Here σ3 > 0 or σ4 > 0,
but we may have σ15 = σ1 = 0. In that case, σ3 > 0 and σ4 > 0, so we start with
Schwarz in j. Otherwise, we start with Schwarz in l. The remaining argument
is the same as before.

(VIII): The domain m = (ξ, ξ, η1). The symmetry reduces (ξ, ξ, η2), (η, ξ1,

η), and (η, ξ2, η) to this case. Here we have

|ξ1| ∼ |ξ2|, |η2| ∼ |η| ∼ |ζ| � |η1|, |ξ2| ∧ |ζ| � |ξ|,
(3.70)

w ∼ 〈ζ〉s+b−b2 〈ξ〉a〈ξ2〉 −a1−a2 〈η1〉 −b1 .

Choosing ξ2, ζ, η1, ξ as integral variables, we apply Schwarz to F and G in ξ2, to G

and ϕ in ζ , to F and 1 in η1, and then simply integrate 1 in ξ. Thus we obtain∫∫∫∫
[ξ:ζ,η],[ξ:ξ1,ξ2],[η1:η,η2]

wFGϕdξ2 dζ dη1 dξ

�
∑

j≤(l∧j2)+2,k1≤l+2

2(s+b−b2)l+(1+a)j−(a1+a2)j2+(1/2−b1)k1(3.71)

× Fj2,k1Gj2,lϕl.

The exponent is rearranged as

k1 � j =⇒ −σ1(j2 − j) − σ17(l − j) − σ5(j − k1) − σ4k1,
(3.72)

k1 � j =⇒ −σ1(j2 − j) − σ17(l − k1) − σ16(k1 − j) − σ4j,

while the function part belongs to �1j�
1
j2

�2k1
�∞
j . Hence we can bound the sum as

in the previous domain.
(IX): The domain m = (ξ, ξ, η). The case m = (η, ξ, η) is the same by sym-

metry. Here we have

|η1| ∼ |η2| � |η| ∼ |ζ|
|ξ1| ∼ |ξ2|

}
� |ξ|,

(3.73)
w ∼ 〈ξ〉a〈η〉s+b〈ξ1〉 −a1−a2 〈η2〉 −b1−b2 .
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Choosing η2, ξ1, η, ξ as integral variables, we apply Schwarz to F and G in η2 and
ξ1, to ϕ and 1 in η, and then simply integrate 1 in ξ. Then we get∫∫∫∫

[ξ:ζ,η],[ξ:ξ1,ξ2],[η:η1,η2]

wFGϕdη2 dξ1 dη dξ

�
∑

j≤(k∧j1)+2,k≤k2+2

2(1+a)j+(1/2+s+b)k−(a1+a2)j1−(b1+b2)k2(3.74)

× Fj1,k2Gj1,k2ϕk.

The exponent is rearranged as

(3.75) −σ1(j1 − j) − σ15(k2 − k) − σ16(k − j) − σ4j,

and the function part belongs to �1j1�
1
k2

�2k�∞
j . Hence we can bound the sum as in

the previous domains. �

4. Well-posedness by bilinear estimates

In this section, we prove the local well-posedness for DKG, QD, and WM by using
the bilinear estimates derived in Section 3.

4.1. Local well-posedness for DKG
First, we give another proof of Theorem 1.1 except for (a, s) = (0,0), stating it
for the iteration map. The actual proof is immediate by the standard fixed point
theorem after the rescaling argument in Section 2.1.

THEOREM 4.1

Let s > 0, a > −1/2, a + 1 ≥ s ≥ |a|. We take b as follows:

(4.1) b =

⎧⎪⎪⎨⎪⎪⎩
a + 1 − ε (s = 1/2),

1/2 − ε (a + s = 0),

min{a + 1, a + s + 1/2} (otherwise),

where ε > 0 is a sufficiently small number satisfying ε < min{1/2, a + 1/2, s}.
Assume that u ∈ Hb

αHa
β ∩ Y a,0,−1, v ∈ Ha

αHb
β ∩ Y a,−1,0, φ ∈ Hs

αHs
β ∩ Y s−1,0,0,

and u(0) ∈ Ha,s. Let (u�, v�, φ�) be given by

u� = uF + Iα(c1v + c2φv), v� = vF + Iβ(c3u + c4φu),
(4.2)

φ� = φF + Iα,β(c5φ + c6uv),

using the same notation as in (2.43). Then for any T > 0, we have

‖χT (t)u�‖Hb
αHa

β ∩Y a,0,0

� ‖u(0)‖Ha
x

+ |c1| ‖v‖Y a,−1,0∩Ha
αHb

β
+ |c2| ‖φ‖Hs

αHs
β

‖v‖Ha
αHb

β
,

‖χT (t)v�‖Ha
αHb

β ∩Y a,0,0

� ‖v(0)‖Ha
x

+ |c3| ‖u‖Y a,0,−1∩Hb
αHa

β
+ |c4| ‖φ‖Hs

αHs
β

‖u‖Hb
αHa

β
,(4.3)
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‖χT (t)φ�‖Hs
αHs

β ∩Y s,0,0 + ‖χT (t)(∂tφ
�, ∂xφ�)‖Y s−1,0,0

� ‖φ(0)‖Hs
x

+ ‖∂tφ(0)‖Hs−1
x

+ |c5| ‖φ‖Y s−1,0,0∩Hs−1
α Hs−1

β

+ |c6| ‖u‖Hb
αHa

β
‖v‖Ha

αHb
β
.

Note that the coefficients c1–c6 are determined as in (1.13) from the original
Dirac-Klein-Gordon system such that |c1| + |c3| � m and |c5| � M2.

Proof
Note that b > 1/2 if a+s > 0. We first estimate u�. The estimate on v� is the same
by symmetry. Thanks to Lemmas 3.2 and 3.4, we have only to find a0, b0 ∈ R

such that

b − 1 ≺ {s, a}, a ≺ {s, b},

a0 ≺ {s, a}, b0 ≺ {s, b}, a ≺ {a0 + 1, b0},(4.4)

2s > − 1
2
, a + b > − 1

2
.

We can choose a0, b0 as follows:

(4.5) a0 = b − 1, b0 =

⎧⎪⎪⎨⎪⎪⎩
1/2 (s = 1/2),

s − ε (a + s = 0),

s (otherwise).

Then the inequalities in the second line of (4.4) hold, while the others follow from
the assumptions.

Using (3.7), we get

(4.6) ‖χT (t)u�‖Y a,0,0 � ‖u(0)‖Ha
x

+ ‖c1v + c2φv‖Y a,−1,0 ,

and the last term is bounded by using (3.32) together with the condition (4.4):

(4.7) |c1| ‖v‖Y a,−1,0 + |c2| ‖φ‖Hs
αHs

β
‖v‖Ha

αHb
β
.

Similarly, we get from (3.8),

(4.8) ‖χT (t)u�‖Hb
αHa

β
� ‖χ2T (t)u�‖Y a,0,0 + ‖c1v + c2φv‖Hb−1

α Ha
β
.

The second last term satisfies the same estimate as (4.6), and the last term is
bounded by using (2.14) together with (4.4) and the fact that b − 1 ≤ a ≤ b:

(4.9) |c1| ‖v‖Ha
αHb

β
+ |c2| ‖φ‖Hs

αHs
β

‖v‖Ha
αHb

β
.

Note that we could use the product estimate under the stronger condition (3.34)
in the above argument since a0 + b0 > −1/2. The difference from the weaker
condition (3.31) appears in the following estimate on φ�.

For the estimate on φ�, we have only to find a0, b0 ∈ R such that

s − 1 ≺ {a, b},

a0 ≺ {a, b}, b0 ≺ {a, b},(4.10)
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s − 1 ≺ {a0 + 1, b0}, s − 1 ≺ {a0, b0 + 1},

a + b > −1/2.

We can choose a0, b0 as follows:

(4.11) a0 = b0 =

⎧⎪⎪⎨⎪⎪⎩
b − 1 (s = 1/2),

a − ε (a + s = 0),

a (otherwise).

Then the inequalities in the second line also hold, while the others follow from
the assumption.

By (3.9), we get

‖χT (t)φ�‖Y s,0,0 + ‖χT (t)(∂tφ
�, ∂xφ�)‖Y s−1,0,0

(4.12)
� ‖φ(0)‖Hs

x
+ ‖∂tφ(0)‖Hs−1

x
+ ‖c5φ + c6uv‖Y s−1,−1,0∩Y s−1,0,−1 ,

and the last term is bounded by using (3.32) together with the condition (4.10):

(4.13) � |c5| ‖φ‖Y s−1,0,0 + |c6| ‖u‖Hb
αHa

β
‖v‖Ha

αHb
β
.

Note that if we used (3.34), then we would need

(4.14) a0 + b0 > − 1
2
,

which requires a > −1/4 since a0 ≤ a. Thus we encounter the essential advantage
of (3.31).

Similarly, we have from (3.10),

‖χT (t)φ�‖Hs
αHs

β
� ‖χ2T (t)φ�‖Y s,0,0 + ‖χ2T (t)(∂tφ

�, ∂xφ�)‖Y s−1,0,0

(4.15)
+ ‖c5φ + c6uv‖Hs−1

α Hs−1
β

,

where the Y -norms are bounded in the same way as (4.12), while the last term
is estimated by using (3.32) together with the condition (4.10):

(4.16) � |c5| ‖φ‖Hs−1
α Hs−1

β
+ |c6| ‖u‖Hb

αHa
β

‖v‖Ha
αHb

β
.

�

4.2. Local well-posedness of QD
Now we prove Theorems 1.5 and 1.6. We state them in iteration form.

THEOREM 4.2

Let a > −1/2. Assume that u ∈ Ha+1
α Ha

β ∩ Y a,0,0, v ∈ Ha
αHa+1

β ∩ Y a,0,0, u(0, x) ∈
Ha, and v(0, x) ∈ Ha. Define u�(t, x), v�(t, x) by

u� = uF + Iα(c3v + c7uv),
(4.17)

v� = vF + Iβ(c5u + c8uv)
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using the same notation as in (2.43) and some constants c7, c8 ∈ C. Then for
any T > 0, we have

‖χT (t)u�‖Ha+1
α Ha

β ∩Y a,0,0 � ‖u(0)‖Ha
x

+ |c3| ‖v‖Y a,−1,0∩Ha
αHa

β

+ |c7| ‖u‖Ha+1
α Ha

β
‖v‖Ha

αHa+1
β

,

(4.18)
‖χT (t)v�‖Ha

αHa+1
β ∩Y a,0,0 � ‖v(0)‖Ha

x
+ |c5| ‖u‖Y a,0,−1∩Ha

αHa
β

+ |c8| ‖u‖Ha+1
α Ha

β
‖v‖Ha

αHa+1
β

.

Proof
By (3.7), we have

(4.19) ‖χT (t)u�‖Y a,0,0 � ‖u(0)‖Ha
x

+ ‖c3v + c7uv‖Y a,−1,0 ,

and the last term is bounded by

(4.20) |c3| ‖v‖Y a,−1,0 + |c7| ‖u‖Ha+1
α Ha

β
‖v‖Ha

αHa+1
β

,

where we used (3.32) together with the conditions

(4.21) a ≺ {a, a + 1}, a + a + 1 > − 1
2
,

which follow from a > −1/2. Similarly, from (3.8) we have

(4.22) ‖χT (t)u�‖Ha+1
α Ha

β
� ‖χ2T (t)u�‖Y a,0,0 + ‖c3v + c7uv‖Ha

αHa
β
,

and the first term on the right is estimated in the same way as above, while the
last term is bounded by

(4.23) |c3| ‖v‖Ha
αHa

β
+ |c7| ‖u‖Ha+1

α Ha
β

‖v‖Ha
αHa+1

β
,

where we used (2.14) and the condition a ≺ {a, a + 1}. The estimates for v� are
done in the same way by symmetry. �

4.3. Local well-posedness of WM
It is convenient to rewrite WM in a system similar to QD for u := ∂βφ and
v := ∂αφ. The nonlinear term is given by

(4.24) g(φ)(u, v) :=
( N∑

k,l=1

g(φ)k,l
j ukvl

)
j=1,...,N

,

and WM is rewritten by

u = uF + Iα

(
g0 + g�(φ�)

)
(u, v),

φ� = Jβu|α=0 + Jαv,(4.25)
v = vF + Iβ

(
g0 + g�(φ�)

)
(u, v),

where g0 and g� are defined by

(4.26) g0 = g
(
φ(0,0)

)
, g� = g

(
φ(0,0) + φ�)− g

(
φ(0,0)

)
.

Obviously φ is reconstructed by φ = φ(0,0) + φ�.
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The initial data for u, v are made small in Hs−1 by scaling,* and the estimate
on φ� is trivial from Lemma 2.1 after the space-time localization as in Section 2.1
(where the point (0,0) should be shifted to the center of each spatial localization).
Hence the only new ingredient (compared with QD) is the multiplication by
g�(φ�), for which we need the following lemmas.

LEMMA 4.3

Let 1/2 < s ≤ r ∈ N, N ∈ N, g ∈ C2r(RN ;R), and g(0) = 0. Then we have, for
any space-time function u : R2 → RN ,

(4.27) ‖g(u)‖Hs
αHs

β
� C(‖u‖Hs

αHs
β
)‖u‖Hs

αHs
β
,

where C is a nondecreasing continuous function determined by g and s.

The estimate on the difference follows from this together with the mean value
theorem and the algebraic property of Hs

αHs
β if g ∈ C2r+1:

‖g(u0) − g(u1)‖Hs
αHs

β

≤
∫ 1

0

‖g′(uθ)(u0 − u1)‖Hs
αHs

β
dθ

(4.28)

≤
∫ 1

0

[
‖g′(uθ) − g′(0)‖Hs

αHs
β

+ |g′(0)|
]

‖u0 − u1‖Hs
αHs

β
dθ

≤ C(‖u0‖Hs
αHs

β
+ ‖u1‖Hs

αHs
β
)‖u0 − u1‖Hs

αHs
β
,

where uθ := (1 − θ)u0 + θu1.
The next lemma is a multiplier property of Hs

αHs
β on the Y s−1-space.

LEMMA 4.4

Let s > 1/2 and Zs := Hs−1
α Hs−1

β ∩ Y s−1,−1,0 ∩ Y s−1,0,−1. Then we have, for
any space-time functions f(t, x) and u(t, x),

(4.29) ‖fu‖Zs � ‖f ‖Hs
αHs

β
‖u‖Zs .

Using them, we get the well-posedness of WM by iteration for localized (4.25).

THEOREM 4.5

Let 1/2 < s ≤ r ∈ N and g ∈ C2r+1(RN → RN3
). Assume that u ∈ Hs

αHs−1
β ,

v ∈ Hs−1
α Hs

β , φ ∈ Hs
αHs

β , and u(0, x), v(0, x) ∈ Hs−1. Let u�, v�, φ� be given by

u� = uF + Iα

(
g0 + g�(φ�)

)
(u, v),

v� = vF + Iβ

(
g0 + g�(φ�)

)
(u, v),(4.30)

φ� = χT (α,β)[Jβu|α=0 + Jαv],

*We avoided scaling φ(0) in Hs, whose low-frequency part is not scaled in a good way.
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where uF , vF are the same as in (2.43), and g0, g
� are given by (4.26) for a

prescribed φ(0,0). Then for any T > 0, we have

‖χT (t)u�‖Hs
αHs−1

β ∩Y s−1,0,0 + ‖χT (t)v�‖Hs−1
α Hs

β ∩Y s−1,0,0 + ‖φ�‖Hs
αHs

β ∩Y s,0,0

� ‖u(0)‖Hs + ‖v(0)‖Hs + ‖u‖Hs
αHs−1

β
+ ‖v‖Hs−1

α Hs
β

(4.31)

+ C(‖u‖Hs
αHs−1

β
+ ‖v‖Hs−1

α Hs
β
)‖u‖Hs

αHs−1
β

‖v‖Hs−1
α Hs

β
,

where C is a nondecreasing continuous function determined by T , φ(0,0), g,
and s.

Proof
By the same argument as for (4.18), we have

(4.32) ‖χT (t)u�‖Y s−1,0,0∩Hs
αHs−1

β
� ‖u(0)‖Hs−1 +

∥∥(g0 + g�(φ�)
)
(u, v)

∥∥
Zs ,

where the last term is bounded by

(4.33)
N∑

j,k,l=1

(
|gk,l

0,j | + ‖g�(φ�)k,l
j ‖Hs

αHs
β

)
‖ukvl‖Zs ,

where we used Lemma 4.4. The estimate on φ� is simpler. Then the norm of
g�(φ�) is estimated by Lemma 4.3, and the last factor is bounded by

(4.34) ‖uk ‖Hs
αHs−1

β
‖vl‖Hs−1

α Hs
β
,

where we used (2.14) and (3.32). �

Now we have only to prove the lemmas.

Proof of Lemma 4.3
We first consider the case 1/2 < s < 1. Then r ≥ 1, and so g ∈ C2. By Plancherel
or by the standard argument in the usual Besov space, it is easy to see that the
following norm is equivalent to Hs

αHs
β :

(4.35) ‖2js+ksδj
+δk

−u‖L2
j,k,t,x(N2×R2) +

∑
±

‖2jsδj
±u‖L2

j,t,x(N×R2) + ‖u‖L2
t,x(R2),

where δj
± are the difference operators defined by

(4.36) δj
±u(t, x) = u(t + 2−j , x ± 2−j) − u(t, x).

For ‖g(u)‖Hs
αHs

β
, we estimate only the first component of (4.35) since the others

are easier. The double difference can be rewritten as

(4.37) δj
+δk

−g(u) =
∫ ∫

[0,1]2
∂p∂qg

(
U j,k(p, q)

)
dpdq,

where U j,k is defined by

(4.38) U j,k(p, q) := u + pδj
+u + qδk

−u + pqδj
+δk

−u.
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Then we can expand it by using the derivatives of g,

(4.39) δj
+δk

−g(u) =
∫ ∫

[0,1]2
g′ ′(U)UpUq + g′(U)Upq dpdq,

where we omit the superscripts j, k and

(4.40) Up = δj
+[u + qδk

−u], Uq = δk
−[u + pδj

+u], Upq = δj
+δk

−u.

By the Sobolev embedding Hs
αHs

β ⊂ L∞
t,x, we may assume that g′ and g′ ′ are

bounded (on the convex hull of the image of u). Then

‖2js+ksδj
+δk

−g(u)‖L2
j,k,t,x

� ‖2jsδj
+u‖�2jL2

αL∞
β

‖2ksδk
−u‖�2kL∞

α L2
β

(4.41)

+ ‖2js+ksδj
+δk

−u‖L2
j,k,t,x

,

where the implicit constant depends on the bound of g′ ′ and g′. By the Sobolev
embedding Hs(R) ⊂ L∞, we have

(4.42) ‖2jsδj
+u‖�2jL2

αL∞
β

+ ‖2ksδk
−u‖�2kL∞

α L2
β

� ‖u‖Hs
αHs

β
.

Thus we obtain the desired estimate for 1/2 < s < 1. The case s = 1 is easy by

(4.43) ‖uα‖L2
αL∞

β
+ ‖uβ ‖L∞

α L2
β

� ‖u‖H1
αH1

β
.

We can extend the desired estimate to higher s by induction. Suppose that it
holds for 1/2 < s ≤ k ∈ N. Then for k < s ≤ k + 1, we have

(4.44) ‖g(u)‖Hs
αHs

β
�

1∑
p,q=0

‖∂p
α∂q

βg(u)‖Hs−1
α Hs−1

β
.

We estimate the right-hand side only for p = q = 1 since the other terms are
easier:

‖∂α∂βg(u)‖Hs−1
α Hs−1

β

= ‖g′ ′(u)uαuβ + g′(u)uαβ ‖Hs−1
α Hs−1

β

(4.45)
� ‖g′ ′(u)‖Hk

αHk
β

‖uα‖Hs−1
α Hs

β
‖uβ ‖Hs

αHs−1
β

+ ‖g′(u)‖Hk
αHk

β
‖uαβ ‖Hs−1

α Hs−1
β

,

where we used the product estimate (2.2). Since g′ ′, g′ ∈ C2r−2 and 2r − 2 ≥ 2k,
by the assumption we have g′ ′(u), g′(u) ∈ Hk

αHk
β . Thus the desired estimate is

extended to s ≤ k + 1, and so by induction we obtain it for all s > 1/2. �

Proof of Lemma 4.4
The estimate on the Hs−1

α Hs−1
β -component is immediate from the product esti-

mate (2.2), so it remains to estimate the Y -components, which are stronger than
the Hs−1

α Hs−1
β -norm only if s ≤ 3/4 (because of the embedding Lemma 3.1) and
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only in the Fourier region { |τ | � 〈ξ〉 }, because in the complement we have∥∥〈ξ〉s−1(〈τ − ξ〉−1 + 〈τ + ξ〉 −1)ũ
∥∥

L2
ξL1

τ (|τ |�〈ξ〉)

�
∑

±
‖ 〈τ ± ξ〉s−1〈τ ∓ ξ〉 −1

ũ‖L2
ξL1

τ (|τ |�〈ξ〉, ±τξ>0)(4.46)

� ‖ 〈τ ± ξ〉s−1〈τ ∓ ξ〉s−1
ũ‖L2

ξL2
τ
,

where in the last step we used Schwarz in τ and the fact that s > 1/2.
We are going to show that∥∥∥∫ ∫

R2
I dσ dη

∥∥∥
L2

ξL1
τ (K)

� ‖f ‖Hs
αHs

β
‖u‖Zs ,

(4.47)
I := 〈τ 〉−1〈ξ〉s−1

f̃(τ − σ, ξ − η)ũ(σ, η), K :=
{

|τ | � 〈ξ〉
}
,

for 1/2 < s < 1. We divide the integral of I into 4 regions. In the region where
〈σ〉 � 〈τ 〉 and 〈ξ〉 � 〈η〉, the above estimate is trivial from Minkowski since the
weight is transferred to ũ and f̃ ∈ L1

τL1
ξ .

In the region D1 := { 〈σ〉 � 〈τ 〉, 〈ξ〉 � 〈η〉 }, we have

(4.48) |τ − σ| ∼ |σ| � |τ | � 〈ξ〉 � 〈ξ − η〉 + 〈η〉.

Let F := 〈τ + ξ〉s〈τ − ξ〉s
f̃ and G := 〈τ 〉 −1〈ξ〉s−1

ũ. Then we have

(4.49) ‖F ‖L2
ξL2

τ
∼ ‖f ‖Hs

αHs
β
, ‖G‖L2

ξL1
τ

∼ ‖u‖Zs ,

and

|I| � 〈τ 〉−1〈ξ〉s−1〈σ〉 −2s〈σ〉〈ξ〉1−s
F (τ − σ, ξ − η)G(σ, η)

(4.50)
� 〈τ 〉−2s

F (τ − σ, ξ − η)G(σ, η).

Hence by Hölder and Young,∥∥∥∫ ∫
D1

I dσ dη
∥∥∥

L2
ξL1

τ (K)
� ‖ 〈τ 〉 −2s‖L2

ξ,τ (K)‖F ∗ G‖L∞
ξ L2

τ

(4.51)
� ‖F ‖L2

ξ,τ
‖G‖L2

ξL1
τ

∼ ‖f ‖‖u‖.

In the region D2 := { 〈σ〉 � 〈τ 〉, 〈η〉 � 〈ξ〉 }, we have

(4.52)
∑

±
|τ − σ ± ξ ∓ η| � |ξ − η| ∼ |η| � 〈ξ〉,

and so

(4.53) |I| � 〈ξ〉 −s
∑

±
〈τ − σ ± ξ ∓ η〉 −s

F (τ − σ, ξ − η)G(σ, η).

Then by Hölder and Young,∥∥∥∫ ∫
D2

I dσ dη
∥∥∥

L2
ξL1

τ (K)
� ‖ 〈ξ〉 −s‖L2

ξ

∥∥∥G ∗
∑

±
〈τ ± ξ〉 −s

F
∥∥∥

L∞
ξ L1

τ

(4.54)
� ‖G‖L2

ξL1
τ

∥∥∥∑
±

〈τ ± ξ〉 −s
F
∥∥∥

L2
ξL1

τ

� ‖f ‖‖u‖.
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In the region D3 := { 〈σ〉 � 〈τ 〉, 〈η〉 � 〈ξ〉 }, we have

(4.55)
∑

±
|τ − σ ± ξ ∓ η| ∼ |τ − σ| + |ξ − η| ∼ |σ| + |η| ∼

∑
±

|σ ± η|.

Let ν1 := min± |τ − σ ± ξ ∓ η| and ν2 := min± |σ ± η|. Then we have in K,

(4.56) 〈ν2〉 � 〈ν1〉 + |τ | + |ξ| � 〈ν1〉 + 〈τ 〉.

Let H := 〈τ + ξ〉s−1〈τ − ξ〉s−1
ũ. Then we have ‖H‖L2

ξL2
τ

� ‖u‖Hs−1
α Hs−1

β
, and

|I| � 〈τ 〉−1〈ξ〉s−1〈|σ| + |η|〉1−2s〈ν1〉 −s〈ν2〉1−s
F (τ − σ, ξ − η)H(σ, η)

(4.57)
� 〈τ 〉−2s〈ξ〉s−1[1 + 〈ν1〉 −s〈τ 〉1−s]F (τ − σ, ξ − η)H(σ, η).

Using Hölder and Young as in the previous domains, we obtain∥∥∥∫ ∫
D3

I dσ dη
∥∥∥

L2
ξL1

τ (K)
� ‖ 〈τ 〉 −2s〈ξ〉s−1‖L2

ξL1
τ (K)‖F ∗ H‖L∞

ξ L∞
τ

+ ‖ 〈τ 〉1−3s〈ξ〉s−1‖L2
ξ,τ (K)

∥∥∥H ∗
∑

±
〈τ ± ξ〉 −s

F
∥∥∥

L∞
ξ L2

τ

(4.58)

� ‖F ‖L2
τ,ξ

‖H‖L2
τ,ξ

� ‖f ‖‖u‖.

�

5. Ill-posedness results

In this section, we prove the ill-posedness results. We use the estimates in the pre-
vious arguments for the well-posedness, as well as the notation.

5.1. Instant exit for DKG
We start with ill-posedness by instantaneous exit, Theorem 1.2 for DKG, which
is caused by unbalanced regularity. In the following, all estimates should be
understood locally in space-time by the finite propagation property. As before,
we denote the free solutions by uF , vF , φF and the remaining part by u1 = u − uF ,
v1 = v − vF , and φ1 = φ − φF .

5.1.1. DKG for a > max(s,0)
In this case, the regularity of φ is too low for u and v. First we consider the case
a > s > 0. Then by the well-posedness in Hs,s and the proofs in the previous
sections, we have

u ∈ Hb
αHs

β , v ∈ Hs
αHb

β , φ ∈ Hs
αHs

β ,
(5.1)

φ1 ∈ Hs+1
α Hs+1

β , Iα(φ1v) ∈ Hs+1
α Hb

β , Iβ(φ1u) ∈ Hb
αHs+1

β ,

where b satisfies (2.42), and so the last three terms are bounded in L∞
t,x by the

Sobolev embedding. For any ϕ ∈ Hs, we can choose the initial data of φ such
that φF = ϕ(β). Then we have

(5.2) φ,u ∈ Lp
βL∞

α , |Iβ(φF u)(t, x)| � |t|δ,
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where p > 2 is such that Hs ⊂ Lp, and δ = 2(1/2 − 1/p) > 0. Hence we have
‖v1‖L∞

t,x
< 1/2 for small t. Now we choose the initial data of v to be smooth and 1

for |x| < 1. Then we have vF (t, x) = 1, and hence v(t, x) > 1/2 if |t| + |x| < 1 and
t � 1. Then in this region we have

(5.3) Iα(φ0v) = ϕ(β)V, V := Iαv,

v ∈ Hs
αHb

β , and Re[v(t, x)]> 1/2. Therefore we have

(5.4) V ∈ Hs+1
α Hb

β ↪→ L∞
t Hb

x, |V (t, x)| >
t

2
.

Hence we can divide Iα(φ0v) by V (α,β)×, which implies that the regularity of
Iα(φ0v) cannot be better than that of ϕ(β). Thus if we choose ϕ �∈ Ha, then
Iα(φ0v) �∈ Ha

x for any t �= 0 (all in the region |t| + |x| < 1). Since the other part
of u1 is more regular, this implies that u(t) instantly exits the space Ha

x .
The above implies the ill-posedness for s ≤ 0 < a as well because we can

choose s′ ∈ (0, a) and initial data in Ha,s′ ⊂ Ha,s such that u instantly exits Ha;
hence the solution is not in Ha,s either.

5.1.2. DKG for s > max(a + 1,1/2)
In this case, the regularity of u and v is too low for φ. We may restrict the region
to a + 2 > s > a + 1 > 1/2 by the same reasoning as in Section 5.1.1.

We caution that this case is not as simple as the one in Section 5.1.1 because
it is not so easy to isolate the leading term in the sense of regularity. Indeed,
the leading term is heuristically obvious (uF IαvF or vF IαuF ), but the previous
arguments give only the same regularity for the remainder terms.

To overcome this difficulty, we exploit the following two peculiar properties
of singularity at zero (of a continuous function):

(1) square smoothing : the square is more regular than that of a nonzero
singularity, or that given by the product estimate;

(2) robustness: the singularity is not removed by multiplication with a
nonzero continuous function, even if the latter has the same or less regular-
ity. (Nonzero singularity, by contrast, can be canceled by multiplication with an
irregular function.)
We need only some special cases. More precisely, we use the following.

LEMMA 5.1

Let p > −1/2, and assume that f : R → C satisfies

(5.5) f(x) =

⎧⎪⎪⎨⎪⎪⎩
|x|p (0 ≤ x < 1),

0 (x < 0, x > 2),

smooth (|x| > 1
2 )

and g : R → C satisfies inf0<x<ε |g(x)| > 0 for some ε > 0. Then for any s <

p + 1/2, we have f ∈ Hs(R) but fg /∈ Hp+1/2(R).
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Proof
Let l be the maximal integer less than p + 1/2, and let l < s < p + 1/2. We
estimate f by the difference norm

(5.6) ‖f ‖2
Hs ∼ ‖f ‖2

L2 +
∫ ∞

0

t−2(s−l)‖δt∂
l
xf(x)‖2

L2
x(R)

dt

t
,

where the difference operator δt is defined by δtf(x) = f(x + t) − f(x). Since
∂l

xf(x) ∼ ± max(0, x)p−l around x = 0 and p − l > −1/2, we have f, ∂l
xf ∈ L2.

Hence it suffices to bound the integral for 0 < t < 1 in (5.6). Then the L2
x-norm

is bounded by

‖δt∂
l
xf(x)‖L2

x(|x|�t) + ‖δt∂
l
xf(x)‖L2

x(t�|x|<3)

(5.7)
� ‖ |x|p−l‖L2

x(|x|�t) + ‖ |x|p−l−1t‖L2
x(t�|x|<3) � tp−l+1/2(1 + | log t|),

and so the integral in (5.6) is bounded because s < p + 1/2.
Next, we estimate fg by the difference norm. Let p + 1/2 ≤ m ∈ N. Then

‖fg‖2
Hp+1/2 �

∫ ∞

0

t−2(p+1/2)‖δm+1
t (fg)(x)‖2

L2
dt

t
(5.8)

�
∫ ε

0

t−2p−1‖δm+1
t (fg)(x)‖2

L2
dt

t
=:
∫ ε

0

t−2p−1I(t)
dt

t
.

For 0 < t < ε, we have

I(t) �
∫ −mt

−(m+1)t

∣∣(fg)
(
x + (m + 1)t

)
− (m + 1)(fg)(x + mt) + · · ·

∣∣2 dx

=
∫ −mt

−(m+1)t

∣∣(fg)
(
x + (m + 1)t

)∣∣2 dx(5.9)

=
∫ t

0

|(fg)(x)|2 dx � μ2t2p+1,

where μ := inf0<x<ε |g(x)| > 0. Hence we conclude that

(5.10) ‖fg‖2
Hp+1/2 � μ2

∫ ε

0

dt

t
= ∞.

�

Now we start the proof for a + 2 > s > a + 1 > 1/2. By the previous argument
for the well-posedness in Ha,a+1 ⊃ Ha,s � u(0), we have

(5.11) u1, v1, φ ∈ Ha+1
α Ha+1

β ⊂ L∞
t,x.

By choosing v(0) ∈ Ha+1
x , we may assume in addition that v ∈ Ha+1

α Ha+1
β . Then

we get u1v ∈ Ha+1
α Ha+1

β , and so Iα,β(u1v) ∈ Ha+2
α Ha+2

β ⊂ Ct(Hs). Hence it
suffices to show that Iα,β(uF v) �∈ Hs for any small t > 0. We frequently use the
commutators

(5.12) [Iα, f(β)] = [Iβ , f(α)] = 0, [∂β , Iα] = Rβ .
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We expand it by partial integration and the equation of v,

Iα,β(uF v) = Iβ [uF V ] = wV − Iβ [w∂βV ]

= wV − Iβ

[
w
(
Iα(φ′u) + Rβv

)]
(5.13)

= wV − Iβ [wuF Φ] − Iβ [w(Iαφ′u1 + Rβv)],

where V := Iαv, φ′ = c3 + c4φ, Φ = Iαφ′, and w := IβuF =
∫ β

−α
u(0, −δ)dδ. We

expect that wV is the leading term, and we can dispose of the last term by
appropriate choice of the initial data. However, the previous arguments do not
give any better regularity to the other term Iβ [wuF Φ] than the whole expression
Iβ [uF V ] since we know only that Φ ∈ Ha+2

α Ha+1
β .

Here we use wuF = ∂β(w2/2) and “square smoothing”: we choose p ∈ R such
that

(5.14) 2p +
5
2

> s > p +
3
2

> a + 1 >
1
2
,

and we define the initial data of u by

(5.15) u(0, x) := U ′
0(x), U0(x) := χ(x)| min(x,0)|p+1.

Then uF = U ′
0(−β), w = U0(α) − U0(−β), and from the condition of a, s, p,

(5.16) u(0) ∈ Ha, U0(−β) �∈ Hs
x, U0(−β)U ′

0(−β) ∈ H∞
α Hs−1

β ,

for all t ∈ R. Hence

(5.17) Iβ [wuF Φ] = U0(α)Iβ [uF Φ] + Iβ [U0(−β)U ′
0(−β)Φ],

and the last term is in Hs
αHs

β . This “square smoothing” does not work for the
other term, but it is supported on {α ≤ 0}, so that we can neglect it by restricting
the region to x, t > 0. Similarly, the last term in (5.13) becomes

Iβ [w(Iαφ′u1 + Rβv)]
(5.18)

= U0(α)Iβ [Iαφ′u1 + Rβv] + Iβ [U0(−β)(Iαφ′u1 + Rβv)],

where the last term is bounded in Ha+2
α Ha+2

β , while the other term can be
neglected by restricting to x, t > 0. In short, we have obtained

(5.19) φ1 = U0(−β)V + (α ≤ 0) + (s · s),

where (α ≤ 0) denotes any function supported on α ≤ 0, and (s · s) denotes any
function in Hs

αHs
β .

Now we claim that φ1 is as rough as U0(−β) in the region α = t + x > 0.
Since we know only that V ∈ Ha+2

α Ha+1
β , we cannot simply divide φ1 by V as

in the previous case. Instead*, we use the “robustness” of the zero singularity of
U0(−β). By the same argument as in the previous case, we can make |V (t, x)| >

*Alternatively, we can estimate U0(−β)V by an expansion and a partial integration for V
similar to those for φ1, where singularity of V is diminished when multiplied with U0(−β) by

the square smoothing.
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t/2 for small t > 0. Then, since U0(−β) = max(t − x,0)p around x = t, Lemma 5.1
implies that φ1 �∈ Hs

x for small t > 0.
The above ill-posedness is immediately extended to the region s > max(a +

1,1/2) because we can choose a′ ≥ a satisfying 1/2 < a and s + 1 < a′ < s + 2,
and then initial data in Ha′,s ⊂ Ha,s, such that φ instantly exits Hs; hence the
solution is not in Ha,s either. Thus we conclude the proof of Theorem 1.2.

5.2. Irregular flow map for DKG
Next, we consider the remaining region for DKG, where the solution map is not
twice differentiable. First, we recall that the second derivative at zero of the
solution map is given by the second iterate.

LEMMA 5.2

Let B1 ⊂ B2 ⊂ B3 be Banach spaces with dense embeddings, and let L : B1 → B3

be a bounded linear map such that etL is a C0-semigroup on each Bj . Let N

be twice differentiable at zero from B2 to B3, and let ‖N(ϕ)‖B2 = o(‖ϕ‖B1) as
ϕ → 0. Suppose that the equation ut = Lu + N(u) is “locally well posed in B1”;
that is, for some T > 0 and for any small ϕ ∈ B1 there exists u ∈ C([0, T ];B1)
satisfying u(0) = ϕ, the above equation in B3 for 0 < t < T , and ‖u‖L∞(0,T ;B1) =
O(‖ϕ‖B1) as ϕ → 0.

Then the map U : ϕ �→ u is twice differentiable at zero from B1 to C([0, T ];
B3), and

(5.20) U ′
0(ϕ)(t) = etLϕ, U ′ ′

0 (ϕ,ϕ)(t) =
∫ t

0

e(t−s)LN ′ ′
0 (esLϕ, esLϕ)ds.

Here one should think of sufficiently regular spaces B1 and B2 embedded into
the space B3, where we want to investigate the second derivative, for example,
B = Hsj with s1 � s2 � |s3| + 1.

Proof
Integrating the equation, we have

(5.21) u(t) = etLϕ +
∫ t

0

e(t−s)LN
(
u(s)
)
ds in B3.

Since ‖N(u(s))‖B2 = o(‖u(s)‖B1) = o(‖ϕ‖B1) and etL is bounded in B2, we have

(5.22) u(t) = etLϕ + o(‖ϕ‖B1) in B2.

Similarly, the second term in (5.21) is expanded in B3 by using the derivatives
of N :

u(t) = etLϕ +
1
2

∫ t

0

e(t−s)LN ′ ′
0

(
u(s), u(s)

)
ds + o(‖u‖2

L∞(0,T ;B2)
)

(5.23)

= etLϕ +
1
2

∫ t

0

e(t−s)LN ′ ′
0 (esLϕ, esLϕ)ds + o(‖ϕ‖2

B1
) in B3,

where in the second step we used (5.22). �
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Next, we show that the mass terms (and more generally bounded terms) can be
neglected in investigating the second derivative of the flow maps.

LEMMA 5.3

In addition to the assumption of Lemma 5.2, let M be a linear operator bounded
on B2 and B3. Suppose that the equation

(5.24) vt = Lv + Mv + N(v)

is also locally well posed in B1, and let V denote its flow map. Let T > 0 be such
that both equations have solutions on [0, T ].

Then V ′ ′
0 : B2

3 → L∞(0, T ;B3) bounded if and only if U ′ ′
0 : B2

3 → L∞(0, T ;B3)
bounded.

Proof
By the symmetry, it suffices to show the “if” part. By Lemma 5.2, V is twice
differentiable at zero from B1 to C([0, T ];B3). We define u0, u1, v0, v1, v2 by

u0 = U ′
0(ϕ), u1 = U ′ ′

0 (ϕ,ϕ), v0 = V ′
0(ϕ), v1 = V ′ ′

0 (ϕ,ϕ),
(5.25)

v2(t) =
∫ t

0

e(t−s)LN ′ ′
0

(
v0(s), v0(s)

)
ds.

Then by Lemma 5.2 together with the Duhamel formula, we have

v0 = u0 +
∫ t

0

e(t−s)LMv0(s)ds,

(5.26)

v1 = v2 +
∫ t

0

e(t−s)(L+M)Mv2(s)ds.

Hence it suffices to bound v2, which we expand by inserting the formula for v0:

v2 = u1 + 2
∫ t

0

∫ s

0

e(t−s)LN ′ ′
0

(
e(s−r)LMv0(r), u0(s)

)
dr ds

(5.27)

+
∫ t

0

∫ s

0

∫ s

0

e(t−s)LN ′ ′
0

(
e(s−r1)LMv0(r1), e(s−r2)LMv0(r2)

)
dr1 dr2 ds.

The second term on the right-hand side equals, by change of variable s �→ s + r,

2
∫ t

0

∫ t−r

0

e(t−s−r)LN ′ ′
0

(
esLMv0(r), e(s+r)Lϕ

)
dsdr

(5.28)

= 2
∫ t

0

U ′ ′
0

(
Mv0(r), u0(r)

)
(t − r)dr,

and the last term of (5.27) equals, by a similar change of variable,

2
∫ t

0

∫ r1

0

∫ t−r1

0

e(t−s−r1)LN ′ ′
0

(
esLMv0(r1), e(s+r1−r2)LMv0(r2)

)
dsdr2 dr1

(5.29)

= 2
∫ t

0

∫ r1

0

U ′ ′
0

(
Mv0(r1), e(r1−r2)LMv0(r2)

)
(t − r1)dr2 dr1.
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Hence v2 is bounded in B3 if U ′ ′
0 : B2

3 → B3 bounded. �

Proof of Theorem 1.3
Thanks to Lemmas 5.2 and 5.3, it suffices to give a bounded sequence of initial
data for which the second iterate is unbounded in the massless case. The second
iterate is given by using the free solutions

u(1) = uF + c2Iα(φv), v(1) = vF + c4Iβ(φu),
(5.30)

φ(1) = φF + c6Iα,β(uv),

where c2, c4, c6 ∈ C are the same constants as in (2.8).
First, in the case a + s < 0, we choose initial data with a parameter N → ∞

such that the free parts take the forms

(5.31) uF = 0, vF = v0(x + t), φF = φ0(x + t),

and u(1)(t) is unbounded for N → ∞ at any small t > 0. The Fourier transform
of u(1) is given by

û(1)(t, ξ) = c2

∫ t

0

e−iξ(t−s) ̂(φ0v0)(x + s)ds

=
c2

2π

∫ t

0

e−itξ+2isξ ds φ̂0 ∗ v̂0(5.32)

=
c2 sin(2tξ)

2πξ
φ̂0 ∗ v̂0.

We put

(5.33) φ̂0(ξ) = 〈ξ〉 −s
χ1(ξ + N), v̂0(ξ) = 〈ξ〉 −a

χ1(ξ − N).

Then we have ‖φ0‖Hs + ‖v0‖Ha � 1, and by (5.32),

‖u(1)(t)‖Ha
x

� ‖û(1)(t)‖L1
ξ(|ξ|≤1)

(5.34)

�
∫ 1

−1

t dξ

∫ N+1

N −1

dη 〈ξ − η〉 −s〈η〉−a ∼ tN −a−s

for 0 < t � 1 � N , which is unbounded as N → ∞, as desired.
We next consider the case (a, s) = (−1/2,1/2). For any small t0 > 0, we

choose initial data such that the free parts take the forms

(5.35) uF = u0(x − t), vF = v0(x + t), φF = 0,

and φ(1)(t0) is unbounded as N → ∞. The Fourier transform of φ(1) is

φ̂(1)(t, ξ) =
∫ t

0

sin(t − s)ξ
ξ

̂u0(x − s)v0(x + s)ds

=
∫ t

0

∫
sin(t − s)ξ

2πξ
û0(ξ − η)e−is(ξ−η)v̂0(η)eisη dη ds(5.36)
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=
∫ ∫ t

0

eitξeis(2η−2ξ) − e−itξeis(2η)

4iπξ
ds û0(ξ − η)v̂0(η)dη

=
∫

1
8πξ

[
eitξ e2it(η−ξ) − 1

ξ − η
+ e−itξ e2itη − 1

η

]
û0(ξ − η)v̂0(η)dη.

We put

û0(ξ) = χN (ξ − N2)N1/2,
(5.37)

v̂0(ξ) =
N∑

j=1

χπ/4

(
t0ξ − (2j − 1)π

)
(logN)−1/2.

Then for 0 < t0 � 1 � N , we have

‖u0‖H−1/2 � N −1+1/2‖χN ‖L2 ∼ 1,
(5.38)

‖v0‖2
H−1/2 � (logN)−1

∫ 2Nπ/t0

π/(4t0)

dξ

ξ
∼ 1,

and

‖φ(1)(t0)‖H1/2 � N1/2‖φ̂(1)(t0)‖L1
ξ(|ξ−N2|<N)

� N(logN)−1/2

∫ N2+N

N2−N

dξ

ξ

N∑
j=1

∫
dη

η
χπ/4

(
t0η − (2j − 1)π

)
(5.39)

∼ (logN)1/2 → ∞.

�

5.3. Instant exit for QD and WM
Finally, we prove the ill-posedness part of Theorems 1.5 and 1.6 by instant exit
for QD and WM in the special cases of coefficients. This is due to some algebraic
structure of these equations and is essentially known, at least for the wave maps
(see [18], [17]). Here we give a full proof for the following massless QD for
u = (u+, u−):

(5.40) (∂t ± ∂x)u± = u+u−.

For any free wave solution w, u± := (wt ∓ wx)/(1 ∓ w) solves equation (5.40) in
the region w �= 1. If w is in the form w = ϕ(x + t) − ϕ(x − t), then we have

(5.41) u±(t, x) =
2ϕ′(x ∓ t)

1 ∓ ϕ(x + t) ± ϕ(x − t)
, u±(0, x) = 2ϕ′(x).

It suffices to give a ϕ satisfying ϕ′ ∈ H−1/2 and u /∈ H−1/2 for any t > 0. We set

(5.42) ϕ(x) = −χ(x) log
∣∣log |x|

∣∣
for some χ ∈ C∞

0 (R) satisfying χ(x) = 1 for |x| < e−2 and χ(x) = 0 for |x| > e−1.
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PROPOSITION 5.4

The function ϕ of (5.42) is in H1/2.

REMARK 5.5

One may wonder if Φ = χ(x) log |x| belongs to H1/2 or not. The answer is No,
since the derivative contains the singularity

(5.43) χ(x)
1
x

/∈ H−1/2,

which is clear by the Fourier transform. This fact is used again in the proof of
Proposition 5.6.

Proof of Proposition 5.4
Since ϕ ∈ L2 is obvious, it suffices to bound the following part of formula (5.6):

(5.44)
∫ e−2

0

t−1‖δtϕ‖2
L2

x

dt

t
.

If the difference operator δt hits χ, the estimate it easy. So we investigate only
the term χδt log | log |x| |. Since |δtf(−x − t)| = |δtf(x)| if f(x) = f(|x|), we may
restrict the L2

x-norm to the region x > −t/2. In the region x > t/2, we bound
the difference by the derivative

(5.45)
∥∥δt log

∣∣log |x|
∣∣∥∥2

L2(x>t/2)
�
∫ ∞

t/2

t2 dx

x2(log |x|)2 � t| log t| −2.

In the region |x| < t/2, we have |x| < |x + t| < 1, and so log |x| < log |x + t| < 0.
By using that log |1 + α| ≤ α for α > 0, we estimate∣∣δt log | log |x| |

∣∣ = ∣∣∣log
log |x|

log |x + t|

∣∣∣= ∣∣∣log
[
1 +

log |x/(x + t)|
log |x + t|

]∣∣∣
(5.46)

≤
∣∣∣ log |x/(x + t)|

log |x + t|

∣∣∣� ∣∣∣ log |x/t|
log t

∣∣∣.
Hence we have

(5.47)
∥∥δt log

∣∣log |x|
∣∣∥∥2

L2(|x|<t/2)
�
∫

|x|<t/2

| log |x/t| |2
| log t|2 dx � t| log t| −2.

Thus (5.44) is finite. �

PROPOSITION 5.6

The functions u± defined by (5.41) and (5.42) are not in H
−1/2
x for any small

t > 0.

Proof
Since u−(t, x) = −u+(t, −x), it suffices to check u+. Fix 0 < t < e−2/2. We
investigate the denominator of (5.41) in the region −e−2 < x − t < x + t < e−2,

g(x) := 1 − log
∣∣log |x + t|

∣∣+ log
∣∣log |x − t|

∣∣.
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Since g(−t) = −∞ and g(0) = 1 > 0, by continuity there is x0 ∈ (−t,0) satisfying
g(x0) = 0. Moreover, g′(x) = 0 only at x = 0; hence C := g′(x0) �= 0. The Taylor
expansion implies that near x = x0,

(5.48)
1

g(x)
=

1
C(x − x0) + O((x − x0)2)

=
1

C(x − x0)
+ O(1).

Since π(x)(x − x0)−1 �∈ H−1/2 for any smooth cutoff π satisfying π(x0) �= 0, and
ϕ′(x − t) is nonzero and continuous around x = x0, we deduce that u+(t, x) =
ϕ′(x − t)/g(x) �∈ H−1/2. �
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