
Theory of non-lc ideal sheaves:
Basic properties

Osamu Fujino

Abstract Weintroduce thenotion of non-lc ideal sheaves. It is an analogue of thenotion
of multiplier ideal sheaves. We establish the restriction theorem, which seems to be the
most important property of non-lc ideal sheaves.

1. Introduction

Let X be a smooth complex algebraic variety, and let B be an effective R-divisor
on X . Then we can define the multiplier ideal sheaf J (X,B). By the definition,
(X,B) is klt if and only if J (X,B) is trivial. There exist plenty of applications
of multiplier ideal sheaves (see, e.g., the excellent book [L]). Here we introduce
the notion of non-lc ideal sheaves. We denote it by JNLC(X,B). By the con-
struction, the ideal sheaf JNLC(X,B) is trivial if and only if (X,B) is lc; that is,
JNLC(X,B) defines the non-lc locus of the pair (X,B). So, we call JNLC(X,B)
the non-lc ideal sheaf associated to (X,B). By the definition of JNLC(X,B) (cf.
Definition 2.1), we have the inclusions

J (X,B) ⊂ JNLC(X,B) ⊂ J
(
X, (1 − ε)B

)

for every ε > 0. Although the ideal sheaf J (X, (1 − ε)B) defines the non-lc locus
of the pair (X,B) for 0 < ε � 1, J (X, (1 − ε)B) does not always coincide with
JNLC(X,B). This is a very important remark. In [FST] we will discuss various
other ideal sheaves that define the non-lc locus of (X,B).

Let S be a smooth irreducible divisor on X such that S is not contained in
the support of B. We put BS = B|S . The restriction theorem for multiplier ideal
sheaves, which was obtained by Esnault and Viehweg, is one of the key results
in the theory of multiplier ideal sheaves. From the analytic point of view, it is
a direct consequence of the Ohsawa-Takegoshi L2 extension theorem (see [OT]).
For the details, see [Ko] and [L]. Let us recall the restriction theorem here for
the reader’s convenience.
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THEOREM 1.1 (RESTRICTION THEOREM FOR MULTIPLIER IDEAL SHEAVES)

We have an inclusion

J (S,BS) ⊆ J (X,B)|S .

The main result of this article is the following restriction theorem for non-lc ideal
sheaves (for the precise statement, see Theorem 2.14).

THEOREM 1.2

There is an equality

JNLC(S,BS) = JNLC(X,S + B)|S .

In particular, (S,BS) is lc if and only if (X,S + B) is lc around S.

Once we obtain this powerful restriction theorem for non-lc ideal sheaves, we can
translate some results for multiplier ideal sheaves into new results for non-lc ideal
sheaves. We prove, for example, a subadditivity theorem for non-lc ideal sheaves.
We think that the ideal sheaf JNLC(X,B) has already appeared implicitly in some
articles. However, JNLC(X,B) was thought to be useless because the Kawamata-
Viehweg-Nadel vanishing theorem does not hold for lc pairs. We note that the
theory of multiplier ideal sheaves heavily depends on the Kawamata-Viehweg-
Nadel vanishing theorem. Fortunately, we have a new cohomological package
according to Ambro’s formulation, which works for lc pairs (see [F5, Chapter 2]).
By this new package, we can walk around freely in the world of lc pairs. We prove
vanishing theorem and global generation for non-lc ideal sheaves as applications.
We hope that the notion of non-lc ideal sheaves will play important roles in
various applications. In [F4], we prove the cone and contraction theorem for a
pair (X,B), where X is a normal variety and B is an effective R-divisor on X

such that KX + B is R-Cartier. In that article, we repeatedly use non-lc ideal
sheaves. We note that the restriction theorem (cf. Theorem 2.14) is not necessary
in [F4]. We use only the basic properties of non-lc ideal sheaves.

We summarize the contents of this article. In Section 2, we introduce the
notion of non-lc ideal sheaves and give various examples. Then we prove the
restriction theorem for non-lc ideal sheaves. It produces the subadditivity the-
orem for non-lc ideal sheaves, and so on. Our proof of the restriction theorem
is quite different from the standard arguments in the theory of multiplier ideal
sheaves in [L]. It also differs from the usual X-method, which was initiated by
Kawamata and is the most important technique in the traditional log minimal
model program. So, we explain the proof of the restriction theorem very care-
fully. In Section 3, we prove the vanishing theorem and the global generation
for (asymptotic) non-lc ideal sheaves. The last section is an appendix, where we
quickly review Kawakita’s inversion of adjunction on log canonicity and the new
cohomological package (cf. [F5, Chapter 2]).
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Notation and conventions
We work over the complex number field C throughout this article. But we note
that by using the Lefschetz principle, we can extend everything to the case where
the base field is an algebraically closed field of characteristic zero. We closely
follow the presentation of the excellent book [L] in order to make this article
more accessible. We use the following notation freely.

NOTATION

(i) For an R-Weil divisor D =
∑r

j=1 djDj such that Di is a prime divisor for
every i and Di �= Dj for i �= j, we define the round-up �D� =

∑r
j=1�dj�Dj

(resp., the round-down �D� =
∑r

j=1�dj�Dj), where for every real number x, �x�
(resp., �x�) is the integer defined by x ≤ �x� < x + 1 (resp., x − 1 < �x� ≤ x).
The fractional part {D} of D denotes D − �D�. We define

D=1 =
∑

dj=1

Dj , D≤1 =
∑

dj ≤1

djDj ,

D<1 =
∑

dj<1

djDj , and D>1 =
∑

dj>1

djDj .

We call D a boundary R-divisor if 0 ≤ dj ≤ 1 for every j. We note that ∼Q

(resp., ∼R) denotes the Q-linear (resp., R-linear) equivalence of Q-divisors (resp.,
R-divisors).

(ii) For a proper birational morphism f : X → Y , the exceptional locus
Exc(f) ⊂ X is the locus where f is not an isomorphism.

(iii) Let X be a normal variety, and let B be an effective R-divisor on X such
that KX + B is R-Cartier. Let f : Y → X be a resolution such that Exc(f) ∪
f −1

∗ B has a simple normal crossing support, where f −1
∗ B is the strict transform

of B on Y . We write

KY = f ∗(KX + B) +
∑

i

aiEi

and a(Ei,X,B) = ai. We say that (X,B) is lc (resp., klt) if and only if ai ≥ −1
(resp., ai > −1) for every i, where lc (resp., klt) stands for log canonical (resp.,
kawamata log terminal). Note that the discrepancy a(E,X,B) ∈ R can be defined
for every prime divisor E over X . By the definition, there exists the largest
Zariski open set U of X such that (X,B) is lc on U . We put Nlc(X,B) = X \ U

and call it the non-lc locus of the pair (X,B). We sometimes simply denote
Nlc(X,B) by XNLC.

(iv) Let E be a prime divisor over X . The closure of the image of E on X

is denoted by cX(E) and called the center of E on X .
We use the same notation as in (iii). If a(E,X,B) = −1 and cX(E) is not

contained in Nlc(X,B), then cX(E) is called an lc center of (X,B). We note
that our definition of lc centers is slightly different from the usual one.



228 Osamu Fujino

2. Non-lc ideal sheaves

2.1. Definitions of non-lc ideal sheaves
Let us introduce the notion of non-lc ideal sheaves.

DEFINITION 2.1 (NON-LC IDEAL SHEAF)

Let X be a normal variety, and let Δ be an R-divisor on X such that KX + Δ
is R-Cartier. Let f : Y → X be a resolution with KY + ΔY = f ∗(KX + Δ) such
that SuppΔY is simple normal crossing. Then we put

JNLC(X,Δ) = f∗ OY

(
�−(Δ<1

Y )� − �Δ>1
Y �

)
= f∗ OY (−�ΔY � + Δ=1

Y )

and call it the non-lc ideal sheaf associated to (X,Δ).

The name comes from the following obvious lemma (see also Proposition 2.6).

LEMMA 2.2

Let X be a normal variety, and let Δ be an effective R-divisor such that KX +Δ
is R-Cartier. Then (X,Δ) is lc if and only if JNLC(X,Δ) = OX .

REMARK 2.3

In the same notation as in Definition 2.1, we put

J (X,Δ) = f∗ OY (−�ΔY �) = f∗ OY

(
KY − �f ∗(KX + Δ)�

)
.

It is nothing but the well-known multiplier ideal sheaf . It is obvious that
J (X,Δ) ⊆ JNLC(X,Δ).

QUESTION 2.4

Let X be a smooth algebraic variety, and let Δ be an effective R-divisor on X .
Are there any analytic interpretations of JNLC(X,Δ)an? Are there any ap-
proaches to JNLC(X,Δ) from the theory of tight closure?

DEFINITION 2.5 (NON-LC IDEAL SHEAF ASSOCIATED TO AN IDEAL SHEAF)

Let X be a normal variety, and let Δ be an R-divisor on X such that KX + Δ
is R-Cartier. Let a ⊆ OX be a nonzero ideal sheaf on X , and let c be a real
number. Let f : Y → X be a resolution such that KY + ΔY = f ∗(KX + Δ) and
f −1a = OY (−F ), where Supp(ΔY + F ) has a simple normal crossing support.
We put

JNLC

(
(X,Δ);ac

)
= f∗ OY

(
�−((ΔY + cF )<1)� − �(ΔY + cF )>1�

)
.

We sometimes write JNLC((X,Δ); c · a) = JNLC((X,Δ);ac).

PROPOSITION 2.6

The ideal sheaves JNLC(X,Δ) and JNLC((X,Δ);ac) are well defined; that is,
they are independent of the resolution f : Y → X. If Δ is effective and c > 0,
then JNLC(X,Δ) ⊆ OX and JNLC((X,Δ);ac) ⊆ OX .



Theory of non-lc ideal sheaves 229

This proposition follows from the next fundamental lemma.

LEMMA 2.7

Let f : Z → Y be a proper birational morphism between smooth varieties, and let
BY be an R-divisor on Y such that SuppBY is a simple normal crossing divisor.
Assume that KZ + BZ = f ∗(KY + BY ) and that SuppBZ is a simple normal
crossing divisor. Then we have

f∗ OZ

(
�−(B<1

Z )� − �B>1
Z �

)
� OY

(
�−(B<1

Y )� − �B>1
Y �

)
.

Proof
By KZ + BZ = f ∗(KY + BY ), we obtain

KZ =f ∗(KY + B=1
Y + {BY })

+ f ∗(�B<1
Y � + �B>1

Y �) − (�B<1
Z � + �B>1

Z �) − B=1
Z − {BZ }.

If a(ν,Y,B=1
Y + {BY }) = −1 for a prime divisor ν over Y , then we can check

that a(ν,Y,BY ) = −1 by using [KM, Lemma 2.45]. Since f ∗(�B<1
Y � + �B>1

Y �) −
(�B<1

Z � + �B>1
Z �) is Cartier, we can easily see that

f ∗(�B<1
Y � + �B>1

Y �) = �B<1
Z � + �B>1

Z � + E,

where E is an effective f -exceptional divisor. Thus, we obtain

f∗ OZ

(
�−(B<1

Z )� − �B>1
Z �

)
� OY

(
�−(B<1

Y )� − �B>1
Y �

)
.

We finish the proof. �

Although the following lemma is not indispensable for the proof of the main
theorem, it may be useful. The proof is quite nontrivial.

LEMMA 2.8

We use the same notation and assumption as in Lemma 2.7. Let S be a simple
normal crossing divisor on Y such that S ⊂ SuppB=1

Y . Let T be the union of
the irreducible components of B=1

Z which are mapped into S by f . Assume that
Suppf −1

∗ BY ∪ Exc(f) is simple normal crossing on Z. Then we have

f∗ OT

(
�−(B<1

T )� − �B>1
T �

)
� OS

(
�−(B<1

S )� − �B>1
S �

)
,

where (KZ + BZ)|T = KT + BT and (KY + BY )|S = KS + BS .

Proof
We use the same notation as in the proof of Lemma 2.7. We consider

0 → OZ

(
�−(B<1

Z )� − �B>1
Z � − T

)

→ OZ

(
�−(B<1

Z )� − �B>1
Z �

)
→ OT

(
�−(B<1

T )� − �B>1
T �

)
→ 0.
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Since T = f ∗S − F , where F is an effective f -exceptional divisor, we can easily
see that

f∗ OZ

(
�−(B<1

Z )� − �B>1
Z � − T

)
� OY

(
�−(B<1

Y )� − �B>1
Y � − S

)
.

We note that
(
�−(B<1

Z )� − �B>1
Z � − T

)
−

(
KZ + {BZ } + (B=1

Z − T )
)

= −f ∗(KY + BY ).

Therefore, every local section of R1f∗ OZ(�−(B<1
Z )� − �B>1

Z � − T ) contains in its
support the f -image of some stratum of (Z, {BZ } +B=1

Z − T ) by Theorem A.4(1).

CLAIM

No strata of (Z, {BZ } + B=1
Z − T ) are mapped into S by f .

Proof
Assume that there is a stratum C of (Z, {BZ } + B=1

Z − T ) such that f(C) ⊂ S.
Note that Suppf ∗S ⊂ Suppf −1

∗ BY ∪ Exc(f) and SuppB=1
Z ⊂ Suppf −1

∗ BY ∪
Exc(f). Since C is also a stratum of (Z,B=1

Z ) and C ⊂ Suppf ∗S, there exists an
irreducible component G of B=1

Z such that C ⊂ G ⊂ Suppf ∗S. Therefore, by the
definition of T , G is an irreducible component of T because f(G) ⊂ S and G is an
irreducible component of B=1

Z . So, C is not a stratum of (Z, {BZ } + B=1
Z − T ).

It is a contradiction. �

On the other hand, f(T ) ⊂ S. Therefore,

f∗ OT

(
�−(B<1

T )� − �B>1
T �

)
→ R1f∗ OZ

(
�−(B<1

Z )� − �B>1
Z � − T

)

is a zero-map by the above claim. Thus, we obtain

f∗ OT

(
�−(B<1

T )� − �B>1
T �

)
� OS

(
�−(B<1

S )� − �B>1
S �

)
.

We finish the proof. �

REMARK 2.9

Let X be an n-dimensional normal variety, and let Δ be an R-divisor on X such
that KX + Δ is R-Cartier. Let f : Y → X be a resolution with KY + ΔY =
f ∗(KX + Δ) such that SuppΔY is a simple normal crossing divisor. We put
A = �−(Δ<1

Y )�, N = �Δ>1
Y �, and W = Δ=1

Y . Since Rif∗ OY (A − N − W ) = 0 for
i > 0 by the Kawamata-Viehweg vanishing theorem, we have

0 → J (X,Δ) → JNLC(X,Δ) → f∗ OW (A|W − N |W ) → 0,

and

Rif∗ OY (A − N) � Rif∗ OW (A|W − N |W )

for every i > 0. In general, Rif∗ OY (A − N) �= 0 for 1 ≤ i ≤ n − 1.
From now on, we assume that Δ is effective. We put F = W − E, where E

is the union of irreducible components of W which are mapped to Nlc(X,Δ).
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Then we have

f∗ OY (A − N − E) = f∗ OY (A − N) = JNLC(X,Δ).

Applying f∗ to the short exact sequence

0 → OY (A − N − W ) → OY (A − N − E) → OF (A|F − N |F − E|F ) → 0,

we obtain

f∗ OF (A|F − N |F − E|F ) = f∗ OW (A|W − N |W ).

In particular, J (X,Δ) = JNLC(X,Δ) if and only if (X,Δ) has no lc centers.

2.2. Examples of non-lc ideal sheaves
Here we explain some elementary examples.

EXAMPLE 2.10

Let X be an n-dimensional smooth variety. Let P ∈ X be a closed point, and
let m = mP be the corresponding maximal ideal. Let f : Y → X be the blowup
at P . Then f −1m = OY (−E), where E is the exceptional divisor of f . If c > n,
then

JNLC(X; c · m) = f∗ OY

(
((n − 1) − �c�)E

)
= J (X; c · m) = m�c�−(n−1).

If c < n, then

JNLC(X; c · m) = f∗ OY

(
((n − 1) − �c�)E

)
= J (X; c · m) = OX .

When c = n, we note that

JNLC(X; c · m) = f∗ OY � OX � J (X; c · m) = f∗ OY (−E) = m.

EXAMPLE 2.11

Let X be a smooth variety, and let D be a smooth divisor on X . Then JNLC(X,

D) = OX . However,

JNLC

(
X, (1 + ε)D

)
= OX(−D)

for every 0 < ε � 1. On the other hand,

J (X,D) = J
(
X, (1 + ε)D

)
= OX(−D)

for every 0 < ε � 1.

We note the following lemma on the jumping numbers, whose proof is obvious
by the definitions (cf. [L, Lemma 9.3.21, Definition 9.3.22]).

LEMMA 2.12 (JUMPING NUMBERS)

Let X be a smooth variety, and let D be an effective Q-divisor (resp., R-divisor)
on X. Let x ∈ X be a fixed point contained in the support of D. Then there is an
increasing sequence

0 < ξ0(D;x) < ξ1(D;x) < ξ2(D;x) < · · ·
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of rational (resp., real) numbers ξi = ξi(D;x) characterized by the properties that

J (X,c · D)x = J (X,ξi · D)x for c ∈ [ξi, ξi+1),

while J (X,ξi+1 · D)x � J (X,ξi · D)x for every i. The rational (resp., real) num-
bers ξi(D;x) are called the jumping numbers of D at x. We can check the prop-
erties that

JNLC(X,c · D)x = JNLC(X,d · D)x for c, d ∈ (ξi, ξi+1),

while JNLC(X,ξi+1 · D)x � JNLC(X,ξi · D)x for every i. Moreover, JNLC(X,c ·
D)x = J (X,c · D)x for c ∈ (ξi, ξi+1) by Remark 2.9.

EXAMPLE 2.13

Let X = C2 = SpecC[z1, z2] and D = (z1 = 0) + (z2 = 0) + (z1 = z2). Then we
can directly check that

JNLC(X,D) = m2

and

JNLC

(
X, (1 − ε)D

)
= J

(
X, (1 − ε)D

)
= m

for 0 < ε � 1, where m is the maximal ideal corresponding to 0 ∈ C2. On the
other hand,

JNLC

(
X, (1 + ε)D

)
= J

(
X, (1 + ε)D

)
� JNLC(X,D)

for 0 < ε � 1 because D ⊂ Nlc(X, (1 + ε)D). Note that

J (X,D) = J
(
X, (1 + ε)D

)
� JNLC(X,D)

for 0 < ε � 1.

2.3. Main theorem: Restriction theorem
The following theorem is the main theorem of this article.

THEOREM 2.14 (RESTRICTION THEOREM)

Let X be a normal variety, and let S + B be an effective R-divisor on X such
that S is reduced and normal and that S and B have no common irreducible
components. Assume that KX + S + B is R-Cartier. Let BS be the different on
S such that KS + BS = (KX + S + B)|S . Then we obtain

JNLC(S,BS) = JNLC(X,S + B)|S .

In particular, (S,BS) is log canonical if and only if (X,S + B) is log canonical
around S.

REMARK 2.15

The notion of different was introduced by Shokurov in [S, §3]. For the definition
and the basic properties, see, for example, [A, 9.2.1 Codimension one adjunction]
and [F4, Section 14].
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Before we start the proof of Theorem 2.14, let us see an easy example.

EXAMPLE 2.16

Let X = C2 = SpecC[x, y], S = (x = 0), and B = (y2 = x3). We put BS = B|S .
Then we have KS + BS = (KX + S + B)|S . By direct calculations, we obtain

JNLC(S,BS) = m2, JNLC(X,S + B) = n2,

where m (resp., n) is the maximal ideal corresponding to 0 ∈ S (resp., (0,0) ∈ X).
Of course, we have

JNLC(S,BS) = JNLC(X,S + B)|S .

Let us start the proof of Theorem 2.14.

Proof of Theorem 2.14
We take a resolution f : Y → X with the following properties:

(i) Exc(f) is a simple normal crossing divisor on Y ;
(ii) f −1XNLC is a simple normal crossing divisor on Y , where XNLC =

Nlc(X,S + B);
(iii) f −1S is a simple normal crossing divisor on Y ;
(iv) f −1(XNLC ∩ S) is a simple normal crossing divisor on Y ;
(v) Exc(f) ∪ f −1XNLC ∪ f −1

∗ B ∪ f −1S is a divisor with a simple normal
crossing support.
We put KY +BY = f ∗(KX +S +B). Then SuppBY is a simple normal crossing
divisor by (i) and (v). Let SY be the strict transform of S on Y . Let T be the
union of the components of B=1

Y − SY which are mapped into S by f . We can
decompose T = T1 + T2 as follows.

(a) Any irreducible component of T2 is mapped into XNLC by f .
(b) No irreducible component of T1 is mapped into XNLC by f .

By (ii) and (v), any stratum of T1 is not mapped into XNLC by f .
We put A = �−(B<1

Y )� and N = �B>1
Y �. Then A is an effective f -exceptional

divisor. Moreover, A|SY
is exceptional with respect to f : SY → S. Then we have

JNLC(X,S + B) = f∗ OY (A − N)

and

JNLC(S,BS) = f∗ OSY
(A − N).

Here we used

KSY
+ (BY − SY )|SY

= f ∗(KS + BS).

It follows from KY + BY = f ∗(KX + S + B) by adjunction.
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STEP 1

We consider the following short exact sequence:

0 → OY

(
A − N − (SY + T )

)
→ OY (A − N) → OSY +T (A − N) → 0.

Applying Rif∗, we obtain

0 → f∗ OY

(
A − N − (SY + T )

)
→ f∗ OY (A − N)

→ f∗ OSY +T (A − N) → R1f∗ OY

(
A − N − (SY + T )

)
→ · · · .

We note that

A − N − (SY + T ) −
(
KY + {BY } + (B=1

Y − SY − T )
)

= −f ∗(KX + S + B)

and that any stratum of B=1
Y − SY − T is not mapped into S by f (see con-

ditions (iii) and (v)). Therefore, the support of every nonzero local section of
R1f∗ OY (A − N − (SY +T )) cannot be contained in S by Theorem A.4(1). Thus,
the connecting homomorphism

f∗ OSY +T (A − N) → R1f∗ OY

(
A − N − (SY + T )

)

is a zero-map. Thus, we obtain

0 → J → JNLC(X,S + B) → I → 0,

where I := f∗ OSY +T (A − N) and J := f∗ OY (A − N − (SY + T )). We note that
the ideal sheaf J = f∗ OY (A − N − (SY + T )) ⊂ OX defines a scheme structure
on S′ = S ∪ XNLC. We will check that I ⊂ OS and I = JNLC(X,S + B)|S by
f(SY + T ) = S and the following commutative diagrams:

0 J

=

JNLC(X,S + B) I 0

0 J OX OS′ 0

and

0 J OX

=

OS′

α

0

0 OX(−S) OX OS 0

It is sufficient to prove Kerα ∩ I = {0}, where α : OS′ → OS . We note that
I = JNLC(X,S + B)/J and Kerα = OX(−S)/J . It is easy to see that

JNLC(X,S + B) ∩ OX(−S) ⊂ J

since f(SY + T ) = S. Thus, Kerα ∩ I = {0}. This means that I ⊂ OS and
I = JNLC(X,S + B)|S .

Therefore, it is enough to prove I = JNLC(S,BS).
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STEP 2

In this step, we prove that the natural inclusion

f∗ OSY +T1(A − N − T2) ⊂ f∗ OSY +T (A − N) = I

is an isomorphism. We consider the short exact sequence

0 → OY

(
A − N − (SY + T )

)
→ OY (A − N − T2)

→ OSY +T1(A − N − T2) → 0.

Applying Rif∗, we obtain

0 → J → f∗ OY (A − N − T2) → f∗ OSY +T1(A − N − T2)

δ→ R1f∗ OY

(
A − N − (SY + T )

)
→ · · · .

The connecting homomorphism δ is zero by exactly the same reason as in Step 1.
Therefore, we obtain the following commutative diagram:

0 J

=

f∗ OY (A − N − T2)

β

f∗ OSY +T1(A − N − T2) 0

0 J f∗ OY (A − N) I 0

The homomorphism β is an isomorphism since f(T2) ⊂ f(N) = XNLC. Therefore,
we obtain

f∗ OSY +T1(A − N − T2) = I ⊂ OS .

STEP 3

The inclusion

f∗ OSY
(A − N − T2) ⊂ f∗ OSY

(A − N) = JNLC(S,BS) ⊂ OS

is obvious. By Kawakita’s inversion of adjunction on log canonicity (cf. Corol-
lary A.2), we obtain the opposite inclusion

f∗ OSY
(A − N) ⊂ f∗ OSY

(A − N − T2).

Therefore, we obtain

f∗ OSY
(A − N − T2) = f∗ OSY

(A − N) = JNLC(S,BS).

STEP 4

We consider the short exact sequence

0 → OT1(A − N − SY − T2) → OSY +T1(A − N − T2)

→ OSY
(A − N − T2) → 0.

We note that

f∗ OSY +T1(A − N − T2) = I ⊂ OS



236 Osamu Fujino

by Step 2 and

f∗ OSY
(A − N − T2) = JNLC(S,BS)

by Step 3. By taking Rif∗, we obtain

0 → I → JNLC(S,BS) → R1f∗ OT1(A − N − SY − T2) → · · · .

Here we used the fact that

f∗ OT1(A − N − SY − T2) = 0.

Note that no irreducible components of S are dominated by T1.
Since JNLC(S,BS) ⊂ OS , we obtain

JNLC(S,BS)/I ⊂ OS/I.

Since

A − N − (SY + T2) −
(
KY + T1 + {BY } + (B=1

Y − SY − T )
)

= −f ∗(KX + S + B),

we have
(
A − N − (SY + T2)

)
|T1 −

(
KT1 + ({BY } + B=1

Y − SY − T )|T1

)

∼R −f ∗(KX + S + B)|f(T1).

Therefore, the support of every nonzero local section of R1f∗ OT1(A − N − SY −
T2) cannot be contained in

Supp(OS/I) ⊂ Supp(OS′ /I) = Supp
(

OX/JNLC(X,S + B)
)

= XNLC

by Theorem A.4(1). We note that no stratum of
(
T1, ({BY } + B=1

Y − SY − T )|T1

)

is mapped into XNLC by f (see conditions (iv) and (v)). Thus, we obtain I =
JNLC(S,BS).

We finish the proof of the main theorem. �

In some applications, the following corollaries may play important roles.

COROLLARY 2.17

We use the notation in the proof of Theorem 2.14. We have the equalities

JNLC(S,BS) = f∗ OSY
(A − N)

= f∗ OSY +T (A − N) = f∗ OSY +T1(A − N − T2).

COROLLARY 2.18

We use the notation in the proof of Theorem 2.14. We obtain the short exact
sequence

0 → J → JNLC(X,S + B) → JNLC(S,BS) → 0.
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Let π : X → V be a projective morphism onto an algebraic variety V , and let L

be a Cartier divisor on X such that L − (KX + S + B) is π-ample. Then

Riπ∗
(
J ⊗ OX(L)

)
= 0

for all i > 0. In particular,

Riπ∗
(

JNLC(X,S + B) ⊗ OX(L)
)

→ Riπ∗
(

JNLC(S,BS) ⊗ OS(L)
)

is surjective for i = 0 and is an isomorphism for every i ≥ 1. As a corollary, we
obtain

π∗
(

JNLC(S,BS) ⊗ OS(L)
)

⊂ Im
(
π∗ OX(L) → π∗ OS(L)

)
.

Proof
Note that we have

f ∗L + A − N − (SY + T ) −
(
KY + B=1

Y + {BY } − (SY + T )
)

= f ∗(
L − (KX + S + B)

)
.

Therefore,Riπ∗
(
f∗ OY (f ∗L+A−N −(SY +T ))

)
= 0 for i > 0 by Theorem A.4(2).

Thus, Riπ∗(J ⊗ OX(L)) = 0 for all i > 0 because J = f∗ OY (A − N −
(SY + T )). �

REMARK 2.19

In Corollary 2.18, the ideal J is independent of the resolution f : Y → X by
Lemma 2.8.

REMARK 2.20

In Corollary 2.18, we can weaken the assumption that L − (KX + S + B) is
π-ample as follows. The R-Cartier R-divisor D = L − (KX +S +B) is π-nef and
π-big, and D|C is π-big for every lc center C that is not contained in S (see the
proof of Theorem 3.2).

2.4. Direct consequences of the restriction theorem
Let us collect some direct consequences of the restriction theorem.

PROPOSITION 2.21

Let X be a smooth variety, let D be an effective R-divisor on X, and let H ⊂ X

be a smooth irreducible divisor that does not appear in the support of D. Then

JNLC(H,D|H) = JNLC(X,H + D)|H ⊆ JNLC(X,D)|H .

Proof
It is obvious. �

COROLLARY 2.22

Let |V | be a free linear system, and let H ∈ |V | be a general divisor. Then we
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have

JNLC(H,D|H) = JNLC(X,D)|H
because JNLC(X,D) = JNLC(X,H + D).

Proof
It is obvious. �

COROLLARY 2.23

Let D be an effective R-divisor on the smooth variety X, and let Y ⊂ X be a
smooth subvariety that is not contained in the support of D. Then

JNLC(Y,DY ) ⊆ JNLC(X,D)|Y ,

where DY = D|Y .

Proof
It is obvious (see, e.g., the proof of [L, Corollary 9.5.6]). �

COROLLARY 2.24

Let f : Y → X be a morphism of smooth irreducible varieties, and let D be an
effective R-divisor on X. Assume that the support of D does not contain f(Y ).
Then one has an inclusion

JNLC(Y, f ∗D) ⊆ f −1JNLC(X,D)

of ideal sheaves on Y .

Proof
See, for example, [L, Example 9.5.8]. �

PROPOSITION 2.25 (DIVISORS OF SMALL MULTIPLICITY)

Let D be an effective R-divisor on a smooth variety X. Suppose that x ∈ X is a
point at which multx D ≤ 1. Then the ideal JNLC(X,D) is trivial at x.

Proof
It is obvious (see, e.g., [L, Proposition 9.5.13]). �

THEOREM 2.26 (GENERIC RESTRICTION)

Let X and T be smooth irreducible varieties, and let p : X → T be a smooth
surjective morphism. Consider an effective R-divisor D on X whose support does
not contain any of the fibers Xt = p−1(t), so that for each t ∈ T , the restriction
Dt = D|Xt is defined. Then there is a nonempty Zariski open set U ⊂ T such
that

JNLC(Xt,Dt) = JNLC(X,D)t
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for every t ∈ U , where JNLC(X,D)t = JNLC(X,D) · OXt denotes the restriction
of the indicated non-lc ideal to the fiber Xt. More generally, if t ∈ U , then

JNLC(Xt, c · Dt) = JNLC(X,c · D)t

for every c > 0.

Proof
We use the same notation as in the proof of [L, Theorem 9.5.35]. Let U be
the nonempty Zariski open set of T which was obtained in the proof of [L,
Theorem 9.5.35]. By shrinking T , we can assume that T = U . We take a general
hypersurface H of T passing through t ∈ U . Then JNLC(X,c · D) = JNLC(X,X1+
c · D), where X1 = p∗H . By Theorem 2.14,

JNLC(X,c · D)|X1 = JNLC(X,X1 + c · D)|X1

= JNLC(X1, c · D|X1).

By applying this argument dimT times, we obtain JNLC(Xt, c · Dt) = JNLC(X,

c · D)t. �

The following corollary is a direct consequence of Theorem 2.26.

COROLLARY 2.27 (SEMICONTINUITY)

Let p : X → T be a smooth morphism as in Theorem 2.26, and let D be an
effective R-divisor on X satisfying the hypotheses of that statement. Moreover,
given a section y : T → X of p, write yt = y(t) ∈ X. If yt ∈ Nlc(Xt,Dt) for
t �= 0 ∈ T , then y0 ∈ Nlc(X0,D0).

Proof
See the proof of [L, Corollary 9.5.39]. �

We close this subsection with the subadditivity theorem for non-lc ideal sheaves
(cf. [DEL]).

THEOREM 2.28 (SUBADDITIVITY)

Let X be a smooth variety.

(1) Suppose that D1 and D2 are any two effective R-divisors on X. Then

JNLC(X,D1 + D2) ⊆ JNLC(X,D1) · JNLC(X,D2).

(2) If a,b ⊆ OX are ideal sheaves, then

JNLC(X;ac · bd) ⊆ JNLC(X;ac) · JNLC(X;bd)

for any c, d > 0. In particular,

JNLC(X;a · b) ⊆ JNLC(X;a) · JNLC(X;b).
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Proof
The proof of the subadditivity theorem for multiplier ideal sheaves works for
non-lc ideal sheaves (see, e.g., the proof of [L, Theorem 9.5.20]). We leave the
details as an exercise for the reader. �

3. Miscellaneous results

In this section, we collect some basic results of non-lc ideal sheaves.

3.1. Vanishing and global generation theorems
Here we state vanishing and global generation theorems explicitly. We can easily
check them as applications of Theorem A.4.

THEOREM 3.1 (VANISHING THEOREM)

Let X be a smooth projective variety, let D be any R-divisor on X, and let L be
any integral divisor such that L − D is ample. Then

Hi
(
X, OX(KX + L) ⊗ JNLC(X,D)

)
= 0

for i > 0.

Proof
Let f : Y → X be a resolution with KY + BY = f ∗(KX + D) such that SuppBY

is a simple normal crossing divisor. Then

�−(B<1
Y )� − �B>1

Y � + f ∗(KX + L) − (KY + B=1
Y + {BY }) = f ∗(L − D).

Therefore, Hi(X,Rjf∗ OY (�−(B<1
Y )� − �B>1

Y �+f ∗(KX +L))) = 0 for every i > 0
and j ≥ 0 by Theorem A.4(2). In particular,

Hi
(
X,f∗ OY (�−(B<1

Y )� − �B>1
Y � + f ∗(KX + L))

)
= 0

for i > 0. This is the desired vanishing theorem because JNLC(X,D) =
f∗ OY (�−(B<1

Y )� − �B>1
Y �). �

We can weaken the assumption in Theorem 3.1. However, Theorem 3.1 is suf-
ficient for our purpose in this article. So, the reader can skip the next difficult
theorem.

THEOREM 3.2

Let X be a normal variety, and let Δ be an effective R-divisor such that KX +Δ
is R-Cartier. Let π : X → V be a proper morphism onto an algebraic variety V ,
and let L be a Cartier divisor on X. Assume that L − (KX + Δ) is π-nef and
π-log big with respect to (X,Δ); that is, L − (KX + Δ) is π-nef and π-big and
(L − (KX + Δ))|C is π-big for every lc center C of the pair (X,Δ). Then we
have

Riπ∗
(

JNLC(X,Δ) ⊗ OX(L)
)

= 0

for all i > 0.
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Proof
Let f : Y → X be a resolution with KY +ΔY = f ∗(KX +Δ) such that SuppΔY

is a simple normal crossing divisor. We put F = Δ=1
Y − E, where E is the union

of irreducible components of Δ=1
Y which are mapped to XNLC = Nlc(X,Δ). If

needed, we take more blowups and can assume that no strata of F are mapped
to XNLC. In this case, we have

JNLC(X,Δ) = f∗ OY

(
�−(Δ<1

Y )� − �Δ>1
Y � − E

)
.

Since

�−(Δ<1
Y )� − �Δ>1

Y � − E + f ∗L − (KY + F + {ΔY })

= f ∗(
L − (KX + Δ)

)
,

we have

Riπ∗Rjf∗ OY

(
�−(Δ<1

Y )� − �Δ>1
Y � − E + f ∗L

)
= 0

for every i > 0 and j ≥ 0 (see, e.g., [F5, Theorem 2.47]). So, we obtain

Riπ∗
(

JNLC(X,Δ) ⊗ OX(L)
)

= 0

for i > 0. �

THEOREM 3.3 (GLOBAL GENERATION)

Let X be a smooth projective variety of dimension n. We fix a globally generated
ample divisor B on X. Let D be an effective R-divisor, and let L be an integral
divisor on X such that L − D is ample (or, more generally, nef and log big with
respect to (X,D)). Then OX(KX +L+mB) ⊗ JNLC(X,D) is globally generated
as soon as m ≥ n.

Proof
It is obvious by Theorem 3.1 (or Theorem 3.2) and Mumford’s m-regularity. �

3.2. Asymptotic non-lc ideal sheaves
Let X be a smooth variety. Let a• = {am} be a graded system of ideals on X .
In other words, a• consists of a collection of ideal sheaves ak ⊆ OX satisfying
a0 = OX and am · al ⊆ am+l for all m, l ≥ 1.

DEFINITION 3.4 (NON-LC IDEAL ASSOCIATED TO A GRADED SYSTEM OF IDEALS)

The asymptotic non-lc ideal sheaf of a• with coefficient or exponent c, written
by either

JNLC(X; c · a•) or JNLC(X;ac
•),

is defined to be the unique maximal member among the family of ideals {JNLC(X;
(c/p) · ap)} for p ≥ 1. Thus JNLC(X; c · a•) = JNLC(X; (c/p) · ap) for all sufficiently
large and divisible integer p � 0.
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EXAMPLE 3.5

Let X be a smooth projective variety, and let L be an integral divisor on X of
nonnegative Iitaka dimension. We consider the base ideal bk = b(|kL|) of the
complete linear system |kL| for every k ≥ 0. Let Δ be an effective R-divisor on
X such that KX + Δ is R-Cartier. Then b• is a graded system of ideals on X .
We put

JNLC

(
(X,Δ), ‖L‖

)
:= JNLC

(
(X,Δ);b•

)
.

We note that JNLC((X,Δ);b•) is the unique maximal member among the family
of ideals {JNLC((X,Δ); (1/p) · bp)} for p ≥ 1.

Almost all the basic properties of asymptotic multiplier ideal sheaves in [L, 11.1,
11.2.A] can be proved for asymptotic non-lc ideal sheaves by the same arguments.
Therefore, we do not repeat them here. We leave them as exercises for the reader.
We state only one theorem in this subsection.

THEOREM 3.6

Let X be a smooth projective variety, let Δ be an effective Cartier divisor on X,
and let L be an integral divisor on X of nonnegative Iitaka dimension. If A is
an ample divisor on X, then

Hi
(
X, OX(KX + Δ + mL + A) ⊗ JNLC((X,Δ), ‖mL‖)

)
= 0

for i > 0. Furthermore, we assume that B is a globally generated ample divisor
on X. Then for every m ≥ 1,

OX(KX + Δ + lB + A + mL) ⊗ JNLC

(
(X,Δ), ‖mL‖

)

is globally generated as soon as l ≥ dimX.

Proof
Let H ∈ |kmL| be a general member for a large and divisible k. Then JNLC((X,

Δ), ‖mL‖) = JNLC((X,Δ), (1/k)H) = JNLC(X,Δ+(1/k)H). On the other hand,
Δ + mL + A − (Δ + 1

kH) ∼Q A. Thus, this theorem follows from Theorems 3.1
and 3.3. �

A. Appendix

A.1. Inversion of adjunction on log canonicity
We give some comments on the inversion of adjunction on log canonicity. The fol-
lowing theorem is due to Kawakita. Roughly speaking, he proved it by iterating
the restriction theorem between adjoint ideal sheaves on X and multiplier ideal
sheaves on S (for the proof, see [Ka]).

THEOREM A.1 (KAWAKITA)

Let X be a normal variety, let S be a reduced divisor on X, and let B be an
effective R-divisor on X such that KX +S +B is R-Cartier. Assume that S has
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no common irreducible component with the support of B. Let ν : Sν → S be
the normalization, and let BSν be the different on Sν such that KSν + BSν =
ν∗((KX + S + B)|S). Then (X,S + B) is log canonical around S if and only if
(Sν ,BSν ) is log canonical.

By adjunction, it is obvious that (Sν ,BSν ) is log canonical if (X,S + B) is log
canonical around S. So the above theorem is usually called the inversion of
adjunction on log canonicity . We need the following corollary of Theorem A.1
in the proof of Theorem 2.14. The proof is obvious.

COROLLARY A.2

Let (X,S + B) be as in Theorem A.1. Let P ∈ X be a closed point such that
(X,S + B) is not log canonical at P . Let f : Y → X be a resolution such that
KY +BY = f ∗(KX +S +B) and that SuppBY is simple normal crossing. Then
f −1(P ) ∩ SY ∩ SuppN �= ∅, where SY = f −1

∗ S and N = �B>1
Y �.

We close this subsection with a remark on the theory of quasi-log varieties.

REMARK A.3

We use the notation in Theorem A.1. We note that [X,KX + S + B] has a nat-
ural quasi-log structure, which was introduced by Ambro (see, e.g., [F5, Chap-
ter 3]). By adjunction, S′ = S ∪ XNLC has a natural quasi-log structure induced
by [X,KX +S +B]. More explicitly, the defining ideal sheaf of the quasi-log vari-
ety S′ is J in the proof of Theorem 2.14. In Step 1 in the proof of Theorem 2.14,
we did not use the normality of S. Theorem A.1 says that [S′, (KX + S + B)|S′ ]
has only qlc singularities around S if and only if (Sν ,BSν ) is lc.

A.2. New cohomological package
We quickly review Ambro’s formulation of torsion-free and vanishing theorems in
a simplified form (for more advanced topics and the proof, see [F5, Chapter 2]).

Let Y be a simple normal crossing divisor on a smooth variety M , and
let D be an R-divisor on M such that Supp(D + Y ) is simple normal crossing
and that D and Y have no common irreducible components. We put B = D|Y
and consider the pair (Y,B). Let ν : Y ν → Y be the normalization. We put
KY ν + Θ = ν∗(KY + B). A stratum of (Y,B) is an irreducible component of Y

or the image of some lc center of (Y ν ,Θ=1).
When Y is smooth and B is an R-divisor on Y such that SuppB is simple

normal crossing, we put M = Y × A1 and D = B × A1. Then (Y,B) � (Y ×
{0},B × {0}) satisfies the above conditions.

THEOREM A.4

Let (Y,B) be as above. Assume that B is a boundary R-divisor. Let f : Y → X

be a proper morphism, and let L be a Cartier divisor on Y .
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(1) Assume that H ∼R L − (KY + B) is f -semiample. Then every nonzero
local section of Rqf∗ OY (L) contains in its support the f -image of some stratum
of (Y,B).

(2) Let q be an arbitrary nonnegative integer. Let π : X → V be a proper
morphism, and assume that H ∼R f ∗H ′ for some π-ample R-Cartier R-divisor
H ′ on X. Then, Rqf∗ OY (L) is π∗-acyclic; that is, Rpπ∗Rqf∗ OY (L) = 0 for
every p > 0.

For the proof, see [F5, Theorem 2.39]. We note that [F2] is a gentle introduction
to this new cohomological package. The reader can find various applications in
[F1], [F3], [F6], [F5], [F7], and [F4].
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