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The integrals evaluated are the products of multivariable Aleph-functions with algebraic functions, Jacobi polynomials, Legendre
functions, Bessel-Maitland functions, and general class of polynomials. The main results of our paper are quite general in nature
and competent at yielding a very large number of integrals involving polynomials and various special functions occurring in the
problem of mathematical analysis and mathematical physics.

1. Introduction and Preliminaries

Throughout this paper, consider C,R,R+,Z−
0 , and N to be a

set of complex numbers, positive real numbers, nonpositive
integers, and positive integers, respectively.Themultivariable
Aleph (ℵ) function of several complex variables generalizes
the multivariable I-function, recently studied by Sharma and
Ahmad [1], which itself is a generalization of G- and H-
functions of multiple variables as

ℵ(𝑧1, 𝑧2, . . . , 𝑧𝑟)

= ℵ0,𝑛:𝑚1,𝑛1,𝑚2,𝑛2 ,...,𝑚𝑟 ,𝑛𝑟
𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑝𝑖(1) ,𝑞𝑖(1) ,𝜏𝑖(1) ;𝑅

(1) ,...,𝑝
𝑖(𝑟)

,𝑞
𝑖(𝑟)

,𝜏
𝑖(𝑟)

;𝑅(𝑟)

{{{{{{{

𝑧1...
𝑧𝑟

| 𝐴 : 𝐵
𝐶 : 𝐷

}}}}}}}
= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑟.
(1)

where 𝜔 = √−1,

𝐴 = [(𝑎𝑗; 𝛼(1)𝑗 , ⋅ ⋅ ⋅ , 𝛼(𝑟)𝑗 )
1,𝑛

] , [𝜏𝑖 (𝑎𝑗𝑖; 𝛼(1)𝑗𝑖 , ⋅ ⋅ ⋅ , 𝛼(𝑟)𝑗𝑖 )𝑛+1,𝑝𝑖]
𝐵 = [(𝑐(1)𝑗 , 𝛾(1)𝑗 )

1,𝑛1
] , [𝜏𝑖(1) (𝑐(1)𝑗𝑖(1)

, 𝛾(1)
𝑗𝑖(1)

)
𝑛1+1,𝑝

(1)
𝑖

] ; ⋅ ⋅ ⋅ ; [(𝑐(𝑟)𝑗 , 𝛾(𝑟)𝑗 )
1,𝑛𝑟

] , [𝜏𝑖(𝑟) (𝑐(𝑟)𝑗𝑖(1)
, 𝛾(𝑟)

𝑗𝑖(1)
)
𝑛𝑟+1,𝑝

(𝑟)
𝑖

]
𝐶 = [. . . , 𝜏𝑖 (𝑏𝑗𝑖; 𝛽(1)

𝑗𝑖 , ⋅ ⋅ ⋅ , 𝛽(𝑟)
𝑗𝑖 )𝑚+1,𝑞𝑖

]
𝐷 = [(𝑑(1)𝑗 , 𝛿(1)𝑗 )

1,𝑚1
] , [𝜏𝑖(1) (𝑑(1)𝑗𝑖(1)

, 𝛿(1)
𝑗𝑖(1)

)
𝑚1+1,𝑞

(1)
𝑖

] ; ⋅ ⋅ ⋅ ; [(𝑑(𝑟)𝑗 , 𝛿(𝑟)𝑗 )
1,𝑚𝑟

] , [𝜏𝑖(𝑟) (𝑑(𝑟)𝑗𝑖(𝑟)
, 𝛾(𝑟)

𝑗𝑖(𝑟)
)
𝑚𝑟+1,𝑞

(𝑟)
𝑖

]

(2)

𝜓 (𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑟) = ∏𝑛
𝑗=1Γ (1 − 𝑎𝑗 + ∑𝑟

𝑘=1 𝛼(𝑘)𝑗 𝜉𝑘)
∑𝑅

𝑖=1 [𝜏𝑖∏𝑝𝑖
𝑗=𝑛+1Γ (𝑎𝑗𝑖 − ∑𝑟

𝑘=1 𝛼(𝑘)𝑗𝑖 𝜉𝑘)∏𝑞𝑖
𝑗=1Γ (1 − 𝑏𝑗𝑖 + ∑𝑟

𝑘=1 𝛽(𝑘)
𝑗𝑖 𝜉𝑘)] , (3)
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𝜙𝑘 (𝜉𝑘) = ∏𝑚𝑘
𝑗=1Γ (𝑑(𝑘)𝑗 − 𝛿(𝑘)𝑗 𝜉𝑘)∏𝑛𝑘

𝑗=1Γ (1 − 𝑐(𝑘)𝑗 + 𝛾(𝑘)𝑗 𝜉𝑘)
∑𝑅(𝑘)

𝑖(𝑘)=1 [𝜏𝑖(𝑘)∏𝑞
𝑖(𝑘)

𝑗=𝑚𝑘+1
Γ (1 − 𝑑(𝑘)

𝑗𝑖(𝑘)
+ 𝛿(𝑘)

𝑗𝑖(𝑘)
𝜉𝑘)∏𝑝

𝑖(𝑘)

𝑗=𝑛𝑘+1
Γ (𝑐(𝑘)

𝑗𝑖(𝑘)
− 𝛾(𝑘)

𝑗𝑖(𝑘)
𝜉𝑘)] , (4)

and 𝑎𝑗(𝑗 = 1, ⋅ ⋅ ⋅ , 𝑝); 𝑏𝑗(𝑗 = 1, ⋅ ⋅ ⋅ , 𝑞); 𝑐(𝑘)𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ , 𝑛𝑘),𝑐(𝑘)
𝑗𝑖(𝑘)

(𝑗 = 𝑛𝑘 + 1, ⋅ ⋅ ⋅ , 𝑝𝑖(𝑘)); 𝑑(𝑘)𝑗 (𝑗 = 1, ⋅ ⋅ ⋅ , 𝑚𝑘) 𝑑(𝑘)
𝑗𝑖(𝑘)

(𝑗 = 𝑚𝑘 +1, ⋅ ⋅ ⋅ , 𝑞𝑖(𝑘)), (𝑘 = 1, ⋅ ⋅ ⋅ , 𝑟; 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑅; and 𝑖(𝑘) = 1, ⋅ ⋅ ⋅ , 𝑅(𝑘)

are complex numbers.

𝑈(𝑘)
𝑖 = 𝑛∑

𝑗=1

𝛼(𝑘)𝑗 + 𝜏𝑖
𝑝𝑖∑

𝑗=𝑛+1

𝛼(𝑘)𝑗𝑖 + 𝑛𝑘∑
𝑗=1

𝛾(𝑘)𝑗 + 𝜏𝑖(𝑘)
𝑝𝑖(𝑘)∑
𝑗=𝑛𝑘+1

𝛾(𝑘)
𝑗𝑖(𝑘)

− 𝜏𝑖
𝑞𝑖∑
𝑗=1

𝛽(𝑘)

𝑗𝑖(𝑘)
− 𝑚𝑘∑

𝑗=1

𝛿(𝑘)𝑗 − 𝜏𝑖(𝑘)
𝑞𝑖(𝑘)∑

𝑗=𝑚𝑘+1

𝛿(𝑘)
𝑗𝑖(𝑘)

≤ 0,
(5)

𝜏𝑖(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑅), 𝜏𝑖(𝑘)(𝑖(𝑘) = 1, ⋅ ⋅ ⋅ , 𝑅(𝑘)) are positive real
numbers.

The integration path 𝐿𝜔𝛾∞ (𝛾 ∈ 𝑅) extends from 𝛾 − 𝜔∞
to 𝛾 + 𝜔∞ and the poles of Γ(𝑑(𝑘)𝑗 − 𝛿(𝑘)𝑗 𝜉𝑘), 𝑗 = 1, . . . , 𝑚𝑘,
do not coincide with the poles of Γ(1 − 𝑎𝑗 + ∑𝑟

𝑖=1 𝛼(𝑘)𝑗 𝜉𝑘), 𝑗 =
1, . . . , 𝑛 and Γ(1 − 𝑐(𝑘)𝑗 + 𝛾(𝑘)𝑗 𝜉𝑘), 𝑗 = 1, . . . , 𝑛𝑘 to the left of the
contour 𝐿𝑘.

The existence condition for multiple Mellin-Barnes type
contours (1) can be given below:

arg 𝑧𝑘 < 12𝐴(𝑘)
𝑖 𝜋 (6)

where

𝐴(𝑘)
𝑖 = 𝑛∑

𝑗=1

𝛼(𝑘)𝑗 − 𝜏𝑖
𝑝𝑖∑

𝑗=𝑛+1

𝛼(𝑘)𝑗𝑖 − 𝜏𝑖
𝑞𝑖∑
𝑗=1

𝛽(𝑘)
𝑗𝑖 + 𝑛𝑘∑

𝑗=1

𝛾(𝑘)𝑗

− 𝜏𝑖(𝑘)
𝑝
𝑖(𝑘)∑

𝑗=𝑛𝑘+1

𝛾(𝑘)
𝑗𝑖(𝑘)

+ 𝑚𝑘∑
𝑗=1

𝛿(𝑘)𝑗 − 𝜏𝑖(𝑘)
𝑞
𝑖(𝑘)∑

𝑗=𝑚𝑘+1

𝛿(𝑘)
𝑗𝑖(𝑘)

> 0,
(7)

with = 1, ⋅ ⋅ ⋅ , 𝑟; 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑅; and 𝑖(𝑘) = 1, ⋅ ⋅ ⋅ , 𝑅(𝑘).
Remark 1. By setting 𝜏𝑖 = 𝜏𝑖(𝑘) = 1, the multivariable Aleph-
function reduces to multivariable I-function (see [1–3]]).

Remark 2. By setting 𝜏𝑖 = 𝜏𝑖(𝑘) = 1 (𝑘 ∈ 1, . . . , 𝑟) and𝑅 = 𝑅(1) =, . . . , = 𝑅(𝑟) = 1, the multivariable Aleph-function
reduces to multivariable H-function defined by Srivastava et
al. [4].

Remark 3. When we set 𝑟 = 1, the multivariable Aleph-
function reduces to Aleph-function of one variable defined
by S�̈�dland [5].

For the definition of the H- function,ℵ-function, and its
more generalization, the interested reader may refer to the
papers [6–13].

From Rainville [14], the integral representation of the
gamma function Γ(𝑥) is defined as

Γ (𝑥) = ∫∞

0
𝑒−𝑡𝑡𝑥−1𝑑𝑡, R (𝑥) > 0. (8)

And also the beta integral is defined as follows:

𝐵 (𝑥, 𝑦) = ∫1

0
𝑡𝑥−1 (1 − 𝑡)𝑦−1 𝑑𝑡 = Γ (𝑥) Γ (𝑦)

Γ (𝑥 + 𝑦)
= 𝐵 (𝑦, 𝑥) , (R (𝑥) ,R (𝑦) > 0) .

(9)

Further, We will use the following notations in this paper:

𝑈 = 𝑚1, 𝑛1, 𝑚2, 𝑛2, . . . , 𝑚𝑟, 𝑛𝑟,
𝑉 = 𝑝𝑖(1) , 𝑞𝑖(1) , 𝜏𝑖(1) ; 𝑅(1),
𝑊 = 𝑝𝑖(𝑟) , 𝑞𝑖(𝑟) , 𝜏𝑖(𝑟) ; 𝑅(𝑟).

(10)

2. Integrals Involving Multivariable Aleph-
Function with Algebraic Function

In this section, we evaluate integrals, the product of multi-
variable Aleph-functions with various algebraic functions.

𝐼1 = ∫1

0
𝑥−𝜌 (1 − 𝑥)𝜌−𝜎−1 ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1𝑥𝜔1 , . . . , 𝑧𝑟𝑥𝜔𝑟] 𝑑𝑥

= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
× {∫1

0
𝑥1−𝜌+∑𝑟𝑖=1 𝜔𝑖𝜉𝑖−1 (1 − 𝑥)𝜌−𝜎−1 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟

= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖)

⋅ 𝑧𝜉𝑖𝑖 𝐵(1 − 𝜌 + 𝑟∑
𝑖=1

𝜔𝑖𝜉𝑖, 𝜌 − 𝜎)𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑟 = Γ (𝜌 − 𝜎)
⋅ 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟)
⋅ 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 Γ (1 − 𝜌 + ∑𝑟
𝑖=1 𝜔𝑖𝜉𝑖)Γ (1 − 𝜎 + ∑𝑟
𝑖=1 𝜔𝑖𝜉𝑖)𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑟 = Γ (𝜌 − 𝜎)

⋅ ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

𝑧1...
𝑧𝑟

| (𝜌; 𝜔1, . . . , 𝜔𝑟) , 𝐴 : 𝐵
(𝜎; 𝜔1, . . . , 𝜔𝑟) , 𝐶 : 𝐷

]]]]
]
.

(11)
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𝐼2 = ∫1

0
𝑥𝜌−1 (1 − 𝑥)𝜎−1 ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1𝑥𝜔1 , . . . , 𝑧𝑟𝑥𝜔𝑟] 𝑑𝑥

= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
⋅ {∫1

0
𝑥𝜌+∑𝑟𝑖=1 𝜔𝑖𝜉𝑖−1 (1 − 𝑥)𝜎−1 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟 = 1(2𝜋𝜔)𝑟

⋅ ∫
𝐿1

⋅ ⋅ ⋅ ∫
𝐿𝑟

𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 𝐵(𝜌 + 𝑟∑
𝑖=1

𝜔𝑖𝜉𝑖, 𝜎)𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑟
= Γ (𝜎) 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
⋅ Γ (𝜌 + ∑𝑟

𝑖=1 𝜉𝑖)Γ (𝜌 + 𝜎 + ∑𝑟
𝑖=1 𝜉𝑖)𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑟 = Γ (𝜎)

⋅ ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

𝑧1...
𝑧𝑟

| (1 − 𝜌; 𝜔1, . . . , 𝜔𝑟) , 𝐴 : 𝐵
(1 − 𝜌 − 𝜎; 𝜔1, . . . , 𝜔𝑟) , 𝐶 : 𝐷

]]]]
]
.

(12)

𝐼3 = ∫∞

1
𝑥−𝜌 (𝑥 − 1)𝜎−1 ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1𝑥𝜔1 , . . . , 𝑧𝑟𝑥𝜔𝑟] 𝑑𝑥

= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
⋅ {∫∞

1
𝑥−𝜌+∑𝑟𝑖=1 𝜔𝑖𝜉𝑖 (𝑥 − 1)𝜎−1 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟

(13)

Putting 𝑥 = 𝑡 + 1, we have 𝑑𝑥 = 𝑑𝑡, and we use the following
relation.

Γ (𝛼) Γ (𝛽)
Γ (𝛼 + 𝛽) = ∫∞

0
𝑥𝛼−1 (𝑥 + 1)−(𝛼+𝛽) 𝑑𝑥 = ∫∞

0
𝑥𝛽−1 (𝑥

+ 1)−(𝛼+𝛽) 𝑑𝑥
(14)

𝐼3 = 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
⋅ {∫∞

0
𝑡𝜎−1 (1 + 𝑡)−(𝜌−∑𝑟𝑖=1 𝜔𝑖𝜉𝑖) 𝑑𝑡} 𝑑𝜉1 . . . 𝑑𝜉𝑟 = Γ (𝜎)

⋅ 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟)
⋅ 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 Γ (𝜌 − 𝜎 − ∑𝑟
𝑖=1 𝜔𝑖𝜉𝑖)Γ (𝜌 − ∑𝑟

𝑖=1 𝜔𝑖𝜉𝑖) 𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑟 = Γ (𝜎)

⋅ ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

𝑧1...
𝑧𝑟

| (𝜌; 𝜔1, . . . , 𝜔𝑟) , 𝐴 : 𝐵
(𝜌 − 𝜎; 𝜔1, . . . , 𝜔𝑟) , 𝐶 : 𝐷

]]]]
]
.

(15)

𝐼4 = ∫∞

0
𝑥𝜌−1 (𝑥 + 𝛽)−𝜎 ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1𝑥𝜔1 , . . . , 𝑧𝑟𝑥𝜔𝑟] 𝑑𝑥

= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
⋅ {∫∞

0
𝑥𝜌+∑𝑟𝑖=1 𝜔𝑖𝜉𝑖−1 (𝑥 + 𝛽)−𝜎 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟

(16)

Setting 𝑥 = 𝛽𝑡 implies 𝑑𝑥 = 𝛽𝑑𝑡, and then we obtain the
following.

= 𝛽𝜌−𝜎

(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (𝛽𝜔𝑖𝑧𝑖)𝜉𝑖

⋅ {∫∞

0
𝑡𝜌+∑𝑟𝑖=1 𝜔𝑖𝜉𝑖−1 (1 + 𝑡)−𝜎 𝑑𝑡} 𝑑𝜉1 . . . 𝑑𝜉𝑟

(17)

By applying (14), we have the following.

= 𝛽𝜌−𝜎

Γ (𝜎) 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (𝛽𝜔𝑖𝑧𝑖)𝜉𝑖

× Γ(𝜌 + 𝑟∑
𝑖=1

𝜔𝑖𝜉𝑖)Γ(𝜎 − 𝜌 − 𝑟∑
𝑖=1

𝜔𝑖𝜉𝑖)𝑑𝜉1 . . . 𝑑𝜉𝑟
(18)

= 𝛽𝜌−𝜎

Γ (𝜎)

⋅ ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

𝛽𝜔1𝑧1...
𝛽𝜔𝑟𝑧𝑟

| (1 − 𝜌; 𝜔1, . . . , 𝜔𝑟) , 𝐴 : 𝐵
(𝜎 − 𝜌; 𝜔1, . . . , 𝜔𝑟) , 𝐶 : 𝐷

]]]]
]
.
(19)

𝐼5 = ∫1

−1
(1 − 𝑥)𝜌 (1 + 𝑥)𝜎

⋅ ℵ0,𝑛:𝑈
𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊

[𝑧1 (1 − 𝑥)𝜇1 , . . . , 𝑧𝑟 (1 − 𝑥)𝜇𝑟] 𝑑𝑥
= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
⋅ {∫1

−1
(1 − 𝑥)𝜌+∑𝑟𝑖=1 𝜇𝑖𝜉𝑖 (1 + 𝑥)𝜎 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟

(20)

Now, we use the following formula ([14], p.261).

∫1

−1
(1 − 𝑥)𝑛+𝛼 (1 + 𝑥)𝑛+𝛽 𝑑𝑥
= 22𝑛+𝛼+𝛽+1𝐵 (1 + 𝛼 + 𝑛, 1 + 𝛽 + 𝑛)

(21)

Hence, we arrive at

= 2𝜌+𝜎+1Γ (1 + 𝜎) 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (2𝜇𝑖𝑧𝑖)𝜉𝑖 × Γ (1 + 𝜌 + ∑𝑟
𝑖=1 𝜇𝑖𝜉𝑖)Γ (2 + 𝜌 + 𝜎 + 𝜇∑𝑟

𝑖=1 𝜇𝑖𝜉𝑖)𝑑𝜉1 . . . 𝑑𝜉𝑟 (22)

= 2𝜌+𝜎+1Γ (1 + 𝜎)ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

2𝜇1𝑧1...
2𝜇𝑟𝑧𝑟

| (−𝜌; 𝜇1, . . . , 𝜇𝑟) , 𝐴 : 𝐵
(−1 − 𝜎 − 𝜌; 𝜇1, . . . , 𝜇𝑟) , 𝐶 : 𝐷

]]]]
]
. (23)
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3. Integrals Involving Multivariable Aleph-
Function with Jacobi Polynomials

The Jacobi polynomial ([15], 4.21.2)) with parameters 𝛼, 𝛽 ∈
R is defined by

𝑝(𝛼,𝛽)
𝑛 (𝑥)
= (1 + 𝛼)𝑛𝑛! 2𝐹1 [−𝑛, 1 + 𝛼 + 𝛽 + 𝑛; 1 + 𝛼; 1 − 𝑥2 ]

𝑛 ≥ 1,
(24)

where 2𝐹1[.] is the classical hypergeometric function. By
substituting 𝛼 = 𝛽 = 0, the Jacobi polynomial (24) reduces
to Lagrange polynomial ( [14], p. 157) as

𝑝(𝛼,𝛽)
𝑛 (1) = (1 + 𝛼)𝑛𝑛! . (25)

In this section, we derive integral formulas involving multi-
variable Aleph-functions multiplied by Jacobi polynomials.

𝐼6
= ∫1

−1
𝑥𝜆 (1

− 𝑥)𝛼 (1 + 𝑥)𝜇 𝑃(𝛼,𝛽)
𝑛 (𝑥)ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1 (1 + 𝑥)𝑙1 ,

. . . , 𝑧𝑟 (1 + 𝑥)𝑙𝑟] 𝑑𝑥

= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖)

⋅ 𝑧𝜉𝑖𝑖 × {∫1

−1
𝑥𝜆 (1 − 𝑥)𝛼 (1 + 𝑥)𝜇+∑𝑟𝑖=1 𝑙𝑖𝜉𝑖

⋅ 𝑃(𝛼,𝛽)
𝑛 (𝑥) 𝑑𝑥} 𝑑𝜉1 . . . 𝑑𝜉𝑟

(26)

Next, we use the following formula:

∫1

−1
𝑥𝜆 (1 − 𝑥)𝛼 (1 + 𝑥)𝜇 𝑝(𝛼,𝛽)

𝑛 (𝑥) 𝑑𝑥
= (−1)𝑛 2𝛼+𝜇+1Γ (𝜇 + 1) Γ (𝑛 + 𝛼 + 1) Γ (𝜇 + 𝛽 + 1)

𝑛!Γ (𝜇 + 𝛽 + 𝑛 + 1) Γ (𝜇 + 𝛼 + 𝑛 + 2)
× 3𝐹2 [ −𝜆, 𝜇 + 𝛽 + 1, 𝜇 + 1

𝜇 + 𝛽 + 𝑛 + 1, 𝜇 + 𝛼 + 𝑛 + 2 ; 1] ,
(27)

where 𝛼 > −1 and 𝛽 > −1. Also, 3𝐹2 is the special case of
generalized hypergeometric series.

Then, we have the following.

= 1(2𝜋𝜔)𝑟
⋅ ∫

𝐿1

⋅ ⋅ ⋅ ∫
𝐿𝑟

𝜓 (𝜉1, . . . , 𝜉𝑟) r∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 (−1)𝑛 2𝛼+𝜇+∑𝑟𝑖=1 𝑙𝑖𝜉𝑖+1𝑛!
× Γ (𝜇 + ∑𝑟

𝑖=1 𝑙𝑖𝜉𝑖 + 1) Γ (𝑛 + 𝛼 + 1) Γ (𝜇 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖 + 𝛽 + 1)

Γ (𝜇 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖 + 𝛽 + 𝑛 + 1) Γ (𝜇 + ∑𝑟

𝑖=1 𝑙𝑖𝜉𝑖 + 𝛼 + 𝑛 + 2)

× 3𝐹2

[[[
[

−𝜆, 𝜇 + 𝑟∑
𝑖=1

𝑙𝑖𝜉𝑖 + 𝛽 + 1, 𝜇 + 𝑟∑
𝑖=1

𝑙𝑖𝜉𝑖 + 1
𝜇 + 𝑟∑

𝑖=1
𝑙𝑖𝜉𝑖 + 𝛽 + 𝑛 + 1, 𝜇 + 𝑟∑

𝑖=1
𝑙𝑖𝜉𝑖 + 𝛼 + 𝑛 + 2 ; 1]]]

]
𝑑𝜉1

. . . 𝑑𝜉𝑟

(28)

Using the definition of hypergeometric function and some
simplifications, the above expression becomes

𝐼6 = (−1)𝑛 2𝛼+𝜇+1Γ (𝛼 + 𝑛 + 1)𝑛!
∞∑
𝑘=0

(−𝜆)𝑘 1𝑘𝑘! 1(2𝜋𝜔)𝑟

⋅ ∫
𝐿1

⋅ ⋅ ⋅ ∫
𝐿𝑟

𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) × (2𝑙𝑖𝑧𝑖)𝜉𝑖 Γ (𝜇 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖 + 𝛽 + 𝑘 + 1) Γ (𝜇 + ∑𝑟

𝑖=1 𝑙𝑖𝜉𝑖 + 𝑘 + 1)
Γ (𝜇 + ∑𝑟

𝑖=1 𝑙𝑖𝜉𝑖 + 𝛽 + 𝑛 + 𝑘 + 1) Γ (𝜇 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖 + 𝛼 + 𝑛 + 𝑘 + 2)𝑑𝜉1

. . . 𝑑𝜉𝑟 = (−1)𝑛 2𝛼+𝜇+1Γ (𝛼 + 𝑛 + 1)𝑛!
∞∑
𝑘=0

(−𝜆)𝑘 1𝑘𝑘!

⋅ ℵ0,𝑛+2:𝑈
𝑝𝑖+2,𝑞𝑖+2,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

2𝑙1𝑧1...
2𝑙𝑟𝑧𝑟

| (−𝜇 − 𝛽 − 𝑘; 𝑙1, . . . , 𝑙𝑟) , (−𝜇 − 𝑘; 𝑙1, . . . , 𝑙𝑟) , 𝐴 : 𝐵
(−𝜇 − 𝛽 − 𝑛 − 𝑘; 𝑙1, . . . , 𝑙𝑟) , (−1 − 𝜇 − 𝛼 − 𝑛 − 𝑘; 𝑙1, . . . , 𝑙𝑟) , 𝐶 : 𝐷

]]]]
]
.

(29)
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Thus, 𝛼 > −1, 𝛽 > −1,R(𝜆) > −1, and |arg 𝑧| < (1/2)𝜋Ω.

𝐼7
= ∫1

−1
(1

− 𝑥)𝛿 (1 + 𝑥)V 𝑃(𝜇,V)
𝑛 (𝑥) 𝑃(𝜌,𝜎)

𝑚 (𝑥) × ℵ0,𝑛:𝑈
𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊

[𝑧1 (1
− 𝑥)𝑙1 , . . . , 𝑧𝑟 (1 − 𝑥)𝑙𝑟] 𝑑𝑥
= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 × {∫1

−1
(1

− 𝑥)𝛿+∑𝑟𝑖=1 𝑙𝑖𝜉𝑖 (1 + 𝑥)V 𝑃(𝜇,V)
𝑛 (𝑥)

⋅ 𝑃(𝜌,𝜎)
𝑚 (𝑥) 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟

= Γ (1 + 𝜌 + 𝑚) Γ (1 + 𝜇 + 𝑛)𝑚!𝑛!
⋅ ∞∑
𝑘=0

(−𝑚)𝑘 (−𝑛)𝑘 (1 + 𝜌 + 𝜎 + 𝑚)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜌 + 𝑘) Γ (1 + 𝜇 + 𝑘) 22𝑘 (𝑘!)2
× 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 × {∫1

−1
(1

− 𝑥)1+𝛿+∑𝑟𝑖=1 𝑙𝑖𝜉𝑖+2𝑘−1 (1 + 𝑥)1+V−1 𝑑𝑥}𝑑𝜉1
. . . 𝑑𝜉𝑟

(30)

Now, using (21), we have the following.

𝐼7
= Γ (1 + 𝜌 + 𝑚) Γ (1 + 𝜇 + 𝑛)𝑚!𝑛!
⋅ ∞∑
𝑘=0

(−𝑚)𝑘 (−𝑛)𝑘 (1 + 𝜌 + 𝜎 + 𝑚)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜌 + 𝑘) Γ (1 + 𝜇 + 𝑘) 22𝑘 (𝑘!)2
× 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟)
⋅ 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 2𝛿+∑𝑟𝑖=1 𝑙𝑖𝜉𝑖+2𝑘+V+1 × 𝐵(𝛿 + 𝑟∑
𝑖=1

𝑙𝑖𝜉𝑖 + 2𝑘

+ 1, V + 1)𝑑𝜉1 . . . 𝑑𝜉𝑟 = 2𝛿+V+1

⋅ Γ (1 + 𝜌 + 𝑚) Γ (1 + 𝜇 + 𝑛) Γ (V + 1)𝑚!𝑛!

× ∞∑
𝑘=0

(−𝑚)𝑘 (−𝑛)𝑘 (1 + 𝜌 + 𝜎 + 𝑚)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜌 + 𝑘) Γ (1 + 𝜇 + 𝑘) (𝑘!)2

× 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟)
⋅ 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (2𝑙𝑖𝑧𝑖)𝜉𝑖 Γ (𝛿 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖 + 2𝑘 + 1)

Γ (𝛿 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖 + 2𝑘 + V + 2)𝑑𝜉1

. . . 𝑑𝜉𝑟

(31)

Finally, we arrive at

𝐼7 = 2𝛿+V+1 Γ (1 + 𝜌 + 𝑚) Γ (1 + 𝜇 + 𝑛) Γ (V + 1)𝑚!𝑛! × ∞∑
𝑘=0

(−𝑚)𝑘 (−𝑛)𝑘 (1 + 𝜌 + 𝜎 + 𝑚)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜌 + 𝑘) Γ (1 + 𝜇 + 𝑘) (𝑘!)2

× ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

2𝑙1𝑧1...
2𝑙𝑟𝑧𝑟

| (−𝛿 − 2𝑘; 𝑙1, . . . , 𝑙𝑟) , 𝐴 : 𝐵
(−1 − 𝛿 − 2𝑘 − V; 𝑙1, . . . , 𝑙𝑟) , 𝐶 : 𝐷

]]]]
]
.

(32)

Thus, 𝛿 > 0,R(V) > −1, and |arg 𝑧| < (1/2)𝜋Ω.

𝐼8 = ∫1

−1
(1 − 𝑥)𝜌 (1 + 𝑥)𝜎 𝑃(𝜇,V)

𝑛 (𝑥)

× ℵ0,𝑛:𝑈
𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊

(𝑧1 (1 − 𝑥)𝑙1 (1 + 𝑥)ℎ1 , . . . , 𝑧𝑟 (1

− 𝑥)𝑙𝑟 (1 + 𝑥)ℎ𝑟) 𝑑𝑥 = Γ (1 + 𝜇 + 𝑛)𝑛!

⋅ ∞∑
𝑘=0

(−𝑛)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜇 + 𝑘) 2𝑘𝑘! 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1,

. . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 × {∫1

−1
(1 − 𝑥)1+𝜌+∑𝑟𝑖=1 𝑙𝑖𝜉𝑖+𝑘−1

⋅ (1 + 𝑥)1+𝜎+∑𝑟𝑖=1 ℎ𝑖𝜉𝑖−1 𝑑𝑥}𝑑𝜉1 . . . 𝑑𝜉𝑟
(33)

Using (21), we have the following.
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𝐼8 = 2𝜌+𝜎+1 Γ (1 + 𝜇 + 𝑛)
𝑛!

∞∑
𝑘=0

(−𝑛)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜇 + 𝑘) 𝑘!
× 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅
⋅ ∫

𝐿𝑟

𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (2𝑙𝑖+ℎ𝑖𝑧𝑖)𝜉𝑖

× Γ (1 + 𝜌 + 𝑘 + ∑𝑟
𝑖=1 𝑙𝑖𝜉𝑖) Γ (1 + 𝜎 + ∑𝑟

𝑖=1 ℎ𝑖𝜉𝑖)Γ (2 + 𝜌 + 𝜎 + 𝑘 + ∑𝑟
𝑖=1 (𝑙𝑖 + ℎ𝑖) 𝜉𝑖) 𝑑𝜉1

. . . 𝑑𝜉𝑟
(34)

Finally, rewriting the above equation by virtue of (1), we arrive
at

𝐼8 = 2𝜌+𝜎+1 Γ (1 + 𝜇 + 𝑛)
𝑛!

∞∑
𝑘=0

(−𝑛)𝑘 (1 + 𝜇 + V + 𝑛)𝑘Γ (1 + 𝜇 + 𝑘) 𝑘!

× ℵ0,𝑛+2:𝑈
𝑝𝑖+2,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

2𝑙1+ℎ1𝑧1...
2𝑙𝑟+ℎ𝑟𝑧𝑟

| (−𝜌 − 𝑘; 𝑙1, . . . , 𝑙𝑟) , (−𝜎; ℎ1, . . . , ℎ𝑟) , 𝐴 : 𝐵
(−1 − 𝜌 − 𝜎 − 𝑘) , (𝑙1 + ℎ1) , . . . , (𝑙𝑟 + ℎ𝑟)) , 𝐶 : 𝐷

]]]]
]
.

(35)

Thus,R(V) > −1,R(𝜇) > −1, and |arg 𝑧| < (1/2)𝜋Ω.
4. Integrals Involving Multivariable Aleph-
Function with Legendre Function

The solution of Legendre differential equation in the form of
Gauss hypergeometric type is as follows:

𝑝𝜇
V (𝑥) = 1Γ (1 − 𝜇) (𝑥 + 1𝑥 − 1)

1/2𝜇

⋅ 2𝐹1 [−V, V + 1; 1 − 𝜇; 1 − 𝑥2 ] ,
|1 − 𝑥| < 2.

(36)

Here𝑝𝜇
V (𝑥) is known as the Legendre function of the first kind

[16].

Next, we derive the integrals with Legendre function.

𝐼9 = ∫1

0
𝑥𝜎−1 (1 − 𝑥2)𝜇/2 𝑝𝜇

V (𝑥)
⋅ ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1𝑥𝜌1 , . . . , 𝑧𝑟𝑥𝜌𝑟] 𝑑𝑥 = 1(2𝜋𝜔)𝑟

⋅ ∫
𝐿1

⋅ ⋅ ⋅ ∫
𝐿𝑟

𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
× {∫1

0
𝑥𝜎+∑𝑟𝑖=1 𝜌𝑖𝜉𝑖−1 (1 − 𝑥2)𝜇/2 𝑃𝜇

V (𝑥) 𝑑𝑥}𝑑𝜉1
. . . 𝑑𝜉𝑟

(37)

Next, we use the following formula ([16], Sec. 3.12) for 𝜇 ∈
N,R(𝜎) > 0

∫1

0
𝑥𝜎−1 (1 − 𝑥2)𝜇/2 𝑝𝜇

V (𝑥) 𝑑𝑥 = (−1)𝜇 2−𝜎−𝜇𝜋1/2Γ (𝜎) Γ (1 + 𝜇 + V)
Γ (1 − 𝜇 + V) Γ (1/2 + 𝜎/2 + 𝜇/2 − V/2) Γ (1 + 𝜎/2 + 𝜇/2 + V/2) . (38)

Now, applying (38), we obtain

𝐼9 = 2−𝜎−𝜇 (−1)𝜇 𝜋1/2 Γ (1 + 𝜇 + V)
Γ (1 − 𝜇 + V) 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉𝑖) (2−𝜌𝑖𝑧𝑖)𝜉𝑖
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× Γ (𝜎 + ∑𝑟
𝑖=1 𝜌𝑖𝜉𝑖)Γ (1/2 + 𝜎/2 + 𝜇/2 − V/2 + (∑𝑟

𝑖=1 𝜌𝑖𝜉𝑖) /2) Γ (1 + 𝜎/2 + 𝜇/2 + V/2 + (∑𝑟
𝑖=1 𝜌𝑖𝜉𝑖) /2)𝑑𝜉1 . . . 𝑑𝜉𝑟

(39)

𝐼9 = 2−𝜎−𝜇 (−1)𝜇 𝜋1/2 Γ (1 + 𝜇 + V)
Γ (1 − 𝜇 + V)

⋅ ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+2,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[[[[
[

2−𝜌1𝑧1...
2−𝜌𝑟𝑧𝑟

| (1 − 𝜎; 𝜌1, . . . , 𝜌𝑟) , 𝐴 : 𝐵
(12 − 𝜇2 + V2 − 𝜎2 ; 𝜌12 , . . . , 𝜌𝑟2 ) , (−𝜇2 − V2 − 𝜎2 ; 𝜌12 , . . . , 𝜌𝑟2 ) , 𝐶 : 𝐷

]]]]
]
.

(40)

Thus, |arg (𝑧)| < (1/2)𝜋Ω, 𝜎 > 0, and 𝜇 ∈ N ∪ {0}.
𝐼10 = ∫1

0
𝑥𝜎−1 (1 − 𝑥2)−𝜇/2 𝑝𝜇

V (𝑥)
⋅ ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
[𝑧1𝑥𝜌1 , . . . , 𝑧𝑟𝑥𝜌𝑟] 𝑑𝑥 = 1(2𝜋𝜔)𝑟

⋅ ∫
𝐿1

⋅ ⋅ ⋅ ∫
𝐿𝑟

𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
× {∫1

0
𝑥𝜎+∑𝑟𝑖=1 𝜌𝑖𝜉𝑖−1 (1 − 𝑥2)−𝜇/2 𝑃𝜇

V (𝑥) 𝑑𝑥}𝑑𝜉1

. . . 𝑑𝜉𝑟
(41)

Next we use the following formula ([16], Sec. 3.12) for 𝜇 ∈
N,R(𝜎) > 0

∫1

0
𝑥𝜎−1 (1 − 𝑥2)−𝜇/2 𝑝𝜇

V (𝑥) 𝑑𝑥
= 2−𝜎+𝜇𝜋1/2Γ (𝜎)Γ (1/2 + 𝜎/2 − 𝜇/2 − V/2) Γ (1 + 𝜎/2 − 𝜇/2 − V/2) .

(42)

Using (42), we obtain

𝐼10 = 2−𝜎+𝜇𝜋1/2 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (2−𝜌𝑖𝑧𝑖)𝜉𝑖

× Γ (𝜎 + ∑𝑟
𝑖=1 𝜌𝑖𝜉𝑖)Γ (1/2 + 𝜎/2 − 𝜇/2 − V/2 + (∑𝑟

𝑖=1 𝜌𝑖𝜉𝑖) /2) Γ (1 + 𝜎/2 − 𝜇/2 − V/2 + (∑𝑟
𝑖=1 𝜌𝑖𝜉𝑖) /2)𝑑𝜉1 . . . 𝑑𝜉𝑟

(43)

𝐼10 = 2−𝜎+𝜇𝜋1/2ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+2,𝜏𝑖;𝑅;𝑉,...,𝑊

[[[[
[

2−𝜌1𝑧1...
2−𝜌𝑟𝑧𝑟

| (1 − 𝜎; 𝜌1, . . . , 𝜌𝑟) , 𝐴 : 𝐵
(12 + 𝜇2 + V2 − 𝜎2 ; 𝜌12 , . . . , 𝜌𝑟2 ) , (𝜇2 + V2 − 𝜎2 ; 𝜌12 , . . . , 𝜌𝑟2 ) , 𝐶 : 𝐷

]]]]
]
. (44)

Thus, |arg (𝑧)| < (1/2)𝜋Ω,R(𝜎) > 0, andR(𝜇) ∈ N ∪ {0}.

5. Integrals Involving Multivariable Aleph-
Function and Bessel-Maitland Function

The Bessel-Maitland function is defined by Kiryakova [17] as
follows:

𝐽𝜇V (𝑥) = 𝜙 (𝜇, V + 1 : 𝑥) = ∞∑
𝑘=0

1Γ (𝜇𝑘 + V + 1) (−𝑥)
𝑘

𝑘! ,
𝜇 > −1, 𝑥 ∈ C.

(45)

𝐼11 = ∫∞

0
𝑥𝜌𝐽𝜇V (𝑥)

⋅ ℵ0,𝑛:𝑈
𝑝𝑖,𝑞𝑖,𝜏𝑖 ;𝑅;𝑉,...,𝑊

[𝑧1𝑥𝜎1 , . . . , 𝑧𝑟𝑥𝜎𝑟] 𝑑𝑥 𝑑𝑥
= 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏

𝑖=1

𝜙𝑖 (𝜉i) 𝑧𝜉𝑖𝑖

⋅ {∫∞

0
𝑥𝜌+∑𝑟𝑖=1 𝜎𝑖𝜉𝑖𝐽𝜇V (𝑥) 𝑑𝑥} 𝑑𝜉1 . . . 𝑑𝜉𝑟

(46)

Now, using the following formula from [18]
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∫∞

0
𝑥𝜌𝐽𝜇V (𝑥) 𝑑𝑥 = Γ (𝜌 + 1)

Γ (1 + V − 𝜇 − 𝜇𝜌)
(R (𝜌) > −1, 0 < 𝜇 < 1) ,

(47)
and, further, applying (47), we obtain

𝐼14 = 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅ ∫𝐿𝑟 𝜓 (𝜉1, . . . , 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖 Γ (1 + 𝜌 + ∑𝑟
𝑖=1 𝜎𝑖𝜉𝑖)Γ (1 + V − 𝜇 − 𝜇𝜌 − 𝜇∑𝑟

𝑖=1 𝜎𝑖𝜉𝑖)𝑑𝜉1 . . . 𝑑𝜉𝑟 (48)

𝐼14 = ℵ0,𝑛+1:𝑈
𝑝𝑖+2,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊

[[[[
[

𝑧1...
𝑧𝑟

| (−𝜌; 𝜎1, . . . , 𝜎𝑟) , (1 + V − 𝜇 − 𝜇𝜌; 𝜇𝜎1, . . . , 𝜇𝜎𝑟) , 𝐴 : 𝐵
𝐶 : 𝐷

]]]]
]
. (49)

Thus, |arg 𝑧| < (1/2)𝜋Ω, 𝜎 − 𝜇𝜎 > 0, 𝜎 > 0, 0 < 𝜇 < 1, and
R(𝜌 + 1) > 0.
6. Integrals Involving Multivariable Aleph-
Function and General Class of Polynomials

The general class of polynomials 𝑆𝑚1 ,...,𝑚𝑟𝑛1 ,...,𝑛𝑟
(𝑥) defined by

Srivastava [19] is as follows

𝑆𝑚1 ,...,𝑚𝑟𝑛1 ,...,𝑛𝑟
(𝑥) = [𝑛1/𝑚1]∑

𝑙𝑖=0

⋅ ⋅ ⋅ [𝑛𝑟/𝑚𝑟]∑
𝑙𝑟=0

𝑟∏
𝑖=1

(−𝑛𝑖)𝑚𝑖𝑙𝑖𝑙𝑖! 𝐴𝑛𝑖 ,𝑙𝑖
𝑥𝑙𝑖 . (50)

Here 𝑛1, 𝑛2, . . . , 𝑛𝑟 ∈ N0; 𝑚1, 𝑚2, . . . , 𝑚𝑟 ∈ N; and the
coefficients 𝐴𝑛𝑖 ,𝑙𝑖

(𝑛𝑖, 𝑙𝑖 ≥ 0) are any constant numbers. By
suitable restriction of the coefficient 𝐴𝑛𝑖 ,𝑙𝑖

the general class
of polynomials has various special cases. These include the
Jacobi polynomials, the Laguerre polynomials, the Bessel
polynomials, the Hermite polynomials, the Gould-Hopper
polynomials, and the Brafman polynomials ([20], p. 158-161).

Next, we establish the following integral.

𝐼12 = ∫1

−1
(1 − 𝑥)𝜌−1 (1 + 𝑥)𝜎−1 𝑆𝑚1 ,...,𝑚𝑟𝑛1 ,...,𝑛𝑟

[𝑦 (1 − 𝑥)𝜇 (1
+ 𝑥)V] × ℵ0,𝑛:𝑈

𝑝𝑖,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉,...,𝑊
(𝑧1 (1 − 𝑥)ℎ1

⋅ (1 + 𝑥)𝑘1 , . . . , 𝑧𝑟 (1 − 𝑥)ℎ𝑟 (1 + 𝑥)𝑘𝑟) 𝑑𝑥
= [𝑛1/𝑚1]∑

𝑙1=0

⋅ ⋅ ⋅ [𝑛𝑟 /𝑚𝑟 ]∑
𝑙
𝑟

𝑟∏
𝑖=1

(−𝑛𝑗)𝑚𝑗𝑙𝑗𝑙𝑗! 𝐴𝑛𝑗 ,𝑙𝑗
𝑦𝑙𝑗 1(2𝜋𝜔)𝑟

⋅ ∫
𝐿1

⋅ ⋅ ⋅ ∫
𝐿𝑟

𝜓 (𝜉1 ⋅ ⋅ ⋅ 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) 𝑧𝜉𝑖𝑖
× {∫1

−1
(1 − 𝑥)𝜌+∑𝑟𝑖=1 ℎ𝑖𝜉𝑖+𝜇∑𝑟𝑗=1 𝑙𝑗−1

⋅ (1 + 𝑥)𝜎+∑𝑟𝑖=1 𝑘𝑖𝜉𝑖+V∑𝑟𝑗=1 𝑙𝑗−1 𝑑𝑥}𝑑𝜉1
. . . 𝑑𝜉𝑟

(51)

By applying (21), we have

𝐼12 = 2𝜌+𝜎−1[𝑛1/𝑚1]∑
𝑙1=0

⋅ ⋅ ⋅ [𝑛𝑟 /𝑚𝑟 ]∑
𝑙
𝑟

𝑟∏
𝑖=1

(−𝑛𝑗)𝑚𝑗𝑙𝑗𝑙𝑗! 𝐴𝑛𝑗𝑙𝑗
(2𝜇+V𝑦)𝑙𝑗 × 1(2𝜋𝜔)𝑟 ∫𝐿1 ⋅ ⋅ ⋅

⋅ ∫
𝐿𝑟

𝜓 (𝜉1 ⋅ ⋅ ⋅ 𝜉𝑟) 𝑟∏
𝑖=1

𝜙𝑖 (𝜉𝑖) (2ℎ𝑖+𝑘𝑖𝑧𝑖)𝜉𝑖 × Γ (𝜌 + ∑𝑟
𝑖=1 ℎ𝑖𝜉𝑖 + 𝜇∑𝑟

𝑗=1 𝑙𝑗) Γ (𝜎 + ∑𝑟
𝑖=1 𝑘𝑖𝜉𝑖 + V∑𝑟

𝑗=1 𝑙𝑗)
Γ (𝜌 + 𝜎 + ∑𝑟

𝑖=1 (ℎ𝑖 + 𝑘𝑖) 𝜉𝑖 + (𝜇 + V)∑𝑟

𝑗=1 𝑙𝑗) 𝑑𝜉1 . . . 𝑑𝜉𝑟
(52)

𝐼12 = 2𝜌+𝜎−1[𝑛1/𝑚1]∑
𝑙1=0

⋅ ⋅ ⋅ [𝑛𝑟 /𝑚𝑟 ]∑
𝑙
𝑟

𝑟∏
𝑖=1

(−𝑛𝑗)𝑚𝑗𝑙𝑗𝑙𝑗! 𝐴𝑛𝑗𝑙𝑗
(2𝜇+V𝑦)𝑙𝑗

⋅ ℵ0,𝑛+1:𝑈
𝑝𝑖+2,𝑞𝑖 ,𝜏𝑖;𝑅;𝑉;...;𝑊

[[[[[
[

2ℎ1+𝑘1𝑧1...
2ℎ𝑟+𝑘𝑟𝑧𝑟

| (1 − 𝜌 − 𝜇 𝑟∑
𝑗=1

𝑙𝑗; ℎ1, . . . , ℎ𝑟) ,(1 − 𝜎 − V
𝑟∑
𝑗=1

𝑙𝑗; 𝑘1, . . . , 𝑘𝑟) ,𝐴 : 𝐵
(1 − 𝜌 − 𝜎 − (𝜇 + V) 𝑟∑

𝑗=1
𝑙𝑗; (ℎ1 + 𝑘1) , . . . , (ℎ𝑟 + 𝑘𝑟)) , 𝐶 : 𝐷

]]]]]
]
.

(53)
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These converge under the following conditions:

(1) |arg 𝑧| < (1/2)𝜋Ω,
(2) 𝜌 ≥ 1, 𝜎 ≥ 1, 𝜇 ≥ 0, V ≥ 0, ℎ ≥ 0, 𝑘 ≥ 0 (ℎ and 𝑘 are

not both zero simultaneously),
(3) R(𝜌) + ℎmin[R(𝑏𝑗/𝐵𝑗)] > 0 and R(𝜎) +𝑘min[R(𝑏𝑗/𝐵𝑗)] > 0.

7. Special Cases

(i)By setting 𝛿 by 𝜂−1 and𝜌 = 𝜎 = 𝜇 = V = 0, (32) transforms
to the following integral:

𝐼13 = 2𝜂 ∞∑
𝑘=0

(−𝑚)𝑘 (−𝑛)𝑘 (1 + 𝑚)𝑘 (1 + 𝑛)𝑘Γ (1 + 𝑘) Γ (1 + 𝑘) (𝑘!)2

× ℵ0,𝑛+1:𝑈
𝑝𝑖+1,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉;...;𝑊

[[[[
[

2𝑙𝑧1...
2𝑙𝑧𝑟

| (1 − 𝜂 − 2𝑘; 𝑙1, . . . , 𝑙𝑟) , 𝐴 : 𝐵
(−𝜂 − 2𝑘; 𝑙1, . . . , 𝑙𝑟) , 𝐶 : 𝐷

]]]]
]
.
(54)

Thus, |arg 𝑧| < (1/2)𝜋Ω.
(ii)When we substitute 𝜌 by 𝜌 − 1 and 𝜎 by 𝜎 − 1 and put𝜇 = V = 0, integral (35) transforms to the following:

𝐼14 = 2𝜌+𝜎−1 ∞∑
𝑘=0

(−𝑛)𝑘 (1 + 𝑛)𝑘Γ (1 + 𝑘) 𝑘! × ℵ0,𝑛+2:𝑈
𝑝𝑖+2,𝑞𝑖+1,𝜏𝑖 ;𝑅;𝑉;...;𝑊

[[[[
[

2𝑙1+ℎ1𝑧1...
2𝑙𝑟+ℎ𝑟𝑧𝑟

| (1 − 𝜌 − 𝑘; 𝑙1, . . . , 𝑙𝑟) , (1 − 𝜎; ℎ1, . . . , ℎ𝑟) , 𝐴 : 𝐵
(1 − 𝜌 − 𝜎 − 𝑘; (𝑙1 + ℎ1) , . . . , (𝑙𝑟 + ℎ𝑟)) , 𝐶 : 𝐷

]]]]
]
. (55)

Thus, |arg 𝑧| < (1/2)𝜋Ω.
8. Concluding Remarks

In the present paper, we evaluated new integrals involving the
multivariable Aleph-function with certain special functions.
Certain special cases of integrals that follow Remarks 1–3
have been investigated in the literature by a number of
authors [21–24]) with different arguments. Therefore, the
results presented in this paper are easily converted in terms
of a similar type of new interesting integrals with different
arguments after some suitable parameter substitutions. In
this sequel, one can obtain integral representation of more
generalized special function, which has many applications in
physics and engineering science.
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