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Catastrophe is a loss that has a low probability of occurring but can lead to high-cost claims.This paper uses the data of fire accidents
from a reinsurance company in Thailand for an experiment. Our study is in two parts. First, we approximate the parameters of a
Weibull distribution. We compare the parameter estimation using a direct search method with other frequently used methods,
such as the least squares method, the maximum likelihood estimation, and the method of moments. The results show that the
direct search method approximates the parameters more precisely than other frequently used methods (to four-digit accuracy).
Second, we approximate the minimum initial capital (MIC) a reinsurance company has to hold under a given ruin probability
(insolvency probability) by using parameters from the first part. Finally, we show MIC with varying the premium rate.

1. Introduction

The risks of an insurance company can be assessed based on
disasters of varying severity. The insurance company eval-
uates its risks in order to maintain consistency. Insolvency
cannot occur if the company knows how to manage the
risk process. For instance, if an insurance company does not
have sufficient initial capital to pay some claims, then the
company can share some of the risks by transferring them
to reinsurance. Parameter estimation is an importantmethod
to construct a risk model in an insurance business. The well-
known methods are the least squares method, the maximum
likelihood estimation, and the method of moments. This
research is interested in the estimation of the parameters of
a Weibull distribution which are represented by fire accident
data. Many authors have studied the different aspects of
Weibull parameters. Bergman [1] and Sullivan and Lauzon [2]
proposed four probability estimators which were frequently
applied in the least squares method. Based on a Monte
Carlo simulation, Khalili and Kromp [3] and Trustrum and

Jayatilaka [4] compared an estimation of Weibull parameters
by using the least squares method, the maximum likeli-
hood estimation, and the method of moments. Boonta et
al. [5] proposed a direct search technique to estimate the
parameters of Weibull distribution. They compared the Chi-
squared value of the direct search technique to the least
squares method, the maximum likelihood estimation, and
the method of moments. The results showed that the direct
search technique gave amore precise estimation than the least
squaresmethod, themaximum likelihood estimation, and the
method of moments.

In this paper, we start by introducing the surplus of
nonlife insurance. The surplus can be described as

Surplus = Initial capital + Income −Outflow. (1)

Lundberg [6] was the first actuary who considered the
surplus process of nonlife insurance under three assumptions
in his model.

(1) Claims happening at times 𝑇𝑖 satisfying 0 ≤ 𝑇1 ≤ 𝑇2 ≤⋅ ⋅ ⋅ are called claim arrivals or claim times.
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(2) The 𝑖-th claim arriving at time 𝑇𝑖 causes the claim size
or claim severity 𝑌𝑖. The sequence of claim sizes {𝑌𝑖, 𝑖 ∈ N}
constitutes an independent and identically distributed (i.i.d.)
sequence of nonnegative random variables.

(3) The claim severity process {𝑌𝑖, 𝑖 ∈ N} and the claim
arrival process {𝑇𝑖, 𝑖 ∈ N} are mutually independent.

Next, we define the claim number process

𝑁(𝑡) = # {𝑖 ≥ 1 : 𝑇𝑖 ≤ 𝑡} , 𝑡 ≥ 0. (2)

Thus,𝑁(𝑡) is the number of claims in [0, 𝑡].
Next, we denote {𝑌𝑛, 𝑛 ∈ N} as the i.i.d. process of the

claims, 𝑢 as the initial capital, and 𝑐 as the premium rate
for one unit of time. There are many research studies of
ruin probability in terms of initial capital 𝑢 (see in Pavlova
and Willmot [7], Dickson [8] Li [9, 10], and Rongming and
Haifeng [11]). Chan and Zhang [12] have studied a discrete
time surplus process such as claim time 𝑇𝑛 = 𝑛 (claims
which occur every day).They proposed recursive and explicit
formulae of the ruin probabilities which are in the form

𝑈𝑛 = 𝑢 + 𝑐𝑛 − 𝑛∑
𝑘=1

𝑌𝑘, 𝑈0 = 𝑢, 𝑛 ∈ N. (3)

Sattayatham et al. [13] generalized the results of Chan and
Zhang for claim times which do not occur every day. Their
model is of the form

𝑈𝑛 = 𝑢 + 𝑐𝑇𝑛 − 𝑛∑
𝑘=1

𝑌𝑘, 𝑈0 = 𝑢, 𝑛 ∈ N (4)

This can be rewritten as

𝑈𝑛 = 𝑈𝑛−1 + 𝑐𝑍𝑛 − 𝑌𝑛, 𝑈0 = 𝑢, (5)

where {𝑍𝑛, 𝑛 ∈ N} is the inter arrival time process, assuming
i.i.d. such that 𝑍1 ∼ Poisson(𝜆). Since the formula of ruin
probability is difficult to find explicitly, they proposed the
ruin probability in the recursive form:

Φ𝑁 (𝑢) = Φ1 (𝑢) + ∫𝑢+𝑐
−∞
Φ𝑁 (𝑢 + 𝑐 − 𝑦) 𝑑𝐹𝑌1 (𝑦) , (6)

where Φ𝑁(𝑢) = 𝑃({𝑈𝑖 < 0 for some 𝑖 ∈ {1, 2, . . . , 𝑁}} |𝑈0 = 𝑢). Chengguo Weng et al. [14] studied a model of ruin
probability by adding some investments as

𝑈𝑛 = 𝑈𝑛−1 (1 + 𝑟) + 𝑐 − 𝑌𝑛, 𝑛 = 1, 2, 3, . . . , (7)

where 𝑟 is the constant interest rate for a period of time 𝑛.
They considered {𝑌𝑛, 𝑛 ∈ N} as a sequence of dependent
individuals that have a regular variation distribution and
zero index of upper tail dependence. They also established
some asymptotic results for both finite ruin probability and
ultimate ruin probability.

Reinsurance and investment are a normal activity of
insurance companies because reinsurance can reduce the risk
(ruin probability) arising from claims, and the investment
can make more profit for the company. The process can be
controlled by reinsurance, i.e., by choosing the retention level

(or risk exposure) 𝑏 ∈ [𝑏, 𝑏] of a reinsurance for one period.
The (measurable) function ℎ(𝑏, 𝑦) specifies the part of the
claim 𝑦 paid by the insurer. Then ℎ(𝑏, 𝑦) depends on the
retention level 𝑏 (fixed in the risk sharing contract) at the
beginning of the respective period where 0 ≤ ℎ(𝑏, 𝑦) ≤ 𝑦.
Hence 𝑦−ℎ(𝑏, 𝑦) is the part paid by the reinsurer. It is natural
to assume that ℎ(𝑏, 𝑦) is increasing in 𝑏.

In the case of an excess of loss reinsurance we have

ℎ (𝑏, 𝑦) = min (𝑏, 𝑦) (8)

with retention level 0 ≤ 𝑏 ≤ 𝑏 ≤ 𝑏 = ∞.
In case of a proportional reinsurance we have

ℎ (𝑏, 𝑦) = 𝑏 ⋅ 𝑦 (9)

with retention level 0 ≤ 𝑏 ≤ 𝑏 ≤ 𝑏 =1.
Therefore, the retention level 𝑏 stands for the control

action “no reinsurance” which explains the property “𝑐 =𝑐(𝑏)”. The smallest retention level 𝑏 may be chosen in such
a way that the condition 0 ≤ 𝑐(𝑏) ≤ 𝑐 = 𝑐(𝑏) is satisfied.
Then 𝑐(𝑏) may be calculated according to the expected value
principle with safety loading 𝜃 of the reinsurer:

𝑐 (𝑏) = 𝑐 − (1 + 𝜃) ⋅ 𝐸 [𝑌 − ℎ (𝑏, 𝑌)]𝐸 [𝑍] . (10)

Recently, Luesamai and Chongcharoen [15] expanded the
risk model by adding proportional reinsurance and invest-
ment. Insurers can invest in the bond and stock markets, and
they assume that the interest rates of the bonds have a finite
number of possible values and follow a time-homogenous
Markov chain. Moreover, they assume that the controlling
reinsurance and stock investment values in each time period
are constant values. For every time period unit (𝑛 − 1, 𝑛], the
risk model is formulated as

𝑈𝑛 = 𝑈𝑛−1 (1 + 𝐼𝑛) + 𝛼𝑛𝑊𝑛 + 𝑐 (𝑏𝑛) − ℎ (𝑏𝑛, 𝑌𝑛) (11)

where ℎ(𝑏𝑛, 𝑌𝑛) is computed by a proportional reinsurance
function, and the sequences {𝐼𝑛}, {𝑊𝑛}, and {𝑌𝑛} are mutually
independent. The interest rate 𝐼𝑛 is assumed to follow a
time-homogeneous Markov chain (for 𝑖 = 1, 2, 3, . . .). 𝑊𝑛
is the gross return and is assumed to be a sequence of i.i.d.
nonnegative random variables. 𝛼𝑛 ≥ 0 is the amount of stock
investment. The results of the study led to the proposal of
two upper bounds of ruin probability under a discrete time
riskmodel for reinsurance by generalizing the classical model
in terms of two controlling factors: proportional reinsurance
and investment.

In this research, we study a risk model of reinsurance
by adding investment (buying bonds or fixed accounts).
We present two parts consisting of an approximation of
the parameters of Weibull distribution and the calculation
of the minimum initial capital of investment discrete time
surplus process with Weibull distribution. The first part is
the estimation of the Weibull parameters using the direct
search technique, the least squares method, the maximum
likelihood estimation, and the method of moments. The
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selected method gives the minimum KS statistic value (to
four-digit accuracy). The second part is a simulation to
calculate the ruin probability of the surplus process under the
condition that a reinsurance company can invest in risk-free
assets (bonds or fixed accounts).The surplus process is of the
form
𝑈𝑛 = 𝑈𝑛−1 (1 + 𝑟) + 𝑐𝑍𝑛 − 𝑌𝑛,

𝑛 = 1, 2, 3, . . . , 𝑈0 = 𝑢, (12)

where {𝑌𝑛, 𝑛 ∈ N} is the i.i.d. process of the claims, 𝑢 is
the initial capital, and 𝑟 is the daily interest rate which can
calculated by 𝑟 = (1+𝑟0)1/365−1, 𝑟0 = 2%per annum. 𝑐 is the
premium rate for one unit of time which can be computed by𝑐 = (1+𝜃)(𝐸𝑌1/𝐸𝑍1)where 𝜃 is a safety loading and {𝑍𝑛, 𝑛 ∈
N} is the inter arrival time process, and assuming i.i.d. such
that 𝑍1 ∼ Poisson(𝜆). We approximate the minimum initial
capital (MIC) an insurance company has to hold under
a given ruin probability (insolvency probability) by using
parameters from the first part.

2. Materials and Methods

2.1. Weibull Distribution. The classical Weibull distribution
is useful for reliability engineering. Moreover, it can be
extended to the various families of probability distributions
which deal with the estimation of model parameters by
maximum likelihood and it can also be used to illustrate the
potentiality of the extended family with two applications to
real data [16]. Furthermore, a nonclassical Weibull distribu-
tion can be used to estimate the statistical characteristics in a
cellular automaton such that a cell’s yield stress is assumed to
be a Weibull distribution [17].

Normally, claims that occur infrequently but have high
costs will be called catastrophe losses. For example, a fire
accident is a type catastrophe loss. Furthermore, a Weibull
distribution that shape parameter being less than one and
scale parameter being greater than zero is also an example
of catastrophe loss. The probability density function of three
parameters of a Weibull distribution is of the form

𝑓 (𝑦; 𝛼, 𝛽, 𝛾) = 𝛼𝛽 (𝑦 − 𝛾𝛽 )
𝛼−1 𝑒−((𝑦−𝛾)/𝛽)𝛼 (13)

and the cumulative distribution function is of the form

𝐹 (𝑦; 𝛼, 𝛽, 𝛾) = 1 − 𝑒−((𝑦−𝛾)/𝛽)𝛼 (14)

for all 𝑦 ≥ 𝛾, where 𝛼 is a positive shape parameter, 𝛽
is a positive scale parameter, and 𝛾 is a positive location
parameter, respectively.

In our work, the costs of all claims 𝑦 are greater than
twenty million Baht. We establish 𝛾 = 20 and 𝑥 = 𝑦 − 𝛾.
Thus we revise (13) and (14) as (15) and (16)

𝑓 (𝑥; 𝛼, 𝛽) = 𝛼𝛽 (𝑥𝛽)
𝛼−1 𝑒−(𝑥/𝛽)𝛼 , (15)

and

𝐹 (𝑥; 𝛼, 𝛽) = 1 − exp(−(𝑥𝛽)
𝛼) . (16)

2.2. Weibull Parameter Estimation

2.2.1. Least Squares Method. Bergman, Sullivan, and Lauzon
proposed the probability estimator 𝐹𝑗 for the 𝑗 th ranked 𝑦𝑗
and 𝑛 is the sample size as shown in the following equations:

𝐹𝑗 = 𝑗 − 0.375𝑛 + 0.25 (17a)

𝐹𝑗 = 𝑗 − 0.3𝑛 + 0.4 (17b)

𝐹𝑗 = 𝑗𝑛 + 1 (17c)

𝐹𝑗 = 𝑗 − 0.5𝑛 (17d)

We take the natural logarithm to (16),

ln ln [ 11 − 𝐹] = 𝛼 ln𝑥 − 𝛼 ln𝛽. (18)

Then we set 𝑢 = ln ln[1/(1 − 𝐹)], 𝑚 = 𝛼, V = ln𝑥 and 𝑏 =−𝛼 ln𝛽. Therefore, (18) is the linear equation which is of the
form 𝑢 = 𝑚V + 𝑏.
2.2.2. Maximum Likelihood Estimation. Let {𝑥1, 𝑥2, . . . , 𝑥𝑛}
be the samples from a Weibull distribution. A log-likelihood
function ln 𝐿 is defined by

ln 𝐿 (𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝛼, 𝛽) = 𝑛∑
𝑖=1

ln 𝛼𝛽 (𝑥𝑖𝛽 )
𝛼−1 𝑒−(𝑥𝑖/𝛽)𝛼 . (19)

By partial derivative the log-likelihood function𝜕 ln 𝐿/𝜕𝛽, 𝜕 ln 𝐿/𝜕𝛼, and setting to zero, we have

𝜕 ln 𝐿𝜕𝛽 = −𝑛𝛽 + 1𝛽𝛼+1
𝑛∑
𝑖=1

(𝑥𝑖)𝛼 = 0,
𝜕 ln 𝐿𝜕𝛼 = 𝑛𝛼 − 𝑛 ln𝛽 +

𝑛∑
𝑖=1

ln𝑥𝑖 − 𝑛∑
𝑖=1

(𝑥𝑖𝛽 )
𝛼

ln(𝑥𝑖𝛽 )
= 0.

(20)

Thus

𝛽 = (1𝑛
𝑛∑
𝑖=1

(𝑥𝑖)𝛼)
1/𝛼

, (21)

𝛼 = [∑𝑛𝑖=1 (𝑥𝑖)𝛼 ln𝑥𝑖∑𝑛𝑖=1 (𝑥𝑖)𝛼 − 1𝑛
𝑛∑
𝑖=1

ln𝑥𝑖]
−1

. (22)

2.2.3. Method of Moments. The k th moment of the Weibull
distribution, 𝜇𝑘, is defined by

𝜇𝑘 = 𝛽𝑘Γ(1 + 𝑘𝛼) , (23)

where Γ(𝑡) is a gamma function which is given by

Γ (𝑠) = ∫∞
0
𝑒−𝑥𝑥𝑠−1𝑑𝑥, 𝑠 > 0. (24)



4 Journal of Applied Mathematics

Table 1: Claims size 𝑥𝑖 (millions Baht).

15.50 6.70 49.90 6.40 12.40 102.70 44.90
56.50 138.90 107.30 13.20 13.10 37.70 5.70
40.00 1.80 40.20 84.30 47.30 112.20 9.20
28.50 0.90 43.10 3.60 45.80 70.00 2.30
35.30 7.20 64.60 13.00 2.40 1.40 2.10
7.50 31.50 4.20 37.20 0.70 24.40 14.20
20.10 0.40 33.20 9.30 10.80

Table 2: Shape and scale parameters for a variety of estimation methods.

Method Type 𝐹𝑖 𝛼 𝛽
1 Least squares method 1 5.1 0.8405 28.7721
2 Least squares method 2 5.2 0.8310 28.8602
3 Least squares method 3 5.3 0.7984 29.1888
4 Least squares method 4 5.4 0.8580 28.6168
5 Maximum likelihood estimation - 0.8633 28.8668
6 Method of moments - 0.9286 30.0055

Setting 𝑘 = 1, we obtain
𝜇 = 𝛽Γ (1 + 1𝛼) , (25)

Since 𝜎2 = 𝜇2 − 𝜇2,
𝜎2 = 𝛽2Γ (1 + 2𝛼) − 𝛽2 (Γ (1 + 1𝛼))

2 . (26)

We calculate a coefficient of variation (CV) of theWeibull
distribution from the formula

𝐶𝑉 = 𝜎𝜇 =
√𝛽2Γ (1 + 2/𝛼) − 𝛽2 (Γ (1 + 1/𝛼))2

𝛽Γ (1 + 1/𝛼) . (27)

If we apply the bisection method to (27), we get the
parameter 𝛼.Thereafter, we substitute 𝛼 in (25) which obtains
the parameter 𝛽.
2.2.4. Kolmogorov-Simirnov Test. TheKolmogorov-Simirnov
(KS) test is a distance test. The KS test works well with small
samples. Let 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦𝑛 be the order of statistics
of a random sample 𝑥1, 𝑥2, . . . , 𝑥𝑛. The empirical distribution
function is of the form

𝐹𝑛 (𝑥) =
{{{{{{{{{

0 if 𝑥 < 𝑦,
𝑘𝑛 if 𝑦𝑘 ≤ 𝑥 ≤ 𝑦𝑘+1, 𝑘 = 1, 2, . . . , 𝑛 − 1,
1 if 𝑦𝑛 ≤ 𝑥.

(28)

Let 𝐹0(𝑥) be a hypothesized distribution function, so the
KS statistic is defined by𝐷𝑛 = sup𝑥{|𝐹𝑛(𝑥) − 𝐹0(𝑥)|}.

Throughout this research, we use the data of the cost of
all claim sizes that are greater than twenty million Baht from
the fire insurance of Thai Reinsurance Public. The amount𝑥𝑖 is shown in Table 1 which is greater than twenty million

Baht, i.e., 𝑥𝑖 = 𝑦𝑖 − 20. Boonta et al. [5] estimated the
shape parameters 𝛼 and scale parameters 𝛽 from a variety
of estimation methods by means of a minimum Chi-squared
test as shown in Table 2 and using the data according to
Table 1.

We perform the KS test according to the six methods as
shown in Table 2. The hypothesis 𝐻0: the set data in Table 1
assumed the Weibull distribution with parameters 𝛼 and 𝛽.
The result shows that the set of data cannot reject theWeibull
distribution at 95% confidence. For example, the hypothesis𝐻0: the set of data assumed the Weibull distribution with𝛼 = 0.8633 and 𝛽 = 28.8668. The KS critical value at 95%
confidence is 1.36/√47 = 0.1984 whereas the KS statistic
value is 0.0709. Thus the set of data accepts the Weibull
distribution at 95% confidence. Figure 1 shows a plot of the
cumulative empirical distribution function 𝐹𝑛(𝑥) with the
cumulative Weibull distribution function 𝐹0(𝑥).
3. Results

3.1. Part I: The Direct Search Technique. The direct search
technique is a numerical optimization method.The principle
of the direct search technique is iterative and random shifting
from the beginning solution to a better solution. The direct
search technique process can be described as follows.

Step 1. Begin from the simple initial parameters 𝛼 and 𝛽, i.e.,𝛼 = 0.5, 𝛽 = 31.06 (𝛽 is mean of 47 observe data) and
compute the KS statistic value for 𝛼 and 𝛽.
Step 2. Calculate value 𝛼 to 𝛼󸀠 and 𝛽 to 𝛽󸀠 by using the
formulas:

𝛼󸀠 = 𝛼 + 0.01 (0.5 − 𝑢)
and 𝛽󸀠 = 𝛽 + 0.1 (0.5 − 𝑢) (29)

where 𝑢 is randomly chosen from [0, 1].
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Figure 1: The empirical CDF 𝐹𝑛(𝑥) (blue color) and the Weilbull CDF 𝐹0(𝑥) (red color).

Table 3: Parameters 𝛼, 𝛽, and the KS statistic value by the direct
search technique (Initial parameters 𝛼 = 0.5, 𝛽 = 𝑥 = 31.06).
Times 𝛼 𝛽 Value for the KS test
1 0.5049 31.0142 0.1262
10 0.5489 30.6153 0.1088
100 0.7652 29.5447 0.0544
1000 0.7652 29.5451 0.0544

Step 3. Calculate the KS statistic value by using 𝛼󸀠 and 𝛽󸀠.
Step 4. Compare the KS value of Step 1 and Step 3.

(4.1) If the KS statistic value of Step 1 is less than Step 3,
then we do Step 2 again.

(4.2) If (4.1) is false we set 𝛼 = 𝛼󸀠, 𝛽 = 𝛽󸀠 and then we
perform Step 2 again.

Step 5. Iterate until the process is complete (four-decimal
place accuracy).

If value for the KS test is approximated to four-decimal
place accuracy, then the direct search technique is completed.
We perform the simulation 1000 times.The results are shown
in Table 3.

Table 4 shows that the value for the KS test of the direct
search technique equals 0.0544 which is less than that of
the other methods. Therefore, the direct search technique
with given simple initial parameters 𝛼 = 0.5 and 𝛽 =𝑥 = 31.06 affect the preciseness of the parameter estimation
(four-digit accuracy) more than the least squares method,
the maximum likelihood estimation, and the method of
moments. Consequently, the set data in Table 1 accepts the
Weibull distribution at 95% confidence with parameters 𝛼 =0.7526 and 𝛽 = 29.5450. These parameters will be used
to approximate the minimum initial capital of the surplus
process (12) which will be explained in Part II.

3.2. Part II: The Simulation of the Ruin Probability and the
Minimum Initial Capital

3.2.1. The Simulation of the Ruin Probability. We consider the
surplus process (12) under the condition of the claim time 𝑇𝑖
for 𝑖 = 1, 2, . . . , 𝑛 with 0 ≤ 𝑇1 ≤ ⋅ ⋅ ⋅ ≤ 𝑇𝑛 ≤ 𝑇̃ when 𝑇̃ =

365 days. A simulation method is used to compute the ruin
probability 𝑃({𝑈𝑛 < 0 ∃𝑛 ∈ N}, ∑𝑛𝑖=1 𝑍𝑖 ≤ 365 | 𝑈0 = 𝑢),
where 𝑍𝑖 = 𝑇𝑖 − 𝑇𝑖−1. The flowchart is shown in Figure 2.

In Figure 2, the premium rate for one unit of time, 𝑐, can
be calculated by the expected value principle, i.e.,

𝑐 = (1 + 𝜃) 𝐸𝑌1𝐸𝑍1 (30)

where {𝑌1, 𝑌2, . . . , 𝑌𝑛} is the sequence of claims which are
assumed to be i.i.d. and {𝑍1, 𝑍2, . . . , 𝑍𝑛} is the sequence of
the Poisson random variable which is also assumed to be i.i.d.
We estimate that the parameter 𝜆 is equal to 7.766. Then we
get the premium rate as the following equation:

𝑐 = (1 + 𝜃) 𝐸𝑌1𝐸𝑍1 = (1 + 𝜃)
(29.5450) Γ (1 + 1/0.7652)7.766

= (1 + 𝜃) (4.4570)
(31)

Thereafter we perform the simulation of the ruin
probability by setting the initial capital 𝑢 = 570, 600,630, 660, 690 . . . , 1470 million Baht. The simulations are
computed 10,000 iterations (see Figure 2). The results are
shown in Figure 3.

3.2.2. Minimum Initial Capital. We consider the relationship
between the ruin probability Φ(𝑢, 365) fl 𝑦 and the initial
capital 𝑢 in Figure 3 which is the quadratic function,

𝑦 = 𝑎𝑢2 + 𝑏𝑢 + 𝑐 (32)

Next, we use the quadratic regression method in (32); we
obtain the parameters 𝑎, 𝑏 and 𝑐 as shown in Table 5.

Finally, we consider that the ruin probability is not greater
than 𝛼, i.e.,

Φ (𝑢, 365) ≤ 𝛼
𝑎𝑢2 + 𝑏𝑢 + 𝑐 ≤ 𝛼

𝑎𝑢2 + 𝑏𝑢 + 𝑐 − 𝛼 ≤ 0
(33)
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Figure 2: The flow chart of a simulation of the ruin probability.

For example, we can apply (33) to calculate theMIC in the
case of 𝜃 = 0.1, and 𝛼 = 0.01. Consequently, we obtain

(−9.9562330409 × 10−7) 𝑥2 + (0.001282542) 𝑥
+ (0.589108899) − 0.01 ≤ 0. (34)

and we get 𝑥 ∈ (−∞, −354.16184) ∪ (1642.3413,∞).
Therefore, the MIC of a reinsurance company has to hold for
ensuring that the ruin probability is not greater than𝛼 = 0.01,
i.e., the MIC is equal to 1642.3413 million Baht. In the other
cases of 𝜃 and 𝛼, we use a similar method. Then, we obtain
the MIC shown in the Table 6.
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Figure 3: The relation between the initial capital and the ruin probability in the case of 𝑟 = 2%.

Table 4: The value for the KS test from a variety of estimation methods.

Method Type 𝛼 𝛽 Value for the KS test
1 Least squares method 1 0.8405 28.7721 0.0649
2 Least squares method 2 0.8310 28.8602 0.0636
3 Least squares method 3 0.7984 29.1888 0.0591
4 Least squares method 4 0.8580 28.6168 0.0674
5 Maximum likelihood estimation 0.8633 28.8668 0.0709
6 Method of moments 0.9286 30.0055 0.0964
7 Direct search technique 0.7652 29.5450 0.0544

Table 5: The parameters 𝑎, 𝑏, and 𝑐 of the quadratic function by varying safety loading 𝜃.
𝜃 𝑎 𝑏 𝑐
0.1 −9.9562330409 × 10−7 0.001282542 0.589108899
0.2 −9.7285348409 × 10−7 0.001200587 0.632291576
0.3 −9.3646878406 × 10−7 0.00109436 0.685620907
0.4 −8.9480810258 × 10−7 0.000975717 0.744250813
0.5 −8.4790507621 × 10−7 0.000846694 0.80705413
0.6 −7.8222126156 × 10−7 0.00068849 0.879791861
0.7 −7.1361178877 × 10−7 0.000523748 0.955127497
0.8 −6.5784995253 × 10−7 0.000382004 1.020181037
0.9 −5.8276047039 × 10−7 0.000207764 1.097419007
1.0 −5.1967843269 × 10−7 0.000059240 1.160626457
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Table 6: The MIC of a reinsurance company has to hold for ensuring that the ruin probability is not greater than 𝛼.
𝜃 Premium rate MIC million Baht MIC million Baht𝑐 = (1 + 𝜃) (4.4570) (𝛼 = 0.01) (𝛼 = 0.05)
0.1 4.9027 1642.3413 1622.0112
0.2 5.3484 1627.1924 1606.6316
0.3 5.7941 1615.2543 1594.3263
0.4 6.2398 1602.4812 1581.1251
0.5 6.6855 1589.8425 1567.9948
0.6 7.1312 1582.7270 1560.1270
0.7 7.5769 1574.8999 1551.4706
0.8 8.0226 1563.0873 1538.9719
0.9 8.4683 1555.8489 1530.7069
1.0 8.9140 1546.0777 1520.0044

Table 6 shows that if 𝜃 increases, it affects the premiums
which also increase and then the MIC decreases under given𝛼−regulation.
4. Conclusion and Suggestion

This work presents the use of the direct search technique to
estimate the parameters of a Weibull distribution. The direct
search technique is compared with the least squares method,
the maximum likelihood estimation, and the method of
moments. The results show that the direct search technique
is more accurate than the other methods (accuracy of four
decimal points). Fire accident data is used for special cases
exceeding 20 million Baht. The results show that if the
safety loading is increased, the MIC decreases under the
given 𝛼−regulation; i.e., reinsurance will enable the financial
management plan to prevent insolvency.
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