
Research Article
A Truncation Method for Solving the Time-Fractional
Benjamin-Ono Equation

Mohamed R. Ali

Department of Mathematics, Benha Faculty of Engineering, Benha University, Benha, Egypt

Correspondence should be addressed to Mohamed R. Ali; mohamed.reda@bhit.bu.edu.eg

Received 12 December 2018; Revised 2 March 2019; Accepted 25 March 2019; Published 2 May 2019

Academic Editor: Mustafa Inc

Copyright © 2019 Mohamed R. Ali. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We deem the time-fractional Benjamin-Ono (BO) equation out of the Riemann–Liouville (RL) derivative by applying the Lie
symmetry analysis (LSA). By first using prolongation theorem to investigate its similarity vectors and then using these generators to
transform the time-fractional BO equation to a nonlinear ordinary differential equation (NLODE) of fractional order, we complete
the solutions by utilizing the power series method (PSM).

1. Introduction

Lie symmetry method provides an effective tool for deriving
the analytic solutions of the nonlinear partial differential
equations (NLPDEs) [1–4]. In recent years, many authors
have studied the nonlinear fractional differential equations
(NLFDEs) because these equations express many nonlinear
physical phenomena and dynamic forms in physics, electro-
chemistry, and viscoelasticity [5–9].

Time-fractional NLDEs arise from classical NLPDEs by
replacing its time derivative with the fractional derivative.
The methods applied to derive the analytic solutions of NLF-
PDEs are the exp-function, the 𝐺/𝐺 expansion, fractional
su-equation, Lie symmetry method, and many more [10–19].

The one-dimensional Benjamin-Ono equation is consid-
ered here as follows (see [20]):

𝑢𝑡 + ℎ𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0 (1)

In fact, the BO equation describes one-dimensional internal
waves in deep water. We consider LSA for the analytic
solutions by using PS expansion for the time-fractional BO
equation:

𝑢𝛼𝑡 + ℎ𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0, 0 < 𝛼 < 1 (2)

In division 2 of this paper, some basic properties of the
Riemann–Liouville fractional derivative are shown firstly

and then the Lie group method for FPDEs is presented.
In division 3, the Lie group to the time-fractional BO
equation (FBO) and the symmetry reductions are deter-
mined. In division 4, we derive anew arrangement of the
FBO equation (2) via the PSM. In division 5, we study the
convergence for the series solution. We conclude our work in
division 6.

2. Notations and Delineations

2.1. Description of Lie Symmetry Reduction Method for NLF-
PDEs. We present the principal notations and definitions
that detecting the symmetries of the NLFPDEs.

Here, the time-fractional NLFPDEs are

𝜕𝛼𝑡 𝑢 = 𝐹 (𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . . . .) (3)

Suppose that the infinitesimal vector𝑋 has the form

𝑋 = 𝜉1 (𝑥, 𝑡, 𝑢) 𝜕𝜕𝑥 + 𝜉2 (𝑥, 𝑡, 𝑢) 𝜕𝜕𝑡 + 𝜂 (𝑥, 𝑡, 𝑢) 𝜕𝜕𝑢 (4)

The Lie group parameter of infinitesimal transformations [8,
21, 22] has the formula
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𝑥 = 𝑥 + 𝜀𝜉1 (𝑡, 𝑥, 𝑢) + 𝑂 (𝜀2) ,
𝑡 = 𝑡 + 𝜀𝜉2 (𝑡, 𝑥, 𝑢) + 𝑂 (𝜀2) ,
𝑢 = 𝑢 + 𝜀𝜂 (𝑡, 𝑥, 𝑢) + 𝑂 (𝜀2) ,

𝜕𝛼𝑢𝜕𝑡𝛼 = 𝜕𝛼𝑢𝜕𝑡𝛼 + 𝜀𝜂0𝛼 (𝑡, 𝑥, 𝑢) + 𝑂 (𝜀2) ,
𝜕𝑢𝜕𝑥 = 𝜕𝑢𝜕𝑥 + 𝜀𝜂𝑥 (𝑡, 𝑥, 𝑢) + 𝑂 (𝜀2) ,
𝜕2𝑢𝜕𝑥2 = 𝜕2𝑢𝜕𝑥2 + 𝜀𝜂𝑥𝑥 (𝑡, 𝑥, 𝑢) + 𝑂 (𝜀2) ,

(5)

where 𝜉1, 𝜉2, and 𝜂 are considered as the infinitesimals of
the transformation’s variables (𝑥, 𝑡, 𝑢), respectively, and 𝜀ń1
is considered as the group parameter; we will take it to be
equal to one.The explicit expressions of 𝜂𝑥 and 𝜂𝑥𝑥, which we
consider as the prolongation of the infinitesimals, are given
by

𝜂𝑥 = 𝐷𝑥 (𝜂) − 𝑢𝑥𝐷𝑥 (𝜉1) − 𝑢𝑡𝐷𝑡 (𝜉2) , (6)

and

𝜂𝑥𝑥 = 𝐷𝑥 (𝜂𝑥) − 𝑢𝑥𝑡𝐷𝑥 (𝜉1) − 𝑢𝑥𝑥𝐷𝑡 (𝜉2) , (7)

where𝐷𝑥 is in [8] assigned as

𝐷𝑥 = 𝜕𝜕𝑥 + 𝑢𝑥 𝜕𝜕𝑥 + 𝑢𝑥𝑥 𝜕𝜕𝑢𝑥 + . . . (8)

Theorem 1. Equation (2) coincides with a one-parameter
group of transformations (5) with the infinitesimal generator X
if and only if the accompanying infinitesimal conditions holds
true:

𝑃𝑟(𝛼,2) 𝑋(Δ)|Δ=0 = 0 (9)

whereΔ = 𝐷𝛼𝑡 𝑢−𝐹(𝑡, 𝑥, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, . . . . . .) and 𝑃𝑟 is the second
prolongation of the infinitesimal generator𝑋.
Definition 2. The prolonged vector is demonstrated by

𝑃𝑟(𝑛)𝑋 = 𝑋 + 𝑝∑
𝑖=1

𝑞∑
𝛼=1

𝜉𝛼𝑖 𝜕𝜕𝑢𝛼𝑖 + . . .
+ 𝑝∑
𝑗1=1

. . . 𝑝∑
𝑗𝑛=1

𝑞∑
𝛼=1

𝜉𝛼𝑗1 ...𝑗𝑛 𝜕𝜕𝑢𝛼𝑗1 ...𝑗𝑛
(10)

where 𝑞 is the number of dependent variables, 𝑝 is the
number of independent variables, 𝜕/𝜕𝑢𝛼𝑗1 = 𝜕/𝜕𝑢𝛼𝑥, and the
PDE involves derivatives of up to the order 𝑛. The condition
[21–23] is given by

𝜉2 (𝑡, 𝑥, 𝑢)|𝑡=0 = 0 (11)

Lemma 3. The function 𝑢 = 𝜃(𝑥, 𝑡) is an invariant solution of
(3) if and only if

(i) 𝜉2 (𝑥, 𝑡, 𝜃) 𝜃𝑡 + 𝜉1(𝑥, 𝑡, 𝜃) 𝜃𝑥 = 𝜂 (𝑥, 𝑡, 𝜃).
Lemma 4. The 𝛼𝑡ℎ extended infinitesimal [24, 25] for the
fractional derivative part utilizing the RL definition with (11)
is given by

𝜂0𝛼 = 𝜕𝛼𝜂𝜕𝑡𝛼 + (𝜂𝑢 − 𝛼𝐷𝑡 (𝜉2)) 𝜕
𝛼𝑢𝜕𝑡𝛼 − 𝑢𝜕

𝛼𝜂𝑢𝜕𝑡𝛼 + 𝜇
− ∞∑
𝑛=1

(𝛼𝑛)𝐷𝑛𝑡 (𝜉1)𝐷𝛼−𝑛𝑡 (𝑢𝑥) + ∞∑
𝑛=1

[(𝛼𝑛) 𝜕𝛼𝜂𝑢𝜕𝑡𝛼
− [( 𝛼

𝑛 + 1)𝐷𝑛+1𝑡 (𝜉2)]𝐷𝛼−𝑛𝑡 (𝑢) ,
(12)

where

𝜇 = ∞∑
𝑛=2

𝑛∑
𝑚=2

𝑚∑
𝑘=2

𝑘−1∑
𝑟=2

(𝛼𝑛)(
𝑛
𝑚)(

𝑘
𝑟) 1𝑘!

⋅ 𝑡𝑛−𝛼Γ (𝑛 + 1 − 𝛼) [−𝑢]𝑟 𝜕
𝑚

𝜕𝑡𝑚 [𝑢𝑘−𝑟] 𝜕𝑛−𝑚+𝑘𝜕𝑡𝑛−𝑚𝜕𝑢𝑘
(13)

Remember that

(𝛼𝑛) = (−1)𝑛−1 𝛼Γ (𝑛 − 𝛼)Γ (1 − 𝛼) Γ (𝑛 + 1) (14)

3. Reduction of Time-Fractional
Benjamin-Ono Equation

We use the LSA to find the similarity solution for 1D time-
factional BO equation (1). Suppose that (2) is an invariant
under (5), so that we have

𝑢𝛼𝑡 + ℎ𝑢𝑥𝑥 + 𝑢 𝑢𝑥 = 0 (15)

Thus, 𝑢(𝑥, 𝑡) satisfies (2). Applying the second prolongation
to (2), symmetry invariant equation is

𝜂0𝛼 + 𝑢𝜂𝑥 + ℎ𝜂𝑥𝑥 + 𝑢𝑥𝜂 = 0 (16)

Substituting the values from (6), (7), and (12) into (16) and
isolating coefficients in partial derivatives regarding 𝑥 and
power of 𝑢, we have

(𝛼𝑛) 𝜕𝑛𝑡 𝜂𝑢 − (
𝛼

𝑛 + 1)𝐷𝑛+1𝑡 (𝜉2) = 0, 𝑛 = 1, 2, 3 . . . ,
𝜉𝑢2 = 𝜉𝑥2 = 𝜉𝑢1 = 𝜉𝑡1 = 𝜂𝑢𝑢 = 0,
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𝛼𝜉𝑡2 − 2𝜉𝑥1 = 0,
ℎ𝜂𝑥𝑥 − 𝑢𝜕𝛼𝑡 𝜂𝑢 + 𝜕𝛼𝑡 𝜂 + 𝑢𝜂𝑥 = 0,
𝜉𝑥𝑥1 − 2𝜂𝑥𝑢 = 0.

(17)

Solving the obtained determining equation, we get

𝜉1 = 𝑐2 + 𝛼𝑥𝑐1,
𝜉2 = 2𝑡𝑐1,
𝜂 = −𝛼𝑢𝑐1,

(18)

where 𝑐1 and 𝑐2 are constants, for simplicity. We take their
values equal to one. So, (2) has two vector fields that can
generate its infinitesimal symmetry. These Lie vectors are
considered as follows:

𝑋1 = 𝜕𝜕𝑥 , (19)

𝑋2 = 𝛼𝑥 𝜕𝜕𝑥 + 2𝑡 𝜕𝜕𝑡 − 𝛼𝑢 𝜕𝜕𝑢 . (20)

Case 1. For (19), we have

𝑑𝑥1 = 𝑑𝑡0 = 𝑑𝑢0 (21)

Solving this equation, 𝑢 = 𝑓(𝑡). Putting 𝑢 = 𝑓(𝑡) into (1), we
get

𝐷𝛼𝑡 𝑓 (𝑡) = 0 (22)

where 𝑢 = 𝑎1𝑡𝛼−1.
Case 2. For𝑋2 in (20), we have

𝑑𝑥𝛼𝑥 = 𝑑𝑡2𝑡 = −𝑑𝑢𝛼𝑢 (23)

This is the characteristic equation. By solving it, the resulting
similarity variable in the form

𝑧1 = 𝑥𝑡−𝛼/2,
𝑧2 = 𝑢𝑡−𝛼/2. (24)

The variables transformation is as follows:

𝑢 = 𝑡−𝛼/2𝑓 (𝜉) , 𝜉 = 𝑥𝑡−𝛼/2, (25)

where 𝑓(𝜉) is a function in one variable 𝜉. We use (25) to
transform (2) into a fractional ODE.

Theorem 5. Transformation (25) reduces (2) to the nonlinear
FODE as follows:

(𝑃1−3𝛼/2,𝛼3/𝛼 𝑓) (𝜉) + ℎ𝑓𝜉𝜉 + 𝑓𝑓𝜉 = 0 (26)

utilizing the Erdelyi-Kober (EK) fractional derivative operator
[20]:

(𝑃𝜉2,𝛼𝛽 𝑓) (𝜉)
= 𝑛−1∏
𝑗=0

(𝜉2 + 𝑗 − 1𝛽 𝑑𝑑𝜉) (𝐾𝜉2+𝛼,𝑛−𝛼𝛽 𝑓) (𝜉) , (27)

where

(𝐾𝜉2,𝛼𝛽 𝑓) (𝜉)

= {{{{{{{

1Γ (𝛼) ∫
∞

1
(𝑢 − 1)𝛼−1 𝑢−(𝜉2+𝛼)𝑓 (𝜉𝑢1/𝛽) 𝑑𝑢, 𝛼 > 0

𝑓 (𝜉) , 𝛼 = 0
(28)

and

𝑛 = {{{
[𝛼] + 1, 𝛼 ̸= 𝑁
𝛼, 𝛼 ∈ 𝑁 (29)

Proof. Utilizing the definition of the RL fractional derivative
in (25), we get

𝜕𝛼𝑢𝜕𝑡𝛼 = 𝜕𝑛𝜕𝑡𝑛 [ 1Γ (𝑛 − 𝛼)
⋅ ∫𝑡
1
(𝑡 − 𝑠)𝑛−𝛼−1 𝑠−𝛼/2𝑓 (𝑥𝑠−(𝛼/2)) 𝑑𝑠] ,

𝑛 − 1 < 𝛼 < 1, 𝑛 = 1, 2, . . .
(30)

Assume that V = 𝑡/𝑠, 𝑑𝑠 = −(𝑡/V2)𝑑V. Thus, (30) becomes

𝜕𝛼𝑢𝜕𝑡𝛼 = 𝜕𝑛𝜕𝑡𝑛 [𝑡𝑛−3𝛼/2 1Γ (𝑛 − 𝛼)
⋅ ∫∞
0
(V − 1)𝑛−𝛼−1 V−(𝑛+1−3𝛼/2)𝑓 (𝜉V(𝛼/2)) 𝑑V]

(31)
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Applying the EK fractional integral operator (28) in (31), we
have

𝜕𝛼𝑢𝜕𝑡𝛼 = 𝜕𝑛𝜕𝑡𝑛 [𝑡𝑛−3𝛼/2 (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)] (32)

For simplicity, we consider= 𝑥 𝑡−𝛼/2,𝜙 ∈ (0,∞).We thus find
that

𝑡 𝜕𝜕𝑡𝜙 (𝜉) = 𝑡𝑥 (−𝛼2 ) 𝑡−𝛼/2−1 𝜙 (𝜉) = −𝛼2 𝜉 𝜕𝜕𝜉𝜙 (𝜉) (33)

Hence, we have

𝜕𝑛𝜕𝑡𝑛 [𝑡𝑛−3𝛼/2 (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)] = 𝜕𝑛−1𝜕𝑡𝑛−1 [ 𝜕𝜕𝑡
⋅ 𝑡𝑛−3𝛼/2 (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)]
= 𝜕𝑛−1𝜕𝑡𝑛−1 [𝑡𝑛−3𝛼/2−1 (𝑛 − 3𝛼2 − 𝛼2 𝜉 𝜕𝜕𝜉)
⋅ (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)] .

(34)

Repeating 𝑛 − 1 times, we have

𝜕𝑛𝜕𝑡𝑛 [𝑡𝑛−3𝛼/2 (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)] = 𝜕𝑛−1𝜕𝑡𝑛−1 [ 𝜕𝜕𝑡
⋅ 𝑡𝑛−3𝛼/2 (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)] = 𝜕𝑛−1𝜕𝑡𝑛−1 [𝑡𝑛−3𝛼/2−1 (𝑛
− 3𝛼2 − 𝛼2 𝜉 𝜕𝜕𝜉) (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉)]

= 𝑡−𝛼/2𝑛−1∏
𝑗=0

[(1 − 3𝛼2 + 𝑗 − 𝛼2 𝜉 𝜕𝜕𝜉) (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓)
⋅ (𝜉)

(35)

Applying the EK fractional differential operator (27) in (35),
we get

𝜕𝑛𝜕𝑡𝑛 [(𝑡𝑛−𝛼/3 (𝐾1−𝛼/2,𝑛−𝛼2/𝛼 𝑓) (𝜉))]
= 𝑡−𝛼/2 (𝑃1−3𝛼/2,𝛼2/𝛼 𝑓) (𝜉)

(36)

Substituting (36) into (32), we get

𝜕𝛼𝑢𝜕𝑡𝛼 = 𝑡−𝛼/2 (𝑃1−3𝛼/2,𝛼2/𝛼 𝑓) (𝜉) , (37)

Thus, (2) is reduced to a fractional-order ODE as follows:

(𝑃1−3𝛼/2,𝛼2/𝛼 𝑓) (𝜉) + 𝑓𝑓𝜉 + ℎ𝑓𝜉𝜉 = 0. (38)

4. The Explicit Solution for
the Time-Fractional Benjamin-Ono
Equation by Using PSM

The analytic solutions via PSM [26] are demonstrated. We
assume that

𝑓 (𝜉) = ∞∑
𝑛=0

𝑎𝑛𝜙 (𝜉)𝑛 , (39)

Differentiating (39) twice regarding 𝜉, we get
𝑓 (𝜉) = ∞∑

𝑛=0

𝑛𝑎𝑛𝜙 (𝜉)𝑛−1 , (40)

and

𝑓 (𝜉) = ∞∑
𝑛=0

𝑛 (𝑛 − 1) 𝑎𝑛𝜙 (𝜉)𝑛−2 , (41)

Substituting (39), (40), and (41) into (38), we have

∞∑
𝑛=0

Γ (2 − 3𝛼/2 − 𝑛𝛼/2)Γ (2 − 𝛼/2 − 𝑛𝛼/2) 𝑎𝑛𝜙 (𝜉)𝑛

+ ∞∑
𝑛=0

𝑎𝑛𝜙 (𝜉)𝑛 ∞∑
𝑛=0

(𝑛 + 1) 𝑎𝑛+1𝜙 (𝜉)𝑛

+ ℎ∞∑
𝑛=0

(𝑛 + 2) (𝑛 + 1) 𝑎𝑛+2𝜙 (𝜉)𝑛 = 0

(42)

Comparing coefficients in (42) when 𝑛 = 0, we obtain
𝑎2 = −12ℎ (Γ (2 − 3𝛼/2)Γ (2 − 𝛼/2) 𝑎0 + 𝑎0𝑎1) , (43)
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When 𝑛 ≥ 1, the recurrence relations between the series
coefficients are

𝑎𝑛+2 = −12ℎ (𝑛 + 2) (𝑛 + 1) (Γ (2 − 3𝛼/2 − 𝑛𝛼/2)Γ (2 − 𝛼/2 − 𝑛𝛼/2) 𝑎𝑛
+ (𝑛 + 1) 𝑎𝑛𝑎𝑛+1)

(44)

Using (44), the series solution for (39) can be represented by
substituting (43) and (44) into (39):

𝑓 (𝜉) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉2 + ∞∑
𝑛=1

𝑎𝑛+2𝜉𝑛+2 = 𝑎0 + 𝑎1𝜉

− 12ℎ (Γ (2 − 3𝛼/2)Γ (2 − 𝛼/2) 𝑎0 + 𝑎0𝑎1) 𝜉2

− ∞∑
𝑛=1

12ℎ (𝑛 + 2) (𝑛 + 1) (Γ (2 − 3𝛼/2 − 𝑛𝛼/2)Γ (2 − 𝛼/2 − 𝑛𝛼/2) 𝑎𝑛
+ (𝑛 + 1) 𝑎𝑛𝑎𝑛+1) 𝜉𝑛+2.

(45)

Upon substitution using similarity variables in (25), the
following explicit solutions for (2) are

𝑢 (𝑥, 𝑡) = 𝑎0𝑡−𝛼/2 + 𝑎1𝑥𝑡−𝛼 − 12ℎ (Γ (2 − 3𝛼/2)Γ (2 − 𝛼/2) 𝑎0
+ 𝑎0𝑎1) 𝑡−𝛼/2 (𝑥𝑡−𝛼/2)2

− ∞∑
𝑛=1

{{{
12ℎ (𝑛 + 2) (𝑛 + 1) Γ (2 − 3𝛼/2 − 𝑛𝛼/2)Γ (2 − 𝛼/2 − 𝑛𝛼/2) 𝑎𝑛

+ 𝑛∑
𝑘=0

𝑘∑
𝑗=0

(𝑎𝑗+𝑎𝑘−𝑗) 𝑎𝑛−𝑘 (𝑛 + 1)}}}(𝑥)𝑛+2

⋅ 𝑡−𝛼(2𝑛+𝛼𝛽)/2𝛽.

(46)

5. Convergence Analysis

To satisfy the convergence test, there are many kinds of tests
as the ratio, the comparison, and the quotient tests. The
convergence of the solution equation (46) will be presented
as follows. We revamp (46) as follows:

𝑎𝑛+2 ≤ (|Γ (2 − 3𝛼/2 − 𝑛𝛼/2)||Γ (2 − 𝛼/2 − 𝑛𝛼/2)| 𝑎𝑛
− 𝑛∑
𝑘=0

𝑘∑
𝑗=0

𝑎𝑗 𝑎𝑘−𝑗 𝑎𝑛−𝑘 − 𝑎𝑛)
(47)

Equation (47), utilizing the Gamma function, shows that|Γ(2 − 3𝛼/2 − 𝑛𝛼/2)|/|Γ(2 − 𝛼/2 − 𝑛𝛼/2)| < 1 for arbitrary𝑛 that
𝑎𝑛+2 ≤ 𝑀(𝑎𝑛 − 𝑛∑

𝑘=0

𝑘∑
𝑗=0

𝑎𝑗 𝑎𝑘−𝑗 𝑎𝑛−𝑘 − 𝑎𝑛) (48)

where𝑀 = max{(|𝑐1|, |𝑐2|). We now assume another form of
the PSM:

𝐵 (𝜉) = ∞∑
𝑛=0

𝑐𝑛𝜉𝑛 (49)

By comparing the two series, we can observe that |𝑐𝑛| ≤ 𝑎𝑛,𝑛 = 0, 1, . . .. Hence, the series𝐵(𝜉) = ∑∞𝑛=0 𝑐𝑛𝜉𝑛 is themajorant
series of (47). So, we find that

𝐵 (𝜉) = 𝑐0 + 𝑐1𝜉
+𝑀(∞∑

𝑛=0

𝑐𝑛𝜉2𝐵 (𝜉) + ∞∑
𝑛=0

𝑛∑
𝑘=0

𝑘∑
𝑗=0

𝑐𝑗𝑐𝑘−𝑗𝑐𝑛−𝑘 + ∞∑
𝑛=0

𝑐𝑛)
⋅ 𝜉𝑛+2

(50)

Consider an implicit functional system regarding 𝜉 as follows:
𝛽 (𝜉, 𝐵)

= 𝐵 − 𝑐0 − 𝑐1𝜉 − 𝑐2𝜉2
−𝑀(𝜉2𝐵 (𝜉) + 2𝐵 (𝜉)2 + (𝜉2 − 𝑐1𝜉 − 3𝑐0) 𝐵)

(51)

since 𝛽 is analytic in a neighborhood of (0, 𝑐0), where𝛽(0, 𝑐0) = 0, and (𝜕/𝜕𝐵)𝛽(0, 𝑐0) = 0. Then, the series 𝐵(𝜉) =∑∞𝑛=0 𝜉𝑛 is analytic around (0, 𝑐0) and this is verified utilizing
[27] and the radius of convergence of this series belongs to
a positive domain. This shows that (46) converges around(0, 𝑐0).
6. Physical Performance of the Power Series
Technique for Eqs. (46)

To have expressed and convenient conception of the physical
characteristic of the power series solution, the 3D plots for
the explicit solution equations (46) is plotted in Figures 1–4 atℎ = 1 by utilizing appropriate parameter forms.The spectacle
vision of the real portion of (46) can be visible in the 3D plots
proof in Figures 1, 2, 3, and 4, respectively.
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Figure 1: 3D plot of (46) with 𝑎0 = 1.9, 𝑎1 = 1.7, 𝑎2 = 0.77, 𝛾 = 1,𝛼 = 0.8, 𝛽 = 2.
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Figure 2: 3D plot of (46) with 𝑎0 = 3.9, 𝑎1 = 1.7, 𝑎2 = 0.87, 𝛾 = 1,𝛼 = 0.6, 𝛽 = 1.

7. Conclusions

Lie point symmetry properties of (1 + 1)-dimensional time-
fractional Benjamin-Ono equation have been considered
with the Riemann–Liouville fractional derivative.These sym-
metries are used here to transform the FPDEs intoNLFODEs.
Closed-form solutions are determined by using PSM in
the last division. The accuracy exhibits the assembly of
the solution. Considerable frames for the acquired explicit
solutions were approached.
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Figure 3: 3D plot of (46) with 𝑎0 = 1, 𝑎1 = 1.1, 𝑎2 = 0.57, 𝛾 = 1,𝛼 = 0.5, 𝛽 = 0.7.
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Figure 4: 3D plot of (46) with 𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 0.4, 𝛾 = 1,𝛼 = 0.3, 𝛽 = 0.4.
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