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In this study, we tend to propose a replacement hybrid algorithmic rule which mixes the search directions like Steepest Descent
(SD) and Quasi-Newton (QN). First, we tend to develop a replacement search direction for combined conjugate gradient (CG) and
QN strategies. Second, we tend to depict a replacement positive CG methodology that possesses the adequate descent property
with sturdy Wolfe line search. We tend to conjointly prove a replacement theorem to make sure global convergence property is
underneath some given conditions. Our numerical results show that the new algorithmic rule is powerful as compared to different
standard high scale CG strategies.

1. Introduction

The nonlinear CG technique could be a helpful procedure
to search out the minimum value of any nonlinear function
through exploitation unconstrained nonlinear optimization
strategies.

Let us contemplate the subsequent unconstrained mini-
mization problem:

minimize
x∈Rn

𝑓 (𝑥) (1)

where 𝑓 : 𝑅𝑛 󳨀→ 𝑅 is a real-valued smooth function. The
repetitious formula is given as

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (2)

where𝛼k is associate optimum step-size computed by any line
search procedure [1]. The search direction 𝑑𝑘 is defined as

𝑑𝑘+1 = {{{
−𝑔𝑘+1 for k = 0
−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 for k ≥ 1 (3)

and gk = g(xk) denotes ∇f(xk), while 𝛽k is a positive scalar.

Well-known established instances of 𝛽𝑘 square measure
are from Hestenes-Stiefel, Fletcher-Reeves, Polak-Ribière,
Liu-Storey, Dai-Yuan, and Dai-Liao (see [2, 3, 3, 4, 4–
7], respectively), within the already-existing convergence
analysis and implementation of the CG methodology, the
weak Wolfe conditions square measure [8]:

''𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓 (𝑥𝑘) ≤ 𝛿𝛼𝑘∇𝑓 (𝑥𝑘)𝑇 𝑑'' (4)

''∇𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇 𝑑𝑘 ≥ 𝜎∇𝑓 (𝑥𝑘)𝑇 𝑑𝑘 '' (5)

If we choose 0 < 𝛿 < 𝜎 < 1, also the strong Wolfe conditions
[8] consist of (4) and

''
󵄨󵄨󵄨󵄨󵄨󵄨𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)𝑇 𝑑𝑘󵄨󵄨󵄨󵄨󵄨󵄨 ≤ −𝜎𝑔𝑇

𝑘
𝑑𝑘'' (6)

Now, this allows us to review Ibrahim et al. work [9] that
could be a work that considers unconstrained minimization
problems. Ibrahim et al. recommend a search direction that
is outlined as

𝑑𝑘 = −𝐵−1
𝑘
𝑔𝑘 + 𝜆𝑘+1d𝑘−1 (7)
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and 𝐵𝑘 is the BFGS updating matrix if step-size is

𝜆𝑘 = 𝜂gTk𝑔𝑘
gTk𝑑𝑘−1 (8)

The scalar 𝜂 ∈ [0, 1] is chosen to ensure conjugacy.
Also, another addition is regarded as an equivalent

unconstrained minimization problem. Ibrahim et al. [10]
recommend another search direction outlined as

𝑑𝑘 = −𝐵−1
𝑘
𝑔𝑘 + 𝜌𝑔𝑘,

(Bk − 𝜌I)dk = −gk (9)

Matrix I is the identity and 𝜌 <0.
In addition, Ibrahim et al. [11] propose another search

direction that is outlined as

𝑑𝑘 = {{{
−𝐵−1
𝑘
𝑔𝑘 k = 0

−𝐵−1
𝑘
𝑔𝑘 + 𝜂 (−𝑔𝑘 + 𝛽kd𝑘−1) k ≥ 1 (10)

The positive scalar 𝜂 and 𝛽𝑘 are the Hestenes-Stiefel parame-
ters.

2. A New Proposed Search Direction

In this section, we advise a replacement search direction as
deduced from Ibrahim et al. [9–11].The new search direction
is outlined as

dk+1 = −𝜆kgk+1 + Hk+1gk+1 (11)

whereas Hk+1 (the approximation matrix of BFGS updating
matrix) denotes approximations of Hessian matrix G, and 𝜆k
could be a positive constant. In order to drive the value of𝜆k, we have a tendency to multiply either side of (11) by yTk to
induce

𝑦𝑇
𝑘
𝑑𝑘+1 = −𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑦𝑇

𝑘
𝐻𝑘+1𝑔𝑘+1 (12)

Since 𝑦𝑇
𝑘
𝐻𝑘+1 = sTk and 𝑦𝑇

𝑘
𝑑𝑘+1 = −t𝑠𝑇

𝑘
𝑔𝑘+1 (Perry condition

[12]), then

−t𝑠𝑇
𝑘
𝑔𝑘+1 = −𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑠𝑇

𝑘
𝑔𝑘+1

𝜆𝑘 = (1 + t) 𝑠𝑇
𝑘
𝑔𝑘+1𝑦𝑇

𝑘
𝑔𝑘+1

(13)

In order to see value of 𝜌𝑘, we tend to additionally multiply
either side of (11) to induce

𝑑𝑘+1 = −𝜆𝑘𝑔𝑘+1 + 𝜌𝑘𝐻𝑘+1𝑔𝑘+1 (14)

𝑦𝑇
𝑘
𝑑𝑘+1 = −𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑦𝑇

𝑘
𝐻𝑘+1𝑔𝑘+1 (15)

𝜌𝑘 = 𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 − 𝑡𝑠𝑇
𝑘
𝑔𝑘+1𝑠𝑇

𝑘
𝑔𝑘+1 (16)

As a result of processes of multiplication shown in (13) and
(16), we tend to reach the following search directions in (17a),

(17b), and (17c).The subsequent new search directions are our
new projected algorithmic program:

𝑑𝑘+1 = −𝜆𝑘𝑔𝑘+1 + 𝜌𝑘𝐻𝑘+1𝑔𝑘+1 (17a)

𝜆𝑘 = (1 + t) 𝑠𝑇
𝑘
𝑔𝑘+1𝑦𝑇

𝑘
𝑔𝑘+1 (17b)

𝜌𝑘 = 𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 − 𝑡𝑠𝑇
𝑘
𝑔𝑘+1𝑠𝑇

𝑘
𝑔𝑘+1 (17c)

In the following step, we have a tendency to assume that
each search direction got to satisfy the subsequent descent
condition (𝑔𝑇

𝑘
𝑑𝑘 < 0, for all k). Also, there should exist a

constant c>0 in order to get

''𝑑𝑇
𝑘
𝑔𝑘 ≤ −𝑐1 󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2 '' (18)

For all 𝑘 ≥ 0, the new direction that is outlined in (18)
ought to satisfy the sufficient descent condition. The enough
descent conditions are going to be used later to prove our
new theorem (see Section 2.2). So to prove our new theorem,
we have a tendency to necessarily use the subsequent given
assumptions (see Section 2.1).

2.1. Assumptions in [9, 11, 13]

(A1) f : Rn 󳨀→ R is twice continuously differentiable.
(A2) f is uniformly convex; that is, m and M are positive

constants, such that

''𝑚‖𝑧‖2 ≤ 𝑧𝑇𝐺 (𝑥) 𝑧 ≤ 𝑀‖𝑧‖2 '' (19a)

for all x, z ∈ Rn, and G is the Hessian matrix of f.
(A3) The matrix G is Lipschitz continuous at the point x∗;

that is, there exists the positive constant L satisfying

'' 󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑥∗)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑥 − 𝑥∗󵄩󵄩󵄩󵄩 '' (19b)

for all x in a neighborhood of x∗.

2.2. A New Theorem for Proving Sufficient Descent Property.
To prove that our new projected algorithm defined in (17a),
(17b), and (17c) satisfies sufficiently descent condition, we
tend to suppose that assumptions in (Section 2.1) square
measure are true. Additionally, the sequence 𝐻𝑘 is bounded.
Then, sufficient descent condition (18) is true for all k ≥ 0.
Proof. When taking (17a), (17b), and (17c) and achieving the
descent condition, we can see the following:

𝑔𝑇
𝑘+1

𝑑𝑘+1 = −𝜆𝑘𝑔𝑇𝑘+1𝑔𝑘+1 + 𝜌𝑘𝑔𝑇𝑘+1𝐻𝑘+1𝑔𝑘+1
≤ −𝜆𝑘 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2 + 𝛿𝑘 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2 ≤ 𝑐 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2 (20)

We get value 𝑐 = −(𝜆𝑘 − 𝛿𝑘), which is bounded away from
zero. Therefore (18) is true.
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2.3. Lemma in [10, 14]. Suppose that assumptions in
Section 2.1 are true. Then, the step-size 𝛼𝑘 which is deter-
mined by (2) satisfies

''𝑓𝑘+1 − 𝑓𝑘 ≤ −𝑐3 (𝑔𝑇𝑘 𝑑𝑘)
2

󵄩󵄩󵄩󵄩𝑑𝑘󵄩󵄩󵄩󵄩2 '' (21)

when 𝑐3 is a positive constant.
2.4. New Theorem for Proving Global Convergence Property.
Having demonstrated the important and necessary proper-
ties of regression algorithms, we now come to the proof
of the necessary property to be present in all numerical
optimization algorithms. Let us demonstrate the new algo-
rithm defined in (17a), (17b), and (17c). To achieve a global
convergence property, assume that the theory in Section 2.2
and the assumptions in Section 2.1 are correct. Then

'' lim
𝑘󳨀→∞

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩2 = 0'' (22)

Proof. By linking the theory in Section 2.2 and lemma in
Section 2.3 we give the following result:

∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩4󵄩󵄩󵄩󵄩𝑑𝑘󵄩󵄩󵄩󵄩2 < ∞ (23)

Hence, from our new theorem in Section 2.2, we can define
that ‖dk‖ ≤ −c‖gk‖, and we can therefore simplify (23) as∑∞k=0 ‖gk‖2 < ∞. Thus, the proof is established.

3. A New Form for the Parameter 𝛽𝑘 in
Conjugate Gradient Method

To obtain an updated version of the conjugate gradient
method associated with a new parameter 𝛽𝑘, we compare the
standard CG-method specified in (3) with the proposed new
algorithm specified in (17a), (17b), and (17c):

−𝜆𝑘𝑔𝑘+1 + 𝜌𝑘𝐻𝑘+1𝑔𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘 (24)

Multiplying both sides of (24) by yTk we get

−𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝜌𝑘𝑦𝑇𝑘𝐻𝑘+1𝑔𝑘+1 = −𝑦𝑇
𝑘
𝑔𝑘+1 + 𝛽𝑘𝑦𝑇𝑘 𝑠𝑘 (25)

Or

𝐻𝑘+1 = −𝑦𝑘𝑔𝑇𝑘+1 + 𝛽𝑘𝑦𝑘𝑠𝑇𝑘 + 𝜆𝑘𝑦𝑘𝑔𝑇𝑘+1𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1 ⋅ 𝐼 (26)

knowing that I is the identity matrix. Moreover,

𝑠𝑇
𝑘
𝐻𝑘+1𝑠𝑘
= −𝑠𝑇
𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘 + 𝛽𝑘𝑠𝑇𝑘𝑦𝑘𝑠𝑇𝑘 𝑠𝑘 + 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1

(27)

Then, the new 𝛽k is

𝛽ℎℎ
𝑘

= (𝑠𝑇
𝑘
𝐻𝑘+1𝑠𝑘) 𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑠𝑇

𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘 − 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

(28)

and𝑦𝑘 = 𝑔𝑘+1−𝑔𝑘, 𝑠𝑘 = 𝑥𝑘+1−𝑥𝑘. It should be noted thatwhen
using exact line searches assuming that 𝜌k = 1 and the matrix
Hk+1 is the identity matrix, the new standard will be reduced
to HS. This condition must also be met, with sTkHk+1sk > 0
(positive constant), and since

𝑠𝑇
𝑘
𝐻𝑘+1𝑠𝑘 = 𝜓𝑘 > 0 (29a)

after these conditions we know the new parameter 𝛽hh
k is

𝛽ℎℎ
𝑘

= 𝜓𝑘𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑠𝑇
𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘 − 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘 (29b)

In conjunction with both parameters

𝜆𝑘 = (1 + t) 𝑠𝑇
𝑘
𝑔𝑘+1𝑦𝑇

𝑘
𝑔𝑘+1 (29c)

𝜌𝑘 = 𝜆𝑘𝑦𝑇𝑘 𝑔𝑘+1 − 𝑡𝑠𝑇
𝑘
𝑔𝑘+1𝑠𝑇

𝑘
𝑔𝑘+1 (29d)

and the search direction is defined as

𝑑𝑘+1
= −𝑔𝑘+1

+ 𝜓𝑘𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑠𝑇
𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘 − 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘 𝑠𝑘

(29e)

3.1. Outlines of the New Proposed CG-Algorithm in (29a),
(29b), (29c), (29d), and (29e). By assuming 𝑥 ∈ 𝑅𝑛, ∈≥ 0, and
by setting the iteration k=1, we get the following steps.

Step 1. Set dk = −gk, if ‖gk‖ <∈, then stop.

Step 2. Compute 𝛼k by strongWolfe line search conditions in
(4) and in (6).

Step 3. Generate dk+1 by implementing (29a), (29b), (29c),
(29d), and (29e).

Step 4. If |𝑔𝑇
𝑘+1

𝑔𝑘| ≥ 0.2‖𝑔𝑘+1‖2 [15] is satisfied, then go to
Step 1; if not, then continue.

3.2. Assumptions for Proving the Convergence Analysis Prop-
erty of the New Algorithm in (29a), (29b), (29c), (29d), and
(29e). Let us suppose the following.

(i) The level set

''S = {x ∈ Rn : f (x) ≤ f (x0)} '' is bonded. (30)
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(ii) The condition ‖∇f(x)‖ ≤ 𝛾 is satisfied where 𝛾 >0; also since f is a uniformly convex function on
S, then there exists a constant 𝜇 > 0, such that

'' (∇𝑓 (𝑥) − ∇𝑓 (𝑦))𝑇 (𝑥 − 𝑦) ≥ 𝜇 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 , ∀𝑥, 𝑦 ∈ 𝑆'' (31)

From both (19a), (19b), and (31), we can get the following:

''𝜇 󵄩󵄩󵄩󵄩𝑠𝑘󵄩󵄩󵄩󵄩2 ≤ 𝑦𝑇
𝑘
𝑠𝑘 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑠𝑘󵄩󵄩󵄩󵄩2 '' (32)

3.3. New Theorem for Proving Sufficiently Descent Directions
of the New Algorithm in (29a), (29b), (29c), (29d), and (29e).
If we have a tendency to assume that (A3) in Section 2.1 is
true and if we assume that conditions (i) and (ii), outlined in
(30) and in (31), respectively, are true, then the new proposed
search direction dk+1 defined in (29e) satisfies the sufficient
descent condition.

Proof. By using the mathematical induction we demonstrate
this new theorem; for initial direction (k=1) we have

𝑑1 = −𝑔1 󳨀→ 𝑑𝑇
1
𝑔1 = − 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩2 ≤ 0 (33)

which satisfies (18).
We suppose that 𝑑𝑇

𝑖
𝑔𝑖 ≤ −𝑐‖𝑔𝑖‖2 ≤ 0, ∀i = 1, 2, . . . , k.

And if we multiply both sides of (29a) by (𝑔𝑘+1/‖𝑔𝑘+1‖2),
then we can get

𝑑𝑇
𝑘+1

𝑔𝑘+1 + 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2
= 𝜓𝑘𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑠𝑇

𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘 − 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

𝑠𝑇
𝑘
𝑔𝑘+1󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2

(34)

since 𝑠𝑇
𝑘
𝑔𝑘+1 ≤ 𝑠𝑇

𝑘
𝑦𝑘+1, since 𝑦𝑇

𝑘
𝑔𝑘+1 ≤ ‖𝑦𝑘‖ ⋅ ‖𝑔𝑘+1‖:

𝑑𝑇
𝑘+1

𝑔𝑘+1 + 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2

≤ 𝜓𝑘𝜌𝑘 󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩 + 𝑠𝑇
𝑘
𝑦𝑘𝑠𝑇𝑘𝑦𝑘 − 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑠𝑇𝑘𝑦𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘 ( 𝑠𝑇

𝑘
𝑦𝑘󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2)

≤ 𝜓𝑘𝜌𝑘 󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩 + (𝑠𝑇
𝑘
𝑦𝑘)2 − 𝜆𝑘 (𝑠𝑇𝑘𝑦𝑘)2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘 ( 𝑠𝑇

𝑘
𝑦𝑘󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2)

≤ 𝜓𝑘𝜌𝑘 󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩 + (1 − 𝜆𝑘) (𝑠𝑇𝑘𝑦𝑘)2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2

(35)

and since 0 < 𝜆 < 1 󳨀→ (1 − 𝜆) > 0
𝑙𝑒𝑡 c1 = (𝜓𝑘𝜌𝑘 󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩 + (1 − 𝜆𝑘) (𝑠𝑇𝑘𝑦𝑘)2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2 )

> 0
𝑑𝑇
𝑘+1

𝑔𝑘+1 ≤ − (1 − 𝑐1) 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩2 .
(36)

The above equations ensure that condition (18) is satisfied.
Hence, the proof is complete.

3.4. Lemma in [1, 16]. By assuming that assumptions in
Section 2.1 are true, by supposing that any CG-method with
search direction 𝑑𝑘+1 could be a descent direction provided
that the step-size 𝛼k is obtained by the strong Wolfe line
search conditions, and if

'' ∑
𝑘≥1

1󵄩󵄩󵄩󵄩𝑑𝑘+1󵄩󵄩󵄩󵄩2 = ∞'' (37)

then

'' lim
𝑘󳨀→∞

(inf 󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩) = 0'' (38)

3.5. A New Theorem for Proving the Global Convergence
Property of the New Algorithm in (29a), (29b), (29c), (29d),
and (29e). If we suppose that assumptions (i) and (ii) in (30)
and in (31), respectively, are true and if we have a tendency to
assume that (A3) in Section 2.1 is additionally true, then the
search directions 𝑑𝑘+1 outlined in (29e) are descent provided
that the step-size 𝛼𝑘 is computed using (4) and (6), and then

lim
𝑘󳨀→∞

(󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩) = 0. (39)

Proof. since

𝛽ℎℎ
𝑘

= 𝜓𝑘𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1 + 𝑠𝑇
𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘 − 𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

󵄨󵄨󵄨󵄨󵄨𝛽ℎℎ𝑘 󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜓𝑘𝜌𝑘𝑦𝑇𝑘 𝑔𝑘+1󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑠𝑇
𝑘
𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘𝑠𝑇𝑘𝑦𝑘𝑔𝑇𝑘+1𝑠𝑘󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(40)

and since 𝑠𝑇
𝑘
𝑔𝑘+1 ≤ 𝑠𝑇

𝑘
𝑦𝑘+1 and 𝑦𝑇

𝑘
𝑔𝑘+1 ≤ ‖𝑦𝑘‖ ⋅ ‖𝑔𝑘+1‖,

󵄨󵄨󵄨󵄨󵄨𝛽ℎℎ𝑘 󵄨󵄨󵄨󵄨󵄨 ≤ 𝜓𝑘𝜌𝑘 󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑠𝑇
𝑘
𝑦𝑘)2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘 (𝑠𝑇𝑘𝑦𝑘)2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜓𝑘𝜌𝑘 󵄩󵄩󵄩󵄩𝑦𝑘󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝑠𝑇𝑘𝑦𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑠𝑇
𝑘
𝑦𝑘)󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆𝑘 (𝑠𝑇𝑘𝑦𝑘)󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(41)
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Figure 1: Performance profiles based on number of iterations.

then from (A3) in part (Section 2.1), from condition (ii) in
(31), and from (28) we get

󵄨󵄨󵄨󵄨󵄨𝛽ℎℎ𝑘 󵄨󵄨󵄨󵄨󵄨 ≤ 𝜓𝑘𝜌𝑘𝐿 󵄩󵄩󵄩󵄩𝑠𝑘󵄩󵄩󵄩󵄩 𝛾󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 𝜇 󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 +
𝐿 󵄩󵄩󵄩󵄩𝑠𝑘󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 + 𝜆𝑘 𝐿 󵄩󵄩󵄩󵄩𝑠𝑘󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2

≤ 𝜓𝑘𝜌𝑘𝐿𝛾󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩 𝜇 󵄩󵄩󵄩󵄩sk󵄩󵄩󵄩󵄩2 + 𝐿 + 𝐿𝜆𝑘 = 𝑐2 > 0
󵄩󵄩󵄩󵄩𝑑𝑘+1󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑔𝑘+1󵄩󵄩󵄩󵄩 + 𝑐2 󵄩󵄩󵄩󵄩𝑠𝑘󵄩󵄩󵄩󵄩 = 𝐷

∑
𝑘≥1

1󵄩󵄩󵄩󵄩𝑑𝑘+1󵄩󵄩󵄩󵄩2 ≥ 1𝐷 ∑
𝑘≥1

1 = ∞.
i.e. lim
𝑘󳨀→∞

󵄩󵄩󵄩󵄩𝑔𝑘󵄩󵄩󵄩󵄩 = 0

(42)

4. Numerical Results and Comparisons

In this work, we have a tendency to compare our new pro-
posed CG-method with some normal classical CG strategies
like Hestenes-Stiefel [HS] andDai-Yuan [DY] by exploitation
of fifty unconstrained nonlinear cases; take a look at functions
obtained from Andrei [17, 18]. As for the computer program,
it was stopped when ‖𝑔𝑘‖ ≤ 10−6. In addition, the term𝑠𝑇
𝑘
𝐻𝑘+1𝑠𝑘, which is defined in (29a), can be computed as𝑠𝑇
𝑘
𝐻𝑘+1𝑠𝑘 = 2(𝑓𝑘 − 𝑓𝑘+1) + 2𝑠𝑇

𝑘
𝑔𝑘+1. Numerical results for

new algorithm in (29a), (29b), (29c), (29d), and (29e) with𝜆 = 1 and 𝜌 = 0.1 are for the total of 50 test problems from
the CUTE library. The Sigma plotting software was used to
graph the data. We adopt the performance profiles given by
Dolan and Moré [19]. Thus, new, HS, and DY strategies are
compared in terms ofNOI, CPU, andNOF in Figures 1–3. For
each method, we plotted the fraction of problems that were
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Figure 2: Performance profiles based on CPU time.
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Figure 3: Performance profiles based on function evaluation.

solved correctly within a factor of the best time. In the figures,
the uppermost curve is the method that solves the most
problems within a factor t of the best time. In Figures 1–3, the
new method outperforms the HS algorithm and DY method
in terms of NOI, CPU, and NOF. If the solution had not
converged after 800 seconds, the program was terminated.
Generally, convergence was achieved within this time limit;
functions for which the time limit was exceeded are denoted
by “F” for fail-in.
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5. Conclusions

At the end of this work wewere able to obtain a new direction
of research defined in (29a), (29b), (29c), (29d), and (29e).
This new trend is a hybrid trend that combines pedigree
techniques with Quasi-Newton ones. Through the theories
presented in the research, the new trend in (29a), (29b),
(29c), (29d), and (29e) proved that it satisfies the requirement
of sufficient proportions and ensures the property of global
convergence. In addition, we have presented a new scalar (𝛽k)
which ensures the sufficient descent directions. Moreover,
under some conditions, we have established that the new
proposed algorithm is a globally convergent algorithm for
uniformly convex functions under the strong Wolfe line
search conditions. The numerical results show that when we
choose the value of parameters 𝜆 in (13) and 𝜌 in (16), we
obtain best numerical results as compared to other similar
numerical results.
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