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After the dawn of the August 2007 financial crisis, banks became more aware of financial risk leading to the appearance of
nonnegligible spreads between LIBOR and OIS rates and also between LIBOR of different tenors.This consequently led to the birth
of multicurve models. This study establishes a new model; the multicurve cross-currency LIBOR market model (MCCCLMM).
The model extends the initial LIBOR Market Model (LMM) from the single-curve cross-currency economy into the multicurve
cross-currency economy. The model incorporates both the risk-free OIS rates and the risky forward LIBOR rates of two different
currencies. The established model is suitable for pricing different quanto interest rate derivatives. A brief illustration is given on
the application of the MCCCLMM on pricing quanto caplets and quanto floorlets using a Black-like formula derived from the
MCCCLMM.

1. Introduction

Modeling of LIBOR rates has evolved since their inception in
the late nineties. However, the most notable change occurred
in August 2007 where a severe financial crisis caused a
number of anomalies in the interest rate markets. Before the
2007 credit crunch, the spreads between the LIBOR rates and
the overnight indexed swap (OIS) rates were negligible. In
addition to this, the spreads between different LIBOR curves
of different tenors were also considered to be negligible.
Hence, a single interest rate curve was sufficient for both
discounting and generating future cash flows.

However, after the 2007 financial crisis, the LIBOR-OIS
spreads of different maturities began to evolve randomly over
time. In addition to this, the spreads between different LIBOR
curves of different tenors took the same fate. These spreads
became substantially too large to be ignored making the
negligibility assumption no longer hold. See images by [1] in
Figures 1 and 2.

Hence, the possibility of using one curve for both
discounting and generating future cash flows was greatly
challenged. This led to the introduction of the multiple curve
interest ratemodels. In this new framework, one curve is used

for discounting (mostly the OIS (risk-free) curve) and the
other curve(s) used for generating future cash flows (mostly
different LIBOR curves of different tenors).

So far, there are various models proposed in different
pieces of literature with regard tomodeling LIBOR under the
multiple curve framework: see [2–12] and so on. However, to
our knowledge, author of [13] was the first author to suggest
this approach and thiswas ironically before the financial crisis
occurred. It can be seen that all the proposed multicurve
models can be categorized to fall either under the short rate
approach such as [14–16] or the Heath-Jarrow Morton (HJM)
approach proposed in the early nineties by [17] or the LIBOR
market model (LMM) approach first proposed by [18, 19] in
the late nineties.

In addition to this, it was also noted that, under the mul-
tiple curve framework, one may choose tomodel the OIS and
LIBOR rates directly. This is said to lead to tractable pricing
formulas. However, one can not guarantee the positivity of
the LIBOR-OIS spreads. Alternatively, one may choose to
model the OIS and LIBOR-OIS spreads directly and then
later infer the dynamics of the LIBOR. This ensures that the
positivity of the LIBOR-OIS spreads is maintained. However,
the pricing formulas derived under this approach have been
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Figure 1: Different Currency LIBOR-OIS Spreads.

found to be less tractable. Finally, one may choose to model
the LIBOR and LIBOR-OIS spreads directly and later infer
the dynamics of the OIS rates. However, the positivity of the
OIS rates cannot be guaranteed. In this paper, we follow the
first approach.

The aim of this paper is to construct a multicurve cross-
currency LIBOR market model under the spot domestic risk
neutralmeasure.Themodel involves taking into account both
the risk-free and the risky interest rates. For this purpose,
we adapt the lognormal volatility model for the LIBOR and
OIS rates. We also adapt the geometric Brownian motion
model for the spot foreign exchange rate. We practically
aim to extend the works by [20, 21] from the single-
curve cross-currency framework into the multicurve cross-
currency framework so that it conforms to the modern
practices.

2. Problem Formulation

In this paper, our approach closely resembles that of the
Heath-Jarrow-Morton and the LIBOR market model (HJM-
LMM) approach in coming up with the multicurve cross-
currency LIBOR market model (MCCCLMM).

2.1. Model Notations. Let 𝑋(𝑡) be the spot foreign exchange
rate at time t quoted as the ratio of units of domestic
currency to one unit of foreign currency. 𝑑 and 𝑓 denote
the domestic and foreign markets, respectively. 𝐷 and 𝐿
denote the risk-free and risky curves, respectively. 𝑟𝐷𝑑 and𝑟𝐷𝑓 are the domestic and foreign risk-free short rates of
interest. 𝑟𝐿𝑑 and 𝑟𝐿𝑓 are the domestic and foreign risky short
rates of interest. 𝐵𝐷𝑑 (𝑡) and 𝐵𝐷𝑓 are the corresponding risk-
free domestic and foreign money market accounts. 𝑠𝑑(𝑡)
and 𝑠𝑓(𝑡) are the spread between the domestic and foreign
risky and risk-free short rates of interest, respectively. 𝐵𝐿𝑑(𝑡)
and 𝐵𝐿𝑓(𝑡) are the corresponding risky domestic and foreign
money market accounts. 𝑃𝐷𝑑 (𝑡, 𝑇) and 𝑃𝐷𝑓 (𝑡, 𝑇) denote the
risk-free domestic and foreign zero-coupon bonds. 𝑃𝐿𝑑 (𝑡, 𝑇)
and 𝑃𝐿𝑓(𝑡, 𝑇) denote the risky domestic and foreign zero-
coupon bonds. 𝐿𝐷𝑑 (𝑡, 𝑇) and 𝐿𝐷𝑓(𝑡, 𝑇) are the domestic and
foreign simply compounded t-forward rates associated with
the domestic and foreign risk-free discount curves. Finally,𝐿𝑑(𝑡, 𝑇) and 𝐿𝑓(𝑡, 𝑇) are the domestic and foreign simply
compounded t-forward rates associated with the domestic
and foreign risky fictitious zero-coupon bonds.
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Figure 2: Different Tenor USD LIBOR-OIS Spreads.

2.2.Model Assumptions. Wemodel a frictionless market, free
of arbitrage opportunities. In this market, we assume that
trading takes place continuously for a given time interval[0,T], whereT is somepositive final date.Themarket uncer-
tainty is assumed to be modeled by the filtered probability
space, (Ω,F, (F𝑡∈[0,T,Q𝑑). In our model, we consider only
one tenor, 𝜏. We also assume that there exist two markets,
domestic (d) and foreign (f), which can be linked with the
foreign exchange rate markets. In addition to this, we assume
that there exist both risk-free and risky rates in the two
markets. The OIS rate is taken to be the most preferable risk-
free rate and it is the one that is used to construct the discount
curve. On the other hand, we take the LIBOR of a single tenor
to be the risky rate and this is the rate that is used to generate
the future cash flows.

We assume that there exists, at any time t, a risk-free
(domestic or foreign) zero-coupon bond 𝑃𝐷𝑘 (⋅, 𝑇) ≥ 0; 𝑘 ∈{𝑑, 𝑓} such that 𝑃𝐷𝑘 (𝑇, 𝑇) = 1 for all 𝑇 ∈ [0,T]. Assuming
that the mapping 𝑇 → 𝑃𝐷𝑘 (𝑡, 𝑇) at any time 𝑡 ∈ [0,T] is
differentiable, then the simply compounded risk-free forward
interest rate is given as

𝐿𝐷𝑘 (𝑡, 𝑇) = 1𝜏 ( 𝑃𝐷𝑘 (𝑡, 𝑇)𝑃𝐷𝑘 (𝑡, 𝑇 + 𝜏) − 1) ; 𝑘 ∈ {𝑑, 𝑓} (1)

where the risk-free domestic or foreign zero-coupon bond
price in [6] is defined as

𝑃𝐷𝑘 (𝑡, 𝑇) = E [𝑒−∫𝑇𝑡 𝑟𝐷𝑘 (𝑠)𝑑𝑠 | F𝑡] ; 𝑘 ∈ {𝑑, 𝑓} (2)

We further assume that there exists a risk-free (domestic or
foreign) money market account 𝐵𝐷𝑘 (𝑡) whose price process is
given by

𝐵𝐷𝑘 (𝑡) = 𝑒∫𝑡0 𝑟𝐷𝑘 (𝑠)𝑑𝑠; 𝑘 ∈ {𝑑, 𝑓} (3)

where 𝑟𝐷𝑘 (𝑡) is the (domestic or foreign) risk-free short rate of
interest.

We assume that there also exists, at any time t, a risky
fictitious (domestic or foreign) zero-coupon bond 𝑃𝐿𝑘 (⋅, 𝑇) ≥0; 𝑘 ∈ {𝑑, 𝑓}. Assuming that the mapping 𝑇 → 𝑃𝐿𝑘 (𝑡, 𝑇)
at any time 𝑡 ∈ [0,T] is differentiable, then the fictitious
domestic or foreign bond in [22] is defined as

𝑃𝐿𝑘 (𝑡, 𝑇) = E [𝑒− ∫𝑇𝑡 (𝑟𝐷𝑘 (𝑢)+𝑠𝑘(𝑢))𝑑𝑢 | F𝑡] ; 𝑘 ∈ {𝑑, 𝑓} (4)

We further assume that there exists a risky (domestic or
foreign) money market account 𝐵𝐿𝑘(𝑡) whose price process is
given by

𝐵𝐿𝑘 (𝑡) = 𝑒∫𝑡0 𝑟𝐿𝑘 (𝑠)𝑑𝑠, 𝑘 ∈ {𝑑, 𝑓} (5)

where 𝑟𝐿𝑘 (𝑡) = 𝑟𝐷𝑘 (𝑡) + 𝑠𝑘(𝑡) is the (domestic or foreign) risky
short rate of interest and 𝑠𝑘(𝑡) is the k LIBOR-OIS short rate
spread.
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Finally, given the filtered probability space (Ω,F𝑡,(F𝑡)𝑡≥0,P), it is assumed that the dynamics of the entire
economy under the objective measure, P, associated with the
real world probabilities is given by𝑑𝐵𝑗𝑘 (𝑡) = 𝑟𝑗𝑘 (𝑡) 𝐵𝑗𝑘 (𝑡) ; 𝑘 ∈ {𝑑, 𝑓} & 𝑗 ∈ {𝐷, 𝐿}𝑑𝑃𝑗𝑘 (𝑡, 𝑇) = 𝜇𝑘𝑗 (𝑡, 𝑇) 𝑃𝑗𝑘 (𝑡, 𝑇) 𝑑𝑡− 𝜎𝑘𝑗 (𝑡, 𝑇) 𝑃𝑗𝑘 (𝑡, 𝑇) 𝑑𝑊𝑘𝑗 (𝑡)𝑑𝑋 (𝑡) = 𝜇𝑥 (𝑡) 𝑋 (𝑡) 𝑑𝑡 + 𝜎𝑥 (𝑡) 𝑋 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡)𝑑𝐿𝐷𝑘 (𝑡, 𝑇) = 𝜃𝑘𝐷 (𝑡, 𝑇) 𝑑𝑡 + 𝛾𝑘𝐷 (𝑡, 𝑇) 𝑑𝑊𝑘𝐷 (𝑡)𝑑𝐿𝑘 (𝑡, 𝑇) = 𝜃𝑘𝐿 (𝑡, 𝑇) 𝑑𝑡 + 𝛾𝑘𝐿 (𝑡, 𝑇) 𝑑𝑊𝑘𝐿 (𝑡)

(6)

2.3. Conditions for No Arbitrage. We see that we have five
sources of risk: the domestic risk-freemarkets, domestic risky
markets, foreign risk-free markets, foreign riskymarkets, and
the foreign exchange rate markets and according to Meta
Theorem [23], if A is the number of underlying traded assets
excluding the risk-free asset and R is the number of random
sources of risk, then we have the following.

(i) Themodel is free of arbitrage-free if and only if𝐴 ≤ 𝑅.
(ii) The model is complete if and only if 𝐴 ≥ 𝑅.
(iii) The model is complete and arbitrage-free if and only

if 𝐴 = 𝑅.
Hence assuming that all these markets are correlated,

then by Meta’s theorem, a 5-dimensional correlated Wiener
processmust be used to ensure that themodel is complete and
arbitrage-free. The correlated 5-dimensional Wiener process𝑊 is defined as

𝑊(𝑡) =
[[[[[[[[[

𝑊𝑑𝐷 (𝑡)𝑊𝑑𝐿 (𝑡)𝑊𝑓𝐷 (𝑡)𝑊𝑓𝐿 (𝑡)𝑊𝑥𝑥 (𝑡)
]]]]]]]]]

(7)

such that𝑑 [𝑊𝑖,𝑊𝑗]𝑡
= {{{
𝜌𝑗𝑖 𝑑𝑡 = 𝜌𝑖𝑗𝑑𝑡; for 𝑖 ̸= 𝑗 & 𝑖, 𝑗 ∈ {𝑑𝐷, 𝑓𝐷, 𝑑𝐿, 𝑓𝐿, 𝑥𝑥}𝑑𝑡; 𝑖 = 𝑗 (8)

Also, according to the First Fundamental Theorem [23], a
model is arbitrage-free if and only if there exists an equivalent
(local) martingale measureQ. Hence, assuming that the risk-
free assets in both the foreign and domestic markets are basic
traded instruments and according to [4, 6], the risky LIBOR
bonds in the twomarkets are fictitious (i.e., nontraded) assets.
Assuming further that there exists a usual domestic risk
neutral probabilitymeasureQ𝐷𝑑 ∼ P, then to ensure that there
is no arbitrage, we have the following.

(i) Under Q𝐷𝑑 , all domestically traded assets with a price
process of say Π(𝑡) must have the domestic risk-free
short rate of interest, 𝑟𝐷𝑑 (𝑡), as its local rate of return
[23]. That is, its Q𝐷𝑑 dynamics will be of the form

𝑑Π (𝑡) = 𝑟𝐷𝑑 (𝑡) Π (𝑡) 𝑑𝑡 + 𝜎Π (𝑡)Π (𝑡) 𝑑𝑊 (𝑡) (9)

where the volatility vector 𝜎Π is the same as the one
under the objective measure P.

(ii) Under Q𝐷𝑑 , all the domestic fictitious assets with a
price process of sayΠ(𝑡)must have the domestic risky
short rate of interest, 𝑟𝐿𝑑(𝑡), as the local rate of interest.
That is, its Q𝐷𝑑 dynamics will be of the form

𝑑Π (𝑡) = 𝑟𝐿𝑑 (𝑡) Π (𝑡) 𝑑𝑡 + 𝜎Π (𝑡) Π (𝑡) 𝑑𝑊 (𝑡) (10)

where the volatility vector 𝜎Π is the same as the one
under the objective measure P.

(iii) Under Q𝐷𝑑 , all normalized asset price processes of all
domestically traded assets with a price process of sayΠ(𝑡) discounted using the domestic risk-free money
market account, 𝐵𝐷𝑑 (𝑡), as the numeraire, must beQ𝐷𝑑
martingales [21, 23]. That is, the normalized price
process

𝑍Π (𝑡) = Π (𝑡)𝐵𝐷𝑑 (𝑡) (11)

is aQ𝐷𝑑 martingale.

(iv) Under Q𝐷𝑑 , all normalized asset price processes of
all domestic fictitious assets with a price process of
say Π(𝑡) discounted using the domestic risky money
market account, 𝐵𝐿𝑑(𝑡), as the numeraire, must beQ𝐷𝑑
martingales [6].That is, the normalized price process

𝑍Π (𝑡) = Π (𝑡)𝐵𝐿𝑑 (𝑡) (12)

is aQ𝐷𝑑 martingale.
(v) All normalized asset price processes of all domes-

tically traded assets discounted using the domestic
risk-free zero-coupon bond, 𝑃𝐷𝑑 (𝑡, 𝑇), are Q𝐷𝑇𝑑 mar-
tingales. That is, the normalized price process

𝑍Π (𝑇) = Π (𝑡)𝑃𝐷𝑑 (𝑡, 𝑇) (13)

2.4. The Multicurve Cross-Currency LIBOR Market Model.
In this section, a brief description of how the dynamics
of the MCCCLMM is derived under the domestic risk
neutral measure,Q𝐷𝑑 , satisfying the no arbitrage assumptions
described in Section 2.3 above, is given. It is clear from our
model assumptions that 𝐵𝐷𝑑 (𝑡) and 𝑃𝐷𝑑 (𝑡, 𝑇) are domestically
traded assets. In addition to this, 𝐵𝐿𝑑(𝑡) and 𝑃𝐿𝑑 (𝑡, 𝑇) are also
assumed to be domestic fictitious assets. Hence from the no
arbitrage conditions described in Section 2.3 requirements
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(i) and (ii) and from the dynamics of the entire economy
described in (6), we get the dynamics of the domestic assets
under the spot domestic risk neutral measures to be given by𝑑𝐵𝐷𝑑 (𝑡) = 𝑟𝐷𝑑 (𝑡) 𝐵𝐷𝑑 (𝑡) 𝑑𝑡𝑑𝐵𝐿𝑑 (𝑡) = 𝑟𝐿𝑑 (𝑡) 𝐵𝐿𝑑 (𝑡) 𝑑𝑡𝑑𝑃𝐷𝑑 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑃𝐷𝑑 (𝑡, 𝑇) 𝑑𝑡− 𝜎𝑑𝐷 (𝑡, 𝑇) 𝑃𝐷𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)𝑑𝑃𝐿𝑑 (𝑡, 𝑇) = 𝑟𝐿𝑑 (𝑡) 𝑃𝐿𝑑 (𝑡, 𝑇) 𝑑𝑡− 𝜎𝑑𝐿 (𝑡, 𝑇) 𝑃𝐿𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐿 (𝑡)

(14)

Lemma 1. Assuming that the market is arbitrage-free, then the
possibility of investing in a certain foreign asset at a foreign risk-
free short rate of interest should be equivalent to investing in a
domestic asset with a price process 𝐵∗𝐷𝑓 (𝑡) (see [23]) where𝐵∗𝐷𝑓 (𝑡) = 𝐵𝐷𝑓 (𝑡) 𝑋 (𝑡) (15)

Therefore, from the dynamics of the entire economy
described in (6), it is trivial that the dynamics of the price
process 𝐵∗𝐷𝑓 (𝑡) is given by

𝑑𝐵∗𝐷𝑓 (𝑡) = (𝜇𝑥 (𝑡) + 𝑟𝐷𝑓 (𝑡)) 𝐵∗𝐷𝑓 (𝑡) 𝑑𝑡+ 𝜎𝑥 (𝑡) 𝐵∗𝐷𝑓 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) (16)

However, since 𝐵∗𝐷𝑓 (𝑡) is also a domestically traded asset,
then it should also satisfy the no arbitrage condition under
Section 2.3 (i). Hence, under the usual domestic risk neutral
measure, Q𝐷𝑑 ,𝑑𝐵∗𝐷𝑓 (𝑡) = 𝑟𝐷𝑑 (𝑡) 𝐵∗𝐷𝑓 (𝑡) 𝑑𝑡 + 𝜎𝑥 (𝑡) 𝐵∗𝐷𝑓 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) (17)

and from (14), it is clear that the spot foreign exchange rate
can be expressed as

𝑋(𝑡) = 𝐵∗𝐷𝑓 (𝑡)𝐵𝐷𝑓 (𝑡) (18)

and hence using the dynamics expressed in (13) and (16), we
see that the dynamics of the spot foreign exchange rate under
the domestic risk neutral measure,Q𝐷𝑑 , will be given by

𝑑𝑋(𝑡) = (𝑟𝐷𝑑 (𝑡) − 𝑟𝐷𝑓 (𝑡))𝑋 (𝑡) 𝑑𝑡+ 𝜎𝑥 (𝑡) 𝑋 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) (19)

Lemma 2. Assuming that the market is free of arbitrage, then
the possibility of investing in a foreign risk-free zero-coupon
bond should be equivalent to investing in a general risk-free
domestic zero-coupon bond with a price process 𝑃∗𝐷𝑓 (𝑡, 𝑇) (see
[23]) where 𝑃∗𝐷𝑓 (𝑡, 𝑇) = 𝑃𝐷𝑓 (𝑡, 𝑇)𝑋 (𝑡) (20)

Therefore, using the dynamics of the entire economy described
in (6), the dynamics of 𝑃∗𝐷𝑓 (𝑡, 𝑇) is derived to be

𝑑𝑃∗𝐷𝑓 (𝑡, 𝑇) = (𝜇𝑓𝐷 (𝑡, 𝑇) + 𝜇𝑥 (𝑡)) 𝑃∗𝐷𝑓 (𝑡, 𝑇) 𝑑𝑡− 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑃∗𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)+ 𝜎𝑥 (𝑡) 𝑃∗𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑥𝑥 (𝑡)
(21)

It should also be noted that 𝑃∗𝐷𝑓 (𝑡, 𝑇) is a domestically traded
asset; hence, it should satisfy the no arbitrage condition
discussed under Section 2.3 (i).Therefore, under the domestic
risk neutral measure,Q𝐷𝑑 ,

𝑑𝑃∗𝐷𝑓 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑃∗𝐷𝑓 (𝑡, 𝑇) 𝑑𝑡+ 𝜎𝑥 (𝑡) 𝑃∗𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑥𝑥 (𝑡)− 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑃∗𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)
(22)

From (19), it is clear that the foreign risk-free zero-coupon
bond can be expressed as

𝑃𝐷𝑓 (𝑡, 𝑇) = 𝑃∗𝐷𝑓 (𝑡, 𝑇)𝑋 (𝑡) (23)

and hence using the dynamics expressed in (18) and (21), we
find the dynamics of the foreign risk-free zero-coupon bond
to be

𝑑𝑃𝐷𝑓 (𝑡, 𝑇)= (𝑟𝐷𝑓 (𝑡) + 𝜌𝑓𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇)) 𝑃𝐷𝑓 (𝑡, 𝑇) 𝑑𝑡− 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑃𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)
(24)

Remark 3. In practice, we notice that 𝜏𝐿𝐷𝑑 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏)
and 𝜏𝐿𝐷𝑓(𝑡, 𝑇)𝑃𝐷𝑓 (𝑡, 𝑇+𝜏)𝑋(𝑡) are the time t domestic prices of
the floating leg part of the FRA rates associated with the risk-
free simply compounded domestic and foreign forward rates:𝐿𝐷𝑑 (𝑡, 𝑇) and 𝐿𝐷𝑓(𝑡, 𝑇), respectively, where 𝜏 is the tenor. In
addition to this, 𝜏𝐿𝑑(𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) and 𝜏𝐿𝑓(𝑡, 𝑇)𝑃𝐷𝑓 (𝑡, 𝑇 +𝜏)𝑋(𝑡) are the time t domestic prices of the floating leg part of
the FRA rates associated with the risky simply compounded
domestic and foreign LIBOR forward rates: 𝐿𝑑(𝑡, 𝑇) and𝐿𝑓(𝑡, 𝑇), respectively. Hence, as we can see, they are also
domestically traded assets. Therefore, they should satisfy the
no arbitrage condition defined under Section 2.3 (i).
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Hence as a consequence of the above remark and in
using Itô’s Lemma, the dynamics of the different simply com-
pounded forward rates of interest under the usual domestic
risk neutral measure are found to be given by

𝑑𝐿𝐷𝑑 (𝑡, 𝑇) = 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐷 (𝑡, 𝑇) 𝐿𝐷𝑑 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑑𝐷 (𝑡, 𝑇) 𝐿𝐷𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)𝑑𝐿𝐷𝑓 (𝑡, 𝑇) = 𝛾𝑓𝐷 (𝑡, 𝑇)⋅ (𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡)) 𝐿𝐷𝑓 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑓𝐷 (𝑡, 𝑇) 𝐿𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)𝑑𝐿𝑑 (𝑡, 𝑇) = 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐿 (𝑡, 𝑇) 𝐿𝑑 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑑𝐿 (𝑡, 𝑇) 𝐿𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐿 (𝑡)𝑑𝐿𝑓 (𝑡, 𝑇) = 𝛾𝑓𝐿 (𝑡, 𝑇)⋅ (𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡))⋅ 𝐿𝑓 (𝑡, 𝑇) 𝑑𝑡 + 𝛾𝑓𝐿 (𝑡, 𝑇) 𝐿𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐿 (𝑡)

(25)

Remark 4. All the domestically traded assets were checked
and it was confirmed that they all satisfy the no arbitrage
condition defined in Section 2.3 (iii). This means that all the
normalized domestically traded assets discounted using the
domestic risk-free money market account as the numeraire
were all found to beQ𝐷𝑑 martingales.

Proof. See Proof in Appendix A.

Theorem 5 (the multicurve cross-currency LIBOR market
model). Given the filtered probability space (Ω,F, (F)𝑡≥0,
Q𝐷𝑑 ) and assuming that the 5-dimensional Wiener process,𝑊∗(𝑡) = (𝑊𝑑𝐷(𝑡),𝑊𝑑𝐿(𝑡),𝑊𝑓𝐷(𝑡),𝑊𝑓𝐿(𝑡),𝑊𝑥𝑥(𝑡)), is a vector
of correlated Wiener processes such that

𝑑 [𝑊𝑖,𝑊𝑗]𝑡
= {{{
𝜌𝑗𝑖 (𝑡) 𝑑𝑡 = 𝜌𝑖𝑗 (𝑡) 𝑑𝑡; 𝑖 ̸= 𝑗 𝑖, 𝑗 ∈ {𝑑𝐷,𝑓𝐷, 𝑑𝐿, 𝑓𝐿, 𝑥𝑥}𝑑𝑡; 𝑖 = 𝑗 (26)

then the dynamics of the multicurve cross-currency LIBOR
market model under the spot domestic risk neutral martingale
measure Q𝐷𝑑 is given by

𝑑𝐵𝐷𝑑 (𝑡) = 𝑟𝐷𝑑 (𝑡) 𝐵𝐷𝑑 (𝑡) 𝑑𝑡𝑑𝑃𝐷𝑑 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑃𝐷𝑑 (𝑡, 𝑇) 𝑑𝑡 − 𝜎𝑑𝐷 (𝑡, 𝑇)⋅ 𝑃𝐷𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)𝑑𝐿𝐷𝑑 (𝑡, 𝑇) = 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐷 (𝑡, 𝑇) 𝐿𝐷𝑑 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑑𝐷 (𝑡, 𝑇) 𝐿𝐷𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)

𝑑𝐿𝐷𝑓 (𝑡, 𝑇) = (𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡))⋅ 𝛾𝑓𝐷 (𝑡, 𝑇) 𝐿𝐷𝑓 (𝑡, 𝑇) 𝑑𝑡 + 𝛾𝑓𝐷 (𝑡, 𝑇)⋅ 𝐿𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)𝑑𝐿𝑑 (𝑡, 𝑇) = 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐿 (𝑡, 𝑇) 𝐿𝑑 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑑𝐿 (𝑡, 𝑇) 𝐿𝑑 (𝑡, 𝑇) 𝑑𝑊𝑑𝐿 (𝑡)𝑑𝐿𝑓 (𝑡, 𝑇) = (𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡))⋅ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝐿𝑓 (𝑡, 𝑇) 𝑑𝑡 + 𝛾𝑓𝐿 (𝑡, 𝑇)⋅ 𝐿𝑓 (𝑡, 𝑇) 𝑑𝑊𝑓𝐿 (𝑡)𝑑𝑋 (𝑡) = (𝑟𝐷𝑑 (𝑡) − 𝑟𝐷𝑓 (𝑡))𝑋 (𝑡) 𝑑𝑡 + 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡)
(27)

where𝜎𝑘𝐷 (𝑡, 𝑇)
= ⌊𝜏−1(𝑇−𝑡)⌋∑
𝑗=1

𝜏𝐿𝐷𝑘 (𝑡, 𝑇 − 𝑗𝜏)1 + 𝜏𝐿𝐷𝑘 (𝑡, 𝑇 − 𝑗𝜏)𝛾𝑘𝐷 (𝑡, 𝑇 − 𝑗𝜏) (28)

𝜎𝑘𝐿 (𝑡, 𝑇) = ⌊𝜏−1(𝑇−𝑡)⌋∑
𝑗=1

𝜏𝐿𝑘 (𝑡, 𝑇 − 𝑗𝜏)1 + 𝜏𝐿𝑘 (𝑡, 𝑇 − 𝑗𝜏)𝛾𝑘𝐿 (𝑡, 𝑇 − 𝑗𝜏) (29)

where ⌊𝜏−1(𝑇 − 𝑡)⌋ denotes the greatest integer that is less than𝜏−1(𝑇 − 𝑡).
Remark 6. Assuming there exists an equivalent risk neutral
measure Q𝐷

𝑇+𝜏

𝑑 ∼ Q𝐷𝑑 known as the 𝑇 + 𝜏-forward measure,
then, for there to be no arbitrage (as explained in Section 2.3
(v)), all the normalized domestically traded assets discounted
using the domestic risk-free zero-coupon bond, 𝑃𝐷𝑑 (𝑡, 𝑇 +𝜏) as the numeraire, must be Q𝐷

𝑇+𝜏

𝑑 martingales. Hence, as
consequence,

𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡) = 𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡𝑑𝑊𝑇+𝜏𝑓𝐷 (𝑡) = 𝑑𝑊𝑓𝐷 (𝑡) + 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡𝑑𝑊𝑇+𝜏𝑥𝑥 (𝑡) = 𝑑𝑊𝑥𝑥 (𝑡) + 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡𝑑𝑊𝑇+𝜏𝑑𝐿 (𝑡) = 𝑑𝑊𝑑𝐿 (𝑡) + 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡𝑑𝑊𝑇+𝜏𝑓𝐿 (𝑡) = 𝑑𝑊𝑓𝐿 (𝑡) + 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡
(30)

Proof. See proof in Appendix B.

Remark 7. According to [6], the normalized asset process

𝑍Π (𝑇) = 𝑃𝐿𝑑 (𝑡, 𝑇)𝑃𝐿𝑑 (𝑡, 𝑇 + 𝜏) (31)
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is a martingale under the Q𝐷
𝑇+𝜏

𝑑 measure if and only if
the risky domestic simply compounded LIBOR satisfies the
relationship

𝐿𝑑 (𝑡, 𝑇) = 1𝜏 (= 𝑃𝐿𝑑 (𝑡, 𝑇)𝑃𝐿𝑑 (𝑡, 𝑇 + 𝜏) − 1) (32)

However, for 𝑍Π(𝑇) in (26) to be a martingale, then

𝑑𝑊𝑇+𝜏𝑑𝐿 (𝑡) = 𝑑𝑊𝑇𝑑𝐿 (𝑡) + 𝜎𝑑𝐿 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 (33)

and hence to ensure that there are no arbitrage opportunities,
this result must be equivalent to the one in (25). This means
that 𝜎𝑑𝐿 (𝑡, 𝑇 + 𝜏) = 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) (34)

and it is logical to assume that there will always be a positive
relationship between the risk-free domestic (or foreign)
market and risky domestic (or foreign) market, respectively.
Hence 𝜌𝑘𝐿𝑘𝐷 ∈ [0, 1] ; 𝑘 ∈ {𝑑, 𝑓} (35)

Implying that, for the condition under (29) to hold, then,𝜎𝑑𝐿 (𝑡, 𝑇 + 𝜏) ≤ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) (36)

which is a very strict condition. That is why, in this paper, we
assume that the equality in (27) is not necessarily true. Hence𝑍Π(𝑇) on (26) need not be aQ𝐷

𝑇+𝜏

𝑑 martingale.

Lemma 8. Let 𝑊∗(𝑡) = (𝑊𝑑𝐷(𝑡),𝑊𝑑𝐿(𝑡),𝑊𝑓𝐷(𝑡),𝑊𝑓𝐿(𝑡),𝑊𝑥𝑥(𝑡)) be a 5-dimensional Q𝐷𝑑 standard Wiener process
defined on (Ω,F, (F)𝑡≥0,Q𝐷𝑑 ) and Girsanov’s kernel, 𝜙(𝑡, 𝑇 +𝜏), be a 5-dimensional adapted column vector process given by𝜙 (𝑡, 𝑇 + 𝜏) = −𝜆 (𝑡, 𝑇 + 𝜏) (37)

such that the domestic market price of risk is given by

𝜆 (𝑡, 𝑇 + 𝜏) = 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)(((
(

1𝜌𝑓𝐷𝑑𝐷 (𝑡)𝜌𝑑𝐿𝑑𝐷 (𝑡)𝜌𝑓𝐿𝑑𝐷 (𝑡)𝜌𝑑𝐷𝑥𝑥 (𝑡)
)))
)

(38)

where 𝜌𝑗𝑖 (𝑡) = 𝜌𝑖𝑗 (𝑡) ; 𝑖, 𝑗 ∈ {𝑑𝐷,𝑓𝐷, 𝑑𝐿, 𝑓𝐿, 𝑥𝑥}1; 𝑖 = 𝑗 (39)

and then for a fixed time 𝑇, we shall define a process 𝐿 on [0, 𝑇]
as the process given by𝑑𝐿 (𝑡) = 𝜙∗ (𝑡, 𝑇 + 𝜏) 𝐿 (𝑡) 𝑑𝑊 (𝑡)𝐿 (0) = 1 (40)

such that EQ𝐷𝑑 [𝐿𝑇] = 1. Therefore, a new probability measure
Q𝐷
𝑇+𝜏

𝑑 onF𝑇 is now defined by the process

𝐿𝑇 = 𝑑Q𝐷𝑇+𝜏𝑑𝑑Q𝐷𝑑
F𝑇 (41)

such that 𝑑𝑊 (𝑡) = 𝜙∗ (𝑡, 𝑇 + 𝜏) 𝑑𝑡 + 𝑑𝑊𝑇+𝜏 (𝑡) (42)

where ∗ denotes the transpose and 𝑊𝑇+𝜏(𝑡) is the 5-
dimensional Q𝑇+𝜏𝑑 standard Wiener process defined on(Ω,F, (F)𝑡≥0,Q𝐷𝑇+𝜏𝑑 ).
Theorem 9 (the multicurve cross-currency LIBOR market
model). Given the filtered probability space (Ω,F, (F)𝑡≥0,
Q𝐷
𝑇+𝜏

𝑑 ) and assuming that the 5-dimensional Wiener process,𝑊𝑇+𝜏(𝑡), is a vector of correlated Wiener processes such that𝑑 [𝑊𝑇+𝜏𝑖 ,𝑊𝑇+𝜏𝑗 ]𝑡
= {{{
𝜌𝑗𝑖 (𝑡) 𝑑𝑡 = 𝜌𝑖𝑗 (𝑡) 𝑑𝑡; 𝑖 ̸= 𝑗 𝑖, 𝑗 ∈ {𝑑𝐷, 𝑓𝐷, 𝑑𝐿, 𝑓𝐿, 𝑥𝑥}𝑑𝑡; 𝑖 = 𝑗 (43)

then the dynamics of the multicurve cross-currency LIBOR
market model under the (𝑇 + 𝜏) forward domestic risk neutral
martingale measure Q𝐷

𝑇+𝜏

𝑑 is given by𝑑𝐵𝐷𝑑 (𝑡) = 𝑟𝐷𝑑 (𝑡) 𝐵𝐷𝑑 (𝑡) 𝑑𝑡𝑑𝑃𝐷𝑑 (𝑡, 𝑇) = (𝑟𝐷𝑑 (𝑡) + 𝜎2𝑑𝐷 (𝑡, 𝑇)) 𝑃𝐷𝑑 (𝑡, 𝑇) 𝑑𝑡− 𝜎𝑑𝐷 (𝑡, 𝑇) 𝑃𝐷𝑑 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)𝑑𝐿𝐷𝑑 (𝑡, 𝑇) = 𝛾𝑑𝐷 (𝑡, 𝑇) 𝐿𝐷𝑑 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)𝑑𝐿𝐷𝑓 (𝑡, 𝑇) = (𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡)− 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) 𝛾𝑓𝐷 (𝑡, 𝑇) ∗ 𝐿𝐷𝑓 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑓𝐷 (𝑡, 𝑇) 𝐿𝐷𝑓 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑓𝐷 (𝑡)𝑑𝐿𝑑 (𝑡, 𝑇) = 𝛾𝑑𝐿 (𝑡, 𝑇) 𝐿𝑑 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑑𝐿 (𝑡)𝑑𝐿𝑓 (𝑡, 𝑇) = (𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡)
− 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) ∗ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝐿𝑓 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝐿𝑓 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑓𝐿 (𝑡)𝑑𝑋 (𝑡) = (𝑟𝐷𝑑 (𝑡) − 𝑟𝐷𝑓 (𝑡) − 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))⋅ 𝑋 (𝑡) 𝑑𝑡 + 𝜎𝑥 (𝑡) 𝑑𝑊𝑇+𝜏𝑥𝑥 (𝑡)

(44)

3. Methodology

In this section, the relevant tools, models, methods, and tests
used to achieve the objectives of this study are presented.
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3.1. Data. Five datasets were considered in this study. The
datasets consisted of the British pound (GBP) overnight and
3-month LIBOR, the overnight and 3-month United States
dollar (USD) LIBOR, and the GBP/USD foreign exchange
rate. The test datasets consisted of 421 daily trading days’
historical data collected from [24–26] for the period between
3/1/2017 and 3/9/2018. The train dataset consisted of 23 daily
trading days for the period between 4/9/2018 and 4/10/2018.
These datasets only consist of rates recorded on working days
in both the United States and the British economy. Hence, it
excludes weekends and any public holiday in either economy.
We assumed that, in a year, there was an average of 245
working days in both economies.

3.2. Data Analysis Tool. R open source software version 3.1.2
was used in analyzing all the data in this study. Useful
packages used were “mass”, “stats4”, “xts”, and “lmtest”.

3.3. Parameter Estimation. It was noted that the dynamics
of the MCCCLMM were actually forms of the Geometric
Brownianmotion; hence a brief description of how themodel
looks like and how the model parameters were estimated is
given in this section.

3.3.1.TheGeometric BrownianMotion. TheGeometric Brow-
nian motion (GBM) solves the stochastic differential equa-
tion given by𝑑𝑋 (𝑡) = 𝜇𝑋 (𝑡) 𝑑𝑡 + 𝜎𝑋 (𝑡) 𝑑𝑊 (𝑡)𝑋 (0) = 𝑥 (45)

where 𝜇 ∈ (−∞,∞) and 𝜎 ∈ (0,∞]. The solution of a GBM
is given by 𝑋(𝑡) = 𝑥𝑒(𝜇−(1/2)𝜎2)𝑡+𝜎𝑑𝑊(𝑡) (46)

The conditional density function 𝑓(𝑡, 𝑦 | 𝑥) of a GBMmodel
is log normal with a mean of

E [𝑋 (𝑡) | 𝑋 (0) = 𝑥] = 𝑥𝑒𝜇𝑡 (47)

and a variance of

V [𝑋 (𝑡) | 𝑋 (0) = 𝑥] = 𝑥2𝑒2𝜇𝑡 (𝑒𝜎2𝑡 − 1) (48)

Hence𝑓 (𝑡, 𝑦 | 𝑥) = 1𝑦√2𝜋𝜎2𝑡
⋅ exp{− 12𝜎2𝑡 (log𝑦 − (log 𝑥 + (𝜇 − 12𝜎2𝑡))2}

(49)

3.3.2. Maximum Likelihood Estimation Method. The param-
eters of the MCCCLMM were estimated using the maxi-
mum likelihood estimation method. The method tends to
maximize the likelihood function. The maximum likelihood
estimate is given by 𝜃 = max {L (𝜃; 𝑋)} (50)

where L(𝜃;𝑋) is the likelihood function. In R, this is
achieved using package “stats4”.

3.4. Test of Significance. Individual significance tests per-
formed on the estimated parameters ensure that the fitted
parameters are significant. The test hypotheses are𝐻0 : 𝜃 = 0𝐻1 : 𝜃 ̸= 0 (51)

where 𝜃 is the parameter estimate under consideration. The
null hypothesis is rejected at 𝛼 level of significance when the
p-value is less than 𝛼.
3.5. Model Simulation. According to [20], the correlated
Wiener process, 𝑊, can be simulated by applying Cholesky
decomposition as follows:

((
(

𝑑𝑊𝑑𝐷𝑑𝑊𝑑𝐿𝑑𝑊𝑓𝐷𝑑𝑊𝑓𝐿𝑑𝑊𝑥𝑥
))
)
=((
(

1 0 0 0 0𝑎 𝑏 0 0 0𝑐 𝑑 𝑒 0 0𝑓 𝑔 ℎ 𝑖 0𝑗 𝑘 𝑙 𝑚 𝑛
))
)
((
(

𝑑𝑍1𝑑𝑍2𝑑𝑍3𝑑𝑍4𝑑𝑍5
))
)

(52)

where 𝑍𝑖; 𝑖 ∈ {1, 2, 3, 4, 5} are independent standard normal
variables. 𝑎 = 𝜌𝑑𝐿𝑑𝐷;𝑏 = √1 − 𝑎2;

𝑐 = 𝜌𝑓𝐷𝑑𝐷
𝑑 = 𝜌𝑓𝐷𝑑𝐷 − 𝑎𝑐𝑏 ;
𝑒 = 𝑠𝑞𝑟𝑡1 − 𝑐2 − 𝑑2;
𝑓 = 𝜌𝑓𝐿𝑑𝐷 − 𝑎𝑐𝑏
𝑔 = 𝜌𝑓𝐿𝑑𝐿 − 𝑎𝑓𝑏 ;
ℎ = 𝜌𝑓𝐿𝑓𝐷 − 𝑐𝑓 − 𝑑𝑔𝑒 ;
𝑖 = √1 − 𝑓2 − 𝑔2 − ℎ2
𝑗 = 𝜌𝑑𝐷𝑥𝑥 ;
𝑘 = 𝜌𝑑𝐿𝑥𝑥 − 𝑎𝑗𝑏 ;
𝑙 = 𝜌𝑓𝐷𝑥𝑥 − 𝑐𝑗 − 𝑑𝑘𝑒
𝑚 = 𝜌𝑓𝐿𝑥𝑥 − 𝑓𝑗 − 𝑔𝑘 − ℎ𝑙𝑖 ;
𝑛 = √1 − 𝑗2 − 𝑘2 − 𝑙2 − 𝑚2

(53)
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The Euler Maruyama discretization scheme [27] was then
used to simulate the fitted MCCCLMMmodel.

4. Numerical Results

TheMCCCLMMmodel was fitted to real world data and the
results were as recorded in this section.

4.1. DataDescription. Thedata used in this study consisted of
421 trading days’ data from 3rd January 2017 to 3rd September
2018. The data consisted of the overnight and 3-month GBP
and USD LIBOR term structures obtained from [24, 25]
and the GBP/USD foreign exchange rate obtained from [26].
The descriptive statistics of the various sets of the data were
recorded in Table 1.

4.2. Parameter Estimation. The parameter estimates of the
various dynamics of the multicurve cross-currency LIBOR
market model were estimated from the 421 points of the test
data via the maximum likelihood estimation (MLE) method

using “stats4” package in R. The parameter estimates, their
standard errors, and p values were rounded off to the nearest
5 decimal places. The results were as recorded in Table 2.

From Table 2, it can be seen from the respective p-values
that all the parameter estimates are significant at 5% level of
significance. Also, according to [28], if the standard errors
of our estimates are less than 5%, then it is said that the
calibration procedure was successful.

4.3. The Simulation Process of the MCCCLMM. The correla-
tion matrix of our observed data was found to beΣ
=((
(

1.0000 0.9159 0.8178 0.8495 −0.54640.9159 1.0000 0.8625 0.9296 −0.51800.8178 0.8625 1.0000 0.9545 −0.61540.8495 0.9296 0.9545 1.0000 −0.6331−0.5464 −0.5180 −0.6154 −0.6332 1.0000
))
)

(54)

The correlated Wiener process was then estimated as

((
(

𝑑𝑊𝑑𝐷 (𝑡)𝑑𝑊𝑑𝐿 (𝑡)𝑑𝑊𝑓𝐷 (𝑡)𝑑𝑊𝑓𝐿 (𝑡)𝑑𝑊𝑥𝑥 (𝑡)
))
)
= √Δ𝑡((

(

1.0000 0.0000 0.00000 0.0000 0.00000.9157 0.4015 0.0000 0.0000 0.00000.8178 0.2828 0.5013 0.0000 0.00000.8495 0.3775 0.3055 0.2064 0.0000−0.5464 −0.0439 −0.3116 −0.2777 0.7248
))
)
((
(

𝑍1𝑍2𝑍3𝑍4𝑍5
))
)

(55)

where 𝑍𝑖; 𝑖 ∈ {1, 2, 3, 4, 5} are independent standard normal
random variables and Δ𝑡 = 1/245. The overnight and the
3M USD LIBOR path, GBP LIBOR path, and the GBP/USD
foreign exchange rate path were simulated and their results
were as recorded in Sections 4.3.1–4.3.4.

4.3.1. Simulation of the Overnight USD LIBOR. 1000 simu-
lations of the overnight USD LIBOR term structure were
done on the train dataset and the descriptive statistics of the
simulated path was summarized in Table 3.

The visual plot of the actual path, the 1000 simulated
paths, the mean simulated path, and the 95% confidence
intervals of the simulated paths were as seen in Figure 3.

It is observed that all the data points lie within the 95%
confidence interval of the simulated paths.

4.3.2. Simulation of the 3-Month USD LIBOR. 1000 simu-
lations of the 3-month USD LIBOR term structure were
done on the train dataset and the descriptive statistics of the
simulated path was summarized in Table 4.

The visual plot of the actual path, the 1000 simulated
paths, the mean simulated path, and the 95% confidence
intervals of the simulated paths were as seen in Figure 4.

It is observed that all the data points lie within the 95%
confidence interval of the simulated paths.

4.3.3. Simulation of the Overnight GBP LIBOR. 1000 sim-
ulations of the GBP overnight LIBOR term structure were
done on the train dataset and the descriptive statistics of the
simulated path was summarized in Table 5.

The visual plot of the actual path, the 1000 simulated
paths, the mean simulated path, and the 95% confidence
intervals of the simulated paths were as seen in Figure 6.

It is observed that all the data points lie within the 95%
confidence interval of the simulated paths.

4.3.4. Simulation of the GBP/USD Foreign Exchange Rate.
1000 simulations of the GBP/USD Foreign exchange rate
term structure were done on the train dataset and the
descriptive statistics of the simulated pathwas summarized in
Table 7.

The visual plot of the actual path, the 1000 simulated
paths, the mean simulated path, and the 95% confidence
intervals of the simulated paths were as seen in Figure 5.

It is observed that all the data points lie within the 95%
confidence interval of the simulated paths.

4.3.5. Simulation of the 3 Month GBP LIBOR. 1000 sim-
ulations of the GBP 3-month LIBOR term structure were
done on the train dataset and the descriptive statistics of the
simulated path was summarized in Table 6.
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Figure 3: Visual Plot of the Simulated USD ON LIBOR.
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Figure 4: Visual Plot of the Simulated USD 3M LIBOR.

Table 1: Descriptive Statistics of the Data.

Data Mean Std. Dev
ON GBP LIBOR 0.69903 0.00296
3M GBP LIBOR 0.80070 0.00201
ON USD LIBOR 1.98410 0.11364
3M USD LIBOR 2.36071 0.03181
GBP/USD FX Rate 0.76606 0.00596

Table 2: MCCLMMParameter Estimates.

Parameter Estimate Std. Error P Value𝜎𝑥 0.08355 0.00288 0.00000𝜎𝑑𝐷 1.64282 0.76483 0.03172𝜎𝑓𝐷 1.83581 0.76547 0.01647𝛾𝑑𝐷 0.47450 0.01636 0.00000𝛾𝑑𝐿 0.19539 0.00674 0.00000𝛾𝑓𝐷 0.35744 0.01232 0.00000𝛾𝑓𝐿 0.06692 0.00229 0.00000
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Figure 5: Visual Plot of the Simulated GBP ON LIBOR.
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Figure 6: Visual Plot of the Simulated GBP 3M LIBOR.

Table 3: Descriptive Statistics of the Simulated Overnight USD
LIBOR.

Data Mean Std. Dev
Simulated ON USD LIBOR 1.9365 0.0688

Table 4: Descriptive Statistics of the Simulated 3 Month USD
LIBOR.

Data Mean Std. Dev
Simulated 3M USD LIBOR 2.3389 0.0201

Table 5: Descriptive Statistics of the Simulated Overnight GBP
LIBOR.

Data Mean Std. Dev
Simulated ON GBP LIBOR 0.70610 0.02101

The visual plot of the actual path, the 1000 simulated
paths, the mean simulated path, and the 95% confidence
intervals of the simulated paths were as seen in Figure 7.
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Table 6: Descriptive Statistics of the Simulated 3 Month GBP
LIBOR.

Data Mean Std. Dev
Simulated 3M GBP LIBOR 0.82660 0.01059

Table 7: Descriptive Statistics of the Simulated GBP/USD FX Rate.

Data Mean Std. Dev
Simulated G/USD FX Rate 0.76631 0.00482

Table 8: Mean Error Test Results of the Simulated Models.

Simulated Dataset MAPE (%)
ON USD LIBOR 7.7663
3M USD LIBOR 3.1415
ON GBP LIBOR 6.8195
3M GBP LIBOR 1.9917
GBP/USD FX RATE 1.7604

It is observed that all the data points lie within the 95%
confidence interval of the simulated paths.

4.4. Testing the Fitted MCCCLMM Dynamics. The mean
absolute percentage error (MAPE) was performed on the
difference between the actual and the 1000 simulated paths
of the overnight and 3-month USD LIBOR, GBP LIBOR, and
the GBP/USD foreign exchange rate and the results were as
recorded in Table 8.

According to [29], if𝑀𝐴𝑃𝐸 < 10%, then the forecasts are
highly accurate. If 10% ≤ 𝑀𝐴𝑃𝐸 < 20%, then the forecasts
are good. If 20% ≤ 𝑀𝐴𝑃𝐸 ≤ 50%, then the forecasts are
reasonable. However, if 𝑀𝐴𝑃𝐸 > 50%, then the forecasts
are inaccurate. Hence, we can conclude that the MCCCLMM
produces highly accurate forecasts for the 23 working days’
period.

5. Application to Pricing Quanto
Caplets and Floorlets

In this section, we illustrate briefly how the dynamics derived
under the multicurve cross-currency LIBOR market model
can be used to price quanto interest rate derivatives such as
quanto caplets and quanto floorlets. A caplet is a call optional
type of interest rate derivative where the investor or hedger
receives payments if the interest rate exceeds the agreed strike
price at maturity. In the same way, a floorlet is a put optional
type of interest rate derivative where the hedger receives
payment if the interest rate falls below the agreed strike price
at maturity. In addition to this, a quanto is a type of derivative
whereby the underlying instrument is denominated in one
currency but settled in another currency.

We start by assuming that there exists a domestic investor
who is interested in hedging against a foreign interest rate
risk. We also assume that the investor is more comfortable
in using his/her domestic currency in trading and hence all
the quanto caplets and floorlet described hereby are priced in
terms of the domestic currency. We shall consider a scenario
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Figure 7: Visual Plot of the Simulated GBP/USD FX Rate.

whereby a foreign caplet or floorlet is struck in foreign
currency but has to be converted into domestic currency
using either a fixed exchange rate or a floating exchange rate.

5.1. Fixed Exchange Rate. Consider a domestic investor who
wishes to buy a caplet or floorlet contract struck in foreign
currency at a foreign strike price of𝐾𝑓 where the underlying
is the risky foreign LIBOR forward rate, 𝐿𝑓(𝑡, 𝑇). If the seller
of the option fixes the exchange rate at an agreed value say𝑋 at the inception of the contract, then the payoff of this
contract at time 𝑇 expressed in domestic currency will be
given by

Φ𝑑 (𝑇) = 𝑋𝑁𝑓 [𝜔 ∗ (𝐿𝑓 (𝑇, 𝑇) − 𝐾𝑓)]+ (56)

where 𝑁𝑓 is the pricipal of the option expressed in units of
foreign currency, 𝑋 is the fixed exchange rate agreed upon
at the inception of the contract expressed as the ratio of
domestic currency to one unit of foreign currency, and 𝜔 is
a binary operator such that

𝜔 = {{{
+1 if it is a caplet contract−1 if it is a floorlet contract

(57)

Let the value of the foreign caplet or floorlet at time
t expressed in domestic currency be denoted by𝑉𝑑(𝜔, 𝑡, 𝐾𝑓, 𝐿𝑓). Therefore, since a fixed exchange rate
is considered then it should be noted that the dynamics of
the foreign risky forward LIBOR, 𝐿𝑓(𝑡, 𝑇), in this case will be
valued in the domestic economy. Hence under the domestic
risk neutral 𝑇 + 𝜏 forward measureQ𝐷

𝑇+𝜏

𝑑 ,𝑑𝐿𝑓 (𝑡, 𝑇)𝐿𝑓 (𝑡, 𝑇) = (𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡)− 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇)) 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑓𝐿 (𝑡)
(58)
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Hence the pricing boundary value problem on [0, 𝑇]xR used
to price such a contract will be given by

𝜕𝑉𝑑 (𝑡, 𝐿𝑓)𝜕𝑡 + (𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) − 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡)
− 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) ∗ 𝛾𝑓𝐿 (𝑡, 𝑇)
∗ 𝐿𝑓 (𝑡, 𝑇) 𝜕𝑉𝑑 (𝑡, 𝐿𝑓)𝜕𝐿𝑓 (𝑡, 𝑇) + 12𝛾2𝑓𝐿 (𝑡, 𝑇)
⋅ 𝐿2𝑓 (𝑡, 𝑇) 𝜕2𝑉𝑑 (𝑡, 𝐿𝑓)𝜕𝐿2𝑓 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡)𝑉𝑑 (𝑡, 𝐿𝑓)𝑉𝑑 (𝑇, 𝐿𝑓) = Φ𝑑 (𝑇)

(59)

The value at time 𝑡 ≤ 𝑇 of the foreign caplet or floorlet
struck in foreign currency but expressed in terms of domestic
currency to one unit of foreign currency given that a fixed
exchange rate is considered will therefore be given by

𝑉𝑑 (𝑡, 𝐿𝑓) = 𝑒− ∫𝑇𝑡 𝑟𝐷𝑑 (𝑠)𝑑𝑠E𝑄𝐷𝑇+𝜏𝑑 [Φ𝑑 (𝑇) | F𝑡]
= 𝑃𝐷𝑑 (𝑡, 𝑇)E𝑄𝐷𝑇+𝜏𝑑 [Φ𝑑 (𝑇) | F𝑡]= 𝜔𝑋𝑁𝑓𝑃𝐷𝑑 (𝑡, 𝑇)
⋅ (𝐿𝑓 (𝑡, 𝑇) 𝑒∫𝑇𝑡 𝜇𝑑𝑓𝐿(𝑢,𝑇,𝑇+𝜏)𝑑𝑢𝑁(𝜔 ∗ 𝑑1𝑓)
− 𝐾𝑓𝑁(𝜔 ∗ 𝑑2𝑓))

(60)

where𝜇𝑑𝑓𝐿 (𝑡, 𝑇, 𝑇 + 𝜏) = (𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)
− 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) − 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) 𝛾𝑓𝐿 (𝑡, 𝑇)

𝑑1𝑓 = 1
V (𝑡, 𝑇) [ln(𝐿𝑓 (𝑡, 𝑇)𝐾𝑓 ) + 12V2 (𝑡, 𝑇)

+ ∫𝑇
𝑡
𝜇𝑓𝐿 (𝑢, 𝑇, 𝑇 + 𝜏) 𝑑𝑢]

𝑑2𝑓 = 𝑑1𝑓 − V (𝑡, 𝑇)
V2 (𝑡, 𝑇) = ∫𝑇

𝑡
𝛾2𝑓𝐿 (𝑢, 𝑇) 𝑑𝑢

(61)

and𝑁(⋅) is the cumulative standard normal distribution.
The advantage of such a contract is that it will shield the

domestic investor from the risk of exposure to exchange rate
risk.

5.2. Floating Exchange Rate. Consider a domestic investor
who wishes to buy a caplet or floorlet contract struck in
foreign currency at a foreign strike price of 𝐾𝑓 where the

underlying is the risky foreign LIBOR forward rate, 𝐿𝑓(𝑡, 𝑇).
If the seller of the option assumes that the exchange rate that
will be considered will be the spot exchange rate at maturity,
X(T), then the payoff of this contract at time 𝑇 expressed in
domestic currency will be given by

Φ𝑓 (𝑇) = 𝑋 (𝑇)𝑁𝑓 [𝜔 ∗ (𝐿𝑓 (𝑇, 𝑇) − 𝐾𝑓)]+ (62)

where 𝑁𝑓 is the pricipal of the option expressed in units of
foreign currency, 𝑋(𝑇) is the spot foreign exchange rate at
maturity of the contract expressed as the ratio of domestic
currency to one unit of foreign currency, and 𝜔 is a binary
operator such that

𝜔 = {{{
+1 if it is a caplet contract−1 if it is a floorlet contract

(63)

Let the value of the foreign caplet or floorlet at time
t expressed in domestic currency be denoted by𝑉𝑑(𝜔, 𝑡, 𝐾𝑓, 𝐿𝑓). Therefore, since a floating exchange
rate is considered, then it should be noted that the position
is unhedged meaning that the contract is exposed to foreign
exchange rate risk. This means that the dynamics of the
foreign risky forward LIBOR, 𝐿𝑓(𝑡, 𝑇), in this case will rely
directly on the foreign economy. Hence under the foreign
risk neutral 𝑇 + 𝜏 forward measureQ𝐷

𝑇+𝜏

𝑓 ,

𝑑𝐿𝑓 (𝑡, 𝑇)𝐿𝑓 (𝑡, 𝑇) = 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑓𝐿 (𝑡) (64)

Hence the pricing boundary value problem on [0, 𝑇]xR used
to price such a contract will be given by

𝜕𝑉𝑑 (𝑡, 𝐿𝑓)𝜕𝑡 + 12𝛾2𝑓𝐿 (𝑡, 𝑇) 𝐿2𝑓 (𝑡, 𝑇) 𝜕2𝑉𝑑 (𝑡, 𝐿𝑓)𝜕𝐿2𝑓 (𝑡, 𝑇)− 𝑟𝐷𝑓 (𝑡) 𝑉𝑑 (𝑡, 𝐿𝑓) = 0𝑉𝑑 (𝑇, 𝐿𝑓) = Φ𝑓 (𝑇)
(65)

The value at time 𝑡 ≤ 𝑇 of the foreign caplet or floorlet
struck in foreign currency but expressed in terms of domestic
currency to one unit of foreign currency given that a fixed
exchange rate is considered will therefore be given by

𝑉𝑑 (𝑡, 𝐿𝑓) = 𝑒−∫𝑇𝑡 𝑟𝐷𝑓 (𝑠)𝑑𝑠E𝑄𝐷𝑇+𝜏𝑓 [Φ𝑓 (𝑇) | F𝑡]
= 𝑃𝐷𝑓 (𝑡, 𝑇)E𝑄𝐷𝑇+𝜏𝑓 [Φ𝑓 (𝑇) | F𝑡] = 𝜔𝑋 (𝑡)⋅ 𝑁𝑓𝑃𝐷𝑓 (𝑡, 𝑇)⋅ [𝐿𝑓 (𝑡, 𝑇)𝑁 (𝜔 ∗ 𝑑1𝑔) − 𝐾𝑓𝑁(𝜔 ∗ 𝑑2𝑔)]

(66)
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where

𝑑1𝑔 = 1
V (𝑡, 𝑇) [ln(𝐿𝑓 (𝑡, 𝑇)𝐾𝑓 ) + 12V2 (𝑡, 𝑇)]𝑑2𝑔 = 𝑑1𝑓 − V (𝑡, 𝑇)

V2 (𝑡, 𝑇) = ∫𝑇
𝑡
𝛾2𝑓𝐿 (𝑢, 𝑇) 𝑑𝑢

(67)

and 𝑁(⋅) is the cumulative standard normal distribution.
It should be noted that this type of contract is directly
affected by exchange rate movements. The advantage of
such a contract is that if the exchange rate moves upwards
(or downwards for the floorlet option), then the domestic
investor is set to make a profit. However, if the exchange rate
moves downwards (or upwards for the floorlet option), then
the payout from the option is set to reduce.

6. Conclusion

This study extends the concepts by [20, 21] into the multiple
curve cross-currency setting. It focused on constructing a
model that can be used to model the simply compounded
forward rates of both the domestic and foreignmarkets under
the domestic risk neutral probability measure. The study
assumed that interest rates are strictly positive, hence the
choice of lognormal type ofmodels. However, in recent times,
negative IBOR rates have been recorded.Therefore, this study
can be extended to include models that incorporate negative
interest rates.

Model parameters were estimated using 421 trading days’
datasets of the GBP overnight and 3-month LIBOR, USD
overnight and 3-month LIBOR, and the GBP/USD foreign
exchange rate data for the period between 3rd January, 2017,
and 3rd September, 2018. The estimated parameters were
then used to simulate 1,000 sample paths of 23 trading
days out of sample estimates from 4th September, 2018,
to 4th October, 2018. From the mean absolute percentage
errors (MAPE) calculated, it was seen that the MCCCLMM
produces accurate results for this period.

An illustration of how quanto optional interest rate
derivatives such as the quanto caplets and floorlets can be
valued under the MCCCLMM was also done. However, this
should not limit the research on valuing other types of
derivatives as the derived MCCCLMM is a robust model that
can be used to price numerous interest rate derivatives.

In addition to this, the derived MCCCLMM model is
a relatively new model yet to be tested on various term
structures or interest rate derivatives and hence pricing
performance tests can still be done on it to ascertain its
accuracy when applied tomore real world data. This will help
illustrate how the model can be effectively used in pricing
various interest rate derivatives including quantos.

Appendix

A. Proof That the No Arbitrage Condition in
Section 2.3 (iii) Is Satisfied

(1)

𝑍𝑑𝐷 (𝑡, 𝑇) = 𝑃𝐷𝑑 (𝑡, 𝑇)𝐵𝐷𝑑 (𝑡) (A.1)

is aQ𝐷 martingale.

Proof.𝑑𝑍𝑑𝐷 (𝑡, 𝑇)𝑍𝑑𝐷 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑑𝐷 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)− 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 = −𝜎𝑑𝐷 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡) (A.2)

which is a martingale under the Q𝐷measure.

(2)

𝑍𝑓𝐷 (𝑡, 𝑇) = 𝑃∗𝐷𝑓 (𝑡, 𝑇)𝐵𝐷𝑑 (𝑡) (A.3)

is aQ𝐷 martingale.

Proof.𝑑𝑍𝑓𝐷 (𝑡, 𝑇)𝑍𝑓𝐷 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)+ 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) − 𝑟𝐷𝑑 (𝑡) 𝑑𝑡= 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) − 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)
(A.4)

which is a martingale under the Q𝐷measure.

(3)

𝑍𝑑𝐷𝐿 (𝑡, 𝑇) = 𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) 𝐿𝐷𝑑 (𝑡, 𝑇)𝐵𝐷𝑑 (𝑡) (A.5)

is aQ𝐷 martingale.

Proof.𝑑𝑍𝑑𝐷𝐿 (𝑡, 𝑇)𝑍𝑑𝐷𝐿 (𝑡, 𝑇)= 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐷 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑑𝐷 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)− 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐷 (𝑡, 𝑇) 𝑑𝑡 − 𝑟𝐷𝑑 (𝑡) 𝑑𝑡= (𝛾𝑑𝐷 (𝑡, 𝑇) − 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑊𝑑𝐷 (𝑡)

(A.6)

which is a martingale under the Q𝐷measure.
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(4)

𝑍𝑓𝐷𝐿 (𝑡, 𝑇) = 𝑃∗𝐷𝑓 (𝑡, 𝑇 + 𝜏) 𝐿𝐷𝑓 (𝑡, 𝑇)𝐵𝐷𝑑 (𝑡) (A.7)

is aQ𝐷 martingale.

Proof.𝑑𝑍𝑓𝐷𝐿 (𝑡, 𝑇)𝑍𝑓𝐷𝐿 (𝑡, 𝑇)= 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑓𝐷 (𝑡)+ 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) + 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑓𝐷 (𝑡, 𝑇) 𝑑𝑡− 𝜌𝑓𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) 𝛾𝑓𝐷 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)− 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑓𝐷 (𝑡, 𝑇) 𝑑𝑡+ 𝜌𝑓𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) 𝛾𝑓𝐷 (𝑡, 𝑇) 𝑑𝑡 − 𝑟𝐷𝑑 (𝑡) 𝑑𝑡= 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡)+ (𝛾𝑓𝐷 (𝑡, 𝑇) − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑊𝑓𝐷 (𝑡)

(A.8)

which is a martingale under theQ𝐷 measure.

(5)

𝑍𝑑𝐿𝐿 (𝑡, 𝑇) = 𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) 𝐿𝑑 (𝑡, 𝑇)𝐵𝐷𝑑 (𝑡) (A.9)

is aQ𝐷 martingale.

Proof.𝑑𝑍𝑑𝐿𝐿 (𝑡, 𝑇)𝑍𝑑𝐿𝐿 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)+ 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐿 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑑𝐿 (𝑡, 𝑇) 𝑑𝑊𝑑𝐿 (𝑡)− 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑑𝐿 (𝑡, 𝑇) 𝑑𝑡− 𝑟𝐷𝑑 (𝑡) 𝑑𝑡= 𝛾𝑑𝐿 (𝑡, 𝑇) 𝑑𝑊𝑑𝐿 (𝑡)− 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)

(A.10)

which is a martingale under theQ𝐷 measure.

(6)

𝑍𝑓𝐿𝐿 (𝑡, 𝑇) = 𝑃∗𝐷𝑓 (𝑡, 𝑇 + 𝜏) 𝐿𝐷𝑓 (𝑡, 𝑇)𝐵𝐷𝑑 (𝑡) (A.11)

is aQ𝐷 martingale.

Proof.𝑑𝑍𝑓𝐿𝐿 (𝑡, 𝑇)𝑍𝑓𝐿𝐿 (𝑡, 𝑇) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑓𝐷 (𝑡)+ 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡)+ 𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑡− 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑡+ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑓𝐿 (𝑡)− 𝜌𝑓𝐿𝑓𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑡+ 𝜌𝑓𝐿𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑡− 𝑟𝐷𝑑 (𝑡) 𝑑𝑡= 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) + 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑓𝐿 (𝑡)− 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑓𝐷 (𝑡)

(A.12)

which is a martingale under the Q𝐷measure.

B. Proof That the No Arbitrage Condition in
Section 2.3 (v) Is Satisfied

(1)

𝑍𝑑𝐷 (𝑡, 𝑇 + 𝜏) = 𝑃𝐷𝑑 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) (B.1)

is aQ𝐷
𝑇+𝜏

martingale.

Proof.𝑑𝑍𝑑𝐷 (𝑡, 𝑇 + 𝜏)𝑍𝑑𝐷 (𝑡, 𝑇 + 𝜏) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑑𝐷 (𝑡, 𝑇) 𝑑𝑊𝑑𝐷 (𝑡)− 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡) − 𝜎𝑑𝐷 (𝑡, 𝑇)⋅ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 + (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡= 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) − 𝜎𝑑𝐷 (𝑡, 𝑇)) 𝑑𝑡+ (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) − 𝜎𝑑𝐷 (𝑡, 𝑇)) 𝑑𝑊𝑑𝐷 (𝑡)= (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) − 𝜎𝑑𝐷 (𝑡, 𝑇))⋅ [𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]= (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) − 𝜎𝑑𝐷 (𝑡, 𝑇)) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)

(B.2)

which is a martingale under the Q𝐷
𝑇+𝜏

measure, where

𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡) = 𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 (B.3)
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(2)

𝑍𝑓𝐷 (𝑡, 𝑇 + 𝜏) = 𝑃∗𝐷𝑓 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) (B.4)

is aQ𝐷
𝑇+𝜏

martingale.

Proof.

𝑑𝑍𝑓𝐷 (𝑡, 𝑇 + 𝜏)𝑍𝑓𝐷 (𝑡, 𝑇 + 𝜏) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 − 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑑𝑊𝑓𝐷 (𝑡)+ 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡) − 𝑟𝐷𝑑 (𝑡) 𝑑𝑡+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)+ 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑓𝐷 (𝑡, 𝑇) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡− 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡+ (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡= 𝜎𝑥 (𝑡) [𝑑𝑊𝑥𝑥 (𝑡) − 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]− 𝜎𝑓𝐷 (𝑡, 𝑇) [𝑑𝑊𝑓𝐷 (𝑡) + 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) [𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]= 𝜎𝑥 (𝑡) 𝑑𝑊𝑇+𝜏𝑥𝑥 (𝑡) − 𝜎𝑓𝐷 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑓𝐷 (𝑡)+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)

(B.5)

which is a martingale under theQ𝐷
𝑇+𝜏

measure, where𝑑𝑊𝑇+𝜏𝑓𝐷 (𝑡) = 𝑑𝑊𝑓𝐷 (𝑡) + 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 (B.6)𝑑𝑊𝑇+𝜏𝑥𝑥 (𝑡) = 𝑑𝑊𝑥𝑥 (𝑡) + 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 (B.7)

(3)

𝑍𝑑𝐷𝐿 (𝑡, 𝑇 + 𝜏) = 𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) 𝐿𝐷𝑑 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) (B.8)

is aQ𝐷
𝑡+𝜏

martingale.

Proof.

𝑑𝑍𝑑𝐷𝐿 (𝑡, 𝑇 + 𝜏)𝑍𝑑𝐷𝐿 (𝑡, 𝑇 + 𝜏)= 𝑟𝐷𝑑 (𝑡) 𝑑𝑡+ (𝛾𝑑𝐷 (𝑡, 𝑇) − 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑊𝑑𝐷 (𝑡)− 𝑟𝐷𝑑 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) (𝛾𝑑𝐷 (𝑡, 𝑇) − 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑡+ (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡= 𝛾𝑑𝐷 (𝑡, 𝑇) [𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]= 𝛾𝑑𝐷 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)

(B.9)

which is a martingale under theQ𝐷
𝑇+𝜏

measure.

(4)

𝑍𝑓𝐷𝐿 (𝑡, 𝑇 + 𝜏) = 𝑃∗𝐷𝑓 (𝑡, 𝑇 + 𝜏) 𝐿𝐷𝑓 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) (B.10)

is aQ𝐷
𝑇+𝜏

martingale.

Proof.𝑑𝑍𝑓𝐷𝐿 (𝑡, 𝑇 + 𝜏)𝑍𝑓𝐷𝐿 (𝑡, 𝑇 + 𝜏) = 𝑟𝐷𝑑 (𝑡) + 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡)+ (𝛾𝑓𝐷 (𝑡, 𝑇) − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑊𝑓𝐷 (𝑡)− 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)+ (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡 + 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)⋅ (𝛾𝑓𝐷 (𝑡, 𝑇) − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑡 + 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑥 (𝑡)⋅ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 = 𝜎𝑥 (𝑡)⋅ [𝑑𝑊𝑥𝑥 (𝑡) + 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) [𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]− (𝛾𝑓𝐷 (𝑡, 𝑇) − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏))⋅ [𝑑𝑊𝑓𝐷 (𝑡) + 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]= 𝜎𝑥 (𝑡) 𝑑𝑊𝑇+𝜏𝑥𝑥 (𝑡)+ (𝛾𝑓𝐷 (𝑡, 𝑇) − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)) 𝑑𝑊𝑇+𝜏𝑓𝐷 (𝑡)+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)

(B.11)

which is a martingale under the Q𝐷measure.

(5)

𝑍𝑑𝐿𝐿 (𝑡, 𝑇 + 𝜏) = 𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) 𝐿𝑑 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) (B.12)

is aQ𝐷
𝑇+𝜏

martingale.

Proof.𝑑𝑍𝑑𝐿𝐿 (𝑡, 𝑇 + 𝜏)𝑍𝑑𝐿𝐿 (𝑡, 𝑇 + 𝜏)= 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 + 𝛾𝑑𝐿 (𝑡, 𝑇) 𝑑𝑊𝑑𝐿 (𝑡)− 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡) − 𝑟𝐷𝑑 (𝑡) 𝑑𝑡+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡)+ 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝛾𝑑𝐿 (𝑡, 𝑇) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡− (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡 + (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡
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= 𝛾𝑑𝐿 (𝑡, 𝑇) [𝑑𝑊𝑑𝐿 (𝑡) + 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]= 𝛾𝑑𝐿 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑑𝐿 (𝑡)
(B.13)

which is a martingale under theQ𝐷
𝑇+𝜏

measure, where

𝑑𝑊𝑇+𝜏𝑑𝐿 (𝑡) = 𝑑𝑊𝑑𝐿 (𝑡) + 𝜌𝑑𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 (B.14)

(6)

𝑍𝑓𝐿𝐿 (𝑡, 𝑇) = 𝑃∗𝐷𝑓 (𝑡, 𝑇 + 𝜏) 𝐿𝐷𝑓 (𝑡, 𝑇)𝑃𝐷𝑑 (𝑡, 𝑇 + 𝜏) (B.15)

is aQ𝐷
𝑇+𝜏

martingale.

Proof.𝑑𝑍𝑓𝐿𝐿 (𝑡, 𝑇 + 𝜏)𝑍𝑓𝐿𝐿 (𝑡, 𝑇 + 𝜏) = 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 + 𝜎𝑥 (𝑡) 𝑑𝑊𝑥𝑥 (𝑡)+ 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑓𝐿 (𝑡) − 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑓𝐷 (𝑡)− 𝑟𝐷𝑑 (𝑡) 𝑑𝑡 + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑑𝐷 (𝑡) + 𝜌𝑑𝐷𝑥𝑥 (𝑡)⋅ 𝜎𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 + 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝛾𝑓𝐿 (𝑡, 𝑇)⋅ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 − 𝜌𝑓𝐷𝑑𝐷𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)⋅ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 + (𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏))2 𝑑𝑡 = 𝜎𝑥 (𝑡)⋅ [𝑑𝑊𝑥𝑥 (𝑡) + 𝜌𝑑𝐷𝑥𝑥 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]+ 𝛾𝑓𝐿 (𝑡, 𝑇) [𝑑𝑊𝑓𝐿 (𝑡) + 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]− 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏)⋅ [𝑑𝑊𝑓𝐷 (𝑡) + 𝜌𝑓𝐷𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏)]+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) [𝑑𝑊𝑑𝐷 (𝑡) + 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡]= 𝜎𝑥 (𝑡) 𝑑𝑊𝑇+𝜏𝑥𝑥 (𝑡) + 𝛾𝑓𝐿 (𝑡, 𝑇) 𝑑𝑊𝑇+𝜏𝑓𝐿 (𝑡)− 𝜎𝑓𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑇+𝜏𝑓𝐷 (𝑡)+ 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑊𝑇+𝜏𝑑𝐷 (𝑡)

(B.16)

which is a martingale under theQ𝐷
𝑇+𝜏

measure,

where𝑑𝑊𝑇+𝜏𝑓𝐿 (𝑡) = 𝑑𝑊𝑓𝐿 (𝑡) + 𝜌𝑓𝐿𝑑𝐷 (𝑡) 𝜎𝑑𝐷 (𝑡, 𝑇 + 𝜏) 𝑑𝑡 (B.17)
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