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In thiswork, we investigate various types of solutions for the generalised resonant dispersive nonlinear Schrödinger equation (GRD-
NLSE) with power law nonlinearity. Based on simple mathematical techniques, the complicated form of the GRD-NLSE is reduced
to an ordinary differential equation (ODE) which has a variety of solutions. The analytic solution of the resulting ODE gives rise
to bright soliton, singular soliton, peaked soliton, compacton solutions, solitary pattern solutions, rational solution, Weierstrass
elliptic periodic type solutions, and some other types of solutions. Constraint conditions for the existence of solitons and other
solutions are given.

1. Introduction

Solitons have become one of the more attractive topics in
the physical and natural science. The reason of this remark-
able importance is that this type of nonlinear waves has
many applications in the study of nonlinear optics, plasma
physics, fluid dynamics, and several other disciplines [1–24].
For example, solitons transport information through optical
fibers over transcontinental and transoceanic distances in a
matter of a few femtoseconds. Furthermore, they also appear
in Bose-Einstein condensates, 𝛼-helix proteins in clinical sci-
ences, nuclear physics, and several others. The governing
equation of suchmodel is the nonlinear Schrödinger equation
(NLSE).

The formation of solitons in nonlinear optics, for exam-
ple, is mainly due to a delicate balance between disper-
sion and nonlinearity in a model of NLSE. To analyse the
dynamics of solitons, it is worthwhile to focus deeply on
one model of the NLS family of equations with higher order
nonlinear terms. There are many powerful mathematical
tools that have been developed to study the behaviour of
solitons in a medium dominated by NLSE. For more details,
see [25–31]. In the present work, we will shed light on
the study of the generalised resonant dispersive nonlinear

Schrödinger equation (GRD-NLSE) with power law nonline-
arity.

The model of GRD-NLSE which is studied in the current
paper has the form

𝑖 (𝜓𝑛−1 𝜓)𝑡 + 𝛼 (𝜓𝑛−1 𝜓)𝑥𝑥 + 𝛽 𝜓𝑚 𝜓
+ 𝛾{{{

(𝜓𝑛)𝑥𝑥𝜓
}}}
𝜓 = 0, (1)

where 𝛼, 𝛽, and 𝛾 are real-valued constants. The dependent
variable 𝜓(𝑥, 𝑡) is a complex-valued wave profile. Recently,
the GRD-NLSEhas been studied bymany authors to examine
the behaviour of solutions. Several integration schemes have
been implemented to construct exact solutions such as
ansatzmethod [13, 14], semi-inverse variational principle [15],
simplest equation approach [16], first integral method [17],
functional variable method, sine–cosine function method
[18], (𝐺/𝐺)-expansion method [19], trial solution approach
[20], generalised extended tanhmethod [21],modified simple
equationmethod [22], and improved extended tanh-equation
method [23].

Hindawi
Journal of Applied Mathematics
Volume 2019, Article ID 6143102, 8 pages
http://dx.doi.org/10.1155/2019/6143102

http://orcid.org/0000-0002-4392-0742
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1155/2019/6143102


2 Journal of Applied Mathematics

In this paper, we aim to investigate the solitons and other
types of solutions to GRD-NLSE. To achieve our goal, simple
integration schemeswill be applied to reduce the complicated
form of GRD-NLSE to an ODE possessing various types of
solutions. Solving the resulting ODE yields different physical
structures of solutions for GRD-NLSE such as bright soliton,
singular soliton, peaked soliton, compacton solutions, soli-
tary pattern solutions, rational solution, Weierstrass elliptic
periodic type solutions, and some other types of solutions.

In the following section, (1) will be simplified to an ODE
and then different types of exact solutions to this ODEwill be
extracted.

2. Mathematical Analysis and Solutions

In order to deal with the complicated form of the GRD-NLSE
given by (1), we assume the travelling wave solution of the
form

𝜓 (𝑥, 𝑡) = 𝑈 (𝜉) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), 𝜉 = 𝑥 + 2𝜅𝛼𝑡. (2)

Hence, (1) reduces to the following ordinary differential
equation:

(𝛼 + 𝛾) (𝑈𝑛) − (𝜔 + 𝛼𝜅2)𝑈𝑛 + 𝛽𝑈𝑚+1 = 0, (3)

where prime denotes the derivative with respect to 𝜉. Setting𝑉 = 𝑈𝑛, (3) becomes in the form

(𝛼 + 𝛾)𝑉 − (𝜔 + 𝛼𝜅2)𝑉 + 𝛽𝑉(𝑚+1)/𝑛 = 0. (4)

Now, multiplying by 𝑉 and integrating once yield the
following first-order ODE:

(𝛼 + 𝛾) (d𝑉
d𝜉 )
2 = (𝜔 + 𝛼𝜅2)𝑉2

− 2𝑛𝛽𝑚 + 𝑛 + 1𝑉(𝑚+𝑛+1)/𝑛,
(5)

where the constant of integration is taken to be zero.

2.1. Solitary Wave Solution. Here, we aim to obtain the soli-
tary wave solution of (1). Therefore, separating variables and
integrating (5) give

∫ d𝑉
𝑉√1 − (2𝑛𝛽/ (𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)) 𝑉(𝑚−𝑛+1)/𝑛
= √𝜔 + 𝛼𝜅2𝛼 + 𝛾 𝜉,

(6)

which leads to2𝑛𝑛 − 𝑚 − 1
⋅ tanh−1(√1 − 2𝑛𝛽(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)𝑉(𝑚−𝑛+1)/𝑛)

= √𝜔 + 𝛼𝜅2𝛼 + 𝛾 𝜉.
(7)

Equation (7) can be manipulated to yield

𝑉 (𝜉) = 𝐴 {sech2 [𝐵𝜉]}𝑛/(𝑚−𝑛+1) , (8)

which represents a solitary wave with the amplitude

𝐴 = {(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)2𝑛𝛽 }
𝑛/(𝑚−𝑛+1)

, (9)

and the inverse width

𝐵 = 𝑛 − 𝑚 − 12𝑛 √𝜔 + 𝛼𝜅2𝛼 + 𝛾 , (10)

where

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) > 0. (11)

Eventually, the nontopological 1-soliton solution with power
law nonlinearity to (1) is given by

𝜓 (𝑥, 𝑡)
= 𝐴0 {sech2 [𝐵 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑚−𝑛+1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (12)

where the amplitude, 𝐴0 = 𝐴1/𝑛, and width of the 𝜓 profile
are given by (9) and (10), respectively. The constraint given by
(11) must stay valid in order for the soliton solution to exist.

2.2. Peakon Solution. In this subsection, we intend to find
the peaked soliton of (1). Hence, we substitute the peakon
assumption

𝑉 (𝜉) = 𝑝𝑒−𝑟|𝜉|, (13)

into (5) and solve the resulting equation to find that

𝑟 = √𝜔 + 𝛼𝜅2 − 𝛽𝛼 + 𝛾 , (14)

with the constraint 𝑚 = 𝑛 − 1 and 𝑝 can be any selective real
number. Eventually, the peakon solution to (1) is given by

𝜓 (𝑥, 𝑡) = {𝑝𝑒−√(𝜔+𝛼𝜅2−𝛽)/(𝛼+𝛾)|𝑥+2𝜅𝛼𝑡|}1/𝑛 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃). (15)

In case 𝑝 is a negative constant so another type of peakon is
presented, namely, antipeakon.

Next, replacing the constant 𝑝 by 𝑝 sign(𝜉) in (13) and
substituting into (5) give a new solution to (1) called shock-
peakon solution which can be written in the form

𝜓 (𝑥, 𝑡)
= {𝑝 sign (𝜉) 𝑒−√(𝜔+𝛼𝜅2−𝛽)/(𝛼+𝛾)|𝜉|}1/𝑛 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (16)

where 𝜉 = 𝑥+2𝜅𝛼𝑡 and sign(𝜉) = 𝜉/|𝜉|.This type of peakons is
a discontinuous wave so it is a shockwave. As we can see from
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the computation it has a discontinuous first-order derivative
at 𝜉 = 0.
2.3. Compacton and Solitary Pattern Solutions. In order to
obtain compacton and solitary patterns solutions of (1) we
multiply (5) by 𝑉−(𝑚+𝑛+1)/𝑛 to arrive at

(𝛼 + 𝛾) [𝑉−(𝑚+𝑛+1)/2𝑛d𝑉
d𝜉 ]
2

= (𝜔 + 𝛼𝜅2)𝑉(𝑛−𝑚−1)/𝑛 − 2𝑛𝛽𝑚 + 𝑛 + 1 ,
(17)

from which we find

(𝛼 + 𝛾) ( 2𝑛𝑛 − 𝑚 − 1)
2 [d𝑉(𝑛−𝑚−1)/2𝑛

d𝜉 ]2

= (𝜔 + 𝛼𝜅2)𝑉(𝑛−𝑚−1)/𝑛 − 2𝑛𝛽𝑚 + 𝑛 + 1 .
(18)

Then, (18) can be simplified by assuming 𝜙 = 𝑉(𝑛−𝑚−1)/2𝑛 to
obtain

(d𝜙
d𝜉 )
2 = 1(𝛼 + 𝛾) (𝑛 − 𝑚 − 12𝑛 )2

⋅ [(𝜔 + 𝛼𝜅2) 𝜙2 − 2𝑛𝛽𝑚 + 𝑛 + 1] .
(19)

Solving (19), we obtain the following periodic type solutions:

𝜓 (𝑥, 𝑡)
= {𝐴1cos2 [𝐵1 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑛−𝑚−1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),

𝜓 (𝑥, 𝑡)
= {𝐴1sin2 [𝐵1 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑛−𝑚−1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),

(20)

which are valid when (𝜔 + 𝛼𝜅2)(𝛼 + 𝛾) < 0, where
𝐴1 = 2𝑛𝛽(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2) ,

𝐵1 = (𝑛 − 𝑚 − 12𝑛 )√−𝜔 + 𝛼𝜅2𝛼 + 𝛾 .
(21)

In case of 𝑛 > 𝑚 + 1, we arrive at the compacton solutions in
the form

𝜓 (𝑥, 𝑡)
= {𝐴1cos2 [𝐵1 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑛−𝑚−1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),

𝐵1 (𝑥 + 2𝜅𝛼𝑡) ≤ 𝜋2 ,
𝜓 (𝑥, 𝑡) = 0, otherwise,

(22)

and

𝜓 (𝑥, 𝑡)
= {𝐴1sin2 [𝐵1 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑛−𝑚−1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),𝐵1 (𝑥 + 2𝜅𝛼𝑡) ≤ 𝜋,

𝜓 (𝑥, 𝑡) = 0, otherwise.
(23)

Now, when the constant (𝜔+ 𝛼𝜅2)(𝛼+ 𝛾) > 0, (19) admits the
solitary pattern solutions

𝜓 (𝑥, 𝑡)
= {𝐴1cosh2 [𝐵2 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑛−𝑚−1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (24)

𝜓 (𝑥, 𝑡)
= {−𝐴1sinh2 [𝐵2 (𝑥 + 2𝜅𝛼𝑡)]}1/(𝑛−𝑚−1) 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (25)

where 𝐴1 is give by (21) and
𝐵2 = (𝑛 − 𝑚 − 12𝑛 )√𝜔 + 𝛼𝜅2𝛼 + 𝛾 . (26)

2.4. Exponential Solution. In case of 𝑚 = 𝑛 − 1, then (5) will
be reduced to

(d𝑉
d𝜉 )
2 = 𝜔 + 𝛼𝜅2 − 𝛽𝛼 + 𝛾 𝑉2. (27)

Separating variables and integrating (27) give

𝑉(𝜉) = {𝑒𝑐±√(𝜔+𝛼𝜅2−𝛽)/(𝛼+𝛾)𝜉} , (28)

where 𝑐 is the constant of integration. As a result, (1) possesses
an exponential type solution in the form

𝜓 (𝑥, 𝑡) = {𝑒𝑐±√(𝜔+𝛼𝜅2−𝛽)/(𝛼+𝛾)(𝑥+2𝜅𝛼𝑡)}1/𝑛 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (29)

when𝑚 = 𝑛 − 1.
2.5. Other Solutions. Now, we aim to extract more types
of solutions to (1) using straightforward mathematical
approach. Thus, we reduce (5) to a simple ODE by means of
the following transformation. Letting

𝑉𝑚−𝑛+1/𝑛 = 𝑊2, (30)

we find

𝑉 = 𝑊2𝑛/(𝑚−𝑛+1), (31)

from which we reach

d𝑉 = 2𝑛𝑚 − 𝑛 + 1d𝑊2𝑛/(𝑚−𝑛+1)−1. (32)
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Substituting (31) and (32) into (5) results in the following
equation:

(d𝑊
d𝜉 )
2 = 1(𝛼 + 𝛾) (𝑚 − 𝑛 + 12𝑛 )2

⋅ [(𝜔 + 𝛼𝜅2)𝑊2 − 2𝑛𝛽𝑚 + 𝑛 + 1𝑊4] .
(33)

Solving this equation, one can obtain the following types of
solutions.

2.5.1. Rational Type Solution. In case of 𝜔 = −𝛼𝜅2, (1) admits
the rational solution of the form

𝜓 (𝑥, 𝑡) = { −2𝑛 (𝑚 + 𝑛 + 1) (𝛼 + 𝛾)
𝛽 (𝑚 − 𝑛 + 1)2 (𝑥 + 2𝜅𝛼𝑡 + 𝑐)2}

1/(𝑚−𝑛+1)

⋅ 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(34)

where 𝑐 is the constant of integration.
2.5.2. Complex Type Solution. The solution to (33) brings
about the following complex solution for (1):

𝜓 (𝑥, 𝑡)

= {{{{{
−(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)𝑛𝛽 1

𝜖𝑖 sinh [((𝑚 − 𝑛 + 1) /𝑛)√(𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾) (𝑥 + 2𝜅𝛼𝑡)] − 1
}}}}}

1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (35)

where 𝜖 = ±1 and 𝑖 = √−1. This solution demands

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) > 0. (36)

2.5.3. Bright Soliton Solutions. The solution to (33) leads to
the following forms of bright solitons for (1):

𝜓 (𝑥, 𝑡) = {{{
(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)

2𝑛𝛽 sech2 [
[
𝑚 − 𝑛 + 12𝑛

⋅ √𝜔 + 𝛼𝜅2𝛼 + 𝛾 (𝑥 + 2𝜅𝛼𝑡)]]
}}}
1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃).
(37)

This soliton is valid for

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) > 0.
𝜓 (𝑥, 𝑡)
= { 𝑎 sech2 (𝑥 + 2𝜅𝛼𝑡)

𝑏 sech2 (𝑥 + 2𝜅𝛼𝑡) + 𝑐 tanh (𝑥 + 2𝜅𝛼𝑡) − 2𝑏}
2/(𝑚−𝑛+1)

⋅ 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),

(38)

which is valid when

(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 ) = 4,
(𝑚 − 𝑛 + 12𝑛 )2 2𝑛𝛽(𝑚 + 𝑛 + 1) (𝛼 + 𝛾) = 4𝑏

2 − 𝑐2𝑎2 ,
(39)

where 𝑎, 𝑏, 𝑐 are arbitrary constants.

𝜓 (𝑥, 𝑡) = {{{{{
(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)

𝑛𝛽 1
cosh [((𝑚 − 𝑛 + 1) /𝑛)√(𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾) (𝑥 + 2𝜅𝛼𝑡)] + 1

}}}}}

1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃). (40)

Solution (40) is valid when

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) > 0. (41)

2.5.4. Singular Soliton Solutions. The solution to (33) gives
rise to the following forms of singular solitons for (1):

𝜓 (𝑥, 𝑡) = {{{
(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)

2𝑛𝛽 csch2 [
[
𝑚 − 𝑛 + 12𝑛

⋅ √𝜔 + 𝛼𝜅2𝛼 + 𝛾 (𝑥 + 2𝜅𝛼𝑡)]]
}}}
1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃).
(42)

This soliton is valid for

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) > 0.
𝜓 (𝑥, 𝑡)
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= { 𝑎 csch2 (𝑥 + 2𝜅𝛼𝑡)
𝑏 csch2 (𝑥 + 2𝜅𝛼𝑡) + 𝑐 coth (𝑥 + 2𝜅𝛼𝑡) + 2𝑏}

2/(𝑚−𝑛+1)

⋅ 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(43)

which is valid when

(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 ) = 4,
(𝑚 − 𝑛 + 12𝑛 )2 2𝑛𝛽(𝑚 + 𝑛 + 1) (𝛼 + 𝛾) = 4𝑏

2 − 𝑐2𝑎2 ,
(44)

where 𝑎, 𝑏, 𝑐 are arbitrary constants.

𝜓 (𝑥, 𝑡)

= {{{{{
−(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)𝑛𝛽 1

cosh [((𝑚 − 𝑛 + 1) /𝑛)√(𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾) (𝑥 + 2𝜅𝛼𝑡)] − 1
}}}}}

1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (45)

Solution (45) is valid when

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) > 0. (46)

2.5.5. Singular Periodic Solutions. The solution to (33) pro-
vides the following variety of singular periodic solutions for
(1).

𝜓 (𝑥, 𝑡) = {{{
(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)

2𝑛𝛽 sec2 [
[
𝑚 − 𝑛 + 12𝑛

⋅ √−𝜔 + 𝛼𝜅2𝛼 + 𝛾 (𝑥 + 2𝜅𝛼𝑡)]]
}}}
1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(47)

𝜓 (𝑥, 𝑡) = {{{
(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)

2𝑛𝛽 csc2 [
[
𝑚 − 𝑛 + 12𝑛

⋅ √−𝜔 + 𝛼𝜅2𝛼 + 𝛾 (𝑥 + 2𝜅𝛼𝑡)]]
}}}
1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃).
(48)

Equations (47) and (48) demand

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) < 0. (49)

𝜓 (𝑥, 𝑡)
= { 𝑎 sec2 (𝑥 + 2𝜅𝛼𝑡)𝑏 sec2 (𝑥 + 2𝜅𝛼𝑡) + 𝑐 tan (𝑥 + 2𝜅𝛼𝑡) − 2𝑏}

2/(𝑚−𝑛+1)

⋅ 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(50)

𝜓 (𝑥, 𝑡)
= { 𝑎 csc2 (𝑥 + 2𝜅𝛼𝑡)𝑏 csc2 (𝑥 + 2𝜅𝛼𝑡) + 𝑐 cot (𝑥 + 2𝜅𝛼𝑡) − 2𝑏}

2/(𝑚−𝑛+1)

⋅ 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃).
(51)

Both solutions (50) and (51) are valid for

(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 ) = −4,
(𝑚 − 𝑛 + 12𝑛 )2 2𝑛𝛽(𝑚 + 𝑛 + 1) (𝛼 + 𝛾) = −4𝑏

2 + 𝑐2𝑎2 ,
(52)

where 𝑎, 𝑏, 𝑐 are arbitrary constants.

𝜓 (𝑥, 𝑡)

= {{{{{
−(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)𝑛𝛽 1

𝜖 cos [((𝑚 − 𝑛 + 1) /𝑛)√− (𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾) (𝑥 + 2𝜅𝛼𝑡)] − 1
}}}}}

1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (53)

𝜓 (𝑥, 𝑡)

= {{{{{
−(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)𝑛𝛽 1

𝜖 sin [((𝑚 − 𝑛 + 1) /𝑛)√− (𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾) (𝑥 + 2𝜅𝛼𝑡)] − 1
}}}}}

1/(𝑚−𝑛+1)

𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃), (54)
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where 𝜖 = ±1. Solutions (53) and (54) imply that

(𝜔 + 𝛼𝜅2) (𝛼 + 𝛾) < 0. (55)

2.5.6. Weierstrass Elliptic Periodic Type Solutions. The solu-
tion to (33) generates Weierstrass elliptic type solutions for
(1) in the following forms:

𝜓 (𝑥, 𝑡) = {−2𝑛 (𝑚 + 𝑛 + 1) (𝛼 + 𝛾)3 (𝑚 − 𝑛 + 1)2 𝛽 [3℘ ((𝑥 + 2𝜅𝛼𝑡) , 𝑔2,

𝑔3) − (𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 )]}1/(𝑚−𝑛+1)

× 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(56)

where the invariants of the Weierstrass elliptic function are
given by

𝑔2 = 43 [(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 )]
2 ,

𝑔3 = − 827 [(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 )]3 .
(57)

𝜓 (𝑥, 𝑡) = {−2𝑛 (𝑚 + 𝑛 + 1) (𝛼 + 𝛾)(𝑚 − 𝑛 + 1)2 𝛽 [ 3℘ ((𝑥 + 2𝜅𝛼𝑡) , 𝑔2, 𝑔3)6℘ ((𝑥 + 2𝜅𝛼𝑡) , 𝑔2, 𝑔3) + ((𝑚 − 𝑛 + 1) /2𝑛)2 ((𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾))]
2}
1/(𝑚−𝑛+1)

× 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(58)

𝜓 (𝑥, 𝑡) = {{{
(𝑚 + 𝑛 + 1) (𝜔 + 𝛼𝜅2)

2𝑛𝛽 [ 12℘ ((𝑥 + 2𝜅𝛼𝑡) , 𝑔2, 𝑔3) − ((𝑚 − 𝑛 + 1) /2𝑛)2 ((𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾))12℘ ((𝑥 + 2𝜅𝛼𝑡) , 𝑔2, 𝑔3) + 5 ((𝑚 − 𝑛 + 1) /2𝑛)2 ((𝜔 + 𝛼𝜅2) / (𝛼 + 𝛾))]
2}}}
1/(𝑚−𝑛+1)

× 𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃),
(59)

where both solutions (58) and (59) are valid for the invariants
of the Weierstrass elliptic function given by

𝑔2 = 112 [(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 )]2 ,

𝑔3 = − 1216 [(𝑚 − 𝑛 + 12𝑛 )2 (𝜔 + 𝛼𝜅2𝛼 + 𝛾 )]
3 .

(60)

Overall, the majority of results obtained here for (1) are
very new. In comparison with some previous studies, the
solutions given by (34), (35), (37), (42), (47), (48), and (54)
are already derived in [18, 23] while the rest of the solutions
extracted here are new exact solutions.

It should be noted that the proposed transformation in
(31) has led to theODE (33) which is simpler than that derived
in [23]. Further to this, (33) can be converted into the form

d2𝑊
d𝜉2 = 1(𝛼 + 𝛾) (𝑚 − 𝑛 + 12𝑛 )2

⋅ [(𝜔 + 𝛼𝜅2)𝑊 − 4𝑛𝛽𝑚 + 𝑛 + 1𝑊3] .
(61)

This second-order equation is known to admit the appli-
cation of many solution methods like the Jacobi elliptic
function method [32], the exp-function method [33], the

𝐺/𝐺-expansion method [34], the generalised Kudryashov
method [35], etc. As a result, a lot of exact analytic solutions
can be constructed to the GRD-NLSE (1).

3. Discussion and Conclusion

This study scoped different physical structures of solutions
for GRD-NLSE with power law nonlinearity. Applying a
simple mathematical scheme allowed us to simplify the
complex form of GRD-NLSE to an ODE. It is found that
the constructed ODE is rich in various types of solitons
and other solutions for GRD-NLSE. The derived solutions
include bright soliton, singular soliton, peaked soliton, com-
pacton solutions, solitary pattern solutions, rational solution,
trigonometric function solutions, and Weierstrass elliptic
periodic type solutions. All generated solutions are verified
by utilising symbolic computation. The results obtained here
can be useful to understand the physics of nonlinear optical
fibers.
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dinger equation with cubic-quintic nonlinearity in non-Kerr
media,” Journal of the Physical Society of Japan, vol. 73, no. 9,
pp. 2397–2401, 2004.

[6] A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical
Solitons, CRC Press, 2006.

[7] R. Kohl, A. Biswas, D. Milovic, and E. Zerrad, “Optical soliton
perturbation in a non-Kerr lawmedia,” Optics & Laser Technol-
ogy, vol. 40, no. 4, pp. 647–662, 2008.

[8] A. Biswas and D. Milovic, “Optical solitons with log-law non-
linearity,” Communications in Nonlinear Science and Numerical
Simulation, vol. 15, no. 12, pp. 3763–3767, 2010.

[9] P.D.Green andA. Biswas, “Bright anddark optical solitonswith
time-dependent coefficients in a non-Kerr lawmedia,”Commu-
nications in Nonlinear Science andNumerical Simulation, vol. 15,
no. 12, pp. 3865–3873, 2010.

[10] H. Triki and A. Biswas, “Dark solitons for a generalized
nonlinear Schrödinger equation with parabolic law and dual-
power law nonlinearities,”Mathematical Methods in the Applied
Sciences, vol. 34, no. 8, pp. 958–962, 2011.

[11] A. Biswas, D. Milovic, and D. Milic, “Solitons in alpha-helix
proteins by He’s variational principle,” International Journal of
Biomathematics, vol. 4, no. 4, pp. 423–429, 2011.

[12] A. Biswas, M. Fessak, S. Johnson et al., “Optical soliton pertur-
bation in non-Kerr law media: Traveling wave solution,” Optics
& Laser Technology, vol. 44, no. 1, pp. 263–268, 2012.

[13] H. Triki, T. Hayat, O. M. Aldossary, and A. Biswas, “Bright and
dark solitons for the resonant nonlinear Schrödingers equation
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