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In this work, the kinetically reduced local Navier-Stokes equations are applied to the simulation of two- and three-dimensional
unsteady viscous incompressible flow problems. The reduced differential transform method is used to find the new approximate
analytical solutions of these flow problems. The new technique has been tested by using four selected multidimensional unsteady
flow problems: two- and three-dimensional Taylor decaying vortices flow, Kovasznay flow, and three-dimensional Beltrami flow.
The convergence analysis was discussed for this approach. The numerical results obtained by this approach are compared with
other results that are available in previous works. Our results show that this method is efficient to provide new approximate
analytic solutions. Moreover, we found that it has highly precise solutions with good convergence, less time consuming, being
easily implemented for high Reynolds numbers, and low Mach numbers.

1. Introduction

Many of the physical phenomena in fluid mechanics are
formulated according to the unsteady viscous incompress-
ible Navier-Stokes (INS) equations, which has the non-
dimensional formula consisting of the momentum equations
and the continuity equation [1–8]

𝜕𝑡u + (u ⋅ ∇) u + ∇𝑝 = 1𝑅𝑒∇2u, (1)

∇ ⋅ u = 0, (2)

where 𝑡 is the physical time, u is the velocity field, 𝑝 is the
pressure, and 𝑅𝑒 is the Reynolds number (𝑅𝑒 = U𝐿/], where
U is the scale velocity field, 𝐿 is the characteristic length, and
] is the kinematic viscosity of the fluid).

Analytical and numerical solutions of INS equations are
known difficulty because they are non-linear equations, and
they do not find the time evolution equation for the pressure

that must be determined by solving the Passion equation at
each time step, which requires effort and time. Therefore,
there are a lot of studies that have developed an alternative
formula description of incompressible fluid flows. One of
these alternative formulas is the kinetically reduced local
Navier-Stokes (KRLNS) equations which was suggested in [1]
for the thermodynamic description of incompressible fluid
flows at lowMach numbers. The system of KRLNS equations
is

𝜕𝑡u + (u ⋅ ∇) u + ∇𝑝 = 1𝑅𝑒∇2u, (3)

𝜕𝑡𝑔 = − 1(𝑀𝑎)2∇ ⋅ u + 1𝑅𝑒∇2𝑔, (4)

such that

𝑝 = 𝑔 + u22 , (5)
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where 𝑀𝑎 is the Mach number ( 𝑀𝑎 = U/𝐶𝑠 is the
ratio of the characteristic flow speed U to the isentropic
sound speed 𝐶𝑠 ), and 𝑔 is the grand potential. The time
scale in INS equations related to that of KRLNS equations;𝑡𝐾𝑅𝐿𝑁𝑆(𝜏) = 𝑀𝑎 × 𝑡𝑁𝑆.

All studies which have presented the KRLNS equa-
tions for simulation of unsteady incompressible viscous
flow problems, used the numerical schemes for solving
these equations. The KRLNS equations are proposed for
the simulation of low Mach number flows in [2], and used
the spectral element method to find the numerical solution
of the three-dimensional Taylor Green vortex flow. In [3],
two-dimensional KRLNS system is simplified and compared
with a Chorin’s artificial compressibility method for steady
state computation of the flow in a lid-driven cavity at
various Reynolds numbers, the Taylor Green vortex flow is
demonstrated that the KRLNS equations correctly describe
the time evolution of the velocity and of the pressure, for
this purpose, the explicit Mac Cormack scheme is used. In
[5] the KRLNS equations are applied to two-dimensional
simulation of doubly periodic shear layers and decaying
homogeneous isotropic turbulence, to solve these equations
have been used the central difference scheme for the spatial
discretization in both advection and diffusion terms and
four stages Runge-Kutta method for the time integration,
the numerical results are compared with those obtained by
the artificial compressibility method, the lattice Boltzmann
method, and the pseudospectral method. Higher order dif-
ference approximations are used in [6] to find the solutions of
the KRLNS equations which are applied for two-dimensional
simulations ofWomersley problemanddoubly periodic shear
layers.

The main purpose of this paper is to find new approx-
imate analytical solutions for two- and three-dimensional
unsteady viscous incompressible flow problems. To achieve
this objective, the flow problems that are described by
alternative formulas of Navier-stokes equations, which are
named KRLNS (3) and (4), the reduced differential transform
method (RDTM) is proposed.The reasons that encourage us
to propose RDTM to solve the present problems are being an
effective and efficient method to find approximate analytical
solutions for nonlinear equations and we believe that it has
been achieved for the first time in its study. Moreover, we
extend the application of RDTM and compare its reliability
and efficiency with other methods. New approximate ana-
lytical solutions for two- and three-dimensional unsteady
viscous incompressible flows were found using RDTM. The
results that we obtained are better than others, refer to
the results in [4, 8] in accuracy, convergence, and CPU
time.

The structure of this paper is organized as follows: In
Section 2, we begin with some basic definitions and the
use of the RDTM on the KRLNS equations. Section 3
explains the manner we adopted to discuss the convergence
of the solutions. In Section 4, we apply this method to
solve four flow problems of different dimensions in order to
show its ability and efficiency in finding new approximate
solutions. Section 5 introduces conclusions of the present
work.

2. Reduced Differential Transform Method

The RDTM is an iterative procedure for obtaining a Tay-
lor series solution of differential equations. This method
is similar to the differential transform method which was
first introduced by Zhou [9]. RDTM has been successfully
used to many nonlinear problems [10–19] since it does not
require any parameter, discretization, linearization, or small
perturbations; thus it reduces the size of computational work
and is easily applicable.

The main idea of this method depends on the represen-
tation the function of two variables 𝑢(𝑥, 𝑡) as a product of
single-variable function, i.e., 𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡), then the
function 𝑢(𝑥, 𝑡) can be represented as

𝑢 (𝑥, 𝑡) = ∞∑
𝑖=0

𝐹 (𝑖) 𝑥𝑖 ∞∑
𝑗=0

𝐺 (𝑗) 𝑡𝑗 = ∞∑
𝑘=0

𝑈𝑘 (𝑥) 𝑡𝑘, (6)

Definition 1. If function 𝑢(𝑥, 𝑡) is analytic and differentiated
continuously with respect to time 𝑡 and space 𝑥, then

𝑈𝑘 (𝑥) = 1𝑘! [ 𝜕𝑘𝜕𝑡𝑘 𝑢 (𝑥, 𝑡)]𝑡=0 , (7)

is called t-dimensional spectrum function of 𝑢(𝑥, 𝑡), and is
the transformed this function.

Definition 2. The reduced differential inverse transform of𝑈𝑘(𝑥) is defined as

𝑢 (𝑥, 𝑡) = ∞∑
𝑘=0

𝑈𝑘 (𝑥) 𝑡𝑘. (8)

Then, the inverse transformation of the set of 𝑈𝑘(𝑥) gives
the 𝑛−terms approximation solution as follows:

𝑢𝑛 (𝑥, 𝑡) = 𝑛∑
𝑘=0

𝑈𝑘 (𝑥) 𝑡𝑘, (9)

and the exact solution is

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑡) . (10)

To show some basic properties of (𝑛 + 1) dimensional
RDTM [18], we have to consider 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) to be
a vector of 𝑛 variables, and function 𝑢(𝑋, 𝑡) is analytic and
continuously differentiable with respect to time 𝑡 and space in
the domain of interest, then the fundamental mathematical
operations performed by RDTM are readily obtained and
listed in Table 1.

For the application of this method with the KRLNS
equations to find the approximate analytical solutions for INS
equations, we referred to as (KRDTM) in this paper. In order
to do that we suppose that 𝑋 = (𝑥, 𝑦, 𝑧), u = (𝑢, V, 𝑤), and
U𝑘 = (𝑈𝑘, 𝑉𝑘,𝑊𝑘), where 𝑢(𝑋, 𝑡), V(𝑋, 𝑡) and 𝑤(𝑋, 𝑡) are the
fluid velocity components in the 𝑥, 𝑦, and 𝑧 directions and𝑈𝑘(𝑋), 𝑉𝑘(𝑋), 𝑊𝑘(𝑋), 𝐺𝑘(𝑋), and 𝑃𝑘(𝑋) are t-dimensional
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Table 1: Reduced differential transformation.

Functional form Transformed form𝑤(𝑋, 𝑡) = 𝑢(𝑋, 𝑡) ± V(𝑋, 𝑡) 𝑊𝑘(𝑋) = 𝑈𝑘(𝑋) ± 𝑉𝑘(𝑋)𝑤(𝑋, 𝑡) = 𝛼 ̇𝑢(𝑋, 𝑡) 𝑊𝑘(𝑋) = 𝛼 ̇𝑈𝑘(𝑋), 𝛼 is constant

𝑤(𝑋, 𝑡) = 𝑢(𝑋, 𝑡) ̇V(𝑋, 𝑡) 𝑊𝑘(𝑋) = 𝑘∑
𝑖=0

𝑈𝑖(𝑋) ̇𝑉𝑘−𝑖(𝑋)
𝑤(𝑋, 𝑡) = 𝜕𝑟𝜕𝑡𝑟 𝑢(𝑋, 𝑡) 𝑊𝑘(𝑋) = (𝑘 + 1) . . . (𝑘 + 𝑟) ̇𝑈𝑘+𝑟(𝑋) = (𝑘 + 𝑟)!𝑘! ̇𝑈𝑘+𝑟(𝑋)
𝑤(𝑋, 𝑡) = 𝜕𝑟1+𝑟2 ⋅⋅⋅+𝑟𝑛𝜕𝑥𝑟11 𝜕𝑥𝑟22 . . . 𝜕𝑥𝑟𝑛𝑛 𝑢(𝑋, 𝑡) 𝑊𝑘(𝑋) = 𝜕𝑟1+𝑟2 ⋅⋅⋅+𝑟𝑛𝜕𝑥𝑟11 𝜕𝑥𝑟22 . . . 𝜕𝑥𝑟𝑛𝑛 𝑈𝑘(𝑋)

spectrum functions of 𝑢(𝑋, 𝑡), V(𝑋, 𝑡), 𝑤(𝑋, 𝑡), 𝑔(𝑋, 𝑡), and𝑝(𝑋, 𝑡), respectively, we get
(𝑘 + 1)U𝑘+1 (𝑋) = − (𝐴𝑘 + 𝐵𝑘 + 𝐶𝑘 + ∇𝑃𝑘 (𝑋))

+ 1𝑅𝑒∇2U𝑘 (𝑋) , (11)

(𝑘 + 1) 𝐺𝑘+1 (𝑋) = − 1(𝑀𝑎)2∇ ⋅ U𝑘 (𝑋)
+ 1𝑅𝑒∇2𝐺𝑘 (𝑋) , (12)

such that

𝑃𝑘 (𝑋) = 𝐺𝑘 (𝑋) + U2𝑘 (𝑋)2 ,
𝐴𝑘 = 𝑘∑

𝑖=0

𝑈𝑖 (𝑋) 𝜕U𝑘−𝑖 (𝑋)𝜕𝑥 ,
𝐵𝑘 = 𝑘∑
𝑖=0

𝑉𝑖 (𝑋) 𝜕U𝑘−𝑖 (𝑋)𝜕𝑦 ,
𝐶𝑘 = 𝑘∑
𝑖=0

𝑊𝑖 (𝑋) 𝜕U𝑘−𝑖 (𝑋)𝜕𝑧 ,

(13)

where 𝑘 = 0, 1, 2, 3, . . ., 𝑈0(𝑋) = 𝑢(𝑋, 0), 𝑉0(𝑋) = V(𝑋, 0),𝑊0(𝑋) = 𝑤(𝑋, 0), and 𝐺0(𝑋) = 𝑔(𝑋, 0). Then the exact
solution is obtained as follows:

u (𝑋, 𝜏) = lim
𝑛→∞

u𝑛 (𝑋, 𝜏) , (14)

where

u𝑛 (𝑋, 𝜏) = 𝑛∑
𝑘=0

U𝑘 (𝑋) 𝜏𝑘. (15)

3. Analysis of Convergence

The convergence of the approximate analytical solutions that
are resulted from the application of RDTM to INS equations
is discussed by relying on the approach followed in [20, 21].

Let us consider the Hilbert space𝐻 = 𝐿2((𝑎, 𝑏)3 × [0, 𝑇])
define by

𝑢 : 𝐻 → R 𝑤𝑖𝑡ℎ∫
(𝑎,𝑏)3×[0,𝑇]

𝑢2 (𝑋, 𝑡) 𝑑𝑋𝑑𝑡 < ∞, (16)

and the norm ‖𝑢‖2 = ∫
(𝑎,𝑏)3×[0,𝑇]

𝑢2(𝑋, 𝑡) 𝑑𝑋𝑑𝑡. Define
u = (𝑢, V, 𝑤) : 𝐻3 → R

3𝑤𝑖𝑡ℎ∫
(𝑎,𝑏)3×[0,𝑇]

(𝑢2 (𝑋, 𝑡)
+ V2 (𝑋, 𝑡) + 𝑤2 (𝑋, 𝑡)) 𝑑𝑋𝑑𝑡 < ∞, (17)

such that ‖u‖2 = ‖𝑢‖2 + ‖V‖2 + ‖𝑤‖2.
We consider the INS equation in the following form:

L (u (𝑋, 𝑡)) = N (u (𝑋, 𝑡)) +R (u (𝑋, 𝑡)) , (18)

which is equivalent to the following form:

u (𝑋, 𝑡) = F (u𝑘 (𝑋, 𝑡)) , (19)

where L = 𝜕𝑡 is the linear partial derivative with respect
to t, N is a nonlinear operator, R is a linear operator, and
F is a general nonlinear operator involving both linear and
nonlinear terms. According to RDTM

(𝑘 + 1)U𝑘+1 (𝑋) = N (U𝑘 (𝑋)) +R (U𝑘 (𝑋)) , (20)

and the solutions

u (𝑋, 𝑡) = ∞∑
𝑘=0

U𝑘 (𝑋) 𝑡𝑘 = ∞∑
𝑘=0

B𝑘, (21)

where B𝑘 = (B1𝑘,B2𝑘,B3𝑘). It is noted that the solutions
by RDTM are equivalent to determining the sequence

S0 = U0 (𝑋) = B0,
S1 = U0 (𝑋) + U1 (𝑋) 𝑡 = B0 +B1,
S2 = U0 (𝑋) + U1 (𝑋) 𝑡 + U2 (𝑋) 𝑡2 = B0 +B1+B2, ...
S𝑛 = 𝑛∑
𝑘=0

U𝑘 (𝑋) 𝑡𝑘 = 𝑛∑
𝑘=0

B𝑘,

(22)

such that S𝑛+1 = F(S𝑛).
The sufficient condition for convergence of the series

solution {S𝑛}∞0 is presented in the following theorems

Theorem3. �e series solution {S𝑛 = (𝑅𝑛, 𝑆𝑛, 𝑇𝑛)}∞0 converges
whenever there is 𝛾 such that 0 < 𝛾 < 1, 𝛾 = 𝛾1 + 𝛾2 + 𝛾3, and‖B𝑖(𝑘+1)‖ ⩽ 𝛾𝑖‖B𝑖𝑘‖
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Proof. We show that {S𝑛 = (𝑅𝑛, 𝑆𝑛, 𝑇𝑛)}∞0 is a Cauchy
sequence in the Hilbert space𝐻3. For this reason, consider

𝑅𝑛+1 − 𝑅𝑛 = B1(𝑛+1) ⩽ 𝛾1 B1𝑛 ⩽ 𝛾21 B1(𝑛−1)
⩽ ⋅ ⋅ ⋅ ⩽ 𝛾𝑛+11 B10 ,𝑆𝑛+1 − 𝑆𝑛 = B2(𝑛+1) ⩽ 𝛾2 B2𝑛 ⩽ 𝛾22 B2(𝑛−1)
⩽ ⋅ ⋅ ⋅ ⩽ 𝛾𝑛+12 B20 ,𝑇𝑛+1 − 𝑇𝑛 = B3(𝑛+1) ⩽ 𝛾3 B3𝑛 ⩽ 𝛾23 B3(𝑛−1)
⩽ ⋅ ⋅ ⋅ ⩽ 𝛾𝑛+13 B30 ,

(23)

Using triangle inequality

S𝑛 − S𝑚
 = (𝑅𝑛, 𝑆𝑛, 𝑇𝑛) − (𝑅𝑚, 𝑆𝑚, 𝑇𝑚)

= (𝑅𝑛 − 𝑅𝑚, 𝑆𝑛 − 𝑆𝑚, 𝑇𝑛 − 𝑇𝑚) ⩽ 𝑅𝑛 − 𝑅𝑚
+ 𝑆𝑛 − 𝑆𝑚 + 𝑇𝑛 − 𝑇𝑚 ⩽ 𝑅𝑛 − 𝑅𝑛−1
+ 𝑅𝑛−1 − 𝑅𝑛−2 + ⋅ ⋅ ⋅ + 𝑅𝑚+1 − 𝑅𝑚
+ 𝑆𝑛 − 𝑆𝑛−1 + 𝑆𝑛−1 − 𝑆𝑛−2 + ⋅ ⋅ ⋅ + 𝑆𝑚+1 − 𝑆𝑚
+ 𝑇𝑛 − 𝑇𝑛−1 + 𝑇𝑛−1 − 𝑇𝑛−2 + ⋅ ⋅ ⋅ + 𝑇𝑚+1 − 𝑇𝑚
⩽ (𝛾𝑛1 + 𝛾𝑛−11 + ⋅ ⋅ ⋅ + 𝛾𝑚+11 ) B10
+ (𝛾𝑛2 + 𝛾𝑛−12 + ⋅ ⋅ ⋅ + 𝛾𝑚+12 ) B20
+ (𝛾𝑛3 + 𝛾𝑛−13 + ⋅ ⋅ ⋅ + 𝛾𝑚+13 ) B30
⩽ (𝛾𝑛 + 𝛾𝑛−1 + ⋅ ⋅ ⋅ + 𝛾𝑚+1)
⋅ (B10 + B20 + B30)
= 𝛾𝑚+1 (𝛾𝑛−𝑚−1 + 𝛾𝑛−𝑚−2 + ⋅ ⋅ ⋅ + 1)
⋅ (B10 + B20 + B30) ⩽ 𝛾𝑚+11 − 𝛾 B0

(24)

since ‖B0‖ < ∞ and 0 < 𝛾 < 1, we get lim𝑛,𝑚→∞‖S𝑛 −S𝑚‖ =0; thus, we conclude that {S𝑛}∞0 is a Cauchy sequence in the
Hilbert space𝐻3, then the series solution {S𝑛}∞0 converges to
some {S} ∈ 𝐻3.
Theorem 4. Let F = (F1,F2,F3) be a nonlinear operator
satisfies Lipschitz condition from a Hilbert space 𝐻3 into 𝐻3
and u(𝑋, 𝑡) be the exact solution of INS equations. If the series
solution {S𝑛}∞0 converges, then it is converged to u(𝑋, 𝑡).
Proof. Let u1(𝑋, 𝑡), u2(𝑋, 𝑡), and we have

F (u1) −F (u2) = (F1 (u1) ,F2 (u1) ,F3 (u1))
− (F1 (u2) ,F2 (u2) ,F3 (u2)) = (F1 (u1)
−F1 (u2) ,F2 (u1) −F2 (u2) ,F3 (u1)
−F3 (u2)) ⩽ F1 (u1) −F1 (u2) + F2 (u1)
−F2 (u2) + F3 (u1) −F3 (u2) ⩽ 𝛾1 u1 − u2


+ 𝛾2 u1 − u2

 + 𝛾3 u1 − u2
 = (𝛾1 + 𝛾2 + 𝛾3) u1

− u2
 = 𝛾 u1 − u2

 .

(25)

Therefore, there is a unique solution of the problem (18) by
the Banach fixed-point theorem. Now we should prove that{S𝑛}∞0 converges to u(𝑋, 𝑡)

u (𝑋, 𝑡) = F (u (𝑋, 𝑡)) = F(∞∑
𝑘=0

B𝑘)
= F( lim

𝑛→∞

𝑛∑
𝑘=0

B𝑘) = lim
𝑛→∞

F( 𝑛∑
𝑘=0

B𝑘)
= lim
𝑛→∞

F (S𝑛) = lim
𝑛→∞

S𝑛+1 = S.
(26)

Definition 5. For 𝑖 = 1, 2, 3 and 𝑘 ∈ N⋃{0}, we define
𝛾𝑖𝑘 = {{{{{

B𝑖(𝑘+1)B𝑖𝑘 , B𝑖𝑘 ̸= 0,
0, B𝑖𝑘 = 0. (27)

then we can say that ∑∞𝑘=0U𝑘(𝑋)𝑡𝑘 converges to the exact
solution u(𝑋, 𝑡) when 𝛾𝑘 = 𝛾1𝑘 + 𝛾2𝑘 + 𝛾3𝑘 and 0 < 𝛾𝑘 < 1
for all 𝑘 ∈ N⋃{0}.
4. Test Problems

In this section, the KRDTM is applied to find approximate
analytical solutions of four unsteady viscous incompressible
flow problems, two of these problems have exact solutions
and the others do not have the exact solutions. We applied
KRDTMfor each problem to get some approximate analytical
solutions. Then the convergence of these solutions has been
discussed theoretically and numerically. Finally, the results
have been reviewed through some figures, which represent
the velocity components and the vorticity functions, which
satisfy

Ω = ∇ × u, (28)

and explain the time development with the enstrophy, which
is defined as

𝜀 = 12𝑉 ∫
𝑉
Ω2𝑑𝑉, (29)

where 𝑉 is volume for three-dimension flow problems. Our
results are computed by using various value of Reynolds
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numbers at some time levels. All our calculations are run by
Maple 18 software.

First problem (P1) is two-dimensional Taylor decaying
vortices flow [4, 7, 8], which describes an initially periodical
vortex structure convected by the flow field and exponentially
decaying due to the viscous decaying. The exact solution of
this problem that achieves (1) and (2) is

𝑢 (𝑥, 𝑦, 𝑡) = − cos (𝑥) sin (𝑦) 𝑒−2𝑡/𝑅𝑒,
V (𝑥, 𝑦, 𝑡) = sin (𝑥) cos (𝑦) 𝑒−2𝑡/𝑅𝑒,
𝑝 (𝑥, 𝑦, 𝑡) = −14 (cos (2𝑥) + cos (2𝑦)) 𝑒−4𝑡/𝑅𝑒,

(30)

when we used KRDTM for solving two-dimensional (1) and
(2) equations, where 𝑋 = (𝑥, 𝑦), u = (𝑢, V), U𝑘 = (𝑈𝑘, 𝑉𝑘),
and 𝑡𝐾𝑅𝐿𝑁𝑆 := 𝜏; we get

(𝑘 + 1)𝑈𝑘+1 (𝑥, 𝑦)
= −(𝐴1𝑘 + 𝐵1𝑘 + 𝜕𝑃𝑘 (𝑥, 𝑦)𝜕𝑥 )

+ 1𝑅𝑒 (𝜕2𝑈𝑘 (𝑥, 𝑦)𝜕𝑥2 + 𝜕2𝑈𝑘 (𝑥, 𝑦)𝜕𝑦2 ) ,
(31)

(𝑘 + 1)𝑉𝑘+1 (𝑥, 𝑦)
= −(𝐴2𝑘 + 𝐵2𝑘 + 𝜕𝑃𝑘 (𝑥, 𝑦)𝜕𝑦 )

+ 1𝑅𝑒 (𝜕2𝑉𝑘 (𝑥, 𝑦)𝜕𝑥2 + 𝜕2𝑉𝑘 (𝑥, 𝑦)𝜕𝑦2 ) ,
(32)

(𝑘 + 1)𝐺𝑘+1 (𝑥, 𝑦)
= − 1(𝑀𝑎)2 (𝜕𝑈𝑘 (𝑥, 𝑦)𝜕𝑥 + 𝜕𝑉𝑘 (𝑥, 𝑦)𝜕𝑦 )

+ 1𝑅𝑒 (𝜕2𝐺𝑘 (𝑥, 𝑦)𝜕𝑥2 + 𝜕2𝐺𝑘 (𝑥, 𝑦)𝜕𝑦2 ) ,
(33)

such that

𝑃𝑘 (𝑥, 𝑦) = 𝐺𝑘 (𝑥, 𝑦) + 𝑈2𝑘 (𝑥, 𝑦) + 𝑉2𝑘 (𝑥, 𝑦)2 ,
𝐴1𝑘 = 𝑘∑

𝑖=0

𝑈𝑖 (𝑥, 𝑦) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦)𝜕𝑥 ,
𝐵1𝑘 = 𝑘∑

𝑖=0

𝑉𝑖 (𝑥, 𝑦) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦)𝜕𝑦 ,
𝐴2𝑘 = 𝑘∑

𝑖=0

𝑈𝑖 (𝑥, 𝑦) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦)𝜕𝑥 ,
𝐵2𝑘 = 𝑘∑

𝑖=0

𝑉𝑖 (𝑥, 𝑦) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦)𝜕𝑦 ,

(34)

where 𝑘 = 0, 1, 2, 3, . . ., 𝑈0(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 0), 𝑉0(𝑥, 𝑦) =
V(𝑥, 𝑦, 0), and 𝐺0(𝑥, 𝑦) = 𝑔(𝑥, 𝑦, 0); the solutions are
produced as follows:𝑢 (𝑥, 𝑦, 𝜏) = lim

𝑛→∞
𝑢𝑛 (𝑥, 𝑦, 𝜏) , (35)

V (𝑥, 𝑦, 𝜏) = lim
𝑛→∞

V𝑛 (𝑥, 𝑦, 𝜏) , (36)

𝑔 (𝑥, 𝑦, 𝜏) = lim
𝑛→∞

𝑔𝑛 (𝑥, 𝑦, 𝜏) , (37)

where

𝑢𝑛 (𝑥, 𝑦, 𝜏) = 𝑛∑
𝑘=0

𝑈𝑘 (𝑥, 𝑦) 𝜏𝑘,
V𝑛 (𝑥, 𝑦, 𝜏) = 𝑛∑

𝑘=0

𝑉𝑘 (𝑥, 𝑦) 𝜏𝑘,
𝑔𝑛 (𝑥, 𝑦, 𝜏) = 𝑛∑

𝑘=0

𝐺𝑘 (𝑥, 𝑦) 𝜏𝑘,
(38)

such that

𝑈1 (𝑥, 𝑦) = 2𝑅𝑒 cos (𝑥) sin (𝑦) ,
𝑈2 (𝑥, 𝑦) = − 2(𝑅𝑒)2 cos (𝑥) sin (𝑦)

− 2𝑅𝑒 sin (2𝑥) cos (2𝑦) ,... ,
𝑉1 (𝑥, 𝑦) = − 2𝑅𝑒 sin (𝑥) cos (𝑦) ,
𝑉2 (𝑥, 𝑦) = 2(𝑅𝑒)2 sin (𝑥) cos (𝑦)

− 2𝑅𝑒 cos (2𝑥) sin (2𝑦) ,... ,

(39)

and

𝐺1 (𝑥, 𝑦) = 1𝑅𝑒 (cos (2𝑥) + cos (2𝑦))
+ 2𝑅𝑒 (cos2 (𝑥) sin2 (𝑦) − sin2 (𝑥) sin2 (𝑦)
− cos2 (𝑦) cos2 (𝑥) + cos2 (𝑦) sin2 (𝑥)) ,

𝐺2 (𝑥, 𝑦) = − 2(𝑅𝑒)2 (cos (2𝑥) + cos (2𝑦))
− 8(𝑅𝑒)2 (cos2 (𝑥) sin2 (𝑦) − sin2 (𝑥) sin2 (𝑦)
− cos2 (𝑦) cos2 (𝑥) + cos2 (𝑦) sin2 (𝑥)) ,

...

(40)
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To prove that the condition of the convergence of these
solutions verified on the domain [0, 2𝜋]2 apply Definition 5

𝛾10 = 𝑈1 (𝑥, 𝑦) 𝜏𝑈0 (𝑥, 𝑦) = 2𝜏𝑅𝑒 ,
𝛾20 = 𝑉1 (𝑥, 𝑦) 𝜏𝑉0 (𝑥, 𝑦) = 2𝜏𝑅𝑒 ,

𝛾30 = 𝐺1 (𝑥, 𝑦) 𝜏𝐺0 (𝑥, 𝑦) = 3.771236166𝜏𝑅𝑒 ,
𝛾11 =

𝑈2 (𝑥, 𝑦) 𝜏2𝑈1 (𝑥, 𝑦) 𝜏 = √(𝑅𝑒)2 + 4𝜏2𝑅𝑒 ,
𝛾21 =

𝑉2 (𝑥, 𝑦) 𝜏2𝑉1 (𝑥, 𝑦) 𝜏 = √(𝑅𝑒)2 + 4𝜏2𝑅𝑒 ,
𝛾31 =

𝐺2 (𝑥, 𝑦) 𝜏2𝐺1 (𝑥, 𝑦) 𝜏 = 3.162277660𝜏2𝑅𝑒 ,
... ,

(41)

such that 𝛾0 = 𝛾10 + 𝛾20 + +𝛾30, 𝛾1 = 𝛾11 + 𝛾21 + 𝛾31, . . .. For
example, if 𝑡 = 0.5, 𝑀𝑎 = 0.001, and 𝑅𝑒 = 100 such that𝜏 = 𝑀𝑎 × 𝑡, for all 𝑥 and 𝑦 in this domain, then

𝛾0 = 0.3885618083 × 10−4 < 1,
𝛾1 = 0.5159113783 × 10−3 < 1, . . . (42)

and if 𝑅𝑒 = 1000 then
𝛾0 = 3.885618083 × 10−6 < 1,
𝛾1 = 0.5015821387 × 10−3 < 1, . . . (43)

if 𝑡 = 2 and 𝑅𝑒 = 100 then
𝛾0 = 0.1554247233 × 10−3 < 1,
𝛾1 = 0.2063645515 × 10−2 < 1, . . . (44)

and if 𝑅𝑒 = 1000 then
𝛾0 = 0.1554247233 × 10−4 < 1,
𝛾1 = 0.2006328556 × 10−2 < 1, . . . (45)

The errors measurements 𝐿1, 𝐿2, and 𝐿∞-norm resulting
from the application of KRDTM and the implicit central
compact method (ICCM) in [8] for the computed 𝑢 velocity
component with CPU time for various grids at time level𝑡 = 0.5, 𝑀𝑎 = 0.001, and 𝑅𝑒 = 100 are tabulated in Table 2.
In Table 3, 𝐿2-norm errors for 𝑢 are calculated at time level𝑡 = 5 and 𝑀𝑎 = 0.001 for various Reynolds numbers. The
contours of the vorticity and pressure are explained in Figure 1
at 𝑡 = 2, 𝑀𝑎 = 0.01, and 𝑅𝑒 = 100. The comparisons of
the computed 𝑢 and V velocity components with the exact

solution along the vertical and horizontal center lines at time
levels 𝑡 = 2,𝑀𝑎 = 0.01, and 𝑅𝑒 = 100 are shown in Figure 2.
In Table 2, it can be noticed that the accuracy of new solutions
and the size of the calculated errors of KRDTM are not often
affected by the grid size which has been used in comparison
with numerical results. Moreover, the results of KRDTM are
better than ICCM [8]. Also, from this table, it is clearly shown
that the KRDTMresults in less computation time (CPU) than
ICCM [8]. In Table 3, the same facts have been shown with
various Reynolds numbers and grid spacing for 𝐿2-norm at𝑡 = 5, where in some cases the CPU time reached zero. The
results are given in Figure 1 show that the profiles of vorticity
and pressure as contour plot are equivalent and identical
with other results in [4, 7, 8]. Moreover Figure 2 compares
between the exact and new approximate analytical solutions,
and the identical is confirmation of the efficiency of KRDTM
in solving INS equations with good convergence for different
time.

Second problem (P2) is Kovasznay flow [4, 7, 8], which
is the laminar flow of viscous fluid behind a two-dimensional
grid, with 𝑥-axis normal to the grid and the velocity field
is assumed to be such that 𝑢 := U + 𝑢 and V := V, where𝑢(𝑥, 𝑦, 𝑡) and V(𝑥, 𝑦, 𝑡) are the components of velocity; U
is the average velocity in the 𝑥-direction. Thus, the two-
dimensional INS equationswith a periodicity in one direction
may represent thewake of a two-dimensional grid the same as
(1) with replacing the convective terms by ((U+𝑢, V) ⋅∇)(𝑢, V),
where U refers to one in this test. When we solved two-
dimensional equations (1) and (2) by using KRDTM for this
test problem, we get the same equations (31), (32), and (33)
with

𝐴𝑘 = 𝜕𝑈𝑘 (𝑥, 𝑦)𝜕𝑥 + 𝑘∑
𝑖=0

𝑈𝑖 (𝑥, 𝑦) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦)𝜕𝑥 ,
𝐵𝑘 = 𝑘∑
𝑖=0

𝑉𝑖 (𝑥, 𝑦) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦)𝜕𝑦 ,
𝐷𝑘 = 𝜕𝑉𝑘 (𝑥, 𝑦)𝜕𝑥 + 𝑘∑

𝑖=0

𝑈𝑖 (𝑥, 𝑦) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦)𝜕𝑥 ,
𝐸𝑘 = 𝑘∑
𝑖=0

𝑉𝑖 (𝑥, 𝑦) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦)𝜕𝑦 .

(46)

The exact solution of the steady state of this problem [7]
considers the initial conditions in this test

𝑢 (𝑥, 𝑦, 0) = 1 − 𝑒𝜆𝑥 cos (2𝜋𝑦) ,
V (𝑥, 𝑦, 0) = 𝜆2𝜋𝑒𝜆𝑥 sin (2𝜋𝑦) ,
𝑝 (𝑥, 𝑦, 0) = 𝑝0 − 12𝑒2𝜆𝑥,

(47)
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Table 2: The 𝐿1, 𝐿2, and 𝐿∞-norm errors for 𝑢 of P1 at 𝑡 = 0.5 and𝑀𝑎 = 0.001.
Grid size method 𝐿1-norm 𝐿2-norm 𝐿∞-norm CPUs11 × 11 KRDTM 3.34 × 10−8 5.82 × 10−9 1.19 × 10−9 0.062

ICCM [8] 3.56 × 10−2 4.24 × 10−2 7.37 × 10−2 6.8321 × 21 KRDTM 3.19 × 10−8 5.69 × 10−9 1.19 × 10−9 0.172
ICCM [8] 4.71 × 10−4 5.73 × 10−4 1.09 × 10−3 27.8141 × 41 KRDTM 3.15 × 10−8 5.62 × 10−9 1.91 × 10−9 0.967
ICCM [8] 7.15 × 10−6 8.72 × 10−6 1.69 × 10−5 107.4581 × 81 KRDTM 3.15 × 10−8 5.59 × 10−9 1.91 × 10−9 2.57
ICCM [8] 1.67 × 10−7 2.05 × 10−7 4.01 × 10−7 432.14161 × 161 KRDTM 3.15 × 10−8 5.57 × 10−9 1.91 × 10−9 10.8
ICCM [8] 3.64 × 10−8 4.45 × 10−8 8.71 × 10−8 1770.30

Table 3: The 𝐿2-norm errors for 𝑢 of P1 at 𝑡 = 5 and𝑀𝑎 = 0.001.
Grid size Re=40 Re=100 Re=500 Re=1000 Max CPUs11 × 11 1.46 × 10−6 5.82 × 10−7 1.16 × 10−7 5.82 × 10−8 021 × 21 1.42 × 10−6 5.69 × 10−7 1.14 × 10−7 5.69 × 10−8 0.01641 × 41 1.40 × 10−6 5.62 × 10−7 1.12 × 10−7 5.62 × 10−8 0.04781 × 81 1.40 × 10−6 5.59 × 10−7 1.12 × 10−7 5.59 × 10−8 0.172161 × 161 1.39 × 10−6 5.57 × 10−7 1.11 × 10−7 5.57 × 10−8 0.655321 × 321 1.39 × 10−6 5.56 × 10−7 1.11 × 10−7 5.56 × 10−8 2.53
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Figure 1: Contours plots of vorticity and pressure of P1.
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Figure 2: The comparison of the computed 𝑢(𝜋, 𝑦) and V(𝑥, 𝜋) with the exact solutions of P1.
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where 𝜆 = 𝑅𝑒/2−√(𝑅𝑒)2 + 16𝜋2/2, 𝑝0 is a reference pressure
(an arbitrary constant), and 𝑝0 = 0 in the test. The solutions
produce similar solutions in (35), (36), and (37) with

𝑈1 (𝑥, 𝑦) = 𝑒𝑥𝜆 cos (2𝜋𝑦)(4𝜋2 − 𝜆2𝑅𝑒 + 2𝜆) ,
𝑈2 (𝑥, 𝑦) = −12𝑒𝑥𝜆 cos (2𝜋𝑦)(4𝜋2 − 𝜆2𝑅𝑒 + 2𝜆)2

+ (2𝜆𝑒2𝑥𝜆 − 12𝑒𝑥𝜆 cos (2𝜋𝑦)
− 𝜆 (4𝜋2 − 𝜆2)4𝜋2 𝑒2𝑥𝜆sin2 (2𝜋𝑦))
− 𝜆2𝑅𝑒 [8 (2𝜋2 − 𝜆2) 𝑒2𝑥𝜆cos2 (2𝜋𝑦)
− (4𝜋2 − 𝜆2) 𝑒𝑥𝜆 cos (2𝜋𝑦) − 2 (4𝜋2 + 𝜆2) 𝑒2𝑥𝜆
− 𝜆4𝜋2 𝑒𝑥𝜆sin2 (2𝜋𝑦)] ,

... ,
𝑉1 (𝑥, 𝑦) = − 𝜆2𝜋𝑒𝑥𝜆 sin (2𝜋𝑦)(4𝜋2 − 𝜆2𝑅𝑒 + 2𝜆) ,
𝑉2 (𝑥, 𝑦) = 𝜆2𝜋𝑒𝑥𝜆 sin (2𝜋𝑦)(4𝜋2 − 𝜆2𝑅𝑒 + 2𝜆)2

+ 𝑒𝑥𝜆4𝜋 sin (2𝜋𝑦) ((4𝜋2 + 𝜆2)
− 2 cos (2𝜋𝑦) (4𝜋2 − 𝜆2))(4𝜋2 − 𝜆2𝑅𝑒 + 2𝜆)
− 4𝜋2 − 𝜆22𝜋𝑅𝑒 𝑒𝑥𝜆 sin (2𝜋𝑦) (𝜋2
− 𝑒𝑥𝜆 cos (2𝜋𝑦) (4𝜋2 − 𝜆2)) ,

... ,

(48)

and

𝐺1 (𝑥, 𝑦) = 𝑒𝑥𝜆𝑅𝑒 [(4 (2𝜋2 − 𝜆2) cos2 (2𝜋𝑦)
− (4𝜋2 + 𝜆2) − 𝜆42𝜋2 sin2 (2𝜋𝑦)) 𝑒𝑥𝜆 − (4𝜋2 − 𝜆2)
⋅ cos (2𝜋𝑦)] ,

𝐺2 (𝑥, 𝑦) = 𝑒𝑥𝜆𝜋2 (𝑅𝑒)2 [(𝜆6 − 12𝜆4𝜋2 + 48𝜆2𝜋4
− 64𝜋6) 𝑒𝑥𝜆 cos (2𝜋𝑦) + (0.5𝜆4𝜋2 − 4𝜆2𝜋4 + 8𝜋6)
⋅ cos2 (2𝜋𝑦) − (𝜆6 + 24𝜆2𝜋4 − 32𝜋6) 𝑒𝑥𝜆] ,

...
(49)

These solutions satisfy the conditions of convergence in the
domain [−0.5, 1.5]2,
𝛾10 = 𝑈1 (𝑥, 𝑦) 𝜏𝑈0 (𝑥, 𝑦)

= √ (𝜆2 − 39.47841760 − 2𝜆𝑅𝑒)2 (𝑒3𝜆 − 𝑒−𝜆) 𝜏22 (𝑅𝑒)2 (8𝜆 + 𝑒3𝜆 − 𝑒−𝜆) ,
𝛾20 = 𝑉1 (𝑥, 𝑦) 𝜏𝑉0 (𝑥, 𝑦)

= √ (𝜆2 − 39.47841760 − 2𝜆𝑅𝑒)2 𝜏2(𝑅𝑒)2 ,
𝛾30 = 𝐺1 (𝑥, 𝑦) 𝜏𝐺0 (𝑥, 𝑦) = 2 [ 𝜏2(𝑅𝑒)2 ((𝑒8𝜆 − 1) (0.5625𝜆8

+ 59.21762641𝜆6 + 7013.454554𝜆4
− 46146.68129𝜆2 + 455449.4888) + (𝑒4𝜆 − 1)
⋅ 𝑒𝜆 (584.4545462𝜆4 − 46146.68129𝜆2
+ 910898.9775))]1/2 ÷ [(𝑒8𝜆 − 1) (0.140625𝜆4
+ 18.50550825𝜆2 + 1388.079547) + 𝑒𝜆 (𝑒4𝜆 − 1)
⋅ (29.60881320𝜆2 + 5844.545462)
+ 4675.636370𝜆𝑒2𝜆]1/2 ,

...

(50)

For example, if𝑀𝑎 = 0.01, 𝑡 = 0.1 such that 𝜏 = 𝑀𝑎 × 𝑡, and𝑅𝑒 = 20, for all 𝑥 and 𝑦, then
𝛾0 = 0.417945328 × 10−2 < 1,
𝛾1 = 0.6772122966 × 10−1 < 1, . . . (51)

if 𝑅𝑒 = 40 then
𝛾0 = 0.2106111743 × 10−2 < 1,
𝛾1 = 0.8546834826 × 10−1 < 1, . . . (52)
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and if 𝑅𝑒 = 100 then
𝛾0 = 0.8607760699 × 10−3 < 1,
𝛾1 = 0.1755994678 < 1, . . . (53)

In Tables 4 and 5, the 𝐿2-norm error for the computed
velocity component at 𝑀𝑎 = 0.01 for some values of
Reynolds numbers is compared with the numerical results
of the upwind compact finite difference method (UCFDM)
in [4]. We noticed that the accuracy of the results obtained
fromKRDTM is higher and better than the results ofUCFDM
for different values of Reynolds numbers. It is clear that the
maximum CPU time for all cases is not more than 30.0s,
and iterations number (3) of KRDTM is less than iterations
number of UCFDM (number of iterations ⩽ 3000). This
shows that KRDTM is faster convergence and more accurate
than UCFDM. The influence of the Reynolds number value
on the computed vorticity and stream function 𝜓(𝑥, 𝑦, 𝑡)
which is satisfied

𝜕𝑦𝜓 (𝑥, 𝑦, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑡) ,
𝜕𝑥𝜓 (𝑥, 𝑦, 𝑡) = −V (𝑥, 𝑦, 𝑡) (54)

is explained in Figure 3, so that the pairs of bound eddies
produced behind the single elements of the grids and at large
distance downstream. However, the streamlines are parallel
and equidistant as shown by the short lines on the right side
of the figure for all values of Reynolds numbers. We also
note that when the value of Reynolds number increases, the
whole flow pattern is expanded uniformly in the direction
of main flow. Moreover, it can be observed that the rate of
change of the flow is very great, and the length of vortices
increases towards the downstream flow with the increase in
the Reynolds number.

Third problem (P3) is three-dimensional Taylor decay-
ing vortices flow, whose initial conditions [22–26] are given
by

𝑢 (𝑥, 𝑦, 𝑧, 0) = U sin (𝑥𝐿) cos (𝑦𝐿) cos (𝑧𝐿) ,
V (𝑥, 𝑦, 𝑧, 0) = −U cos (𝑥𝐿) sin (𝑦𝐿) cos(𝑧𝐿) ,
𝑤 (𝑥, 𝑦, 𝑧, 0) = 0,
𝑝 (𝑥, 𝑦, 𝑧, 0) = 𝑝0 + 𝜌0U216 (cos (2𝑥𝐿 ) + cos (2𝑦𝐿 ))

⋅ (cos (2𝑧𝐿 ) + 2) ,

(55)

with periodic boundary conditions in all directions, where𝑝0 is a reference pressure (an arbitrary constant), U is
characteristic velocity, 𝜌0 is the density, and 𝐿 is the inverse
of the wave number of the minimum frequencies (the largest
length scale of flow). We used in this test 𝑝0 = 0, U = 1,𝜌0 = 1, and 𝐿 = 1 [23] and applied the KRDTM for solving
three-dimensional equations (1) and (2), where𝑋 = (𝑥, 𝑦, 𝑧),
u = (𝑢, V, 𝑤), and U𝑘 = (𝑈𝑘, 𝑉𝑘,𝑊𝑘), and we get

(𝑘 + 1) 𝑈𝑘+1 (𝑥, 𝑦, 𝑧) = −(𝐴1𝑘 + 𝐵1𝑘 + 𝐶1𝑘
+ 𝜕𝑃𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑥 ) + 1𝑅𝑒 (𝜕2𝑈𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑥2
+ 𝜕2𝑈𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑦2 + 𝜕2𝑈𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑧2 ) ,

(56)

(𝑘 + 1) 𝑉𝑘+1 (𝑥, 𝑦, 𝑧) = −(𝐴2𝑘 + 𝐵2𝑘 + 𝐶2𝑘
+ 𝜕𝑃𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑦 ) + 1𝑅𝑒 (𝜕2𝑉𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑥2
+ 𝜕2𝑉𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑦2 + 𝜕2𝑉𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑧2 ) ,

(57)

(𝑘 + 1)𝑊𝑘+1 (𝑥, 𝑦, 𝑧) = −(𝐴3𝑘 + 𝐵3𝑘 + 𝐶3𝑘
+ 𝜕𝑃𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑧 ) + 1𝑅𝑒 (𝜕2𝑊𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑥2
+ 𝜕2𝑊𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑦2 + 𝜕2𝑊𝑘 (𝑥, 𝑦, 𝑧)𝜕𝑧2 ) ,

(58)

(𝑘 + 1) 𝐺𝑘+1 (𝑥, 𝑦, 𝑧) = − 1(𝑀𝑎)2 (𝜕𝑈𝑘 (𝑥, 𝑦)𝜕𝑥
+ 𝜕𝑉𝑘 (𝑥, 𝑦)𝜕𝑦 + 𝜕𝑊𝑘 (𝑥, 𝑦)𝜕𝑧 ) + 1𝑅𝑒 (𝜕2𝐺𝑘 (𝑥, 𝑦)𝜕𝑥2
+ 𝜕2𝐺𝑘 (𝑥, 𝑦)𝜕𝑦2 + 𝜕2𝐺𝑘 (𝑥, 𝑦)𝜕𝑧2 ) ,

(59)

such that

𝑃𝑘 (𝑥, 𝑦, 𝑧)= 𝐺𝑘 (𝑥, 𝑦, 𝑧)
+ 𝑈2𝑘 (𝑥, 𝑦, 𝑧) + 𝑉2𝑘 (𝑥, 𝑦, 𝑧) +𝑊2𝑘 (𝑥, 𝑦, 𝑧)2 ,

𝐴1𝑘 = 𝑘∑
𝑖=0

𝑈𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑥 ,
𝐵1𝑘 = 𝑘∑

𝑖=0

𝑉𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑦 ,
𝐶1𝑘 = 𝑘∑

𝑖=0

𝑊𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑈𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑧 ,
𝐴2𝑘 = 𝑘∑

𝑖=0

𝑈𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑥 ,
𝐵2𝑘 = 𝑘∑

𝑖=0

𝑉𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑦 ,
𝐶2𝑘 = 𝑘∑

𝑖=0

𝑊𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑉𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑧 ,
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Table 4: The 𝐿2-norm error for 𝑢 of P2 at 𝑡 = 0.1 and𝑀𝑎 = 0.01.
Grid size method Re=20 Re=40 Re=100 Re=500 Max CPUs11 × 11 KRDTM 4.34 × 10−7 5.24 × 10−8 1.12 × 10−8 2.30 × 10−9 0.063

UCFDM [4] 6.06 × 10−2 3.26 × 10−2 2.75 × 10−2 1.33 × 10−2 —21 × 21 KRDTM 3.42 × 10−7 4.30 × 10−8 9.21 × 10−9 1.90 × 10−9 0.218
UCFDM [4] 1.40 × 10−2 7.37 × 10−3 3.85 × 10−7 2.33 × 10−3 —41 × 41 KRDTM 3.02 × 10−7 4.03 × 10−8 8.98 × 10−9 1.87 × 10−9 0.624
UCFDM [4] 1.73 × 10−3 9.48 × 10−4 5.06 × 10−4 3.08 × 10−4 —81 × 81 KRDTM 2.83 × 10−7 3.90 × 10−8 8.86 × 10−9 1.86 × 10−9 2.57
UCFDM [4] 1.62 × 10−4 9.56 × 10−5 5.18 × 10−5 3.21 × 10−5 —161 × 161 KRDTM 2.74 × 10−7 3.83 × 10−8 8.80 × 10−9 1.85 × 10−9 10.2
UCFDM [4] 1.48 × 10−5 9.60 × 10−6 5.74 × 10−6 3.38 × 10−6 —321 × 321 KRDTM 2.69 × 10−7 3.80 × 10−8 8.77 × 10−9 1.85 × 10−9 41.8
UCFDM [4] 1.40 × 10−6 9.59 × 10−7 6.64 × 10−7 3.94 × 10−7 —

Table 5: The 𝐿2-norm error for V of P2 at 𝑡 = 0.1 and𝑀𝑎 = 0.01.
Grid size Re=20 Re=40 Re=100 Re=500 Max CPUs11 × 11 2.54 × 10−7 2.73 × 10−8 3.02 × 10−9 1.30 × 10−10 0.04721 × 21 2.11 × 10−7 2.46 × 10−8 2.90 × 10−9 1.27 × 10−10 0.17241 × 41 1.88 × 10−7 2.32 × 10−8 2.83 × 10−9 1.26 × 10−10 0.67181 × 81 1.77 × 10−7 2.25 × 10−8 2.79 × 10−9 1.25 × 10−10 2.50161 × 161 1.72 × 10−7 2.22 × 10−8 2.77 × 10−9 1.24 × 10−10 9.80321 × 321 1.69 × 10−7 2.20 × 10−8 2.76 × 10−9 1.24 × 10−10 39.2
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Figure 3: The vorticity and streamlines contour plots for P2 at 𝑡 = 0.1 and𝑀𝑎 = 0.01.
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𝐴3𝑘 = 𝑘∑
𝑖=0

𝑈𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑊𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑥 ,
𝐵3𝑘 = 𝑘∑

𝑖=0

𝑉𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑊𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑦 ,
𝐶3𝑘 = 𝑘∑

𝑖=0

𝑊𝑖 (𝑥, 𝑦, 𝑧) 𝜕𝑊𝑘−𝑖 (𝑥, 𝑦, 𝑧)𝜕𝑧 ,
(60)

where = 0, 1, 2, 3, . . ., 𝑈0(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧, 0), 𝑉0(𝑥, 𝑦, 𝑧) =
V(𝑥, 𝑦, 𝑧, 0), 𝑊0(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦, 𝑧, 0), and 𝐺0(𝑥, 𝑦, 𝑧) =𝑔(𝑥, 𝑦, 𝑧, 0).

Then the exact solution is obtained as follows:

𝑢 (𝑥, 𝑦, 𝑧, 𝜏) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑦, 𝑧, 𝜏) , (61)

V (𝑥, 𝑦, 𝑧, 𝜏) = lim
𝑛→∞

V𝑛 (𝑥, 𝑦, 𝑧, 𝜏) , (62)

𝑤 (𝑥, 𝑦, 𝑧, 𝜏) = lim
𝑛→∞

𝑤𝑛 (𝑥, 𝑦, 𝑧, 𝜏) , (63)

𝑔 (𝑥, 𝑦, 𝑧, 𝜏) = lim
𝑛→∞

𝑔𝑛 (𝑥, 𝑦, 𝑧, 𝜏) , (64)

where

𝑢𝑛 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑛∑
𝑘=0

𝑈𝑘 (𝑥, 𝑦, 𝑧) 𝜏𝑘,
V𝑛 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑛∑

𝑘=0

𝑉𝑘 (𝑥, 𝑦, 𝑧) 𝜏𝑘,
𝑤𝑛 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑛∑

𝑘=0

𝑊𝑘 (𝑥, 𝑦, 𝑧) 𝜏𝑘,
𝑔𝑛 (𝑥, 𝑦, 𝑧, 𝜏) = 𝑛∑

𝑘=0

𝐺𝑘 (𝑥, 𝑦, 𝑧) 𝜏𝑘,

(65)

such that

𝑈1 (𝑥, 𝑦, 𝑧) = − 3𝑅𝑒 sin (𝑥) cos (𝑦) cos (𝑧) − 18 sin (2𝑥)
⋅ cos (2𝑧) ,

𝑈2 (𝑥, 𝑦, 𝑧) = 92 (𝑅𝑒)2 sin (𝑥) cos (𝑦) cos (𝑧)
− 316𝑅𝑒 (1 − cos (2𝑦)) (1 + cos (2𝑧)) sin (2𝑥)
+ sin (𝑥) sin (𝑦) cos (𝑧) ( 32𝑅𝑒 cos (𝑥) sin (𝑦) cos (𝑧)
− 116 sin (2𝑦) cos (2𝑧)) − sin (𝑥) cos (𝑦) cos (𝑧)
⋅ (− 3𝑅𝑒 cos (𝑥) cos (𝑦) cos (𝑧)
− 14 cos (2𝑥) cos (2𝑧)) − cos (𝑥) cos (𝑦) cos (𝑧)

⋅ (− 3𝑅𝑒 sin (𝑥) cos (𝑦) cos (𝑧)
− 18 sin (2𝑥) cos (2𝑧)) + 116 (cos (2𝑥) + cos (2𝑦))
⋅ sin (2𝑧) sin (𝑥) cos (𝑦) sin (𝑧) − 12𝑅𝑒 sin (2𝑥) (1+ 2 cos (2𝑦) + 3 cos (2𝑦) cos (2𝑧)) ,... ,

𝑉1 (𝑥, 𝑦, 𝑧) = 3𝑅𝑒 cos (𝑥) sin (𝑦) cos (𝑧) − 18 sin (2𝑦)
⋅ cos (2𝑧) ,

𝑉2 (𝑥, 𝑦, 𝑧) = − 92 (𝑅𝑒)2 cos (𝑥) sin (𝑦) cos (𝑧)
− 316𝑅𝑒 (1 − cos (2𝑥)) (1 + cos (2𝑧)) sin (2𝑦)
− sin (𝑥) sin (𝑦) cos (𝑧)
⋅ (− 32𝑅𝑒 sin (𝑥) cos (𝑦) cos (𝑧)
− 116 sin (2𝑥) cos (2𝑧)) + cos (𝑥) sin (𝑦) cos (𝑧)
⋅ ( 3𝑅𝑒 cos (𝑥) cos (𝑦) cos (𝑧)
− 14 cos (2𝑦) cos (2𝑧)) + cos (𝑥) cos (𝑦) (cos (𝑧))
⋅ ( 3𝑅𝑒 cos (𝑥) sin (𝑦) cos (𝑧)
− 18 sin (2𝑦) cos (2𝑧)) − 116 (cos (2𝑥) + cos (2𝑦))
⋅ sin (2𝑧) cos (𝑥) sin (𝑦) sin (𝑧) − 12𝑅𝑒 sin (2𝑦) (1+ 2 cos (2𝑥) + 3 cos (2𝑥) cos (2𝑧)) ,... ,

𝑊1 (𝑥, 𝑦, 𝑧) = 18 (cos (2𝑥) + cos (2𝑦)) sin (2𝑧) ,
𝑊2 (𝑥, 𝑦, 𝑧) = − 1𝑅𝑒 (cos (2𝑥) + cos (2𝑦)) sin (2𝑧)

+ 12𝑅𝑒 (1 − 3 cos (2𝑥) cos (2𝑦)) sin (2𝑧) + 18 cos (𝑧)
⋅ sin (2𝑧) (sin (𝑥) cos (𝑦) sin (2𝑥)
− cos (𝑥) sin (𝑦) sin (2𝑦)) − sin (𝑥) cos (𝑦) cos (𝑧)
⋅ ( 3𝑅𝑒 sin (𝑥) cos (𝑦) sin (𝑧) + 14 sin (2𝑥) sin (2𝑧))
+ cos (𝑥) sin (𝑦) cos (𝑧) (− 3𝑅𝑒 cos (𝑥) sin (𝑦) sin (𝑧)
+ 14 sin (2𝑦) sin (2𝑧)) ,

... ,
(66)
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and

𝐺1 (𝑥, 𝑦, 𝑧) = − 12𝑅𝑒 [(cos (2𝑥) + cos (2𝑦))
⋅ (cos (2𝑧) + 1) + 2 cos (2𝑥) cos (2𝑦)− (1 − 3 cos (2𝑥) cos (2𝑦)) cos (2𝑧)] ,

𝐺2 (𝑥, 𝑦, 𝑧) = 1(𝑅𝑒)2 [cos (2𝑥)⋅ (1 + cos (2𝑧) + 2 cos (2𝑦) + 3 cos (2𝑦) cos (2𝑧))+ cos (2𝑦)⋅ (1 + cos (2𝑧) + 2 cos (2𝑥) + 3 cos (2𝑥) cos (2𝑧))− cos (2𝑧)⋅ (1 − cos (2𝑥) − cos (2𝑦) − 3 cos (2𝑥) cos (2𝑦))] ,...

(67)

The flow is computed with in a periodic square box
defined as−𝜋 < 𝑥, 𝑦, 𝑧 < 𝜋.The condition of the convergence
of these solutions is verified by applying Definition 5

𝛾10 = 𝑈1 (𝑥, 𝑦, 𝑧) 𝜏𝑈0 (𝑥, 𝑦, 𝑧) = √(𝑅𝑒)2 + 288𝜏4√2𝑅𝑒 ,
𝛾20 = 𝑉1 (𝑥, 𝑦, 𝑧) 𝜏𝑉0 (𝑥, 𝑦, 𝑧) = √(𝑅𝑒)2 + 288𝜏4√2𝑅𝑒 ,
𝛾30 = 𝑊1 (𝑥, 𝑦, 𝑧) 𝜏𝑊0 (𝑥, 𝑦, 𝑧) = 0,
𝛾40 = 𝐺1 (𝑥, 𝑦, 𝑧) 𝜏𝐺0 (𝑥, 𝑦, 𝑧) = √22𝜏𝑅𝑒 ,
𝛾11 =

𝑈2 (𝑥, 𝑦, 𝑧) 𝜏2𝑈1 (𝑥, 𝑦, 𝑧) 𝜏
= √3 ((𝑅𝑒)4 + 70 (𝑅𝑒)2 + 864)𝜏

2√(𝑅𝑒)2 + 288𝑅𝑒 ,
𝛾21 =

𝑉2 (𝑥, 𝑦, 𝑧) 𝜏2𝑉1 (𝑥, 𝑦, 𝑧) 𝜏
= √3 ((𝑅𝑒)4 + 70 (𝑅𝑒)2 + 864)𝜏

2√𝑅𝑒2 + 288𝑅𝑒 ,
𝛾31 =

𝑊2 (𝑥, 𝑦, 𝑧) 𝜏2𝑊1 (𝑥, 𝑦, 𝑧) 𝜏 = √(𝑅𝑒)2 + 1232𝜏𝑅𝑒 ,
𝛾41 =

𝐺2 (𝑥, 𝑦, 𝑧) 𝜏2𝐺1 (𝑥, 𝑦, 𝑧) 𝜏 = 2√47𝜏√11𝑅𝑒 ,... ,

(68)

such that 𝛾0 = 𝛾10+𝛾20+𝛾30+𝛾40, 𝛾1 = 𝛾11+𝛾21+𝛾31+𝛾41, . . ..
For example, if𝑀𝑎 = 0.01, 𝑅𝑒 = 100, and 𝑡 = 0.5, then𝛾0 = 0.0020275629 < 1,𝛾1 = 0.0100995152 < 1, . . . , (69)

if 𝑡 = 2 then
𝛾0 = 0.0081754148 < 1,𝛾1 = 0.0435106065 < 1, . . . , (70)

and if 𝑡 = 5 then
𝛾0 = 0.0204385369 < 1,𝛾1 = 0.1087765162 < 1, . . . (71)

Tables 6 and 7 show 𝐿2-norm error for 𝑢 and 𝑤 with CPU
time at time levels 𝑡 = 0.5, 2, 5, 𝑅𝑒 = 100, 𝑀𝑎 = 0.005,
and 𝑀𝑎 = 0.01. It is clear that the value of the calculated
error is acceptable with different time levels; in addition to
that the longest period of CPU time for all cases is 1140s.
So, we can say that these solutions have a good accuracy
and convergence low Mach numbers. The relationship of the
change of time with the enstrophy is shown in Figure 4 at𝑅𝑒 = 20, 40, 100, 500 for 𝑀𝑎 = 0.1, 0.01. In Figure 5, we
explained the change in the contours of the z-component of
the vorticity and the velocities with time on the surface 𝑧 = 0
at 𝑅𝑒 = 100 and𝑀𝑎 = 0.05.

Fourth problem (P4) is one type of three-dimension
Beltrami flow [25, 27, 28], which yield a family of velocity and
pressure fields depending on the selection of 𝑎 and 𝑑. In this
test, we selected 𝑎 = 𝜋/4 and 𝑑 = 𝜋/2. This problem has the
exact solution satisfying (1) and (2), which is given by

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = −𝑎 [sin (𝑎𝑦 + 𝑑𝑧) 𝑒𝑎𝑥
+ cos (𝑎𝑥 + 𝑑𝑦) 𝑒𝑎𝑧] 𝑒−𝑑2𝑡/𝑅𝑒,

V (𝑥, 𝑦, 𝑧, 𝑡) = −𝑎 [sin (𝑎𝑧 + 𝑑𝑥) 𝑒𝑎𝑦
+ cos (𝑎𝑦 + 𝑑𝑧) 𝑒𝑎𝑥] 𝑒−𝑑2𝑡/𝑅𝑒,𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = −𝑎 [sin (𝑎𝑥 + 𝑑𝑦) 𝑒𝑎𝑧
+ cos (𝑎𝑧 + 𝑑𝑥) 𝑒𝑎𝑦] 𝑒−𝑑2𝑡/𝑅𝑒,

𝑝 (𝑥, 𝑦, 𝑧, 𝑡) = −𝑎22 [𝑒2𝑎𝑥 + 𝑒2𝑎𝑦 + 𝑒2𝑎𝑧
+ 2 sin (𝑎𝑥 + 𝑑𝑦) cos (𝑎𝑧 + 𝑑𝑥) 𝑒𝑎(𝑦+𝑧)+ 2 sin (𝑎𝑦 + 𝑑𝑧) cos (𝑎𝑥 + 𝑑𝑦) 𝑒𝑎(𝑧+𝑥)
+ 2 sin (𝑎𝑧 + 𝑑𝑥) cos (𝑎𝑦 + 𝑑𝑧) 𝑒𝑎(𝑥+𝑦)] 𝑒−2𝑑2𝑡/𝑅𝑒,

(72)

and when we applied KRDTM for solving (1) and (2), we get
the same solutions in (61), (62), (63), and (64) with

𝑈1 (𝑥, 𝑦, 𝑧) = 𝑎𝑑2𝑅𝑒 (sin (𝑎𝑦 + 𝑑𝑧) 𝑒𝑎𝑥 + cos (𝑎𝑥 + 𝑑𝑦)
⋅ 𝑒𝑎𝑧) ,

𝑈2 (𝑥, 𝑦, 𝑧) = − 𝑎𝑑42 (𝑅𝑒)2 (sin (𝑎𝑦 + 𝑑𝑧) 𝑒𝑎𝑥 + cos (𝑎𝑥
+ 𝑑𝑦) 𝑒𝑎𝑧) − 2𝑎𝑅𝑒 [𝑒𝑎(𝑥+𝑦) (𝑎2 ((𝑎2 − 𝑑2)
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Figure 4: The enstrophy for P3.

⋅ sin (𝑎𝑦 + 𝑑𝑧) + 𝑑2 cos (𝑎𝑦 + 𝑑𝑧)) sin (𝑎𝑧 + 𝑑𝑥)
+ 𝑎3𝑑 (2 sin (𝑎𝑦 + 𝑑𝑧) − cos (𝑎𝑦 + 𝑑𝑧))
⋅ cos (𝑎𝑧 + 𝑑𝑥)) + 𝑒𝑎(𝑦+𝑧) (((𝑎2 + 𝑑2)
⋅ cos (𝑎𝑥 + 𝑑𝑦) − 𝑎𝑑 sin (𝑎𝑥 + 𝑑𝑦)) 𝑎2
⋅ sin (𝑎𝑧 + 𝑑𝑥) + (𝑎2𝑑2 cos (𝑎𝑥 + 𝑑𝑦) + 2𝑎3𝑑
⋅ sin (𝑎𝑥 + 𝑑𝑦)) cos (𝑎𝑧 + 𝑑𝑥)) + 𝑒𝑎(𝑧+𝑥) ((𝑎4
⋅ cos (𝑎𝑥 + 𝑑𝑦) + 𝑎4 sin (𝑎𝑥 + 𝑑𝑦)) sin (𝑎𝑦 + 𝑑𝑧)
+ 2𝑎3𝑑 sin (𝑎𝑥 + 𝑑𝑦) cos (𝑎𝑦 + 𝑑𝑧))
− 2𝑎2𝑒2𝑎𝑥 (𝑎2 + 𝑑22 )] ,

... ,
𝑉1 (𝑥, 𝑦, 𝑧) = 𝑎𝑑2𝑅𝑒 (sin (𝑎𝑧 + 𝑑𝑥) 𝑒𝑎𝑦 + cos (𝑎𝑦 + 𝑑𝑧)

⋅ 𝑒𝑎𝑥) ,
𝑉2 (𝑥, 𝑦, 𝑧) = − 𝑎𝑑42 (𝑅𝑒)2 (sin (𝑎𝑧 + d𝑥) 𝑒𝑎𝑦 + cos (𝑎𝑦

+ 𝑑𝑧) 𝑒𝑎𝑥) − 2𝑎𝑅𝑒 [𝑒𝑎(𝑦+𝑧) (𝑎2 ((𝑎2 − 𝑑2)
⋅ sin (𝑎𝑧 + 𝑑𝑥) + 𝑑2 cos (𝑎𝑧 + 𝑑𝑥)) sin (𝑎𝑥 + 𝑑𝑦)
+ 𝑎3𝑑 (2 sin (𝑎𝑧 + 𝑑𝑥) − cos (𝑎𝑧 + 𝑑𝑥))
⋅ cos (𝑎𝑥 + 𝑑𝑦)) + 𝑒𝑎(𝑧+𝑥) (𝑎2 ((𝑎2 + 𝑑2)
⋅ cos (𝑎𝑦 + 𝑑𝑧) − 𝑎𝑑 sin (𝑎𝑦 + 𝑑𝑧)) sin (𝑎𝑥 + 𝑑𝑦)
+ (𝑑2𝑎2 cos (𝑎𝑦 + 𝑑𝑧) + 2𝑎3𝑑 sin (𝑎𝑦 + 𝑑𝑧))

⋅ cos (𝑎𝑥 + 𝑑𝑦))
+ 𝑒𝑎(𝑥+𝑦) (𝑎4 (cos (𝑎𝑦 + 𝑑𝑧) + sin (𝑎𝑦 + 𝑑𝑧))
⋅ sin (𝑎𝑧 + 𝑑𝑥)) + 2𝑎3𝑑 sin (𝑎𝑦 + 𝑑𝑧)
⋅ cos (𝑎𝑧 + 𝑑𝑥)) − 2𝑎2𝑒2𝑎𝑦 (𝑎2 + 𝑑22 )] ,

𝑊1 (𝑥, 𝑦, 𝑧) = 𝑎𝑑2𝑅𝑒 (sin (𝑎𝑥 + 𝑑𝑦) 𝑒𝑎𝑧 + cos (𝑎𝑧 + 𝑑𝑥)
⋅ 𝑒𝑎𝑦) ,

𝑊2 (𝑥, 𝑦, 𝑧) = − 𝑎𝑑42 (𝑅𝑒)2 (sin (𝑎𝑥 + 𝑑𝑦) 𝑒𝑎𝑧 + cos (𝑎𝑧
+ 𝑑𝑥) 𝑒𝑎𝑦) − 2𝑎𝑅𝑒 [𝑒𝑎(𝑦+𝑧) (𝑎4 (sin (𝑎𝑧 + 𝑑𝑥)
+ cos (𝑎𝑧 + 𝑑𝑥)) sin (𝑎𝑥 + 𝑑𝑦) + 2𝑎3𝑑⋅ cos (𝑎𝑥 + 𝑑𝑦) sin (𝑎𝑧 + 𝑑𝑥))
+ 𝑒𝑎(𝑧+𝑥) ((𝑎2 (𝑎2 − 𝑑2) sin (𝑎𝑦 + 𝑑𝑧) + 2𝑎3𝑑
⋅ cos (𝑎𝑦 + 𝑑𝑧)) sin (𝑎𝑥 + 𝑑𝑦) + (𝑎2𝑑2
⋅ sin (𝑎𝑦 + 𝑑𝑧) − 𝑎𝑑 cos (𝑎𝑦 + 𝑑𝑧)) cos (𝑎𝑥 + 𝑑𝑦))
+ 𝑒𝑎(𝑥+𝑦) (𝑎2 ((𝑎2 + 𝑑2) cos (𝑎𝑧 + 𝑑𝑥) − 𝑎𝑑
⋅ sin (𝑎𝑧 + 𝑑𝑥)) sin (𝑎𝑦 + 𝑑𝑧) + (𝑎2𝑑2
⋅ cos (𝑎𝑧 + 𝑑𝑥) + 2𝑎𝑑 sin (𝑎𝑧 + 𝑑𝑥))
⋅ cos (𝑎𝑦 + 𝑑𝑧)) − 2𝑎2𝑒2𝑎𝑧 (𝑎2 + 𝑑22 )] ,

... ,
(73)

and
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Figure 5: The Contours plots of 𝑧-component of vorticity, 𝑢 and V velocity components for P3 on 𝑧 = 0 at 𝑅𝑒 = 100 and𝑀𝑎 = 0.05.
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𝐺1 (𝑥, 𝑦, 𝑧) = 4𝑎2𝑅𝑒 [𝑒𝑎(𝑥+𝑦) (−𝑎𝑑 (cos (𝑎𝑦 + 𝑑𝑧) − sin (𝑎𝑦 + 𝑑𝑧)) cos (𝑎𝑧 + 𝑑𝑥) + (𝑎2 sin (𝑎𝑦 + 𝑑𝑧) + 𝑑2 cos (𝑎𝑦 + 𝑑𝑧))
⋅ sin (𝑎𝑧 + 𝑑𝑥)) + 𝑒𝑎(𝑦+𝑧) (−𝑎𝑑 (cos (𝑎𝑧 + 𝑑𝑥) − sin (𝑎𝑧 + 𝑑𝑥)) cos (𝑎𝑥 + 𝑑𝑦) + (𝑎2 sin (𝑎𝑧 + 𝑑𝑥) + 𝑑2 cos (𝑎𝑧 + 𝑑𝑥))
⋅ sin (𝑎𝑥 + 𝑑𝑦)) + 𝑒𝑎(𝑧+𝑥) (− (𝑎𝑑 cos (𝑎𝑦 + 𝑑𝑧) − 𝑑2 sin (𝑎𝑦 + 𝑑𝑧)) cos (𝑎𝑥 + 𝑑𝑦) + (𝑎2 sin (𝑎𝑦 + 𝑑𝑧)
+ 𝑎𝑑 cos (𝑎𝑦 + 𝑑𝑧)) sin (𝑎𝑥 + 𝑑𝑦)) − 𝑎2 (𝑒2𝑎𝑥 + 𝑒2𝑎𝑦 + 𝑒2𝑎𝑧)] ,

𝐺2 (𝑥, 𝑦, 𝑧) = 4𝑎2(𝑅𝑒)2 [(𝑒𝑎(𝑦+𝑧) (2𝑎𝑑 ((𝑎2 + 𝑑2) cos (𝑎𝑧 + 𝑑𝑥) + (𝑎2 − 𝑑2) sin (𝑎𝑧 + 𝑑𝑥)) cos (𝑎𝑥 + 𝑑𝑦)
+ ((𝑎4 − 𝑑4) cos (𝑎𝑧 + 𝑑𝑥) − 4𝑎2𝑑2 sin (𝑎𝑧 + 𝑑𝑥)) sin (𝑎𝑥 + 𝑑𝑦))
+ 𝑒𝑎(𝑧+𝑥) (2𝑎𝑑 ((𝑎2 + 𝑑2) cos (𝑎𝑦 + 𝑑𝑧) + (𝑎4 − 𝑑4) sin (𝑎𝑦 + 𝑑𝑧))) × cos (𝑎𝑥 + 𝑑𝑦) + (2𝑎𝑑 (𝑎2−𝑑2) cos (𝑎𝑦 + 𝑑𝑧)
− 4𝑎2𝑑2 sin (𝑎𝑦 + 𝑑𝑧)) sin (𝑎𝑥 + 𝑑𝑦)) + 𝑒𝑎(𝑥+𝑦) (2𝑎𝑑 ((𝑎2 + 𝑑2) cos (𝑎𝑦 + 𝑑𝑧) + (𝑎2 − 𝑑2) sin (𝑎𝑦 + 𝑑𝑧))
× cos (𝑎𝑧 + 𝑑𝑥) + ((𝑎4 − 𝑑4) cos (𝑎𝑦 + 𝑑𝑧) − 4𝑎2𝑑2 sin (𝑎𝑦 + 𝑑𝑧)) sin (𝑎𝑧 + 𝑑𝑥)) + 𝑎2 (𝑒2𝑎𝑥 + 𝑒2𝑎𝑦 + 𝑒2𝑎𝑧)] ,

...

(74)

These solutions satisfy the conditions of convergence at the
domain [−1, 1]3,
𝛾10 = 𝑈1 (𝑥, 𝑦, 𝑧) 𝜏𝑈0 (𝑥, 𝑦, 𝑧) = 2.4674011𝜏𝑅𝑒 ,
𝛾20 = 𝑉1 (𝑥, 𝑦, 𝑧) 𝜏𝑉0 (𝑥, 𝑦, 𝑧) = 2.4674011𝜏𝑅𝑒 ,
𝛾30 = 𝑊1 (𝑥, 𝑦, 𝑧) 𝜏𝑊0 (𝑥, 𝑦, 𝑧) = 2.4674011𝜏𝑅𝑒 ,
𝛾40 = 𝐺1 (𝑥, 𝑦, 𝑧) 𝜏𝐺0 (𝑥, 𝑦, 𝑧) = 2.917691460𝜏𝑅𝑒 ,
𝛾11 =

𝑈2 (𝑥, 𝑦, 𝑧) 𝜏2𝑈1 (𝑥, 𝑦, 𝑧) 𝜏
= 3.0495132689√(𝑅𝑒)2 − 0.020148681𝑅𝑒 + 0.1636659976𝜏𝑅𝑒 ,

𝛾21 =
𝑉2 (𝑥, 𝑦, 𝑧) 𝜏2𝑉1 (𝑥, 𝑦, 𝑧) 𝜏

= 3.0495132689√(𝑅𝑒)2 − 0.020148681𝑅𝑒 + 0.1636659976𝜏𝑅𝑒 ,
𝛾31 =

𝑊2 (𝑥, 𝑦, 𝑧) 𝜏2𝑊1 (𝑥, 𝑦, 𝑧) 𝜏
= 3.0495132689√(𝑅𝑒)2 − 0.020148681𝑅𝑒 + 0.1636659976𝜏𝑅𝑒 ,

𝛾41 =
𝐺2 (𝑥, 𝑦, 𝑧) 𝜏2𝐺1 (𝑥, 𝑦, 𝑧) 𝜏 = 4.3109179800𝜏𝑅𝑒 ,

... ,

(75)

such that 𝛾0 = 𝛾10+𝛾20+𝛾30+𝛾40, 𝛾1 = 𝛾11+𝛾21+𝛾31+𝛾41, . . ..

For example, if𝑀𝑎 = 0.01, 𝑅𝑒 = 100, and 𝑡 = 2, then
𝛾0 = 0.2063978953 × 10−2 < 1,
𝛾1 = 0.1838160431 < 1, . . . , (76)

if 𝑡 = 5 then 𝛾0 = 0.5159947383 × 10−2 < 1,
𝛾1 = 0.4595401079 < 1, . . . , (77)

if 𝑅𝑒 = 1600 and 𝑡 = 2 then𝛾0 = 0.1289986845 × 10−3 < 1,
𝛾1 = 0.1830235364 < 1, . . . , (78)

and if 𝑡 = 5 then𝛾0 = 0.3224967113 × 10−3 < 1,
𝛾1 = 0.4575588408 < 1, . . . (79)

The 𝐿2-norm error for the 𝑢 velocity component with CPU
time is calculated in Table 8 to study the accuracy of these
approximate solutions; the results show an excellent accuracy
of our method for all values of Reynolds number at 𝑡 =0.5, 2, 5 and 𝑀𝑎 = 0.01, with good implementation period
ranging between 2.09𝑠, 1080𝑠. The computed enstrophy is
comparedwith their exact values in the sameperiod of time in
Figure 6 at𝑅𝑒 = 100, 1600 for twoMachnumbers. In Figure 7,
we explained the 𝑧−component of the computed vorticity on
surface 𝑧 = 0 at 𝑅𝑒 = 100 and 𝑡 = 5 in two domains[−1, 1]2 and [−5, 5]2. Through these figures, we could notice
the relationship between the accuracy of these approximate
solutions and Mach numbers which is with decreasing Mach
number.
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Table 6: The 𝐿2-norm errors for 𝑢 and 𝑤 of P3 at 𝑅𝑒 = 100 and𝑀𝑎 = 0.005.
Grid size t=0.5 t=2 t=5 Max CPUs𝑢 V𝑒𝑙𝑜𝑐𝑖𝑡𝑦33 × 33 × 33 1.82 × 10−8 1.17 × 10−6 1.82 × 10−5 2.1265 × 65 × 65 1.73 × 10−8 1.11 × 10−6 1.73 × 10−5 18.4129 × 129 × 129 1.69 × 10−8 1.08 × 10−6 1.69 × 10−5 126257 × 257 × 257 1.67 × 10−8 1.07 × 10−6 1.67 × 10−5 995𝑤 V𝑒𝑙𝑜𝑐𝑖𝑡𝑦33 × 33 × 33 1.21 × 10−8 7.74 × 10−7 1.21 × 10−5 2.4265 × 65 × 65 1.19 × 10−8 7.60 × 10−7 1.19 × 10−5 18.4129 × 129 × 129 1.18 × 10−8 7.52 × 10−7 1.18 × 10−5 143257 × 257 × 257 1.17 × 10−8 7.49 × 10−7 1.17 × 10−5 1120
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Figure 6: The enstrophy for P4.

5. Conclusions

In this paper, the simulations of two- and three-dimensional
unsteady viscous incompressible flow problems are presented
by using the kinetically reduced local Navier-Stokes equa-
tions with the reduced differential transform method. New

approximate analytical solutions obtained by KRDTM are
tested in terms of accuracy and convergence. The results
show that the new solutions have good accuracy and conver-
gence, especially with high Reynolds numbers and low Mach
numbers. The comparison explained that the computational
time of these solutions is faster than that of other numerical
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Table 7: The 𝐿2-norm errors for 𝑢 and 𝑤 of P3 at 𝑅𝑒 = 100 and𝑀𝑎 = 0.01.
Grid size t=0.5 t=2 t=5 Max CPUs𝑢 V𝑒𝑙𝑜𝑐𝑖𝑡𝑦33 × 33 × 33 1.46 × 10−7 9.32 × 10−6 1.46 × 10−4 2.2265 × 65 × 65 1.39 × 10−7 8.87 × 10−6 1.39 × 10−4 17.7129 × 129 × 129 1.35 × 10−7 8.65 × 10−6 1.35 × 10−4 128257 × 257 × 257 1.33 × 10−7 8.53 × 10−6 1.33 × 10−4 1000𝑤 V𝑒𝑙𝑜𝑐𝑖𝑡𝑦33 × 33 × 33 9.68 × 10−8 6.19 × 10−6 9.68 × 10−5 2.4765 × 65 × 65 9.50 × 10−8 6.08 × 10−6 9.50 × 10−5 18.5129 × 129 × 129 9.40 × 10−8 6.02 × 10−6 9.40 × 10−5 144257 × 257 × 257 9.36 × 10−8 5.99 × 10−6 9.36 × 10−5 1140
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Figure 7: The surface plots of the 𝑧-component of the computed vorticity for P4 on 𝑧 = 0 at 𝑅𝑒 = 100 and 𝑡 = 5.

solutions. Therefore, KRDTM is an effective and accurate
method for solving the unsteady viscous incompressible flow
problems.
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Table 8: The 𝐿2-norm errors for 𝑢 of P4 at𝑀𝑎 = 0.01.
Grid size t=0.5 t=2 t=5 Max CPUs𝑅𝑒 = 10033 × 33 × 33 6.18 × 10−6 1.00 × 10−4 6.44 × 10−4 2.4465 × 65 × 65 5.89 × 10−6 9.54 × 10−5 6.15 × 10−4 20.4129 × 129 × 129 5.74 × 10−6 9.31 × 10−5 6.00 × 10−4 151257 × 257 × 257 5.67 × 10−6 9.19 × 10−5 5.93 × 10−4 1080𝑅𝑒 = 50033 × 33 × 33 1.24 × 10−6 2.00 × 10−5 1.29 × 10−4 2.965 × 65 × 65 1.18 × 10−6 1.91 × 10−5 1.23 × 10−4 15.9129 × 129 × 129 1.15 × 10−6 1.86 × 10−5 1.20 × 10−4 127257 × 257 × 257 1.13 × 10−6 1.84 × 10−5 1.19 × 10−4 996𝑅𝑒 = 160033 × 33 × 33 3.86 × 10−7 6.26 × 10−6 4.03 × 10−5 2.2065 × 65 × 65 3.68 × 10−7 5.96 × 10−6 3.84 × 10−5 16.8129 × 129 × 129 3.59 × 10−7 5.82 × 10−6 3.75 × 10−5 130257 × 257 × 257 3.54 × 10−7 5.75 × 10−6 3.71 × 10−5 1020
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