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A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization
(PSO) and Grey Wolf Optimizer (GWO). The main idea is to improve the ability of exploitation in Particle Swarm Optimization
with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-
dimensionmultimodal test functions are used to check the solution quality and performance of HPSOGWOvariant.The numerical
and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution
quality, solution stability, convergence speed, and ability to find the global optimum.

1. Introduction

In recent years, several numbers of nature inspired opti-
mization techniques have been developed. These include
Particle Swarm Optimization (PSO), Gravitational Search
algorithm (GSA), Genetic Algorithm (GA), Evolutionary
Algorithm (EA), Deferential Evolution (DE), Ant Colony
Optimization (ACO), Biogeographically Based Optimization
(BBO), Firefly algorithm (FA), and Bat algorithm (BA). The
common goal of these algorithms is to find the best quality
of solutions and better convergence performance. In order to
do this, a nature inspired variant should be equipped with
exploration and exploitation to ensure finding global opti-
mum.

Exploitation is the convergence capability to the most
excellent result of the function near a good result and explo-
ration is the capability of a variant to find whole parts of
function area. Finally the goal of all nature inspired variants
is to balance the capability of exploration and exploitation
capably in order to search best global optimal solution in the
search space. As per Eiben and Schippers [1], exploitation
and exploration in nature inspired computing are not under-
standable due to lack of a usually accepted opinion and on
the other side, with increase in one capability, the other will
weaken and vice versa.

As per the above, the existing nature inspired variants are
capable of solving several numbers of test and real life prob-
lems. It has been proved that there is no population-based
variant, which can perform generally enough to find the
solution of all types of optimization problems [2].

The Particle Swarm Optimization is one of the most usu-
ally used evolutionary variants in hybrid techniques due to its
capability of searching global optimum, convergence speed,
and simplicity.

There are several studies in the text which have been
prepared to combine Particle Swarm Optimization variant
with other variants of metaheuristics such as hybrid Particle
Swarm Optimization with Genetic Algorithm (PSOGA) [3,
4], Particle Swarm Optimization with Differential Evolution
(PSODE) [5], and Particle Swarm Optimization with Ant
Colony Optimization (PSOACO) [6]. These hybrid algo-
rithms are aimed at reducing the probability of trapping in
local optimum. Recently a newly nature inspired optimiza-
tion technique is originated, namely, GSA [7]. The various
types of hybrid variant of Particle Swarm Optimization had
been discussed below.

Ahmed et al. [8] presented hybrid variant of PSO called
HPSOM. The main idea of the HPSOM was to integrate the
Particle Swarm Optimization (PSO) with Genetic Algorithm
(GA) mutation technique. The performance of the hybrid
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variant is tested on several numbers of classical functions
and, on the basis of results obtained, authors have shown that
hybrid variant outperforms significantly the Particle Swarm
Optimization variant in terms of solution quality, solution
stability, convergence speed, and ability to find the global
optimum.

Mirjalili andHashim’s [9] newly hybrid population-based
algorithm (PSOGSA) was proposed with the combination
of PSO and Gravitational Search Algorithm (GSA). The
main idea is to integrate the capability of exploitation in
Particle Swarm Optimization with the capability of explo-
ration in Gravitation Search Algorithm to synthesize both
variants’ strength. The performance of hybrid variant was
tested on several numbers of benchmark functions. On
the basis of results obtained, authors have proven that the
hybrid variant possesses a better capability to escape from
local optimums with faster convergence than the PSO and
GSA.

Zhang et al. [10] presented a hybrid variant combining
PSOwith back-propagation (BP) variant called PSO-BP algo-
rithm. This variant can make use of not only strong global
searching ability of the PSOA, but also strong local searching
ability of the BP algorithm. The convergence speed and
convergent accuracy performance of newly hybrid variant of
PSO were tested on several numbers of classical functions.
On the basis of experimental results, authors have shown
that the hybrid variant is better than the BP and Adaptive
Particle Swarm Optimization Algorithm (APSOA) and BP
algorithm in terms of solution quality and convergence
speed.

Ouyang et al. [11] presented a hybrid PSO variant, which
combines the advantages of PSO and Nelder-Mead Simplex
Method (SM) variant, is put forward to solve systems of non-
linear equations, and can be used to overcome the difficulty
in selecting good initial guess for SM and inaccuracy of PSO
due to being easily trapped into local optimum.

Experimental results show that the hybrid variant has
precision, high convergence rate, and great robustness and it
can give suitable results of nonlinear equations.

Yu et al. [12] proposed a newly hybrid Particle Swarm
Optimization variant to solve several problems by combining
modified velocity model and space transformation search.
Experimental studies on eight classical test problems reveal
that the hybrid PSO holds good performance in solving both
multimodal and unimodal problems.

Yu et al. [13] proposed a novel algorithm, HPSO-DE, by
developing a balanced parameter between PSO and DE.
This quality of this hybrid variant has been tested on sev-
eral numbers of benchmark functions. In comparison with
the Particle SwarmOptimization, Differential Evolution, and
HPSO-DE variants, the newly hybrid variant finds better
quality solutions more frequently, is more effective in obtain-
ing better quality solutions, and works in a more effective
way.

Abd-Elazim andAli [14] presented a newly hybrid variant
combined with bacterial foraging optimization algorithm
(BFOA) and PSO, namely, bacterial swarm optimization
(BSO). In this hybrid variant, the search directions of tumble
behavior for each bacterium are oriented by the global best

location and the individual’s best location of Particle Swarm
Optimization. The performance of new variant has been
compared with the PSO variant and BFOA variant. On the
basis of the obtained results, they have shown the validity
of the hybrid variant in tuning SVC compared with other
metaheuristics.

Grey Wolf Optimizer is recently developed metaheuris-
tics inspired from the hunting mechanism and leadership
hierarchy of grey wolves in nature and has been successfully
applied for solving optimizing key values in the cryptography
algorithms [15], feature subset selection [16], time forecasting
[17], optimal power flow problem [18], economic dispatch
problems [19], flow shop scheduling problem [20], and opti-
mal design of double layer grids [21]. Several algorithms have
also been developed to improve the convergence perfor-
mance of Grey Wolf Optimizer that includes parallelized
GWO [22, 23], binary GWO [24], integration of DE with
GWO [25], hybrid GWOwith Genetic Algorithm (GA) [26],
hybrid DE with GWO [27], and hybrid Grey Wolf Optimizer
using Elite Opposition Based Learning Strategy and Simplex
Method [28].

Mittal et al. [29] developed a modified variant of the
GWO called modified Grey Wolf Optimizer (mGWO). An
exponential decay function is used to improve the exploita-
tion and exploration in the search space over the course of
generations. On the basis of the obtained results, authors
proved that the modified variant benefits from high explo-
ration in comparison to the standard Grey Wolf Optimizer
and the performance of the variant is verified on several
numbers of standard benchmark and real life NP hard prob-
lems.

S. Singh and S. B. Singh [30] present a newly modi-
fied approach of GWO called Mean Grey Wolf Optimizer
(MGWO). This approach has been originated by modifying
the position update (encircling behavior) equations of GWO.
MGWOapproach has been tested on various standard bench-
mark functions and the accuracy of existing approach has
also been verified with PSO and GWO. In addition, authors
have also considered five datasets classification that have been
utilized to check the accuracy of the modified variant. The
obtained results are compared with the results using many
different metaheuristic approaches, that is, Grey Wolf Opti-
mization, Particle Swarm Optimization, Population-Based
Incremental Learning (PBIL), Ant Colony Optimization
(ACO), and so forth. On the basis of statistical results, it has
been observed that the modified variant is able to find best
solutions in terms of high level of accuracy in classification
and improved local optima avoidance.

N. Singh and S. B. Singh [31] present a new hybrid swarm
intelligence heuristics called HGWOSCA that is exercised on
twenty-two benchmark test problems, five biomedical dataset
problems, and one sine dataset problem. Hybrid GWOSCA
is combination of Grey Wolf Optimizer (GWO) used for
exploitation phase and Sine Cosine Algorithm (SCA) for
exploration phase in uncertain environment. The movement
directions and speed of the grey wolf (alpha) are improved
using position update equations of SCA. The numerical
and statistical solutions obtained with hybrid GWOSCA
approach are comparedwith othermetaheuristics approaches
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Initialization
Initialize 𝑙, 𝑎, 𝑤 and 𝑐

// 𝑤 = 0.5 + rand()/2
Evaluate the fitness of agents by using (5)
while (𝑡 < max no. of iter)
for each search agent
Update the velocity and position by using (6)
end for
Update 𝑙, 𝑎, 𝑤 and 𝑐
Evaluate the fitness of all search agents
Update positon first three agents𝑡 = 𝑡 + 1
end while
return // first best search agent position

Pseudocode 1: Pseudocode of the proposed variant (HPSOGWO).

such as Particle Swarm Optimization (PSO), Ant Lion
Optimizer (ALO), Whale Optimization Algorithm (WOA),
Hybrid Approach GWO (HAGWO), Mean GWO (MGWO),
Grey Wolf Optimizer (GWO), and Sine Cosine Algorithm
(SCA). Results demonstrate that newly hybrid approach can
be highly effective in solving benchmark and real life appli-
cations with or without constrained and unknown search
areas.

In this study, we present a newly hybrid variant com-
bining PSO and GWO variants named HPSOGWO. We use
twenty-three unimodal, multimodal, and fixed-dimension
multimodal functions to compare the performance of
hybrid variant with both standard PSO and standard
GWO.

The rest of the paper is structured as follows. The Par-
ticle Swarm Optimization (PSO) and Grey Wolf Optimizer
(GWO) algorithm are discussed in Sections 2 and 3. The
HPSOGWOmathematical model and pseudocode (shown in
Pseudocode 1) are also discussed in Section 4.Thebenchmark
tested functions are presented in Section 5 and results and
discussion are represented in Section 6, respectively. Finally,
the conclusion of the work is offered in Section 7.

2. Particle Swarm Optimization Variant

The PSO algorithm was firstly introduced by Kennedy and
Eberhart in [32] and its fundamental judgment was primarily
inspired by the simulation of the social behavior of animals
such as bird flocking and fish schooling. While searching for
food, the birds are either scattered or go together before they
settle on the position where they can find the food. While
the birds are searching for food from one position to another,
there is always a bird that can smell the food very well; that is,
the bird is aware of the position where the food can be found,
having the correct food resource message. Because they are
transmitting the message, particularly the useful message at
any period while searching for the food from one position to
another, the birds will finally flock to the position where food
can be found.

This approach is learned from animal’s behavior to
calculate global optimization functions/problems and every
partner of the swarm/crowd is called a particle. In PSO
technique, the position of each partner of the crowd in
the global search space is updated by two mathematical
equations. These mathematical equations are

V𝑘+1𝑖 = V𝑘𝑖 + 𝑐1𝑟1 (𝑝𝑘𝑖 − 𝑥𝑘𝑖 ) + 𝑐2𝑟2 (𝑔best − 𝑥𝑘𝑖 )
𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 + V𝑘+1𝑖 . (1)

3. Grey Wolf Optimizer (GWO)

The above literature shows that there are many swarm
intelligence approaches originated so far, many of them
inspired by search behaviors and hunting. But there is no
swarm intelligence approach in the literature mimicking the
leadership hierarchy of grey wolves, well known for their
pack hunting. Motivated by various algorithms, Mirjalili
et al. [33] presented a new swarm intelligence approach
known as Grey Wolf Optimizer (GWO) inspired by the grey
wolves and investigate its abilities in solving standard and
real life applications. The GWO variant mimics the hunting
mechanism and leadership hierarchy of greywolves in nature.
In GWO, the crowd is split into four different groups such
as alpha, beta, delta, and omega which are employed for
simulating the leadership hierarchy.

Grey wolf belongs to Canidae family. Grey wolves are
measured as apex predators, meaning that they are at the
top of the food chain. Grey wolves mostly prefer to live in
a pack. The leaders are a female and a male known as alphas.
The alpha (𝛼) is generally liable for making decisions about
sleeping, time to wake, hunting, and so on.

The second top level in the hierarchy of greywolves is beta
(𝛽). The beta (𝛽) are subordinate wolves that help the first
level wolf (alpha) in decision making or other pack actions.
The second level wolf (beta) should respect the first level wolf
(alpha) but orders the other lower level cipliner for the pack.
The second level wolf (beta) reinforces the first level wolf
(alpha’s) orders throughout the pack and gives feedback to the
alpha.

The third level ranking grey wolf is omega (𝛾). This wolf
plays the role of scapegoat. Third level grey wolves always
have to submit to all the other dominant wolves. They are
the last wolves that are permitted to eat. It may seem that
the third level wolves do not have a significant personality
in the pack, but it can be observed that the entire pack faces
internal struggle and troubles in case of losing the omega.
This is due to the venting of violence and frustration of all
wolves by the omega (𝛾).This assists fulfilling the whole pack
and maintaining the dominance structure.

If a wolf is not an alpha (𝛼), beta (𝛽), or omega (𝛾), she/he
is known as a subordinate (or delta (𝛿)). Delta (𝛿) wolves have
to submit to alpha (𝛼) and beta (𝛽), but they dominate the
omega (𝛾).

In addition, three main steps of hunting, searching for
prey, encircling prey, and attacking prey, are implemented to
perform optimization.
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The encircling behavior of each agent of the crowd is
calculated by the following mathematical equations:

𝑑 = 𝑐 ⋅ 𝑥𝑝(𝑡) − 𝑥 (𝑡)𝑥 (𝑡 + 1) = 𝑥𝑝(𝑡) − 𝑎 ⋅ 𝑑. (2)

The vectors 𝑎 and 𝑐 are mathematically formulated as follows:

𝑎 = 2𝑙 ⋅ 𝑟1
𝑐 = 2 ⋅ 𝑟2. (3)

3.1.Hunting. In order tomathematically simulate the hunting
behavior, we suppose that the alpha (𝛼), beta (𝛽), and delta (𝛿)
have better knowledge about the potential location of prey.
The following mathematical equations are developed in this
regard:

→𝑑 𝛼 = →𝑐 1 ⋅ →𝑥 𝛼 − →𝑥 ,→𝑑 𝛽 = →𝑐 2 ⋅ →𝑥 𝛽 − →𝑥 ,→𝑑 𝛿 = →𝑐 3 ⋅ →𝑥 𝛿 − →𝑥→𝑥 1 = →𝑥 𝛼 − →𝑎 1 ⋅ (→𝑑 𝛼) ,
→𝑥 2 = →𝑥 𝛽 − →𝑎 2 ⋅ (→𝑑 𝛽) ,
→𝑥 3 = →𝑥 𝛿 − →𝑎 3 ⋅ (→𝑑 𝛿) ,

→𝑥 1 + →𝑥 2 + →𝑥 33→𝑎 (⋅) = 2→𝑙 ⋅ →𝑟 1 − →𝑙→𝑐 (⋅) = 2 ⋅ →𝑟 2.

(4)

3.2. Searching for Prey and Attacking Prey. 𝐴 is random value
in gap [−2𝑎, 2𝑎]. When random value |𝐴| < 1, the wolves are
forced to attack the prey. Searching for prey is the exploration
ability and attacking the prey is the exploitation ability. The
arbitrary values of 𝐴 are utilized to force the search to move
away from the prey.

When |𝐴| > 1, the members of the population are en-
forced to diverge from the prey.

4. A Newly Hybrid Algorithm

Many researchers have presented several hybridization vari-
ants for heuristic variants. According to Talbi [34], two
variants can be hybridized in low level or high level with relay
or coevolutionary techniques as heterogeneous or homoge-
neous.

In this text, we hybridize Particle Swarm Optimization
with Grey Wolf Optimizer algorithm using low-level coevo-
lutionary mixed hybrid. The hybrid is low level because we

merge the functionalities of both variants. It is coevolutionary
because we do not use both variants one after the other. In
other ways, they run in parallel. It is mixed because there
are two distinct variants that are involved in generating final
solutions of the problems. On the basis of this modification,
we improve the ability of exploitation in Particle Swarm
Optimization with the ability of exploration in Grey Wolf
Optimizer to produce both variants’ strength.

In HPSOGWO, first three agents’ position is updated in
the search space by the proposedmathematical equations (5).
Instead of using usualmathematical equations, we control the
exploration and exploitation of the grey wolf in the search
space by inertia constant. The modified set of governing
equations are

→𝑑 𝛼 = →𝑐 1 ⋅ →𝑥 𝛼 − 𝑤 ∗ →𝑥→𝑑 𝛽 = →𝑐 2 ⋅ →𝑥 𝛽 − 𝑤 ∗ →𝑥→𝑑 𝛿 = →𝑐 3 ⋅ →𝑥 𝛿 − 𝑤 ∗ →𝑥 .
(5)

In order to combine PSO andGWOvariants, the velocity and
updated equation are proposed as follows:

V𝑘+1𝑖 = 𝑤 ∗ (V𝑘𝑖 + 𝑐1𝑟1 (𝑥1 − 𝑥𝑘𝑖 ) + 𝑐2𝑟2 (𝑥2 − 𝑥𝑘𝑖 )
+ 𝑐3𝑟3 (𝑥3 − 𝑥𝑘𝑖 ))

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 + V𝑘+1𝑖 .
(6)

5. Testing Functions

In this section, twenty-three benchmark problems are used to
test the ability of HPSOGWO.These problems can be divided
into three different groups: unimodal, multimodal, and fixed-
dimension multimodal functions. The exact details of these
test problems are shown in Tables 1–3.

6. Analysis and Discussion on the Results

The PSO, GWO, and HPSOGWO pseudocodes are coded in
MATLAB R2013a and implemented on Intel HD Graphics,
15.6 3GB Memory, i5 Processor 430M, 16.9 HD LCD,
Pentium-Intel Core�, and 320GB HDD. Number of search
agents is 30, maximum number of iterations is 500, 𝑐1 = 𝑐2 =0.5 and 𝑐3 = 0.5, 𝑤 = 0.5 + rand()/2, and 𝑙 ∈ [2, 0]; all these
parameter settings are applied to test the quality of hybrid and
other metaheuristics.

In this paper, our objective is to present the best suitable
optimal solution as compared to other metaheuristics. The
best optimal solutions and best statistical values achieved by
HPSOGWO variant for unimodal functions are shown in
Tables 4 and 5, respectively.

Firstly, we tested the ability of HPSOGWO, PSO, and
GWO variant that were run 30 times on each unimodal
function. The HPSOGWO, GWO, and PSO algorithms have
to be run at least more than ten times to search for the best
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Table 1: Unimodal benchmark functions.
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numerical or statistical solutions. It is again a general method
that an algorithm is run on a test problemmany times and the
best optimal solutions, mean and standard deviation of the
superior obtained results in the last generation, are evaluated
as metrics of performance. The performance of proposed
hybrid variant is compared to PSO and GWO variant in
terms of best optimal and statistical results. Similarly the
convergence performances of HPSOGWO, PSO, and GWO
variant have been compared on the basis of graph; see Figures
1(a)–1(g). On the basis of obtained results and convergence
performance of the variants, we concluded that HPSOGWO
is more reliable in giving superior quality results with rea-
sonable iterations and avoids premature convergence of the
search process to local optimal point and provides superior
exploration of the search course.

Further, we noted that the unimodal problems are suitable
for standard exploitation. Therefore, these results prove the
superior performance of HPSOGWO in terms of exploiting
the optimum.

Secondly, the performance of the proposed hybrid variant
has been tested on six multimodal benchmark functions. In
contrast to the multimodal problems, unimodal benchmark

problems have many local optima with the number rising
exponentially with dimension. This makes them appro-
priate for benchmarking the exploration capability of an
approach.The numerical and statistical results obtained from
HPSOGWO, PSO, and GWO algorithms are shown in Tables
6 and 7.

Experimental results show that the proposed variant
finds a superior quality of solution without trapping in local
maximum and to attain faster convergence performance; see
Figures 2(a)–2(f), respectively. This approach outperforms
GWO and PSO variants on the majority of the multimodal
benchmark functions. The obtained solutions also prove that
the HPSOGWO variant has merit in terms of exploration.

Thirdly, the suitable solutions of fixed-dimension multi-
modal benchmark functions are illustrated in Tables 8 and
9. The fixed dimensional benchmark functions have many
local optima with the number growing exponentially with
dimension. This makes them fitting for benchmarking the
exploration capacity of a variant. Experimental numerical
and statistical solutions have shown that the proposed variant
is able to find superior quality of results onmaximumnumber
of fixed dimensional multimodal benchmark functions as
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Figure 1: Convergence curve of PSO, GWO, and HPSOGWO variants on unimodal functions.
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Table 4: PSO, GWO, and HPSOGWO numerical results of unimodal benchmark functions.

Problem number PSO GWO HPSOGWO
Min Max Min Max Min Max(1) 2.0865𝑒 − 04 5.5486𝑒 + 04 2.1467𝑒 − 04 7.5295𝑒 + 04 1.3425𝑒 − 26 7.6471𝑒 + 04(2) 0.0144 4.4920𝑒 + 13 1.1966𝑒 − 16 6.6754𝑒 + 09 1.02228𝑒 − 16 6.6918𝑒 + 11(3) 73.0238 1.4347𝑒 + 05 5.9193𝑒 − 07 1.0861𝑒 + 05 2.2578𝑒 − 06 1.0826𝑒 + 05(4) 1.6407 80.6950 2.7185𝑒 − 07 82.8389 1.0483𝑒 − 07 84.4532(5) 82.2944 2.4409𝑒 + 08 28.5703 2.5251𝑒 + 08 27.9722 2.6243𝑒 + 08(6) 4.1362𝑒 − 05 5.0030𝑒 + 04 0.7515 6.8231𝑒 + 04 0.2250 7.1425𝑒 + 04(7) 0.1172 91.7832 0.0020 121.2115 0.0016 125.4297

Table 5: PSO, GWO, and HPSOGWO statistical results of unimodal benchmark functions.

Problem number PSO GWO HPSOGWO𝜇 𝜎 𝜇 𝜎 𝜇 𝜎(1) 871.2610 5.5907𝑒 + 03 716.3515 5.4709𝑒 + 03 711.3572 5.1807𝑒 + 03(2) 8.9840𝑒 + 10 2.0089𝑒 + 12 1.3358𝑒 + 07 2.9853𝑒 + 08 1.3201𝑒 + 09 2.9479𝑒 + 10(3) 3.6652𝑒 + 03 1.3536𝑒 + 04 3.0724𝑒 + 03 1.2253𝑒 + 04 2.9968𝑒 + 03 1.1503𝑒 + 04(4) 5.3716 12.7250 3.8205 14.7334 2.9241 11.4636(5) 8.7517𝑒 + 05 1.5804𝑒 + 07 1.8961𝑒 + 06 1.7700𝑒 + 07 1.5766𝑒 + 06 1.5510𝑒 + 07(6) 769.9903 4.8108𝑒 + 03 791.6688 5.4560𝑒 + 03 674.4328 4.9782𝑒 + 03(7) 23.3307 26.0342 0.8775 7.8283 0.7084 6.3324
Table 6: PSO, GWO, and HPSOGWO numerical results of multimodal benchmark functions.

Problem number PSO GWO HPSOGWO
Min Max Min Max Min Max(8) −4.7156𝑒 + 03 −1.6695𝑒 + 03 −5.5578𝑒 + 03 −1.9564𝑒 + 03 −7.3662𝑒 + 03 −1.9443𝑒 + 03(9) 40.8164 415.4710 14.4438 419.4465 1.1369𝑒 − 13 450.6618(10) 2.0287 20.4933 1.2168𝑒 − 13 20.5736 1.0036𝑒 − 13 20.7754(11) 0.0099 523.7574 0.0098 548.8569 0 585.6470(12) 1.8758𝑒 − 06 5.8263𝑒 + 08 0.0790 4.9310𝑒 + 08 0.0279 6.2705𝑒 + 08(13) 9.8225𝑒 − 06 1.2859𝑒 + 09 0.8013 1.0729𝑒 + 09 0.3948 1.3101𝑒 + 09

Table 7: PSO, GWO, and HPSOGWO statistical results of multimodal benchmark functions.

Problem number PSO GWO HPSOGWO𝜇 𝜎 𝜇 𝜎 𝜇 𝜎(8) −4.0864𝑒 + 03 590.9621 −3.9454𝑒 + 03 974.9720 −4.8885𝑒 + 03 1.2577𝑒 + 03(9) 171.5439 110.4524 46.9310 52.4809 29.2298 51.6528(10) 3.8566 3.7053 0.7880 3.1024 0.7320 3.0649(11) 42.0351 117.2690 5.3535 41.5628 5.2721 39.0734(12) 2.4226𝑒 + 06 3.1868𝑒 + 07 4.0785𝑒 + 06 3.7525𝑒 + 07 2.8970𝑒 + 06 3.5106𝑒 + 07(13) 5.7599𝑒 + 06 7.2267𝑒 + 07 6.0898𝑒 + 06 6.9809𝑒 + 07 1.0604𝑒 + 07 6.8155𝑒 + 07

compared to PSO and GWO variants. Further, the con-
vergence performance of these variants has been plotted
in Figures 3(a)–3(j). All numerical and statistical solutions
demonstrate that the hybrid variant has merit in terms of
exploration.

Finally, the accuracy of the newly hybrid approach has
been verified using starting and ending time of the CPU
(TIC and TOC), CPU time, and clock. These results are
provided in Tables 10–12, respectively. It may be seen that
the hybrid algorithm solved most of the standard benchmark
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Figure 2: Convergence curve of PSO, GWO, and HPSOGWO variants on multimodal functions.

problems in the least time as compared to other metaheuris-
tics.

To sum up, all simulation results assert that the
HPSOGWO algorithm is very helpful in improving the effi-
ciency of the PSO and GWO in terms of result quality as well
as computational efforts.

7. Conclusion

In this article, a newly hybrid variant is proposed utilizing
strengths ofGWOandPSO.Themain idea behinddeveloping
is to improve the ability of exploitation in Particle Swarm
Optimization with the ability of exploration in Grey Wolf
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Table 8: PSO, GWO, and HPSOGWO numerical results of fixed-dimension multimodal benchmark functions.

Problem number PSO GWO HPSOGWO
Min Max Min Max Min Max(14) 6.9033 164.1829 2.9821 84.3717 1.9920 214.6473(15) 8.8478𝑒 − 04 0.0336 4.6589𝑒 − 04 0.0182 4.0039𝑒 − 04 0.4235(16) −1.0316 1.1130 −1.0316 2.5179 −1.0316 2.5179(17) 0.3979 0.3979 0.3979 0.4269 0.3979 0.7183(18) 3.0002 18.5091 3.0001 20.4796 3.0000 30.5918(19) −3.8528 −2.9348 −3.8560 −3.6581 −3.8625 −1.9195(20) −3.3220 −3.2050 −3.1769 −2.1483 −3.3220 −2.3517(21) −5.1008 −0.3904 −10.1504 −0.4449 −10.1517 −0.3823(22) −10.4027 −0.8673 −10.4015 −0.6342 −10.4027 −0.4999(23) −5.1756 −0.5856 −10.5336 −1.0135 −10.5359 −0.6038

Table 9: PSO, GWO, and HPSOGWO statistical results of fixed-dimension multimodal benchmark functions.

Problem number PSO GWO HPSOGWO𝜇 𝜎 𝜇 𝜎 𝜇 𝜎(14) 7.3915 7.1059 3.5216 6.3370 2.4176 5.5102(15) 0.0013 0.0021 9.2219𝑒 − 04 0.0013 0.0016 0.0189(16) −1.0203 0.1116 −1.0298 0.0203 −1.0227 0.1101(17) 0.3979 7.3060𝑒 − 05 0.4012 0.0191 0.4008 0.0147(18) 4.2260 9.6184 3.1308 1.3724 3.0609 1.2347(19) −3.8521 0.0610 −3.8502 0.0270 −3.8548 0.0173(20) −3.0887 0.3856 −3.0989 0.1063 −3.2722 0.0962(21) −4.7758 0.6949 −7.1098 2.3615 −7.7395 2.0893(22) −7.7834 3.4737 −6.9558 2.6253 −7.4304 2.4135(23) −4.6073 1.0954 −7.3778 2.5355 −7.3814 2.7851
Table 10: Time-consuming results of unimodal benchmark functions.

Problem PSO GWO HPSOGWO
TIC and TOC CPU time Clock TIC and TOC CPU time Clock TIC and TOC CPU time Clock(1) 1.02847 0.0176203 1.052 1.01117 0.0526014 1.021 1.00342 0.0105 1.002(2) 1.0319 0.011 1.011 1.01083 0.0257021 1.041 1.00562 0.011 1.011(3) 1.00905 0.051 1.018 1.01281 0.002 1.025 1.0031 0.0211 1.017(4) 1.00417 0.00031 1.018 1.01785 0.00011 1.036 0.789512 0.00015 1.014(5) 1.0151 0.0523051 1.019 1.01501 0.0213012 1.025 1.00190 0.00010 1.012(6) 1.00567 0.0276408 1.115 1.01479 0.0136071 1.024 1.00471 0.0132091 1.010(7) 1.018 0.0765021 1.016 1.00507 0.0367013 1.037 1.00140 0.0116701 1.014

Table 11: Time-consuming results of multimodal benchmark functions.

Problem PSO GWO HPSOGWO
TIC and TOC CPU time Clock TIC and TOC CPU time Clock TIC and TOC CPU time Clock(8) 1.01232 0.0232001 1.017 1.00181 0.0260007 1.004 1.00211 0.0108021 1.000(9) 1.01371 0.200301 1.019 1.00617 0.0417009 1.010 1.00781 0.00321 1.008(10) 1.01709 0.0717003 1.011 1.01117 0.0837056 1.08 1.00125 0.0215302 1.009(11) 1.01731 0.0011 1.012 1.0160 0.0011 1.009 1.00157 0.006 1.002(12) 1.02019 0.0211005 1.014 1.00397 0.0417042 1.010 1.00719 0.0272012 1.007(13) 1.01214 0.431507 1.019 1.0157 0.0266007 1.007 1.01237 0.0117009 1.001
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Figure 3: Continued.
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Figure 3: Convergence curve of PSO, GWO, and HPSOGWO variants on fixed-dimension multimodal functions.

Table 12: Time-consuming results of fixed-dimension multimodal benchmark functions.

Problem PSO GWO HPSOGWO
TIC and TOC CPU time Clock TIC and TOC CPU time Clock TIC and TOC CPU time Clock(14) 1.01375 0.0317 1.087 1.00787 0.0415123 1.012 1.00423 0.0003 1.005(15) 1.02471 0.8783879 1.069 1.00581 0.0529014 1.017 1.01247 0.0126391 1.009(16) 1.01691 0.00097 1.015 0.897854 0.0372012 1.008 1.01219 0.00161 1.006(17) 1.01719 0.8788782 1.098 1.02139 0.0156071 1.019 1.00194 0.0136321 1.014(18) 1.03241 0.03715 1.045 1.00596 0.0166701 1.024 1.00279 0.00107 1.011(19) 1.00607 0.5198069 1.096 1.01685 0.0196041 1.036 1.0203 0.0017981 1.024(20) 1.01307 0.59741 1.045 1.01652 0.0413012 1.006 1.00734 0.00231 1.001(21) 1.00009 0.00077 1.011 1.01727 0.0146781 1.001 1.02751 0.00001 1.000(22) 0.906710 0.61981 0.856 1.00582 0.0712109 1.013 1.0071 0.02041 1.008(23) 1.03272 0.0335917 1.066 1.00522 0.0192509 1.010 1.01017 0.0087552 1.002

Optimizer to produce both variants’ strength. Twenty-three
classical problems are used to test the quality of the hybrid
variant compared to GWO and PSO. Experimental solutions
proved that hybrid variant is more reliable in giving superior
quality of solutions with reasonable computational iteration
as compared to PSO and GWO.
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