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Analysing the economic burden of the seasonal influenza is highly essential due to the large number of outbreaks in recent years.
Mathematical and actuarial models can be considered as management tools to understand the dynamical behavior, predict the risk,
and compute it.This study is an attempt to develop conceptual model to investigate the economic burden due to seasonal influenza.
The compartment SIS (susceptible-infected-susceptible) model is used to capture the dynamical behavior of influenza. Considering
the current investment and future medical care expenditure as premium payment and benefit (claim), respectively, the insurance
and actuarial based conceptual model is proposed tomodel the present economic burden due to the spread of influenza. Simulation
is carried out to demonstrate the variation of the present economic burden with respect to model parameters.The sensitivity of the
present economic burden is studied with respect to the risk of disease spread. The basic reproduction is used to identify the risk
of disease spread. Impact of the seasonality is studied by introducing the seasonally varying infection rate. The proposed model
provides theoretical background to investigate the economic burden of seasonal influenza.

1. Introduction

Infectious diseases such as Dengue, Ebola, SARS, Zika, and
various types of influenza are viral infections that are of
major public health concern in tropical and subtropical
countries [1]. Influenza, generally known as “the flu,” is
a sessional infectious disease caused by virus. High fever,
runny nose, sore throat, muscle pains, headache, cough, and
feeling lethargic can be considered as common symptoms.
Seasonal influenza can cause mild to severe illness and
even death, particularly in some high-risk individuals such
as pregnant women, children, very old people, and people
with chronic underlying medical conditions such as cancer,
diabetes mellitus, and heart diseases. Three different types
of influenza viruses generally affect humans, namely, Type
A, Type B, and Type C. In recent years, the influenza A
virus subtypes H1N1 and H3N2 have been in circulation.
In addition, there are two types of B viruses that are also
circulating as seasonal influenza viruses. However, influenza
C may be considered as less of a disease burden [2].

Normally, the influenza virus spreads over a short distance
through the air from coughs or sneezes. Human mobility is

the main responsible factor for the spread over long distance.
Annual influenza outbreaks occur around the world and
cause significant morbidity and mortality. Since the virus
survives in cold environments with low relative humidity,
normally the influenza outbreak can be seen in winter season
in the Northern and SouthernHemispheres. Generally, in the
tropical and subtropical region outbreaks may occur at any
time of the year. However, in most of the tropical countries
these peaks of infection are seen mainly during the rainy
season [3]. In Sri Lanka, for the last few years, influenza
epidemic outbreak has been generally observed during April
to June and again in November to January.

From a public health and community point of view,
seasonal influenza epidemics spread rapidly and are very
difficult to control. Seasonal influenza spreads all over the
world as an annual outbreak, making about three to five
million severe illness cases and about 250,000 to 500,000
death cases [4]. In the United States approximately, annually,
from 5% to 20% of the individuals are infectedwith influenza.
Further, the United States health report indicates that about
3,000 to 49,000 influenza-associated deaths occur every year.
According to the WHO and health report, in Sri Lanka,

Hindawi
Journal of Applied Mathematics
Volume 2017, Article ID 4264737, 6 pages
http://dx.doi.org/10.1155/2017/4264737

http://dx.doi.org/10.1155/2017/4264737


2 Journal of Applied Mathematics

for the last few years, it has been generally observed that
there is high trend concerning the spread of influenza. This
epidemics risk causes enormous economic loss and serious
adverse events leading to hospitalization. In USA, annual
economic burden due to seasonal influenza is approximately
more than 1 billion US $ [3–5]. However, in Sri Lanka the
annual economic losses due to this epidemic risk have not yet
been addressed.

Due to significant level of outbreaks in and around the
world including Sri Lanka during recent years, investigat-
ing the economic burden of annual seasonal influenza is
motivated. The economic burden can be classified in two
ways, namely, individual level which accounts for medical
and death expenditures and public level which accounts for
the burden due to loss of human days. This study is an
attempt to develop the conceptualmodel to capture economic
losses in an individual level due to influenza. However, the
proposed tool is only responsible for identifying losses for
personal medical care. Classical compartment model is used
to describe the spread of disease; model parameters are used
to capture the seasonal/climatic impacts. Epidemiological
insurance is designed to represent expenditures due to
personal medical care and actuarial based computation tool
is proposed to compute the economic burden.

This paper is organized in the following way. Classical
compartment model, insurance based model, and actuarial
tools are presented in Section 2. Mathematical analysis of the
model is also presented in Section 2. In Section 3, numerical
results and discussion are presented. Finally, conclusion
remarks and further steps are highlighted in Section 4.

2. Mathematical Models

In this section, first, we introduce the classical compartment
deterministic model to study the dynamics of influenza.
Secondly, mathematical and actuarial analysis of the epi-
demic model is discussed and a basic insurance model is
constructed.

2.1. Classical Compartment Model. Since influenza virus is
constantly changing, people can get infected multiple times
throughout their lives. This concept is mathematically mod-
eled by using classical SIS (susceptible (𝑆), infected (𝐼), sus-
ceptible) compartments [6, 7]. Entire population is divided
into two compartments, namely, susceptible as previously
unexposed to the disease and infected as currently colonized
by the virus. Since the objective is to investigate the annual
seasonal economic losses due to individual medical care,
impacts of the population demography, births, deaths, and
migration, are not significant. Hence, omitting such effects,
model is developed by considering transition only from
compartment 𝑆 to 𝐼 and 𝐼 to 𝑆. Let 𝑆(𝑡) and 𝐼(𝑡) denote
the number of susceptible and infected ones at time 𝑡,
respectively.The increment of rate of change of infected cases
is proportional to the number of susceptible individuals and
the number of individuals previously infected. It also noted
that such a rate is also proportional to number of transitions
from infected to susceptible cases. Taking 𝑏 > 0, as a
potentially infective contact rate, 𝑝 > 0 as the probability of

infection per contact, 𝐷 > 0 as the average disease duration,
and𝑁 as a total population, simple SISmodel is given by (1a),
(1b), and (1c).

𝑑𝑆
𝑑𝑡 = −

𝑝𝑏
𝑁 𝑆 (𝑡) 𝐼 (𝑡) +

1
𝐷𝐼 (𝑡) , (1a)

𝑑𝐼
𝑑𝑡 =

𝑝𝑏
𝑁 𝑆 (𝑡) 𝐼 (𝑡) −

1
𝐷𝐼 (𝑡) , (1b)

with

𝑆 (0) > 0,
𝐼 (0) > 0,

𝑆 (𝑡) + 𝐼 (𝑡) = 𝑁, ∀𝑡 ≥ 0.
(1c)

Taking population fraction, 𝑆∗(𝑡) = 𝑆(𝑡)/𝑁, 𝐼∗(𝑡) = 𝐼(𝑡)/𝑁,
introducing rate of infection, 𝛽, as product of 𝑝 and 𝑏 and the
rate of recovery, 𝛾 = 1/𝐷, and considering close environment
(i.e., 𝑆(𝑡)+𝐼(𝑡) = 𝑁, ∀𝑡 ≥ 0) and dropping ∗, the system (1a),
(1b), and (1c) reads as [8, 9]

𝑑𝐼
𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) ,

with initial condition 𝑆 (0) > 0, 𝐼 (0) > 0.
(2)

2.2. Mathematical Analysis of the Model. Equation (2) can be
further simplified and one can obtain an analytical solution
given by

𝑑𝐼
𝑑𝑡 = (𝛽 (1 − 𝐼 (𝑡)) − 𝛾) 𝐼 (𝑡) (3a)

𝐼 (𝑡) = 𝐼 (0) ∫𝑇
0

(𝛽 (1 − 𝐼 (𝑡)) − 𝛾) 𝐼 (𝑡) 𝑑𝑡 (3b)

𝐼 (𝑡) = (𝛽 − 𝛾)
𝛽 + (((𝛽 − 𝛾) /𝐼 (0)) − 𝛽) exp (− (𝛽 − 𝛾) 𝑡) . (3c)

Equation (2) has two equilibriumpoints, namely, disease-free
equilibrium point (𝐼de = 0) and the endemic equilibrium
point (𝐼ee = (𝛽 − 𝛾)/𝛽). One can see, using linear stability
analysis, disease-free equilibrium point, 𝐼de, is locally asymp-
totically stable if 𝛽 < 𝛾 and unstable if 𝛽 > 𝛾, whereas
the endemic equilibrium point, 𝐼ee, is locally asymptotically
stable if 𝛽 > 𝛾 and unstable if 𝛽 < 𝛾 [9–11].The product of the
rate of infection, 𝛽, and the average duration of the infectious
period, 1/𝛾, is the expected number of new infections from
one infected individual in a fully susceptible population
through the entire duration of the infectious period. This
parameter is known as a basic reproduction number, 𝑅0,
and if 𝑅0 > 1, an introduced infectious individual leads
to more than one infection so the disease spreads in the
population. One can easily see that if 𝑅0 < 1, the infection
in one individual cannot replace itself so the disease dies
out. Figure 1 displays variation of infected population fraction
with respect to different rate of infection, 𝛽.

The infection rate,𝛽, depends on the season, demography,
and other external factors such as socioeconomic factors,
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Figure 1: (a) Variation of infected population fraction when 𝑅0 < 1. (b) Variation of infected population fraction when 𝑅0 > 1. (c)
Corresponding 𝑅0 variation. (d) Corresponding 𝛽: this simulation is done, fixing 𝛾 = 0.55.

living conditions and life style, and the recovery rate, 𝛾, which
highly depends on the type of population, age group, and
other biological factors. Since our objective is to include the
seasonality impact, 𝛽 can be chosen to represent seasonal
variation. Since the basic reproduction number,𝑅0, is defined
as the ratio between infection and recovery rates, 𝑅0 can be
considered as the representor of the spread risk of influenza
due to external factors. Now 𝛽 may vary periodically due to
climatic variations. Mathematically, the seasonal contact rate
is generally defined as sinusoidal, such that

𝛽 (𝑡) = 𝛽0 (1 + 𝜔 cos (2𝜋𝑡)) , (4)

where 𝜔 is the amplitude of seasonal variation in transmis-
sion and 𝛽0 is the constant infection rate without seasonal
impact [12, 13]. It is understood that sinusoidal forcing of
transmission is a crude assumption for influenza. However
for simplicity and since our objective is to develop a con-
ceptual model, in this research we incorporate sinusoidal
functions.

2.3. Insurance Based Actuarial/Probabilistic Model. In classi-
cal SISmodel defined in (2), one can see these compartments
play similar roles in an insurance model. Susceptible group
facing the risk of being infected by influenza form the invest-
ment or insurance fund by depositing or investing or paying
premiums, to get benefit or return to cover the medical care
expenses incurred if infected [14]. During the outbreak of the
influenza, the infected policyholders/investors would benefit
from the claim (return) payments provided by the insur-
ance/investment fund. Simply speaking the susceptible group
make investment to cover future medical expenses. Present
investment amount or premium can also be considered as
the current economic burden due to the future medical
expenditure. Now considering 𝑆(𝑡) and 𝐼(𝑡) as the probability
of an individual being susceptible and infected, respectively,
at the time 𝑡, one can redefine (2) as a probabilistic (an
actuarial) model to describe the dynamics of investments
versus expenditures.

Considering the expenditure side of the investment
(insurance), expected (actuarial) present value of 𝑡 period
unit benefit (claim) payment, 𝐸[𝐵], is defined in (5a) [15]:

𝐸 [𝐵 (𝑡)] = ∫𝑡
0

exp (−𝛿𝑡)Prob. of an individual being infected at time 𝑡 𝑑𝑡 (5a)

= ∫𝑡
0

exp (−𝛿𝑡) 𝐼 (𝑡) 𝑑𝑡, (5b)
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where 𝛿 > 0 is known as the discounting force of interest.
Similarly, one can define the income side of the investment

package as the expected (actuarial) present value of 𝑡 period
premium payment (investment), 𝐸[𝑃], as in (5c) [15].

𝐸 [𝑃 (𝑡)] = ∫𝑡
0

exp (−𝛿𝑡)Prob. of an individual being susceptible at time 𝑡 𝑑𝑡 (5c)

= ∫𝑡
0

exp (−𝛿𝑡) 𝑆 (𝑡) 𝑑𝑡. (5d)

Using the equivalence principle technique, premium pay-
ment/current economic burden, 𝜋, can be obtained [15].

𝜋𝐸 [present value of premium]
= 𝐸 [present value of future benefit] . (6)

Therefore, 𝜋 can be given in

𝜋 (𝑡) = 𝐸 [𝐵 (𝑡)]𝐸 [𝑃 (𝑡)] =
∫𝑡
0
exp (−𝛿𝑡) 𝐼 (𝑡) 𝑑𝑡

∫𝑡
0
exp (−𝛿𝑡) 𝑆 (𝑡) 𝑑𝑡 . (7)

Expected present premium value given in (5c) can be further
modified.

𝐸 [𝑃 (𝑡)] = ∫𝑡
0

exp (−𝛿𝑡) 𝑆 (𝑡) 𝑑𝑡

= ∫𝑡
0

𝑆 (𝑡) 𝑑𝑑𝑡 (
exp (−𝛿𝑡)
−𝛿 )𝑑𝑡

= 1𝛿 (𝑆 (0) − exp (−𝛿𝑡) 𝑆 (𝑡)) −
1
𝛿

⋅ ∫𝑡
0

exp (−𝛿𝑡) 𝑑𝐼 (𝑡)𝑑𝑡 𝑑𝑡 =
1
𝛿 (𝑆 (0) + 𝐼 (0)

− exp (−𝛿𝑡) (𝑆 (𝑡) + 𝐼 (t)) − 𝛿∫𝑡
0

exp (−𝛿𝑡) 𝐼 (𝑡) 𝑑𝑡) .

(8)

Since 𝑆(𝑡) + 𝐼(𝑡) = 1, ∀𝑡, 𝐸[𝑃(𝑡)] can be expressed as in

𝐸 [𝑃 (𝑡)] = 1𝛿 (1 − exp (−𝛿𝑡) − 𝛿𝐸 [𝐵 (𝑡)]) . (9)

Now the premium payment/current economic burden, 𝜋, is
given in

𝜋 (𝑡) = 𝛿𝐸 [𝐵 (𝑡)]
1 − exp (−𝛿𝑡) − 𝛿𝐸 [𝐵 (𝑡)] . (10)

The conceptual model to compute the economic burden due
to seasonal influenza is given in

𝜋 (𝑡) = 𝛿𝐸 [𝐵 (𝑡)]
1 − exp (−𝛿𝑡) − 𝛿𝐸 [𝐵 (𝑡)] , (11a)

𝐸 [𝐵 (𝑡)] = ∫𝑡
0

exp (−𝛿𝑡) 𝐼 (𝑡) 𝑑𝑡, (11b)

𝑑𝐼
𝑑𝑡 = 𝛽 (1 − 𝐼 (𝑡)) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) ,

with initial condition 𝐼 (0) > 0.
(11c)

2.4. Algorithm for Computing the Economic Burden. The
system (11a), (11b), and (11c) can be evaluated taking analytical
solution given in (3a). By keeping the record of infected
population, it is possible to set up the reported infected
table and hence the approximated method can be proposed.
From the infected table, we obtain a piecewise constant
approximation of the continuous function, 𝐼(𝑡), and current
economic burden, 𝜋, is now given in (12a), (12b), (12c), and
(12d).

𝐼 (𝑡) = {{{
𝐼𝑘; 𝑘 − 1 < 𝑡 ≤ 𝑘
0; otherwise. (12a)

𝐸 [𝐵 (𝑡)] = ∫𝑡
0

exp (−𝛿𝑡) 𝐼 (𝑡) 𝑑𝑡

≈ ∫𝑡
0

exp (−𝛿𝑡) 𝐼 (𝑡) 𝑑𝑡
(12b)

𝐸 [𝐵 (𝑡)] ≈
𝑚

∑
𝑘=1

(exp (−𝛿 (𝑘 − 1)) − exp (−𝛿𝑘)𝛿 ) 𝐼𝑘. (12c)

Now 𝜋 can be expressed as

𝜋 (𝑚) = 𝜗
1 − exp (−𝛿𝑚) − 𝜗 , (12d)

where

𝜗 =
𝑚

∑
𝑘=1

(exp (−𝛿 (𝑘 − 1)) − exp (−𝛿𝑘)) . (13)

3. Results and Discussion

Figure 2 displays the variation of the current economic bur-
den (premium) with respect to the contact rate. It is observed
that the economic burden rises up when the infection rate,
𝛽, increases. It is clear that, with higher infection rate, the
disease spreads out quickly and hence infected fraction is
dominant. One can see that current premium is higher than 1
when 𝛽 exceeds 1.8. It means that when infected rate exceeds
this threshold value, we need to pay more than one unit in
order to have a unit benefit (claim) in future.

Figure 3 shows the variation of the current economic
burden (premium) with respect to the infected rate, 𝛽,
and recovery rate, 𝛾. The corresponding variation of basic
reproduction number, 𝑅0, under same domain of infected
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Figure 2: Variation of the present economic burden/premium (𝜋)
with respect to rate of infection (𝛽). Here 𝛾 = 0.55 and 𝛿 = 0.05.
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Figure 3: Variation of the present economic burden/premium (𝜋)
with respect to rate of contact (𝛽) and 𝛾. Here 𝛿 = 0.05.

rate and recovery rate, is given by Figure 4. Since the basic
reproduction number increases significantly, it is understood
that the current economic burden also rises. Further, since
𝑅0 accounts for the spread risk due to various external
factors, it is possible to identify the sensitivity of the premium
with respect to particular external factor if 𝑅0 is defined
accordingly.

Figure 5 shows the variation of infected population
fraction with the constant infection rate and the seasonal
infection rate with 𝛽0 = 1.66. Seasonal variation can be
captured via the seasonal infection rate. However, it is noted
that, to get realistic situation, we need to identify appropriate
parameters in (4).

Figure 6 displays the variation of the current economic
burden with respect to time under the infection contact rate
and seasonal infection rate. The dynamics of the present
economic burden now depends on the amplitude (𝜔) of the
seasonal variation.

Figure 7 demonstrates the variation of the current eco-
nomic burden with respect to the discounting force interest,
𝛿, and the basic reproduction number, 𝑅0. The discounting
force of interest is responsible factor for computing the
equivalent present amount of future sums. Further, Figure 7
displays the variability of the current economic burden
with respect to various external factors as well as future
uncertainty too. If 𝑅0 and 𝛿 are defined appropriately, it is
possible to capture the variability of economic burden due to
uncertainty of external parameters.
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Figure 4: Variation of the basic reproduction number (𝑅0) with
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red), defined in (4). Here 𝛽0 = 1.66 and 𝜔 = 0.28.
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Figure 6: Variation of the current economic burden with respect
to time under constant infection rate, 𝛽 (in blue), and the seasonal
infection rate, 𝛽(𝑡) (in red), defined in (4). Here 𝛽0 = 1.66 and 𝜔 =0.28.

4. Conclusions

The economic burden due to seasonal influenza outbreaks
is a critical budgetary problem in many countries due to
loss of human hours as well as individual medical care
expenditures. Using classical compartment SIS model, the
dynamics of influenza is studied. Considering the current
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discounting force interest, 𝛿, and basic reproduction number, 𝑅0.

investment and future medical care expenditure as premium
payment and benefit (claim), respectively, the insurance
based conceptualmodel is proposed to investigate the present
economic burden due to the spread of disease. The expected
present economic burden is defined as the present investment
to cover the future unit medical expenditure. This value is
computed using the actuarial based model via equivalence
principle. It is observed that the present economic burden
depends on model parameters such as the infection rate, 𝛽,
and recovery rate, 𝛾. Since the infection rate highly depends
on climatic variation, hence seasonality can be captured by
introducing appropriate seasonally dependent function for
it. It is also noted that dynamics of the economic burden
depends on the amplitude of the seasonality.

This study can be extended to develop feasible premium
schemes depending ondifferent seasonal conditions by incor-
porating with reported infected data. Further, the model can
be extended by including indirect cost such as expenditure
due to loss of human hours, death, and community expendi-
tures.
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