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We consider a clustering approach based on interval pattern concepts. Exact algorithms developed within the framework of
this approach are unable to produce a solution for high-dimensional data in a reasonable time, so we propose a fast greedy
algorithm which solves the problem in geometrical reformulation and shows a good rate of convergence and adequate accuracy
for experimental high-dimensional data. Particularly, the algorithm provided high-quality clustering of tactile frames registered by
Medical Tactile Endosurgical Complex.

1. Introduction

We consider the problem of clustering, that is, splitting a
finite set 𝑋 ⊂ R𝑑 into disjoint subsets (called clusters) in
such a way that points from the same cluster are similar
(with respect to some criterion) and points from different
clusters are dissimilar (see, e.g., [1]). It is convenient to present
the input data in the form of a numerical context (table)
whose rows correspond to objects and columns correspond
to attributes of the objects.

Formal concept analysis (FCA) is a data analysis method
based on applied lattice theory and order theory. The object-
attribute binary relation is visualized with the use of the line
diagram of the concept lattice. Within the framework of this
theory a formal concept is defined as a pair (extent, intent)
obeying a Galois connection (for exact definitions see the
monograph [2] by Ganter and Wille).

There exist several generalizations of FCA to fuzzy and
numerical contexts. One of them is known as the theory of
pattern structures introduced byGanter andKuznetsov in [3].
An important particular case of pattern concepts, which are
the key object in the theory of pattern structures, is interval
pattern concepts with the operation of interval intersection.
Interval pattern concepts allow one to apply cluster analysis to

rows of formal numerical contexts. In this case the criterion of
similarity consists in belonging of all the differences between
the values of the corresponding attributes to given intervals.

It can be easily seen that the problemof finding an interval
pattern concept of maximum extent size (i.e., cardinality) can
be reformulated as the problem of the optimal positioning of
a 𝑑-dimensional box with given edge lengths for the given set𝑋, that is, finding a position of the box that maximizes the
number of points of the set𝑋 enclosed by the box (the details
are given below in Section 2.2).

The existing algorithms that solve the problem of finding
the optimal position of a box do not allow one to obtain an
exact or at least approximate solution for high-dimensional
data within a reasonable time (see a detailed survey in
Section 2.2). The main goal of this paper is to propose a
greedy algorithmwhich gives an approximate solution to this
problem and a clustering algorithm based on the optimal
positioning problem.We propose a clustering algorithmwith

𝑂((𝑑𝑛 log (𝑛) + 𝑑3𝑛1−1/𝑑𝑠min
𝑓 (𝑛, 𝑑)) 𝑛

𝑐min
) (1)

worst-case time and 𝑂(𝑑𝑛) space complexity, where 𝑓(𝑛, 𝑑)
denotes the number of iterations of the main stage of the
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algorithm, and parameters 𝑠min and 𝑐min regulate the duration
of each iteration. Greater number of iterations and greater
duration of each iteration provide better approximation.

The rest of the paper is organized as follows. In Section 2
we introduce the main definitions and formalize the state-
ment of the problem. In Sections 3 and 4 we formulate our
algorithms. In Sections 5 and 6 we describe the validation
results and make some concluding remarks.

2. Main Definitions and Statement of
the Problem

In this section we start with the main definitions from the
theory of formal concepts and then present a geometrical
reformulation of the problem of finding the interval pattern
concept of maximum extent size (we call it simply the
maximum interval pattern concept).

2.1. Formal Concepts. Let us recall themain definitions which
we need to formalize our clusteringmethod based on interval
pattern concepts. Additional details can be found in [2, 3].

Definition 1. An upper (lower) semilattice is a partially
ordered set (𝑀, ≤) such that for any elements 𝑥, 𝑦 ∈ 𝑀
there exists a unique least upper bound (greatest lower bound,
resp.).

Definition 2. A semilattice operation on the set𝑀 is a binary
operation ⊓:𝑀×𝑀 that features the following properties for
a certain 𝑒 ∈ 𝑀 and any elements 𝑥, 𝑦, 𝑧 ∈ 𝑀:

(i) 𝑥 ⊓ 𝑥 = 𝑥 (idempotency).
(ii) 𝑥 ⊓ 𝑦 = 𝑦 ⊓ 𝑥 (commutativity).
(iii) (𝑥 ⊓ 𝑦) ⊓ 𝑧 = 𝑥 ⊓ (𝑦 ⊓ 𝑧) (associativity).
(iv) 𝑒 ⊓ 𝑥 = 𝑒.

Definition 3. A lattice is an ordered set (𝐿, ≤) which is at the
same time an upper and a lower semilattice.

Definition 4. Let (𝑃, ≤𝑃) and (𝑄, ≤𝑄) be partially ordered sets.
A Galois connection between these sets is a pair of maps 𝜑:𝑃 → 𝑄 and 𝜓: 𝑄 → 𝑃 (each of them is referred to as a
Galois operator) such that the following relations hold for any𝑝1, 𝑝2 ∈ 𝑃 and 𝑞1, 𝑞2 ∈ 𝑄:

(i) 𝑝1 ≤𝑃 𝑝2 ⇒ 𝜑(𝑝1) ≥𝑄 𝜑(𝑝2) (anti-isotone property).
(ii) 𝑞1 ≤𝑄 𝑞2 ⇒ 𝜓(𝑞1) ≥𝑃 𝜓(𝑞2) (anti-isotone property).
(iii) 𝑝1 ≤𝑃 𝜓(𝜑(𝑝1)) and 𝑞1 ≤𝑄 𝜑(𝜓(𝑞1)) (isotone prop-

erty).

Applying the Galois operator twice, namely, 𝜓(𝜑(𝑝)) and𝜑(𝜓(𝑞)), defines a closure operator.
Definition 5. A closure operator (⋅) on𝑀 is a map that assigns
a closure 𝑋 ⊆ 𝑀 to each subset 𝑋 ⊆ 𝑀 under the following
conditions:

(i) 𝑋 ≤ 𝑌 ⇒ 𝑋 ≤ 𝑌 (monotony).

(ii) 𝑋 ≤ 𝑋 (extensity).

(iii) 𝑋 = 𝑋 (idempotency).

Definition 6. A pattern structure is a triple (𝐺, (𝐷, ⊓), 𝛿),
where 𝐺 is a set of objects, (𝐷, ⊓) is a meet-semilattice of
potential object descriptions, and 𝛿:𝐺 → 𝐷 is a function that
associates descriptions with objects.

The Galois connection between the subsets of the set of
objects and the set of descriptions for the pattern structure(𝐺, (𝐷, ⊓), 𝛿) is defined as follows:

𝐴◻ fl ⨅
𝑔∈𝐴

𝛿 (𝑔) , where 𝐴 ⊆ 𝐺,
𝑑◻ fl {𝑔 ∈ 𝐺 | 𝑑 ⊑ 𝛿 (𝑔)} , where 𝐴 ⊆ 𝐺.

(2)

Definition 7. A pattern concept of the pattern structure(𝐺, (𝐷, ⊓), 𝛿) is a pair (𝐴, 𝑑), where 𝐴 ⊆ 𝐺 is a subset of the
set of objects and 𝑑 ∈ 𝐷 is one of the descriptions in the
semilattice, such that 𝐴◻ = 𝑑 and 𝑑◻ = 𝐴; 𝐴 is called the
pattern extent of the concept and 𝑑 is the pattern intent.

A particular case of a pattern concept is the interval
pattern concept.The set𝐷 consists of the rows of a numerical
context, which are treated as tuples of intervals of zero length.
An interval pattern concept is a pair (𝐴, 𝑑), where 𝐴 is a
subset of the set of objects and 𝑑 is a tuple of intervals with
ends determined by the smallest and the largest values of the
corresponding component in the descriptions of all objects in𝐴.

Interval pattern concepts are convenient to use in the
analysis of numerical contexts, when there is a need to divide
all data into clusters that comprise objects in which the
numerical data is similarly “distributed” in the rows.

For each component of an interval pattern concept we
introduce the width 𝜎: the difference between the largest
and the smallest values of the component. Then a clustering
procedure can be defined using a standard greedy approach.
Specifically, at each step the maximum interval pattern
concept is identified, that is, an interval pattern concept with
themaximumnumber of objects, whosewidthwith respect to
each component does not exceed a predefined 𝜎. The objects
of the identified interval pattern concept are combined into
a cluster and excluded from the set of objects analyzed at
subsequent steps.

In Example 1 presented in Table 1 the objects are pupils
and the numerical data of the context consist of the grades
they got at exams in various disciplines.

We need to divide the set of pupils into clusters in such a
way that the grades of pupils in the same cluster differ by at
most 1 for each of the disciplines. Such a setting corresponds
to 𝜎 = 1; in this case we obtain 6 clusters (interval pattern
concepts whose width is not greater than 1), each containing
one pupil. In the case 𝜎 = 2 we arrive at the same 6 clusters.

When 𝜎 = 3 we have five clusters {𝐴,𝐷}◻ = {[8, 9], [9, 9],[9, 10], [6, 9]}, {𝐵}, {𝐶}, {𝐸}, {𝐹}, and in the case 𝜎 = 4
we obtain three clusters {𝐴, 𝐶,𝐷}◻ = {[6, 9], [5, 9], [9, 10],[6, 9]}, {𝐵, 𝐸}◻ = {[8, 8], [2, 4], [6, 6], [5, 9]}, {𝐹}.
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Table 1: A fuzzy formal context, where the objects are pupils and
the attributes are disciplines.

Arts Mathematics Computer science Sports
A 9 9 10 9
B 8 2 6 5
C 6 5 10 7
D 8 9 9 6
E 8 4 6 9
F 6 5 2 10

Example 2. In the conditions of the previous example let us
set 𝜎1 = 1, 𝜎2 = 1, 𝜎3 = 10, 𝜎4 = 3. Then the set of pupils can
be divided into four clusters {𝐴,𝐷}, {𝐶, 𝐹}, {𝐵}, {𝐸}:

{𝐴,𝐷}◻ = {[8, 9] , [9, 9] , [9, 10] , [6, 9]} ,
{𝐶, 𝐹}◻ = {[6, 6] , [5, 5] , [2, 10] , [7, 10]} ,
{𝐵}◻ = {[8, 8] , [2, 2] , [6, 6] , [5, 5]} ,
{𝐸}◻ = {[8, 8] , [4, 4] , [6, 6] , [9, 9]} .

(3)

Clustering methods based on interval pattern concepts
find applications in the analysis of experimental data. For
instance, applications of such methods to gene expression
analysis were discussed in [4, 5].

2.2. Geometry. Let 𝑃 be a set of 𝑛 points in R𝑑 (𝑑 ∈ N) and𝛿1, 𝛿2, . . . , 𝛿𝑑 be a set of positive real numbers.

Definition 8. A 𝑑-orthotope (also called a box) with center
𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and edge lengths 𝛿1, 𝛿2, . . . , 𝛿𝑑 is the
Cartesian product of the intervals

[𝑥1 − 𝛿12 , 𝑥1 +
𝛿12 ] × ⋅ ⋅ ⋅ × [𝑥𝑑 −

𝛿𝑑2 , 𝑥𝑑 +
𝛿𝑑2 ] . (4)

It can be easily seen that the problem of identification
of maximum interval pattern concept can be reformulated
in terms of finding the optimal position of the box with the
edge lengths 𝛿1, 𝛿2, . . . , 𝛿𝑑, that is, maximizing the number of
points of set 𝑃 enclosed by the box. This formulation can be
generalized to the problem of finding the optimal position
of a ball in an arbitrary metric space, since any box can be
treated as a ball in the stretched 𝐿∞ metric in which the
distance 𝜌(𝑥, 𝑦) between the points 𝑥 = (𝑥1, . . . , 𝑥𝑑) and𝑦 = (𝑦1, . . . , 𝑦𝑑) is defined as

𝜌 (𝑥, 𝑦) = max
1≤𝑖≤𝑑

𝛿−1𝑖 𝑥𝑖 − 𝑦𝑖 . (5)

The problem of optimal positioning has been well studied
for 𝑑 = 2: some lower and sharp upper bounds on complexity
are known (see, e.g., [6, 7]). However, to the best of our
knowledge for the case of an arbitrary dimension 𝑑 no lower
bounds and no efficient exact algorithms are available so far.
de Figueiredo and da Fonseca noted [8] that the problem
can be solved exactly in roughly𝑂(𝑛𝑑+1/𝑑) time by projecting

the points onto a (𝑑 + 1)-dimensional paraboloid and using
half-space range searching data structures [9]. In the same
paper for the case of weighted points under certain additional
restrictions they also obtained a lower bound Ω(𝑛𝑑) for
exact algorithms and indicated that existing algorithms for
the unweighted version of the problem do not beat this
lower bound in the worst case. Eckstein et al. showed that a
generalization of the problem of optimal positioning whose
input also includes a set of prohibited points is NP-hard
[10].

Known approximate algorithms for optimal positioning
also have time complexity which depends on 𝑑 exponentially.
For example, de Figueiredo and da Fonseca suggested an
approximate algorithm [8] which solves the problem in
worst-case time 𝑂(3𝑑𝑛/𝜀𝑑−1), where 0 < 𝜀 < 1 is a given
approximation parameter. Due to exponential dependence
on 𝑑 these approximate algorithms are also practically inap-
plicable in the case of high dimension, and there is a need
to develop an algorithm which can produce an approximate
solution in reasonable time.

3. A Greedy Algorithm for Finding an
Approximately Optimal Position of a Box

In this section we present a greedy algorithm for finding an
approximately optimal position of a box with edge lengths
𝛿1, 𝛿2, . . . , 𝛿𝑑 for a set 𝑃 = {𝑝𝑖}𝑛𝑖=1 ⊂ R𝑑 (the order in
which points are listed in 𝑃 is insignificant). This algorithm
is auxiliary for the clustering method described in Section 4.

The algorithm has several input parameters: positive real
numbers 𝑠, 𝑠min, 𝜆 < 1, and a function 𝑓: N × N → N.
The parameters 𝑠, 𝑠min, and 𝜆 regulate the duration of one
iteration. The function 𝑓 takes the values 𝑛 and 𝑑 as inputs
and returns the number of iterations at the main stage of the
algorithm. Greater number of iterations and greater duration
of each iteration provide better approximation.

The algorithm includes two basic stages: the preprocess-
ing stage and the main stage.

3.1. Preprocessing

(1) At the first stage of our algorithm the box with the
edge lengths 𝛿1, 𝛿2, . . . , 𝛿𝑑 is transformed into the unit
cube (we call it simply the cube) by means of dividing
the 𝑖th coordinate of each point by 𝛿𝑖, 𝑖 = 1, . . . , 𝑑.
This stage can be performed in 𝑂(𝑑𝑛) operations.

(2) We consider the integer lattice with edges of length 1,
compute the number of points of 𝑃 in each cell, and
denote the cell that contains the maximum number
of points by 𝐶0. The cell 𝐶0 is called the base cube. Let𝑦0 ∈ R𝑑 denote the center of 𝐶0. This stage requires𝑂(𝑑𝑛) operations as well.

(3) At the final step of the preprocessing stage we build
a 𝑘-𝑑 tree data structure (which is used at the
main stage to organize the fast range search) in𝑂(𝑑𝑛 log(𝑛)) operations with the space complexity of𝑂(𝑑𝑛) (see [11, 12]).
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3.2. The Main Stage. Let 𝑞: 2R𝑑 → Z+ denote the function
which counts number of points of the set 𝑃 in an arbitrary
subset ofR𝑑. The main idea of our algorithm consists in con-
structing a finite sequence of cubes that starts from a random
point 𝑦 in the base cube and satisfies the condition that the
next cube contains more points than the previous one. Let𝐷𝑦1 , . . . , 𝐷𝑦𝑘(𝑦) denote these cubes with centers 𝑧𝑦1 , . . . , 𝑧𝑦𝑘(𝑦),
respectively. In our notation we have 𝑧𝑦1 = 𝑦 and 𝑞(𝐷𝑦𝑖 ) <𝑞(𝐷𝑦𝑖+1) for all 𝑖 ∈ {1, . . . , 𝑘(𝑦)−1}. After 𝑓(𝑛, 𝑑) iterations the
algorithm returns a locally optimal cube 𝐶.
Definition 9. The 𝑡-neighborhood of a cube𝐷 with center 𝑥 =(𝑥1, . . . , 𝑥𝑑) is the set consisting of all cubes with centers at
points of the form (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 ± 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑑) for all 𝑖 ∈{1, . . . , 𝑑}, that is, all cubes obtained through translation of𝐷
along one of the axes by the distance ±𝑡.

Now we describe the procedure of constructing the
sequence of cubes. Let𝑦 be an arbitrary point in the base cube𝐶0 and 𝑧𝑦1 = 𝑦, 𝐷𝑦1 be the cube with center at 𝑧𝑦1 , 𝑠1 = 𝑠.
In order to get a definite estimate on the precision of the
algorithm (see Theorem 11) we initialize the first iteration
deterministically by taking the center of 𝐶0 as 𝑦. Other
iterations are initialized randomly.

Suppose that the cubes 𝐷𝑦1 , . . . , 𝐷𝑦𝑚 with centers 𝑧𝑦1 , . . . ,𝑧𝑦𝑚, respectively, and the numbers 𝑠1, . . . , 𝑠𝑚 have been already
constructed. There are two possible cases.

(1) If there exists a cube𝐷 in the 𝑠𝑚-neighborhood of𝐷𝑦𝑚
such that 𝑞(𝐷) > 𝑞(𝐷𝑦𝑚), then we set 𝐷𝑦𝑚+1 = 𝐷, take
the center of 𝐷 as 𝑧𝑦𝑚+1, and take 𝑠𝑚+1 = 𝑠𝑚. In other
words, if there exists a cube in the 𝑠𝑚-neighborhood
of the current cube which contains more points of 𝑃,
then we move the current cube to this position.

(2) If there are no such cubes (i.e., all cubes in the 𝑠𝑚-
neighborhood of the current cube contain at most the
same number of points), then we set 𝐷𝑦𝑚+1 = 𝐷𝑦𝑚,𝑧𝑦𝑚+1 = 𝑧𝑦𝑚, and 𝑠𝑚+1 = 𝜆𝑠𝑚 (i.e., decrease the current
step size). If 𝑠𝑚+1 < 𝑠min (the step size threshold
is reached), then the procedure is ended and 𝐷𝑦𝑚 is
returned as the procedure result.

In order to obtain acceptable time complexity we impose
additional restrictions on the selection of the next cube.These
assumptions are necessary to avoid the situation where the
length of the sequence grows exponentially with𝑑. Validation
on experimental data confirmed that these restrictions do not
essentially affect the clustering results.

Restriction 1. All cubes in the sequence must have common
points with the base cube 𝐶0.

In Figure 1 we present an example of a set 𝑃 for which
this requirement causes a significant difference between the
exact solution and the solution produced by the algorithm.
However, this difference is essentially reduced at further steps
of the clustering algorithm as generally it affects only the
order in which clusters are constructed.

100

points

99

points
99

points

Figure 1: The base cube is colored red; the global optimum is blue.
There is no way to move from the red cube to the blue one without
losing touch with the base cube.

Restriction 2. For each individual coordinate it is not allowed
to translate the cube in the opposite directions at different
steps of the procedure described above.

The above restrictions lead to the following lemma.

Lemma 10. The main stage of the algorithm has

𝑂(𝑑3𝑛1−1/𝑑𝑠min
𝑓 (𝑛, 𝑑)) (6)

worst-case time complexity.

Proof. First we get an upper estimate for the length 𝑘(𝑦) of
the sequence of cubes (for an arbitrary 𝑦 ∈ 𝐶0). Due to
Restrictions 1 and 2 we have

𝑘 (𝑦) ≤ 𝑂( 𝑑
𝑠min

) . (7)

Thus, Restrictions 1 and 2 avoid the situationwhere the length
of the sequence grows exponentially with 𝑑. Each step of the
procedure of constructing the sequence of cubes requires 2𝑑
evaluations of the function 𝑞 for the cubes (i.e., 2𝑑 range
searches). With the use of a 𝑘-𝑑 tree the range search can be
performed with 𝑂(𝑑𝑛1−1/𝑑) worst-case time complexity (see
[13]). The procedure of constructing the sequence of cubes
involves 𝑓(𝑛, 𝑑) iterations, so the above complexity bound
holds.

Note that we also have a trivial estimate 𝑘(𝑦) ≤ 𝑛, as𝑞(𝐷𝑦𝑚) grows, and hence 𝑘(𝑦) ≤ 𝑞(𝐷𝑦
𝑘(𝑦)

) ≤ 𝑛. Thus, without
the imposed restrictions the worst-case complexity estimate

𝑂(𝑑2𝑛2−1/𝑑𝑓 (𝑛, 𝑑)) (8)

holds, and hence the restrictions can be omitted without
violation of practical feasibility in case if the number of
objects 𝑛 has the same order as the dimensionality 𝑑.
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3.3. Precision and Complexity of the Algorithm

Theorem 11. Let 𝑦0 be a center of 𝐶0, 𝐷𝑎𝑙g = 𝐷𝑦0𝑘(𝑦0) be a cube
produced by an algorithm iteration which was initialized with𝑦0 (and so for this iteration𝐷𝑦01 = 𝐶0), and𝐷𝑜𝑝𝑡 be an optimal
cube (i.e.,𝐷𝑜𝑝𝑡 ∈ argmax 𝑞(𝐷), where maximum is taken over
all unit cubes in R𝑑). Then

1
2𝑑 ≤

𝑞 (𝐷𝑎𝑙g)
𝑞 (𝐷𝑜𝑝𝑡) ≤ 1, (9)

and this estimate is sharp.

Proof. The upper estimate is trivial. The lower estimate
follows from the fact that 𝐷opt is covered by at most 2𝑑 cells
of the integer lattice with edges of length 1, and hence

𝑞 (𝐷opt) ≤ 2−𝑑𝑞 (𝐶0) ≤ 2−𝑑𝑞 (𝐷alg) . (10)

An example that shows that the estimate is sharp is similar
to the example from Figure 1. For example, we can locate the
center of 𝐷opt at the integer lattice node and put 2𝑑 points in𝐷opt in such a way that each cell of the integer lattice contains
atmost one of these points.Then, we select an arbitrary cell of
the integer lattice that is distant from 𝐷opt and put one point
to this cell, which becomes 𝐶0.
Theorem 12. The algorithm for finding an approximately
optimal position of the box has

𝑂(𝑑𝑛 log (𝑛) + 𝑑3𝑛1−1/𝑑𝑠min
𝑓 (𝑛, 𝑑)) (11)

worst-case time complexity and 𝑂(𝑑𝑛) space complexity.

Proof. Combining the estimates for the time and space
complexity of the preprocessing stage and the main stage of
the algorithm gives the bounds mentioned above.

Note that omitting Restrictions 1 and 2 results in the
worst-case time complexity estimate

𝑂(𝑑2𝑛2−1/𝑑𝑓 (𝑛, 𝑑)) . (12)

4. Clustering Algorithm

Now let us consider the clustering problem, that is, the
problem of splitting the given set 𝑃 = {𝑝𝑖}𝑛𝑖=1 ⊂ R𝑑

into mutually disjoint subsets 𝐶1, . . . , 𝐶𝑘. Following inter-
val pattern concept approach, we construct clusters with
controlled interval pattern concept width. We propose a
clustering algorithm based on the greedy approach and the
procedure for finding an approximately optimal position of
a box described in Section 3. The algorithm is not sensitive
to the order in which points 𝑃 are given. The parameters of
the algorithm include positive real numbers 𝛿1, 𝛿2, . . . , 𝛿𝑑 and
all parameters of the positioning algorithm, namely, 𝑠, 𝑠min, 𝜆,
and 𝑓(𝑛, 𝑑).

First, we put 𝑃1 = 𝑃 and find an approximately optimal
position 𝐷1 of the box with the edge lengths 𝛿1, . . . , 𝛿𝑑 for
the set 𝑃1. Now suppose that the sets𝐷1, . . . , 𝐷𝑖 and 𝑃1, . . . , 𝑃𝑖
have been already constructed and let 𝑃𝑖+1 = 𝑃𝑖 \ 𝐷𝑖. If 𝑃𝑖+1 =⌀ then the procedure is ended. Else we find an approximately
optimal position 𝐷𝑖+1 of the box for the set 𝑃𝑖+1. The output
of this procedure is a set of clusters 𝐶𝑖 = 𝑃𝑖 ∩ 𝐷𝑖.

In order to avoid producing a lot of small clusters
consisting of outliers we impose one more restriction.

Restriction 3.The resulting clusters must include at least 𝑐min
objects.

With this restriction if the size of 𝑃𝑖+1 ∩ 𝐷𝑖+1 is less than𝑐min then the procedure ends (and points belonging to 𝑃 \(𝐶1 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑖) are considered unclustered and referred to as
outliers).

Restriction 3 together withTheorem 12 immediately leads
to the following theorem.

Theorem 13. The clustering algorithm has

𝑂((𝑑𝑛 log (𝑛) + 𝑑3𝑛1−1/𝑑𝑠min
𝑓 (𝑛, 𝑑)) ⋅ 𝑛

𝑐min
) (13)

worst-case time complexity and 𝑂(𝑑𝑛) space complexity.

If Restrictions 1–3 are omitted, the worst-case time
complexity estimate is

𝑂(𝑑2𝑛3−1/𝑑𝑓 (𝑛, 𝑑)) . (14)

5. Validation

Validation of the clustering algorithm developed in this study
was performed on a dataset of tactile images registered by
the Medical Tactile Endosurgical Complex (MTEC) during
examination of artificial samples. MTEC allows intraoper-
ative mechanoreceptor tactile examination of tissues and
is already used in endoscopic surgery [14–16]. As methods
for automated analysis of medical tactile images are still
insufficient, validation results in particular and the developed
clustering algorithm in general provide new opportunities for
the medical domain applications.

The key component of MTEC is a tactile mechanorecep-
tor [17, Fig. 1]. Its operating head is equipped with 19 pressure
sensors that perform synchronous measurements 100 times
per second. Eachmeasurement result (called “a tactile frame”
and consisting of 19 values) is wirelessly transmitted to a
computer that performs preprocessing and visualization.The
sensors are located at the operating head surface which is a
circle with diameter 20mm.

In order to create a dataset of tactile images we utilized
MTEC for tactile examinations of three types of artificial
samples.The sampleswere similar to the L-samples utilized in
the study [17]—they were made using a soft silicone (Ecoflex
00-10, Shore hardness 00-10A) according to manufacturer’s
instructions and had a shape of a rectangular block with
length, width, and height of 40mm, 35mm, and 11mm,
respectively. The difference was in sizes and shapes of hard
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inclusions enclosed in the samples. For the first sample type
(ST1) the inclusion had a form of a spherical cap with base
diameter 8mm and height 2.4mm oriented for palpation
from the convex side. For the second sample type (ST2) the
inclusion had a form of a spherical cap with a base diameter
4.7mm and height 1.7mm also oriented for palpation from
the convex side. For the third sample type (ST3) the inclusions
were the same as for ST2, but they were oriented for palpation
from the flat side. For all sample types the inclusions were
located in the center at height of approximately 3mm. Thus,
sample types were similar with a difference in either size or
convexity of the inclusion. These samples simulated tissue
with malignant neoplasms.

Totally 55 tactile examinations of the described samples
were performed using MTEC. The contact angle was kept
approximately equal to 90∘, and inclusions were located close
to the center of the operating head surface. We performed
twenty-two, seventeen, and sixteen examinations for samples
of ST1, ST2, and ST3 types, respectively. For each examination
one tactile frame was selected, namely, the one with the
largest standard deviation (SD) of values, and other tactile
frames were disregarded. Visualization of tactile frames for
each sample type is presented in Figures 2(a)–2(c).

Thus, each examination was associated with a point in
R19, and the total number of points was 55. This set of points
was clustered using the developed clustering algorithm, and
the results were compared with the results of 𝑘-means
clustering (𝑘 = 3, Euclidean distance; see, e.g., [1]), which
was used as a reference. Scikit-learn implementation [18]
of 𝑘-means algorithm was utilized. Adjusted and raw Rand
indexes (clustering result versus original classes; see, e.g.,
[1]) were used as compared characteristics of the clustering
quality. Note that both clustering algorithms use random
initialization, so multiple runs were performed for clustering
quality estimation (specifically, 100 runs were performed to
estimate Rand index for each algorithm with given parame-
ters).

The results produced by both the proposed algorithm
and by the 𝑘-means algorithm were unsatisfactory. However,
the poor quality of the resulting clustering was predictable
as examining of a single sample can result in tactile frames
that are essentially different with respect to representation by
a point in R19 due to rotation and slight shifts of a tactile
mechanoreceptor.

To get better results we mapped the data to the new 9-
dimensional space of attributes. The new attributes included

(i) SD of all values in a tactile frame;
(ii) mean and SD of the values corresponding to 7 middle

sensors;
(iii) mean and SD of the values corresponding to 12 outer

sensors;
(iv) mean and SD of the values corresponding to sensors

that belong to the main diagonals (3 diagonals each
consisting of 5 sensors, 13 sensors in total; see Fig-
ure 2(d) for details);

(v) mean and SD of the values corresponding to sensors
that belong to the secondary diagonals (6 diagonals

Table 2: Correspondence between the original classes and the
clusters constructed by the proposed algorithm (with outliers).

1st cluster
9 points

2nd cluster
13 points

3rd cluster
22 points

Unclustered
11 points

ST1
22 points 9 points 1 points 5 points 7 points

ST2
17 points 0 points 12 points 3 points 2 points

ST3
16 points 0 points 0 points 14 points 2 points

Table 3: Correspondence between the original classes and the
clusters constructed by the proposed algorithm (no outliers).

1st cluster
11 points

2nd cluster
17 points

3rd cluster
27 points

ST1
22 points 11 points 3 points 8 points

ST2
17 points 0 points 14 points 3 points

ST3
16 points 0 points 0 points 16 points

each consisting of 4 sensors, 12 sensors in total; see
Figure 2(d) for details).

These attributes are robust to rotations proportional to 60∘.
The values of mean and SD were computed after scaling the
values to [0, 1] segment.

Transition to the new attribute space essentially improved
the clustering quality, but our algorithm left 10–14 points as
outliers (𝑐min was set equal to 8; the values of 𝑠, 𝑠min, and 𝜆
were set equal to 0.9, 0.3, and 0.8 respectively, and 𝜎 was set
equal to 0.27 for all attributes). A representative result of one
run is presented in Table 2. Then we placed outliers points
to the obtained clusters by the 𝑘-nearest neighbors algorithm
(𝑘 = 8, unweighted; see, e.g., [19]). A representative result for
one run is presented in Table 3.

Table 4 contains mean values and SDs for Rand indices
and timing information.

As one can see, the proposed algorithm has an acceptable
running time, and both our and 𝑘-means algorithm reach
mean quality plateau already at 20 iterations.

The advantage of the proposed algorithm over the 𝑘-
means algorithm with respect to the clustering quality
was statistically significant. For example, for 20 iterations
and adjusted Rand index the comparison of our algorithm
with outliers and the 𝑘-means on 100 runs resulted in
Mann–Whitney𝑈-test two-tailed 𝑝 value equal to 1.0 ⋅ 10−10.
As outliers are the points that are the most difficult for
clustering, the advantage of our algorithm complemented by
kNN-attributing of outliers to clusters over the 𝑘-means was
lower but still firmly significant with Mann–Whitney 𝑈-test
two-tailed 𝑝 value equal to 9.5 ⋅ 10−4.
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30 28 25

28 32 44 22

24 43 255 56 17

27 115 255 12

25 20 10

40 47 49

43 58 56 54

38 48 76 64 47

36 153 255 47

41 255 80

68 73 66

72 98 95 69

70 130 255 92 53

65 255 248 62

54 78 57

62 71 66

61 84 91 73

60 72 161 111 64

52 255 255 79

43 170 80

(a)

17 25 21

22 28 29 21

20 25 20 25 21

23 53 255 29

24 56 30

54 76 72

86 101 101 84

79 121 253 141 80

93 183 255 92

85 97 81

68 74 67

74 89 87 69

69 88 99 80 64

74 103 255 67

69 84 76

36 43 39

39 50 55 41

38 36 255 53 35

39 58 102 36

36 37 36

(b)

94 104 90

100 129 127 109

78 133 255 223 105

93 241 253 105

82 123 99

117 125 114

131 161 152 119

117 164 248 145 98

113 255 255 99

100 147 91

90 96 84

90 123 120 96

75 115 231 131 89

82 180 255 81

81 134 78

104 107 90

112 144 141 113

97 141 192 177 103

105 229 255 190

95 208 180

(c) (d)

Figure 2: (a–c) Examples of tactile frames for examinations of ST1 (a), ST2 (b), and ST3 (c) type samples. Pressure values are scaled to [0, 255]
segment and color-coded. (d) Correspondence between sensors and attributes from the new attribute space. Each hexagon represents one
sensor. Middle sensors are colored in light-gray, outer sensors are colored in dark-gray. The main diagonals are shown by orange lines; the
secondary diagonals are shown by blue lines. Centers of the hexagons that represent sensors belonging to both main and secondary diagonals
are colored in red; belonging only to main diagonals, in orange; belonging only to secondary diagonals, in blue.

Interestingly, the transition to the new attribute space
improved the quality of our algorithm more than the quality
of the 𝑘-means clustering. For example, for 20 iterations,
adjusted Rand index, and 100 runs, the comparison of the
clustering quality for the initial attribute space and the new
attribute space resulted in Mann–Whitney 𝑈-test two-tailed𝑝 values not exceeding 10−12 for both “with outliers” and “no
outliers” versions of our algorithm, while for 𝑘-means the 𝑝
value was 0.43.

6. Conclusions

In this paper we proposed a greedy clustering algorithm
based on interval pattern concepts. The obtained theoretical
estimate on algorithm complexity proved computational
feasibility for high-dimensional spaces, and the validation on
experimental data demonstrated high quality of the resulting
clustering in comparison with conventional clustering algo-
rithms such as 𝑘-means.
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Table 4: Dependency of Rand index values and the running time for our and 𝑘-means clusteringmethods on number of iterations performed
(100 program runs for each value). Values of Rand index are presented in terms of medians and interquartile ranges (IQR).

Number of iterations Clustering method Rand index median
(adjusted/raw)

Rand index IQR
(adjusted/raw) Average running time (in seconds)

20

Our method
(with outliers) 0.43/0.73 0.12/0.05 0.8

Our method
(no outliers) 0.39/0.73 0.10/0.04 0.8

𝑘-means 0.32/0.70 0.21/0.09 0.02

50

Our method
(with outliers) 0.43/0.73 0.08/0.05 2.4

Our method
(no outliers) 0.39/0.73 0.06/0.03 2.5

𝑘-means 0.27/0.68 0.20/ 0.09 0.05

100

Our method
(with outliers) 0.42/0.74 0.08/0.04 4.2

Our method
(no outliers) 0.39/0.73 0.06/0.03 4.3

𝑘-means 0.31/0.70 0.20/0.09 0.09

Particular results obtained during validation, such as
a new attribute space for tactile frames registered by the
Medical Tactile Endosurgical Complex, have individual sig-
nificance as they provide new opportunities for the medical
domain applications aimed at automated analysis of tactile
images.

Data Access

Dataset of tactile frames used for the validation and the
Python script that implements the developed clustering
algorithm are available upon request from the authors.
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