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A mathematical model is developed that examines how heroin addiction spreads in society. The model is formulated to take
into account the treatment of heroin users by incorporating a realistic functional form that “saturates” representing the limited
availability of treatment. Bifurcation analysis reveals that the model has an intrinsic backward bifurcation whenever the saturation
parameter is larger than a fixed threshold. We are particularly interested in studying the model’s global stability. In the absence
of backward bifurcations, Lyapunov functions can often be found and used to prove global stability. However, in the presence
of backward bifurcations, such Lyapunov functions may not exist or may be difficult to construct. We make use of the geometric
approach to global stability to derive a condition that ensures that the system is globally asymptotically stable.Numerical simulations
are also presented to give amore complete representation of themodel dynamics. Sensitivity analysis performed by Latin hypercube
sampling (LHS) suggests that the effective contact rate in the population, the relapse rate of heroin users undergoing treatment, and
the extent of saturation of heroin users are mechanisms fuelling heroin epidemic proliferation.

1. Introduction

In 1897, Germany’s Bayer pharmaceutical company synthe-
sised heroin and soon after marketed the product as a
nonaddictive miracle drug, for use as a cough syrup and pain
reliever [1]. Coughmedicinewas in fact in high demand, since
tuberculosis and pneumonia were fast-spreading diseases
of the time. As such, the miracle drug heroin was rapidly
disseminated across the globe. Fast forward to today, and
we know that addiction to heroin is an extremely common
phenomenon among heroin users; some 23% of individuals
who consume the drug become dependent on it. Worldwide,
many countries are affected by the heroin drug-trafficking
industry and its growing number of users. America is
currently in the midst of another heroin epidemic [2] with
approximately 700,000 Americans using heroin in the past
year [2]. The number of people using heroin for the first time
is increasing at an alarming rate, with >150,000 Americans
engaging in heroin use in 2012, which is almost double that
recorded in 2006 [2]. Heroin also leads to other diseases

and is considered a major pathway responsible for fuelling
proliferation of human immunodeficiency virus (HIV) and
Hepatitis B and Hepatitis C virus (HBV, HCV) [3, 4].

The development of heroin habituation and addiction
has similar characteristics to an epidemic, in terms of its
disturbingly contagious spread through a susceptible popu-
lation. In the last decades, a whole range of mathematical
models have been developed to forecast how diseases spread
in time and space and how they can be controlled. Recently,
the same mathematical modelling techniques have been
extended for the purpose of understanding and combating
drug addiction problems. The aim of the present study is to
propose a novel heroin epidemic model and make use of it to
study issues arising with treatment and establish conditions
that may signal heroin persistence within the community.

The ultimate goal of mathematical epidemiology is to
understand how to control and eliminate infectious diseases
and these ideas have a place for also dealing with social
problems. In epidemic theory the basic reproduction number,
usually denoted by 𝑅0, is one of the most important concepts,
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Figure 1: Illustration of the qualitative features of backward bifur-
cation. The red line represents the unstable equilibria (i.e., unstable
endemic equilibria and unstable heroin-free equilibrium) while the
blue line represents stable equilibria (i.e., stable endemic equilibria
and stable heroin-free equilibrium).

given its ability to predict the course of an epidemic. It will
also prove invaluable in our study of heroin dynamics in
society. 𝑅0 is defined as the number of secondary infections
that are likely to occur when a single infectious individual is
introduced into an entirely susceptible population [5]. Until
recently, it has beenwidely accepted that the condition𝑅0 < 1
is an essential requirement for the eradication of a disease.
However, this viewpoint has been recently challenged with a
number of theoretical studies demonstrating that this crite-
rionmaynot always be sufficient. Instead, the phenomenonof
backward bifurcation offers a different interpretation since it
shows that although the basic reproduction number is below
unity and the infection free equilibrium is stable, there might
still be another stable endemic equilibrium and unstable
endemic equilibrium coexisting simultaneously. Thus even
though 𝑅0 < 1, a population may still reside at an endemic
equilibrium in which the disease persists indefinitely. In a
scenario where multiple equilibria concurrently exist, the
extinction or persistence of an epidemic is dependent on ini-
tially infected size of subpopulations. The qualitative features
of backward bifurcation are illustrated in Figure 1.

A variety of both behavioural and pharmacological
medications can be administered to effectively treat heroin
addiction. The side effects associated with quitting using
heroin (such as pain, diarrhoea, nausea, and vomiting) are
very severe and very often compel heroin addicts to relapse.
To prevent such cases there are available medications that
can be administered during the detoxification stage to relieve
craving and physical symptoms. A number of studies have
established that pharmacological therapy has positive impact
in facilitating drug addicts to remain in treatment programs.

Furthermore, it has been noted that during addiction treat-
ment there is a decline in drug consumption, infectious
disease transmission, and crime rates [2]. In our present
study we shall incorporate a saturated treatment function
and derive threshold conditions that indicate when heroin
is able to persist within a community. Besides incorporation
of a saturated treatment function, our model also included
an extra class of individuals, namely, those who have been
successfully treated from heroin using. This class has been
neglected in previous heroin epidemic models [6–9]. Much
of our work will be focused on exploring the conditions for
global stability of the heroinmodel with treatment. Our work
deals with global stability of a heroin model with bilinear
incidence rate, self-cure, relapse, and saturated treatment
function using the Bendixson criterion.

With this in mind we will extend the SIR (Susceptible-
Infected-Recovered) model by [8] to represent a heroin
epidemic model and investigate global stability properties.
To be precise we study the conditions of global stability
for the nontrivial equilibrium states by using two distinct
approaches: the Lyapunov direct method and the Li andMul-
downey’s geometric approach to global stability. It is with no
doubt that the famous Lyapunov direct method is a powerful
tool for nonlinear stability analysis [10]. One of the main
advantages of Lyapunov direct technique is that it is directly
applicable to nonlinear systems [11]. However, themajor chal-
lenge with using Lyapunov direct method is that it requires
an auxiliary function which is often hard to construct.
And this difficulty is exacerbated especially if the model
exhibits backward bifurcation phenomena because Lyapunov
functions for suchmodelsmay not exist. To address these dif-
ficulties another powerful tool, the geometric technique due
to Li and Muldowney, was developed in the middle of
nineties [11–13]. Their method involves generalization of
Bendixson’s criterion to systems of any finite dimensions and
applies compoundmatrices. Presently thismethodhas gained
popularity due to its vast range of applications, in particular to
mathematical models that are of biological interest. Although
this method is mainly applied in epidemic models (e.g., see,
[14–19]) its use can be found in other population dynamics
contexts (see [20]). It has been shown in [16] that the
geometric technique is more appropriate in mathematical
models of SEIR-like structure since their analysis can be
easily reduced to a three-dimensional system. Nevertheless,
the method has been extended to four-dimensional systems
that may be difficult to reduce. In the sequel applications to
four-dimensional systems are rare because the procedure
becomes mathematically involved when 𝑛 ≥ 4. Examples
of four-dimensional systems can be traced in the work of
Ballyk and coworkers who applied compound matrices to a
four-dimensional population model [21] and also by Gumel
and coworkers [22] who studied a SVEIR (Susceptible-
Vaccinated-Exposed-Infected-Recovered) model of severe
acute respiratory syndrome (SARS) epidemic spread.

The four-dimensional model studied here can be reduced
to a three-dimensional system. Both Lyapunov directmethod
and geometric approach are applied to investigate global
properties of a four-dimensional heroin epidemic model.
Lyapunov direct method will be applied in a special case in
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particular where the parameter that triggers bistability phe-
nomena is switched off. On the other hand geometric
approach will be applied in the general model where all
parameters are present including the one that causes bistabil-
ity. Herewe follow the procedure in [11, 16] to obtain sufficient
condition for global stability.

2. Model Formulation

In the spirit of the SIR (Susceptible-Infected-Recovered)
model in the literature (i.e., [23]), we formulate a heroin
epidemic model based on the assumption that heroin use
follows a process that can be modelled similar to infectious
diseases [24, 25].The general population is stratified into four
mutually exclusive classes, namely, susceptibles (𝑆), individ-
uals successfully treated from heroin use (𝑈3), heroin users
undergoing treatment (𝑈2), and heroin users not in treatment
(𝑈1). The proposed heroin epidemic model is based on key
assumptions which include the following:

(i) Uniformmixing: individuals in the above-mentioned
classes freely interact with each other.

(ii) Individuals undergoing treatment are still often using
drugs [26].

(iii) Heroin users in treatment relapse to heroin users
not in treatment as a result of the self-decision to
terminate treatment [27].

(iv) Heroin users in treatment do not infect susceptibles.

Given these assumptions the heroin model may be described
by the processes illustrated in Figure 2, which can be written
in terms of the following set of equations:𝑑𝑆𝑑𝑡 = Λ − 𝛽𝑈1𝑆 − 𝜇𝑆,𝑑𝑈1𝑑𝑡 = 𝛽𝑈1𝑆 + 𝑝𝑈2 − (𝜇 + 𝛿1 + 𝜉)𝑈1 − 𝑇 (𝑈1) ,𝑑𝑈2𝑑𝑡 = 𝑇 (𝑈1) − (𝑝 + 𝜎 + 𝛿2 + 𝜇)𝑈2,𝑑𝑈3𝑑𝑡 = 𝜎𝑈2 + 𝜉𝑈1 − 𝜇𝑈3.

(1)

In brief, the susceptible subpopulation 𝑆(𝑡) is generated at a
constant rate through immigration and birth at rate Λ. Some
susceptible individuals who come into contact with heroin
users 𝑈1(𝑡) may begin to use heroin. Hence, the susceptible
population is diminished due to contact with heroin users
at rate 𝛽𝑈1𝑆, while heroin users increase at the same rate.
Heroin users also increase when those undergoing treatment
relapse at rate 𝑝𝑈2 and return to their heroin using lifestyle.
Heroin users reduce in number as a result of treatment which
is represented by the treatment function𝑇(𝑈1).Moreover, the
user subpopulation is reduced by heroin-induced death at
rate 𝛿1𝑈1 as well as a result of the self-decision to cease
using heroin (also referred to as “self-cure”) at rate 𝜉𝑈1.
Individuals undergoing treatment are diminished through
the following processes: relapse to heroin using at rate 𝑝𝑈2,
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Figure 2: A heroin epidemic model with bilinear incidence rate and
saturated treatment function.The blue solid arrows represent deaths
due to either heroin or natural causes while the black solid arrows
represent change of status from one compartment to another.

heroin-induced death at rate 𝛿2𝑈2, and successful treatment
at rate 𝜎𝑈2. Finally, the recovered/successfully treated sub-
population 𝑈3(𝑡) is generated when heroin users undergoing
treatment are successfully cured and also through “self-cure.”
All subpopulations are decreased by natural death via the
background mortality parameter 𝜇.

Heroin epidemic models studied to date [6–9] assume
the classical view that the treatment rate of the infective
population should be proportional to the number of infective
individuals [28]. This viewpoint was criticised during the
SARS (Severe Acute Respiratory Syndrome) outbreaks in
2003. The dramatic increase of SARS cases in Beijing chal-
lenged the normal public-health system because it was only
possible to treat a limited number of SARS patients at a given
time.The experience with SARS epidemic sparked a renewed
interest amongmodellers to investigate the implication of the
capacity of the healthcare system. Authors in [29] considered
an SIR epidemic model and assumed a Heaviside treatment
function while Wang [30] restudied the same SIR model but
assumed a piecewise linear treatment function. Here we will
assume that the heroin users𝑈1(𝑡) receive treatment based on
the following more general saturated treatment function:𝑇 (𝑈1) ≜ 𝛼𝑈11 + 𝜔𝑈1 , (2)

where 𝛼 is positive and 𝜔 is nonnegative. In our present
model the parameter 𝜔 accounts for the extent of saturation
of heroin users. Note that for small𝑈1 the treatment function
reduces to 𝑇(𝑈1) ≈ 𝛼𝑈1 while for large 𝑈1 it reduces to𝑇(𝑈1) ≈ 𝛼/𝜔 which actually characterizes the saturated
phenomena of the treatment. Further, if 𝜔 = 0, the treatment
function becomes 𝑇(𝑈1) = 𝛼𝑈1 which is the usual linear
treatment rate. 1/(1 + 𝜔𝑈1) is a measure of inhibition due to
a saturation of heroin users who are usually too many to be
dealt with given the limited available treatment.
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Table 1: Description of variables and parameters of model (1).

Variable Description𝑆 Number of susceptible individuals at time 𝑡𝑈3 Number of heroin users who have been successfully treated from heroin use, as well as individuals who have voluntarily
stopped using the heroin (and have withdrawal symptoms) “self-cure” at time 𝑡𝑈2 Number of heroin users undergoing treatment at time 𝑡𝑈1 Number of drug users not undergoing treatment at time 𝑡, that is, the initial and relapsed heroin users𝑁 Total population at time 𝑡 (𝑁 = 𝑆(𝑡) + 𝑈3(𝑡) + 𝑈2(𝑡) + 𝑈1(𝑡))

Parameter DescriptionΛ Recruitment rate of individuals in the general population entering the susceptible population𝛽 Effective contact rate𝜇 Death rate due to natural causes𝑝 Rate at which individuals undergoing treatment relapse to heroin use𝜉 “Self-cure rate”: rate at which heroin users stop using heroin and join the successfully cured class of individuals not
taking heroin𝛿1 Heroin-related death rate of heroin users not in treatment𝛿2 Heroin-related death rate of individuals undergoing treatment𝜎 Rate at which heroin users in treatment are successfully cured (i.e., completely detoxicated) from heroin use𝛼 Rate at which heroin users are treated𝜔 The extent of saturation of heroin users within the community

A summary of the model variables and parameters is
given in Table 1.

3. Basic Properties and
Basic Reproduction Number

Since we are studying a human population, the model must
be able to ensure that all the associated parameters and the
state variables 𝑆,𝑈3,𝑈2,𝑈1 are nonnegative for all time 𝑡 > 0.
Hence, the following result.

Theorem 1. Let the initial conditions supplied to model (1) be
such that 𝑆(0) > 0, 𝑈3(0) > 0, 𝑈2(0) > 0, and 𝑈1(0) > 0.Then
the trajectories (𝑆(𝑡), 𝑈3(𝑡), 𝑈2(𝑡), 𝑈1(𝑡)) of the model (1), with
positive initial conditions, will remain positive for all time 𝑡.
Proof. Let 𝑡1 = sup{𝑡 > 0 : 𝑆(𝑡) > 0, 𝑈3(𝑡) > 0, 𝑈2(𝑡) >0, 𝑈1(𝑡) > 0} > 0.Now from the first equation of model (1), it
follows that𝑑𝑆𝑑𝑡 = Λ − Φ𝑆 − 𝜇𝑆 ≥ Λ − Φ𝑆 − 𝜇𝑆 (where Φ = 𝛽𝑈1) , (3)

which can be written as𝑑𝑑𝑡 {𝑆 (𝑡) exp [𝜇𝑡 + ∫𝑡
0
Φ (𝜏) 𝑑𝜏]}

≥ Λ{exp [𝜇𝑡 + ∫𝑡
0
Φ (𝜏) 𝑑𝜏]} . (4)

Hence, 𝑆 (𝑡1) exp [𝜇𝑡1 + ∫𝑡1
0

Φ (𝜏) 𝑑𝜏] − 𝑆 (0)
≥ ∫𝑡1
0

Λ{exp [𝜇𝑥 + ∫𝑥
0
Φ (𝜏) 𝑑𝜏]} 𝑑𝑥, (5)

so that𝑆 (𝑡1) ≥ 𝑆 (0) exp [−𝜇𝑡1 − ∫𝑡1
0

Φ (𝜏) 𝑑𝜏]
+ {exp [−𝜇𝑡1 − ∫𝑡1

0
Φ (𝜏) 𝑑𝜏]}

× ∫𝑡1
0

Λ{exp [𝜇𝑥 + ∫𝑥
0
Φ (𝜏) 𝑑𝜏]} 𝑑𝑥 > 0.

(6)

Following a similar procedure we can show that 𝑈3(𝑡) > 0,𝑈2(𝑡) > 0, and 𝑈1(𝑡) > 0 for all time 𝑡 > 0. Thus, all
trajectories of model (1) remain positive for all nonnegative
initial conditions, as required.

Now in what follows we establish the region where model
(1) is considered to be biologically feasible. Summing all the
equations of the basic model (1) yields𝑑𝑁 (𝑡)𝑑𝑡 = Λ − 𝜇𝑁 (𝑡) − 𝛿1𝑈1 (𝑡) − 𝛿2𝑈2 (𝑡) . (7)
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Considering that 0 < 𝑈1(𝑡) < 𝑁(𝑡), 0 < 𝑈2(𝑡) < 𝑁(𝑡) and
letting 𝛿 = max{𝛿1, 𝛿2}, it follows from (7) thatΛ − (𝜇 + 2𝛿)𝑁 (𝑡) ≤ 𝑑𝑁 (𝑡)𝑑𝑡 < Λ − 𝜇𝑁 (𝑡) . (8)

Therefore Λ𝜇 + 2𝛿 ≤ lim inf
𝑡→∞

𝑁(𝑡) ≤ lim sup
𝑡→∞

𝑁(𝑡) ≤ Λ𝜇
such that lim sup

𝑡→∞
𝑁(𝑡) ≤ Λ𝜇 . (9)

Theorem 2. The closed set℧ = {(𝑆, 𝑈3, 𝑈2, 𝑈1) : 0 ≤ 𝑆, 𝑈3, 𝑈2, 𝑈1; 𝑆 + 𝑈3 + 𝑈2+ 𝑈1 ≤ Λ𝜇 } (10)

is positively invariant and absorbing with respect to the set of
nonlinear differential equation (1).

Proof. Here we show that the feasible solutions of model
(1) are uniformly bounded in the region ℧. Suppose 𝑆, 𝑈3,𝑈2, and 𝑈1 are any solution of system (1) supplied with
nonnegative initial conditions. Then it is straightforward to
note that the total population𝑁 satisfies the inequality𝑑𝑁𝑑𝑡 = Λ − 𝜇𝑁 − 𝛿1𝑈1 − 𝛿2𝑈2 ≤ Λ − 𝜇𝑁. (11)

From (11) it follows that 𝑑𝑁/𝑑𝑡 ≤ Λ − 𝜇𝑁 which implies𝑑𝑁/𝑑𝑡 ≤ 0 if 𝑁 ≥ Λ/𝜇. The standard comparison theorem
[31] can be used to deduce that𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + (Λ/𝜇)(1 −𝑒−𝜇𝑡). In particular 𝑁(𝑡) ≤ Λ/𝜇 if 𝑁(0) ≤ Λ/𝜇 for all𝑡 > 0. Thus, under the flow induced by system (1), the
region℧ is positively invariant. Furthermore, for𝑁(0) > Λ/𝜇
the trajectory solutions 𝑁(𝑡) either enter in the region ℧ in
finite time or asymptotically approach Λ/𝜇. Thus, in the
region ℧, model (1) is said to be mathematically and
epidemiologically well posed [32] and the solution of all
the trajectories generated by model (1) is considered in a
biologically feasible region℧.

Clearly system (1) has an intrinsic Heroin-free equi-
librium (HFE) given by 𝐷0 = (𝑆0, 0, 0, 0), a scenario
representing a heroin-free state in the community. 𝑆0 = Λ/𝜇
represents the number of susceptibles when no one is using
heroin. The basic reproduction number denoted by 𝑅0 is
defined as the number of secondary infections that are likely
to be triggered by a single infectious individual when intro-
duced into a wholly susceptible population [32]. Here 𝑅0 is
interpreted as the mean number of secondary cases of heroin
users generated by a typical heroin user not in treatment
during his/her duration of heroin use in a population of
potential drug users.

To obtain the basic reproduction number we observe that
the average time an individual spends as a heroin userwithout

treatment is 𝑇0 = 1/(𝜇 + 𝛿1 + 𝜉 + 𝛼) and the probability
of surviving this compartment and moving to the treatment
compartment is𝑇1 = 𝛼/(𝜇+𝛿1+𝜉+𝛼).Now the probability of
surviving heroin users in treatment class and then returning
to the heroin users class not in treatment is 𝑇2 = 𝑝/(𝑝 + 𝜎 +𝛿2 +𝜇).Thus, the total average time spent by the heroin users
not in the treatment compartment on multiple passes can be
obtained as𝑇 = 𝑇0 [1 + 𝑇1 ⋅ 𝑇2 + (𝑇1 ⋅ 𝑇2)2 + ⋅ ⋅ ⋅] . (12)

Clearly, the terms inside the square brackets in (12) constitute
a geometric sequence (see Appendix A for detailed deriva-
tion) and therefore expression (12) can be written as

𝑇 = (𝑝 + 𝜎 + 𝛿2 + 𝜇)(𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝛿2 + 𝜎 + 𝜇) + 𝛼 (𝜎 + 𝛿2 + 𝜇) . (13)

Multiplying (13) with the effective contact rate 𝛽 and the aver-
age recruitment rateΛ/𝜇we obtain heroin basic reproduction
number as𝑅0= 𝛽Λ (𝑝 + 𝛿2 + 𝜇 + 𝜎)𝜇𝛼 (𝜇 + 𝛿2 + 𝜎) + 𝜇 (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝛿2 + 𝜇 + 𝜎) . (14)

It is easy to observe that 𝑅0 is inversely proportional to treat-
ment 𝛼, which implies that if treatment rate is maintained
sufficiently high it can control a heroin epidemic (by reducing𝑅0 to less than one). However, as we will see later when
parameter 𝜔 (representing the extent of saturation of heroin
users) is accounted for, this control is no longer guaranteed.

Theorem 3. The HFE is locally asymptotically stable provided𝑅0 < 1; otherwise it is unstable.
This general result has been reviewed in [33] and thus not

proved again here.The theorem implies that heroin users will
disappear from the community when 𝑅0 < 1 if the initial
sizes of the subpopulations of system (1) are in the basin of
attraction of the heroin-free equilibrium.

Remark 4. It is instructive to note that the basic reproduction
number does not include the parameter 𝜔 that accounts for
the extent of saturation of heroin users. In the next subsection
we investigate endemic equilibria of the model where the
parameter 𝜔 plays a key role in emergence of bistability.

3.1. Endemic Equilibria. Within the context of our heroin
model the endemic equilibrium refers to a state when heroin
addiction is maintained over long time scales in the pop-
ulation. Therefore 𝑆∗, 𝑈∗3 , 𝑈∗2 , 𝑈∗1 > 0 hold. To obtain the
endemic equilibria 𝐸∗ = (𝑆∗, 𝑈∗3 , 𝑈∗2 , 𝑈∗1 ) we set (1) to zero
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and solve for the equilibrium quantities 𝑆∗, 𝑈∗3 , and 𝑈∗2 in
terms of 𝑈∗1 .That is,𝑆∗ = Λ𝛽𝑈∗1 + 𝜇,

𝑈∗3 = 𝜎𝛼𝑈∗1 + 𝜉 (𝑝 + 𝜎 + 𝛿2 + 𝜇) (1 + 𝜔𝑈∗1 ) 𝑈∗1𝜇 (𝑝 + 𝜎 + 𝛿2 + 𝜇) (1 + 𝜔𝑈∗1 ) ,
𝑈∗2 = 𝛼𝑈∗1(𝑝 + 𝜎 + 𝛿2 + 𝜇) (1 + 𝜔𝑈∗1 ) .

(15)

Substituting (15) into the second equation of (1) yields𝑓 (𝑈∗1 ) = 𝐴𝑈∗21 + 𝐵𝑈∗1 + 𝐶 = 0, (16)

where𝐴 = (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛽𝜔,𝐵 = (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛽 + 𝜇𝜔 (𝜇 + 𝛿1 + 𝜉)⋅ (𝑝 + 𝜎 + 𝛿2 + 𝜇) + 𝛼 (𝜎 + 𝛿2 + 𝜇) 𝛽 − 𝛽Λ𝜔 (𝑝+ 𝜎 + 𝛿2 + 𝜇) ,𝐶 = [(𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝜇+ 𝛼𝜇 (𝜎 + 𝛿2 + 𝜇)] (1 − 𝑅0) .
(17)

The quadratic equation (16) can be analysed to investigate the
existence of multiple equilibria when the basic reproduction
number is below unity.

If the parameter that accounts for the extent of saturation
of heroin users in model (1) is excluded, that is, 𝜔 = 0, (16)
reduces to a linear equation𝑈∗1 𝐵 + 𝐶 = 0, (18)

where 𝐵 = (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛽+ 𝛼 (𝜎 + 𝛿2 + 𝜇) 𝛽 (19)

so that model (1) has the unique solution𝑈∗1 = −�̃�𝐵 (20)

which is nonnegative if and only if 𝑅0 > 1. Hence, if 𝜔 = 0,
model (1) has a unique endemic equilibrium whenever 𝑅0 >1 and this equilibrium approaches zero as 𝑅0 tends to one(𝑅0 → 1+) because𝐶 → 0. But there are no positive endemic
equilibria if 𝑅0 < 1. These results are summarized in the
following lemma.

Lemma 5. The epidemic model (1) when 𝜔 = 0 has a unique
positive endemic equilibrium 𝐸∗1 = (𝑆∗, 𝑈∗3 , 𝑈∗2 , 𝑈∗1 ) whenever𝑅0 > 1 and no positive endemic equilibrium otherwise.

Inwhat follows, we investigate the global stability for both
the HFE and the unique endemic equilibrium 𝐸∗1 for the case𝜔 = 0.

3.2. Global Stability for Heroin-Free EquilibriumWhen𝜔 = 0.
To investigate global stability we apply the method presented
by Castillo-Chavez et al. [34]. First let X = (𝑆, 𝑈3) and Y =(𝑈2, 𝑈1)withX ∈ R2 representing the number of individuals
not using heroin and Y ∈ R2 representing the number of
individuals using heroin (i.e., heroin users in treatment and
heroin users not in treatment). Now suppose

X
 = 𝐹 (X,Y) ,

Y
 = 𝐺 (X,Y) ,𝐺 (X, 0) = 0, (21)

whereX andY denote differentiation with respect to time.
TheHFE is nowdenoted by𝐻0 = (X0, 0), whereX0 = (𝑆0, 0).
The following conditions (𝐻1) and (𝐻2) have to be met to
guarantee a local asymptotic stability:(𝐻1) For X = 𝐹(X, 0), X0 is globally asymptotically

stable (g.a.s).(𝐻2) 𝐺(X,Y) = BY − 𝐺(X,Y), where 𝐺(X,Y) ≥ 0, for(X,Y) ∈ ℧.

B = 𝐷Y𝐺(X, 0) and ℧ is the region where model (1) is
biologically realistic. Then, Castillo-Chavez and Song [35]
have shown that the following lemma is satisfied.

Lemma 6. The fixed point𝐻0 = (X0, 0, 0) is g.a.s equilibrium
ofmodel (1) provided that𝑅0 < 1 (locally asymptotically stable)
and that assumptions (𝐻1) and (𝐻2) hold.

Now consider the following theorem.

Theorem 7. Suppose 𝑅0 < 1.Then the HFE 𝐷0 is g.a.s.
Proof. Let X = (𝑆, 𝑈3) and Y = (𝑈2, 𝑈1), and 𝐻0 =(X0, 0, 0), whereX0 = (Λ/𝜇, 0).

Then we have

X
 = 𝐹 (X,Y) = ( Λ − 𝛽𝑈1𝑆 − 𝜇𝑆𝜎𝑈2 + 𝜉𝑈1 − 𝜇𝑈3) . (22)

It is straightforward to see that, at the heroin-free equilibrium
(HFE) 𝑆 = 𝑆0 = Λ/𝜇, 𝐹(X, 0) = ( 00 ) .Thus,

X
 = 𝐹 (X, 0) = (Λ − 𝜇𝑆−𝜇𝑈3 ) . (23)

Now, as 𝑡 → ∞, X → X0. Hence, X0 is globally
asymptotically stable (i.e., condition (H1) is satisfied).

Now consider𝐺 (X,Y)= [− (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛼𝑝 𝛽𝑆0 − (𝜇 + 𝛿1 + 𝜉 + 𝛼)] [𝑈2𝑈1]− [ 0𝛽𝑈1 (𝑆0 − 𝑆) ] (24)
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so that

B = [− (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛼𝑝 𝛽𝑆0 − (𝜇 + 𝛿1 + 𝜉)] ,
𝐺 (X,Y) = [ 0𝛽𝑈1 (𝑆0 − 𝑆)] . (25)

Since the total population is bounded by 𝑁 = 𝑆 + 𝑈3 +𝑈2 + 𝑈1 ≤ Λ/𝜇, we have 𝑆 ≤ 𝑁 ≤ Λ/𝜇. Thus, 𝐺(X,Y) ≥0, which now implies that conditions (𝐻1) and (𝐻2) are
satisfied. Consequently by Lemma 6 the fixed point 𝐻0 is
globally asymptotically stable when 𝑅0 < 1, which indicates
nonexistence of multiple nontrivial equilibria when 𝜔 = 0.
The epidemiological implication of HFE being g.a.s is that
heroin epidemic will be eliminated from the community if
the threshold quantity 𝑅0 is decreased to (or maintained at) a
value below unity.

Now for 𝜔 > 0 we establish the following theorem.

Theorem 8. For 𝜔 > 0model (1) has

(i) a unique positive endemic equilibrium if 𝐵 < 0 and
either 𝐶 = 0 or 𝐵2 − 4𝐴𝐶 = 0,

(ii) a unique positive endemic equilibrium if 𝐶 < 0 (i.e.,𝑅0 > 1) and 𝐵 < 0,
(iii) two positive endemic equilibria if 𝐶 > 0, 𝐵 < 0, and𝐵2 − 4𝐴𝐶 > 0,
(iv) no positive endemic equilibrium if 𝐵 > 0 and either𝐶 > 0 or 𝐵2 < 4𝐴𝐶.
The theorem may be proved as follows. It is obvious to

note that in quadratic equation (16) 𝐴 is always positive and𝐶 is either positive or negative depending on whether the
basic reproduction number is less than or greater than one,
respectively.

For Case (i) where 𝐵 < 0 and 𝐶 = 0 (i.e., 𝑅0 = 1)
(16) becomes linear 𝐴𝑈∗1 + 𝐵 = 0 and has a unique nonzero
solution 𝑈∗1 = −𝐵/𝐴 which is positive if 𝐵 < 0 and negative
if 𝐵 > 0. Referring to (15) we see that if 𝑈∗1 is unique then so
are 𝑆∗, 𝑈∗2 , and 𝑈∗3 .

For Case (ii) where 𝐶 < 0 (i.e., 𝑅0 > 1) and 𝐵 < 0,
(16) is quadratic and according to Descartes Rule of Signs
(see [36]), (16) has one change of signs indicating (16) has a
unique positive root and therefore there is a unique endemic
equilibrium.

In Case (iii) where 𝐵 < 0 there is a nonnegative endemic
equilibrium at𝑅0 = 1.However, because (16) is quadratic and
since the equilibrium is continuously determined by 𝑅0 then
there must be an interval to the left of 𝑅0 = 1 on which two
nonnegative equilibria coexist. That is,𝑈∗1,1 = −𝐵 − √𝐵2 − 4𝐴𝐶2𝐴 ,

𝑈∗1,2 = −𝐵 + √𝐵2 − 4𝐴𝐶2𝐴 . (26)

For Case (iv) where 𝐵 > 0 and 𝐶 > 0 or 𝐵2 < 4𝐴𝐶, (16)
has no positive real root as can be seen in (26), implying
nonexistence of a positive endemic equilibrium.

Case (iii) suggests that model (1) exhibits the phe-
nomenon of backward bifurcation since the classical require-
ment for the occurrence of the phenomenon of backward
bifurcation is satisfied, that is, the existence of multiple equi-
libria when the basic reproduction number is less than one.
Thus, we have the following lemma.

Theorem 9. Model (1) has backward bifurcation at 𝑅0 = 1 if
and only if 𝐵 < 0 (i.e., 𝜔 > 𝜔𝑐).
Proof. Consider (16), 𝑓(𝑈∗1 ) = 𝐴𝑈∗21 + 𝐵𝑈∗1 + 𝐶 = 0. Note
that, at 𝑅0 = 1, 𝐶 = 0 implies that the graph 𝑓(𝑈∗1 ) passes
through the origin. If 𝐵 < 0 it follows that 𝑓(𝑈∗1 ) = 0 has a
nonnegative root. Since 𝑓(𝑈∗1 ) is a continuous function of 𝐶,
if we increase𝐶 such that𝐶 > 0, there is some open interval of𝐶 say (0, 𝜓) on which 𝑓(𝑈∗1 ) = 0 has two nonnegative roots.
That is, there exist two nonnegative endemic equilibria when𝑅0 < 1. This is indeed true since Case (iv) of Theorem 8 has
already shown that for 𝐵 ≥ 0model (1) does not have positive
real roots when 𝑅0 < 1. Note that, at 𝑅0 = 1, 𝐶 = 0 the
following equality holds:(𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝜇 + 𝛼𝜇 (𝜇 + 𝛿2 + 𝜎)= (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛽Λ. (27)

This together with condition 𝐵 < 0 implies that𝜔> (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛽 + 𝛼 (𝜎 + 𝛿2 + 𝜇) 𝛽𝜇𝛼 (𝜎 + 𝛿2 + 𝜇)≜ 𝜔𝑐. (28)

Thus, the phenomenon of backward bifurcation (refer-
ring to Case (iii), a situation where there are two endemic
equilibria) occurs at the left of 𝑅0 = 1 if and only if condition
(28) is satisfied. This suggests that backward bifurcation will
only occur if the parameter 𝜔 that accounts for the extent of
saturation of heroin users exceeds a certain threshold (i.e.,𝜔 > 𝜔𝑐). However, if 𝜔 < 𝜔𝑐 backward bifurcation cannot
occur.Thus, parameter𝜔 plays a critical role in the formation
of backward bifurcation for model (1). It is instructive to note
that similar results as the one shown in inequality (28) can be
obtained by center manifold theory (see Appendix B), where
it is emphasized that if 𝜔 > 𝜔𝑐 the bifurcation coefficient 𝑎 is
positive indicating that the model system (1) undergoes the
phenomenon of backward bifurcation. The epidemiological
implication of backward bifurcation is that although it is
necessary to reduce the basic reproduction number below
one it is not sufficient to eradicate a heroin epidemic; rather𝑅0 should be reduced further below a certain thresholdwhich
we shall denote by 𝑅𝐶0 (see Figure 3(b)).
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Figure 3: (a) and (b) represent bifurcations where drug users,𝑈∗1 , not in treatment equilibrium are plotted as a function of 𝑅0.The blue solid
line represents the stable equilibrium while the red solid line represents the unstable equilibrium. (a) represents forward bifurcation and the
parameters used include 𝜔 = 0.11 < 𝜔𝑐 = 0.1156, 𝜇 = 0.01, 𝛽 = 0.001, 𝛿1 = 0.002, 𝛿2 = 0.001, 𝜉 = 0.015, 𝛼 = 0.9, 𝑝 = 0.467, 𝜎 = 0.1, andΛ ∈ {1, 3} while (b) represents backward bifurcation and parameters used are the same as in (a) except 𝜔 = 0.25 > 𝜔𝑐 = 0.1156. (c) depicts
the critical value 𝑅𝐶0 as a function of saturation parameter 𝜔.The black dotted line represents the threshold 𝜔𝑐 which if exceeded gives rise to
backward bifurcation. (d) depicts the critical value 𝑅𝐶0 as a function of treatment rate 𝛼.
3.3. Computation of NewThreshold forHeroin Eradication𝑅𝐶0 .
Here we compute the value of the basic reproduction number
where the two nontrivial endemic equilibria (both stable
and unstable) collide and annihilate each other leaving only
the heroin-free equilibrium point as the stationary solution.
This is 𝑅𝐶0 in Figure 3(b). We choose Λ as the parameter
of backward bifurcation. As we have noted in Case (iii) of

Theorem 8, (16) has nonnegative roots corresponding to two
endemic equilibria if and only if 𝐶 > 0 (i.e., 𝑅0 < 1)
and 𝐵 < 0, 𝐵2 > 4𝐴𝐶. It follows that if 𝐵 = −2√𝐴𝐶,
(16) has one nonnegative root −𝐵/2𝐴. Supposing there is
backward bifurcation at 𝑅0 = 1, then there are two endemic
equilibria for an interval of values of basic reproduction
number starting from a threshold 𝑅𝐶0 defined by 𝐵 = −2√𝐴𝐶
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to a point where 𝑅0 = 1. To obtain this threshold 𝑅𝐶0 which is
often referred to as the critical value of the basic reproduction
number we replace the values of𝐴, 𝐵, and 𝐶 into the equality𝐵2 = 4𝐴𝐶 to obtain a quadratic equation in terms of Λ. For
mathematical tractability we redefine coefficients 𝐵 and 𝐶 as𝐵 = 𝐵1 − 𝐵2Λ and 𝐶 = 𝐶1 − 𝐶2Λ, where𝐵1 = (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝛽+ 𝜇𝜔 (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇)+ 𝛼 (𝜎 + 𝛿2 + 𝜇) 𝛽𝐵2 = 𝛽𝜔 (𝑝 + 𝜎 + 𝛿2 + 𝜇) ,𝐶1 = 𝜇 (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇)+ 𝛼𝜇 (𝜎 + 𝛿2 + 𝜇) ,𝐶2 = 𝛽 (𝑝 + 𝜎 + 𝛿2 + 𝜇) , 𝐵1, 𝐵2, 𝐶1, 𝐶2 > 0.

(29)

Note that 𝐴 > 0 remains as previously defined in (16). Now
the quadratic equation in terms of Λ can be obtained as𝐵22Λ2 + (4𝐴𝐶2 − 2𝐵1𝐵2) Λ + (𝐵21 − 4𝐴𝐶1) = 0 (30)

Since we are considering the scenario where 𝐵 < 0 and 𝑅0 <1, we have 𝐶1𝐵2 > 𝐶2𝐵1 and thus just the single solution

Λ𝑐 = 𝐵1𝐵2 − 2𝐴𝐶2 + 2√𝐴2𝐶22 + 𝐴𝐵2 (𝐶1𝐵2 − 𝐶2𝐵1)𝐵22> 0. (31)

Thus, the critical value of basic reproduction number (i.e., the
new threshold for heroin eradication), 𝑅𝐶0 , is given as𝑅𝐶0= 𝛽Λ𝑐 (𝑝 + 𝛿2 + 𝜇 + 𝜎)𝜇𝛼 (𝜇 + 𝛿2 + 𝜎) + 𝜇 (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝛿2 + 𝜇 + 𝜎) . (32)

Consequently, from the above analysis of computation of
threshold for heroin eradication we can deduce the following
lemma.

Lemma 10. (a) If𝑅0 > 1, thenmodel (1) has a unique endemic
equilibrium point 𝐸∗. In this case heroin epidemic will persist
in the community.

(b) If 𝑅𝐶0 < 𝑅0 < 1, then model (1) has two endemic
equilibria 𝐸1 and 𝐸2 and signals that model (1) has backward
bifurcation.

(c) If 𝑅0 < 𝑅𝐶0 < 1, then model (1) has only the heroin-
free equilibrium point 𝐷0 and in this case heroin users will
disappear.

Figure 3 exhibits typical bifurcation diagrams for model
(1). To obtain the graphs we vary recruitment rate Λ while
other parameter values are held fixed. The parameters used
for the numerical simulation that leads to Figure 3(a) include𝜔 = 0.11, 𝜇 = 0.01, 𝛽 = 0.001, 𝛿1 = 0.002, 𝛿2 = 0.001, 𝜉 =0.015, 𝛼 = 0.9, 𝑝 = 0.467, 𝜎 = 0.1, and 1 ≤ Λ ≤ 3. Figure 3(a)
represents the forward bifurcation scenario where if 𝑅0 < 1
the heroin-free equilibrium is globally asymptotically stable
while when 𝑅0 > 1 the heroin epidemic can persist. However,
as we note from Figure 3(b), increasing parameter 𝜔 from𝜔 = 0.11 to 𝜔 = 0.25 such that 𝜔 > 𝜔𝑐, a heroin epidemic can
persist once established for a range of 𝑅0 values that are
below unity which indicates the occurrence of backward
bifurcation. This implies that reducing 𝑅0 below one will not
necessarily be sufficient for eradication of heroin usage from
the community. If 𝑅0 is sufficiently decreased such that 𝑅0 <𝑅𝐶0 the positive equilibrium no longer exists and heroin usage
will cease to thrive and will eventually fall from its relatively
high endemic level to the heroin-free equilibrium. From
Figure 3(b) we note that when 𝑅𝐶0 ≤ 𝑅0 ≤ 1 there are a stable
endemic equilibrium, an unstable endemic equilibrium, and
a stable heroin-free equilibrium. When 𝑅0 > 1 there is only
one stable endemic equilibrium. Figure 3(c) shows the effect
of the saturation parameter 𝜔 on 𝑅𝐶0 ; namely, increasing 𝜔
decreases𝑅𝐶0 . Figure 3(d) shows that increasing the treatment
rate 𝛼 increases 𝑅𝐶0 which epidemiologically implies that
high cure rates of heroin users can lead to shrinking of the
backward bifurcation regime.

4. Global Stability

According to Theorem 8, model (1) may have multiple equi-
libria when 𝑅0 < 1 and a unique endemic equilibrium
whenever 𝑅0 > 1. First, global stability of the endemic
equilibrium ofmodel (1) is investigated for a special case, that
is, when 𝜔 = 𝜉 = 𝜎 = 0, using Lyapunov direct method, and
later proven for the general model (i.e., 𝜔, 𝜎, 𝜉 > 0) using a
geometric approach.

4.1. Global Stability of Endemic Equilibria 𝐸∗1 Using Lyapunov
Method (Special Case 𝜔 = 𝜉 = 𝜎 = 0). Lyapunov functions
have previously been used in proving global stability of
epidemicmodels; for instance, see [37–40] and the references
therein. Now consider the following theorem.

Theorem 11. If𝜔 = 𝜉 = 𝜎 = 0 the unique endemic equilibrium𝐸∗1 of model (1) is globally asymptotically stable in the interior
of Ω if 𝑅0 > 1.
Proof. Defining the following Lyapunov candidate function:

𝑊(𝑆,𝑈1, 𝑈2) = (𝑆 − 𝑆∗)22𝑆∗ + (𝑈1 − 𝑈∗1 − 𝑈∗1 ln 𝑈1𝑈∗1 )+ 𝑝𝑈∗2𝛼𝑈∗1 (𝑈2 − 𝑈∗2 − 𝑈∗2 ln 𝑈2𝑈∗2 ) . (33)
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Now computing the time derivative of𝑊(𝑆,𝑈1, 𝑈2) along the
solutions of system (1) results in𝑊 (𝑆, 𝑈1, 𝑈2)= (𝑆 − 𝑆∗𝑆∗ ) 𝑑𝑆𝑑𝑡 + (𝑈1 − 𝑈∗1𝑈1 ) 𝑑𝑈1𝑑𝑡+ 𝑝𝑈∗2𝛼𝑈∗1 (1 − 𝑈∗2𝑈2 ) 𝑑𝑈2𝑑𝑡= (𝑆 − 𝑆∗𝑆∗ ) [Λ − 𝛽𝑈1𝑆 − 𝜇𝑆]

+ (𝑈1 − 𝑈∗1𝑈1 ) [𝛽𝑈1𝑆 + 𝑝𝑈2 − (𝜇 + 𝛿1 + 𝛼)𝑈1]+ 𝑝𝑈∗2𝛼𝑈∗1 (1 − 𝑈∗2𝑈2 ) [𝛼𝑈1 − (𝑝 + 𝛿2 + 𝜇)𝑈2] .
(34)

Because (𝑆∗, 𝑈∗2 , 𝑈∗1 ) is an endemic steady point of model (1)
when 𝜔 = 𝜉 = 𝜎 = 0, then it follows thatΛ = 𝛽𝑈∗1 𝑆∗ + 𝜇𝑆∗,(𝑝 + 𝛿2 + 𝜇) = 𝛼𝑈∗1𝑈∗2 ,

(𝜇 + 𝛿1 + 𝛼) = 𝛽𝑆∗ + 𝑝𝑈∗2𝑈∗1 . (35)

Using (35) in (34) yields𝑊 (𝑆, 𝑈1, 𝑈2)= −(𝑆 − 𝑆∗𝑆∗ ) (𝜇 (𝑆 − 𝑆∗) + 𝛽 (𝑆𝑈1 − 𝑆∗𝑈∗1 ))+ (𝑈1 − 𝑈∗1 ) (𝛽 (𝑆 − 𝑆∗) + 𝑝(𝑈2𝑈1 − 𝑈∗2𝑈∗1 ))+ 𝑝𝑈∗2𝛼𝑈∗1 (1 − 𝑈∗2𝑈2 )(𝛼𝑈1 − 𝛼𝑈2𝑈∗1𝑈∗2 ) .
(36)

Note that𝑆𝑈1 − 𝑆∗𝑈∗1 = 𝑆∗ (𝑈1 − 𝑈∗1 ) + 𝑈1 (𝑆 − 𝑆∗) . (37)

Replacing the above equality in (36) results in𝑊 (𝑆, 𝑈1, 𝑈2) = −((𝑆 − 𝑆∗)2𝑆∗ )(𝜇 + 𝛽𝑈1)
+ 𝑝𝑈∗2 (2 − 𝑈∗1𝑈2𝑈1𝑈∗2 − 𝑈∗2𝑈1𝑈2𝑈∗1 )= −((𝑆 − 𝑆∗)2𝑆∗ )(𝜇 + 𝛽𝑈1)
− 𝑝𝑈∗2 [√𝑈∗1𝑈2𝑈1𝑈∗2 − √𝑈∗2𝑈1𝑈2𝑈∗1 ]2 .

(38)

Hence, 𝑊(𝑆, 𝑈1, 𝑈2) ≤ 0 for all 𝑆, 𝑈1, 𝑈2 > 0. Hence, the
heroin endemic equilibrium 𝐸∗1 is stable and𝑊(𝑆, 𝑈1, 𝑈2) =0 if and only if 𝑆 = 𝑆∗, 𝑈2 = 𝑈∗2 , 𝑈1 = 𝑈∗1 .The largest compact
invariant set when𝜔 = 𝜉 = 𝜎 = 0 in {(𝑆∗, 𝑈∗1 , 𝑈∗2 ) ∈ R3+} is the
singleton {𝐸∗1 }. Therefore, by LaSalle’s invariance principle,
the endemic steady state 𝐸∗1 is globally asymptotically stable
in the interior of R3+.

The previous global stability analysis was only relevant
for very specific case. In the subsequent subsection we use
the geometric approach by Li and Muldowney [11, 13, 41] to
obtain sufficient condition that ensures that the unique
endemic equilibrium is globally asymptotically stable for a
wide range of parameter values.

4.2. A Geometric Approach to Global Stability. For the general
model, global stability is investigated using the Li and Mul-
downey [11, 13, 41] generalizations of the Poincaré-Bendixson
approach for systems of 𝑛 > 2 ordinary differential equations.
This criterion is sometimes referred to as a geometric approach
to global stability [14, 42].

To apply the geometric approach on model (1), consider
the autonomous dynamical system 𝑑𝑦/𝑑𝑡 = 𝑓(𝑦), where 𝑓 =(𝑓1, 𝑓2, 𝑓3, 𝑓4)𝑇 and 𝑓1, 𝑓2, 𝑓3, 𝑓4 represent the right-hand
side of system (1), respectively. We first briefly outline the
general mathematical framework of the procedure developed
in Li and Muldowney [13, 16].

Suppose that the map 𝑦 → 𝑓(𝑦) is a 𝐶1 function for𝑦 in an open subset 𝐷 ⊂ R𝑛 and consider the following
autonomous dynamical system:𝑦 = 𝑓 (𝑦) . (39)

Let 𝑦(𝑡, 𝑦0) be the solution to (39) satisfying 𝑦(0, 𝑦0) = 𝑦0.
Now we make the following basic assumptions:(𝐻3) 𝐷 is simply connected.(𝐻4) There exists a compact absorbing set𝐾 ⊂ 𝐷.(𝐻5) Equation (39) has a unique equilibrium 𝑦∗ in𝐷.
Now under the stated assumptions (𝐻3)–(𝐻5), 𝑦∗ is said
to be globally stable in 𝐷 if it is locally stable and all
trajectories in 𝐷 converge to the same equilibrium 𝑦∗. That
is, system (39) has no nonconstant periodic solutions. It is
important to mention that global stability can be tested by
Bendixson criteria. For 𝑛 ≥ 2 a Bendixson criterion refers to
a condition satisfied by field 𝑓 which precludes the existence
of nonconstant periodic solutions of (39). When 𝑛 = 2, (i.e.,
the planar case) the classical results (Poincaré-Bendixson
theorem andDulac criteria; see [43]) adequately provide such
global conditions. For 𝑛 ≥ 3 a remarkable approach for prov-
ing global stability is given by the work of Li andMuldowney
[11, 13, 16]. They showed that if conditions (𝐻3)–(𝐻5) hold
and differential equation (39) fulfils a Bendixson criterion
that is robust under 𝐶1 local 𝜀-perturbations (a function 𝑔 ∈𝐶1 (𝐷 → R𝑛) is called a 𝐶1 local 𝜀-perturbation of 𝑓 at𝑦0 ∈ 𝐷 if there exists an open neighbourhood 𝑈 of 𝑦0 in 𝐷
such that the support supp(𝑓 − 𝑔) ⊂ 𝑈 and |𝑓 − 𝑔|𝐶1 < 𝜀,
where |𝑓 − 𝑔|𝐶1 = sup{|𝑓(𝑦) − 𝑔(𝑦)| + |𝑓𝑦(𝑦) − 𝑔𝑦(𝑦)| :



Journal of Applied Mathematics 11𝑦 ∈ 𝐷}) of 𝑓 at all nonequilibrium nonwandering (a point𝑦0 ∈ 𝐷 is said to be nonwandering for system (39) if for
any neighbourhood𝑈 of 𝑦0 in𝐷 there exists arbitrary large 𝑡
such that 𝑈 ∩ 𝑦(𝑡, 𝑈) ̸= 0. As an example, any equilibrium,
alpha limit point, or omega limit point is nonwandering)
points for system (39), then𝑦∗ is globally stable in𝐷 provided
that it is stable. We now state the new Bendixson criterion
based on the use of the Lozinskĭı measure as developed in
[13]. Consider the differential equation (39) under the stated
assumptions (𝐻3)–(𝐻5). Let𝑦 → 𝑃(𝑦) ( 𝑛2 )×( 𝑛2 ) be amatrix-
valued function which is 𝐶1 for 𝑦 ∈ 𝐷 and consider

𝐴 = 𝑃𝑓𝑃−1 + 𝑃𝐽[2]𝑃−1, (40)

where 𝑃𝑓 is the directional derivative of 𝑃 in the direction of
the vector field 𝑓 in system (39) and it is defined as

(𝑝𝑖,𝑗 (𝑦))𝑓 = (𝜕𝑝𝑖,𝑗 (𝑦)𝜕𝑥 )𝑇 ⋅ 𝑓 (𝑦) = ∇𝑝𝑖,𝑗 ⋅ 𝑓 (𝑦) , (41)

and 𝐽[2] represents the second additive compound matrix 𝐽
(where 𝐽(𝑦) = 𝐷𝑓(𝑦)). In [44] the relation of compound
matrices to differential equations is established. It is shown
that, for an arbitrary 𝑛×𝑛matrix 𝐽 = (𝐽𝑖,𝑗), 𝐽[2] is an ( 𝑛2 )× ( 𝑛2 )
matrix. Now define the following quantity:

𝑞2 = limsup
𝑡→∞

sup
𝑦0∈℧

1𝑡 ∫𝑡
0
𝜌 (𝐴 (𝑠, 𝑦0)) 𝑑𝑠, (42)

where 𝜌(𝐴) is the Lozinskĭı measure of 𝐴 with respect to
vector norm | ⋅ | in R𝑁,𝑁 = ( 𝑛2 ), and 𝜌(𝐴) is defined as

𝜌 (𝐴) = lim
ℎ→0+

|1 + ℎ𝐴| − 1ℎ (43)

(see [45, 46]). In paper [13] it is proved that if conditions (𝐻3)
and (𝐻4) are satisfied then 𝑞2 < 0, indicating that there are no
orbits giving rise to simple closed rectifiable curve in 𝐷 that
is invariant for system (39) (i.e., periodic orbits, homoclinic
orbits, and heteroclinic cycles). Furthermore, it has been
demonstrated in [13] that, under the stated assumptions

(𝐻3)–(𝐻5), quantity 𝑞2 < 0 implies the local stability of
equilibrium point 𝑦∗. As a result the following theorem is
true.

Theorem 12 (see [13]). Assuming that conditions (𝐻3)–(𝐻5)
hold, then, the equilibrium point 𝑦∗ is globally asymptotically
stable in 𝐷 if a function 𝑃(𝑦) and a Lozinskĭı measure 𝜌 exist
such that quantity 𝑞2 < 0.

Observe that whenever 𝑅0 > 1, there exists a unique and
positive endemic equilibrium 𝐸∗ (see Lemma 10) for model
system (1). The method outlined above requires that (i) the
endemic equilibrium 𝐸∗ is unique in the interior of ℧ (i.e.,
condition (𝐻5) holds) and (ii) in the interior of ℧ there
exists an absorbing compact set (condition (𝐻4) holds). The
heroin model studied here with the assumption that 𝑅0 > 1
fulfils conditions (𝐻4)-(𝐻5). It is easy to prove that when𝑅0 > 1, the heroin-free equilibrium 𝐷0 is unstable (see
Theorem 3). The instability of the heroin-free equilibrium𝐷0 combined with 𝐷0 ∈ 𝛿℧ signals uniform persistence
[47]. That is, there exists a positive constant 𝑐0 > 0 such
that for every solution (𝑆(𝑡), 𝑈1(𝑡), 𝑈2(𝑡), 𝑈3(𝑡)) of system (1)
with (𝑆(0), 𝑈1(0), 𝑈2(0), 𝑈3(0)) in the interior of biologically
feasible region℧ satisfies

lim
𝑡→∞

inf 𝑆 (𝑡) , 𝑈1 (𝑡) , 𝑈2 (𝑡) , 𝑈3 (𝑡) ≥ 𝑐0. (44)

Because of boundedness of the region℧, uniform persistence
is equivalent to the existence of a compact set in the interior
of ℧ which is absorbing for (1) (see [48]). Hence, condition
(𝐻4) is satisfied. Also it is shown that whenever 𝑅0 > 1 the
model system (1) has only one equilibrium 𝐸∗ in the interior
of ℧, so that condition (𝐻5) is verified. Now for the heroin
model system (1) the task involves verifying the Bendixson
criterion (65). Note that the variable 𝑈3 does not affect first,
second, and third equation of system (1). Thus, the fourth
equation can be dropped from the analysis, and we only need
to consider the following subsystem:𝑑𝑆𝑑𝑡 = Λ − 𝛽𝑈1𝑆 − 𝜇𝑆,𝑑𝑈1𝑑𝑡 = 𝛽𝑈1𝑆 + 𝑝𝑈2 − (𝜇 + 𝛿1 + 𝜉)𝑈1 − 𝛼𝑈11 + 𝜔𝑈1 ,𝑑𝑈2𝑑𝑡 = 𝛼𝑈11 + 𝜔𝑈1 − (𝑝 + 𝜎 + 𝛿2 + 𝜇)𝑈2.

(45)

The Jacobian matrix of subsystem (45) is found to be

𝐽 = (−(𝛽𝑈1 + 𝜇) −𝛽𝑆 0𝛽𝑈1 𝛽𝑆 − (𝜇 + 𝛿1 + 𝜉) − 𝛼(1 + 𝜔𝑈1)2 𝑝0 𝛼(1 + 𝜔𝑈1)2 − (𝑝 + 𝜎 + 𝛿2 + 𝜇)). (46)
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In working with Theorem 12 one needs to make use of
additive compound matrices. For an arbitrary 3 × 3 matrix𝐵, the second additive compound matrix 𝐵[2] is defined as

𝐵 = (𝑏11 𝑏12 𝑏13𝑏21 𝑏22 𝑏23𝑏31 𝑏32 𝑏33),
𝐵[2] = (𝑏11 + 𝑏22 𝑏23 −𝑏13𝑏32 𝑏11 + 𝑏33 𝑏12−𝑏31 𝑏21 𝑏22 + 𝑏33). (47)

Thus, the second additive compound matrix of Jacobian
matrix 𝐽 of system (45) is given as

𝐽[2] = ( 𝐽11 𝑝 0𝛼(1 + 𝜔𝑈1)2 𝐽22 −𝛽𝑆0 𝛽𝑈1 𝐽33), (48)

where𝐽11 = −𝛽𝑈1 − (2𝜇 + 𝛿1 + 𝜉) − 𝛼(1 + 𝜔𝑈1)2 + 𝛽𝑆,𝐽22 = −𝛽𝑈1 − (2𝜇 + 𝑝 + 𝜎 + 𝛿2) ,𝐽33 = − 𝛼(1 + 𝜔𝑈1)2 − (2𝜇 + 𝑝 + 𝜎 + 𝛿1 + 𝛿2 + 𝜉)+ 𝛽𝑆.
(49)

For the model system (45) a suitable vector norm | ⋅ | in R3

and a 3 × 3matrix-valued function 𝑃(𝑦) are given by

𝑃 (𝑆, 𝑈1, 𝑈2) = (1 0 00 𝑈1𝑈2 00 0 𝑈1𝑈2),
Thus 𝑃𝑓𝑃−1 = (0 0 00 𝑈1𝑈1 − 𝑈2𝑈2 00 0 𝑈1𝑈1 − 𝑈2𝑈2),

𝑃𝐽[2]𝑃−1
= ( 𝐽11 𝑝𝑈2𝑈1 0𝛼𝑈1(1 + 𝜔𝑈1)2𝑈2 𝐽22 −𝛽𝑆0 𝛽𝑈1 𝐽33).

(50)

Note that upper prime () denotes differentiationwith respect
to time, 𝑑./𝑑𝑡.Thus,𝐴 = 𝑃𝑓𝑃−1 +𝑃𝐽[2]𝑃−1 can be obtained as𝐴

= (((
(

𝐽11 𝑝𝑈2𝑈1 0𝛼𝑈1(1 + 𝜔𝑈1)2𝑈2 𝐽22 + 𝑈1𝑈1 − 𝑈2𝑈2 −𝛽𝑆0 𝛽𝑈1 𝐽33 + 𝑈1𝑈1 − 𝑈2𝑈2
)))
)

. (51)

It is helpful to write matrix 𝐴 in block form as

𝐴 = [𝐴11 𝐴12𝐴21 𝐴22] , (52)

where𝐴11 = −𝛽𝑈1 − (2𝜇 + 𝛿1 + 𝜉) − 𝛼(1 + 𝜔𝑈1)2 + 𝛽𝑆,
𝐴12 = [𝑝𝑈2𝑈1 0] ,
𝐴21 = [ 𝛼𝑈1(1 + 𝜔𝑈1)2𝑈2 0]𝑇 ,
𝐴22 = [[[[

𝐽22 + 𝑈1𝑈1 − 𝑈2𝑈2 −𝛽𝑆𝛽𝑈1 𝐽33 + 𝑈1𝑈1 − 𝑈2𝑈2]]]] .
(53)

Following [13], let (𝑢, V, 𝑤) represent the vectors in R3 ≅
R(
3
2 ). Now for the norm | ⋅ | in R3 select|(𝑢, V, 𝑤)| = max {|𝑢| , |V| + |𝑤|} (54)

and let 𝜌 represent the Lozinskĭı measure with respect to this
norm. Applying the method of approximating 𝜌(𝐴) as given
in [46] leads to 𝜌 (𝐴) ≤ sup {𝑔1, 𝑔2} , (55)

where 𝑔1 = 𝜌1 (𝐴11) + 𝐴12𝑔2 = 𝐴21 + 𝜌1 (𝐴22) . (56)

Here |𝐴12| and |𝐴21| are operator norms of𝐴12 and𝐴21 with
respect to the 𝑙1 vector norm, where they are both regarded
as mapping from R2 to R. 𝜌1(𝐴22) represents the Lozinskĭı
measure of the 2 × 2 matrix 𝐴22 with respect to the 𝑙1 norm
in R2. To obtain 𝜌1(𝐴22) we sum the absolute value of the
off-diagonal elements to the diagonal one in each column of



Journal of Applied Mathematics 13𝐴22 and then take the maximum of two sums. Assuming that(1/2)(𝛿1 + 𝜉 + 𝛼/(1 + 𝜔𝑈1)2) > 𝛽𝑆, it follows that𝜌1 (𝐴11) = −𝛽𝑈1 − (2𝜇 + 𝛿1 + 𝜉) − 𝛼(1 + 𝜔𝑈1)2 + 𝛽𝑆,𝐴12 = max{𝑝𝑈2𝑈1 , 0} = 𝑝𝑈2𝑈1 ,𝐴21 = max{ 𝛼𝑈1(1 + 𝜔𝑈1)2𝑈2 , 0}𝑇 = 𝛼𝑈1(1 + 𝜔𝑈1)2𝑈2 ,𝜌1 (𝐴22) = max{𝑈1𝑈1 − 𝑈2𝑈2 − (2𝜇 + 𝑝 + 𝜎 + 𝛿2) , 𝑈1𝑈1− 𝑈2𝑈2 − (2𝜇 + 𝑝 + 𝜎 + 𝛿2) − 𝛿1 − 𝜉 − 𝛼(1 + 𝜔𝑈1)2+ 2𝛽𝑆} = 𝑈1𝑈1 − 𝑈2𝑈2 − (2𝜇 + 𝑝 + 𝜎 + 𝛿2) .

(57)

Thus, 𝑔1 and 𝑔2 are, respectively, given as𝑔1 = 𝜌1 (𝐴11) + 𝐴12= 𝛽𝑆 + 𝑝𝑈2𝑈1 − 𝛽𝑈1 − 𝛼(1 + 𝜔𝑈1)2 − (2𝜇 + 𝛿1 + 𝜉) (58)

𝑔2 = 𝐴21 + 𝜌1 (𝐴22)= 𝛼𝑈1(1 + 𝜔𝑈1)2𝑈2 + 𝑈1𝑈1 − 𝑈2𝑈2 − (2𝜇 + 𝑝 + 𝜎 + 𝛿2) . (59)

Now from second and third equation of (45) it is easy to
obtain the following:𝑈1𝑈1 = 𝛽𝑆 + 𝑝𝑈2𝑈1 − 𝛼(1 + 𝜔𝑈1) − (𝜇 + 𝛿1 + 𝜉) (60)𝑈2𝑈2 = 𝛼𝑈1(1 + 𝜔𝑈1) 𝑈2 − (𝑝 + 𝜎 + 𝛿2 + 𝜇) . (61)

Substituting (60) into (58) and (61) into (59), respectively,
leads to 𝑔1 = 𝑈1𝑈1 − 𝜇 − 𝛽𝑈1 + 𝛼𝜔𝑈1(1 + 𝜔𝑈1)2≤ 𝑈1𝑈1 − 𝜇 + 𝛼𝜔𝑈1(1 + 𝜔𝑈1)2 ,𝑔2 = 𝑈1𝑈1 − 𝜇 − 𝛼𝜔𝑈21(1 + 𝜔𝑈1)2𝑈2≤ 𝑈1𝑈1 − 𝜇.

(62)

Now based on the definition of the method of approximating
Lozinskĭı measure of 𝐴, 𝜌(𝐴) as given in [46], we now
approximate the supremum of both 𝑔1 and 𝑔2.Hence,𝜌 (𝐴) ≤ sup (𝑔1, 𝑔2)= sup{𝑈1𝑈1 − 𝜇 + 𝛼𝜔𝑈1(1 + 𝜔𝑈1)2 , 𝑈1𝑈1 − 𝜇}

= (𝑈1𝑈1 − 𝜇) + sup{ 𝛼𝜔𝑈1(1 + 𝜔𝑈1)2 , 0}≤ 𝑈1𝑈1 − 𝜇 + 𝛼𝜔𝑈1(1 + 𝜔𝑈1)2 .
(63)

Thus we get the following inequality:𝜌 (𝐴) ≤ 𝑈1𝑈1 − 𝜇 + 𝛼𝜔𝑈1(1 + 𝜔𝑈1)2 . (64)

Now the next step involves substituting 𝜌(𝐴) in𝑞2 = lim sup
𝑡→∞

sup
𝑦0∈℧

1𝑡 ∫𝑡
0
𝜌 (𝐴 (𝑠, 𝑦0)) 𝑑𝑠 (65)

and deducing whether 𝑞2 < 0. And if the inequality 𝑞2 < 0
does not hold we will need to establish a condition that leads
to 𝑞2 < 0 being fulfilled.

Considering uniform persistence, there exist 𝑐0 > 0 and𝑇 > 0 such that, for 𝑡 > 𝑇, the following is implied:𝑆 (𝑡) ≥ 𝑐0,𝑈1 (𝑡) ≥ 𝑐0,𝑈2 (𝑡) ≥ 𝑐0,𝑈3 (𝑡) ≥ 𝑐0. (66)

Now by letting Γ1 = 𝛼𝜔𝑐0/(1 + 𝜔𝑐0)2 and Γ2 = 𝜇 the following
claim is made: if Γ1 < Γ2, (67)

then it follows that 𝜌 (𝐴) ≤ 𝑈1𝑈1 − �̃�, (68)

where �̃� = 𝜇 − 𝛼𝜔𝑐0(1 + 𝜔𝑐0)2 > 0. (69)

Now, for 𝑡 > 𝑇, it can be deduced that𝑞2 = 1𝑡 ∫𝑡
0
𝜌 (𝐴) 𝑑𝑠 = 1𝑡 ∫𝑇

0
𝜌 (𝐴) 𝑑𝑠 + 1𝑡 ∫𝑡

𝑇
𝜌 (𝐴) 𝑑𝑠

≤ 1𝑡 log 𝑈1 (𝑡)𝑈1 (𝑇) + 1𝑡 ∫𝑇
0
𝜌 (𝐴) 𝑑𝑠 − �̃� 𝑡 − 𝑇𝑡 < 0

when �̃� > 0,
(70)
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Figure 4: Illustration of the effect of increasing parameter 𝜔 that accounts for the saturation of heroin users. Here the parameters remain as
in caption of Figure 3 except Λ = 2 while 𝜔 is shown in the figure. The heroin eradication thresholds (i.e., 𝑅𝐶0 ) corresponding to (a)–(d) are
now 0.5204, 0.6038, 0.7314, and 0.9131, respectively.

and, thus, the Bendixson criterion given by (42) is verified.
However, it is important to observe that 𝑞2 < 0 if and only
if condition (67) holds true. Thus, the following theorem is
established.

Theorem 13. Provided that 𝑅0 > 1, if Γ1 < Γ2, then system
(1) has a unique endemic equilibrium 𝐸∗ which is globally
asymptotically stable with respect to solutions of (1) originating
in the interior of ℧.

The validity ofTheorem 13 will be shortly verified numer-
ically.

5. Numerical Examples

In this section numerical simulations of the heroin epidemic
model are presented to support theoretical findings. Figure 4
which shows backward bifurcation is obtained by plotting
heroin users equilibrium as a function of 𝑅0. The figures
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Figure 5: (a) and (b) illustrate the dependence of the heroin epidemic extinction or persistence on the initial states provided to the model.
Parameters used include 𝜔 = 0.15, 𝛽 = 0.001, 𝛿1 = 0.002, 𝛿2 = 0.001, 𝜉 = 0.015, 𝜇 = 0.01, 𝛼 = 0.9, 𝑝 = 0.467, 𝜎 = 0.1, and Λ = 1.5. With
these parameters the corresponding 𝑅0 = 0.7506. (c) The figure illustrates the impact of increasing parameter 𝜔 (the extent of saturation of
treatment) on heroin users when 𝑅0 < 1. Parameters used include 𝛽 = 0.001, 𝛿1 = 0.002, 𝛿2 = 0.001, 𝜉 = 0.015, 𝜇 = 0.01, 𝛼 = 0.9, 𝑝 = 0.46,𝜎 = 0.1, and Λ = 1.5 which correspond to 𝑅0 = 0.7427 < 1. (d) The figure shows the effect of treatment 𝛼 on heroin users 𝑈1 when all other
parameters and initial conditions are fixed.

present a scenario where 𝑅0 is varied via parameter 𝛽 (i.e.,0.0005 ≤ 𝛽 ≤ 0.0015) and other parameters are fixed.
Figures 4(a)–4(d) show that increasing the parameter 𝜔
leads to the expansion of the region of bistability while
decreasing 𝜔 results in contraction of the bistability region.
The heroin eradication threshold (also referred to as critical
reproduction number) 𝑅𝐶0 shifts from right to left when 𝜔
increases and vice versa when 𝜔 decreases. High 𝜔 value
implies not enough treatment for a large population of heroin
users, thus favouring a situation where there will always be
heroin users within the community even though 𝑅0 < 1.

Figures 5(a) and 5(b) exhibit the time course of the
heroin endemic in a parameter regime where there is a
backward bifurcation. In both Figures 5(a) and 5(b) 𝑅0 =0.7506 < 1.The figures show the dependence of heroin usage
on the size of the initial conditions supplied to the system,

which is a common characteristic of models that have
a bistability region. If the model is supplied with initial
conditions that are below the unstable curve (see the red
solid line in Figure 3(b)) the solution trajectories are attracted
to the heroin-free equilibrium while if initial conditions are
chosen such that they are above the unstable curve, then
the solution trajectories are attracted to a stable nontrivial
equilibrium. Thus, in the case there is backward bifurcation,
the initial number of people engaging in heroin use governs
the course of the heroin epidemic.

Figure 5(c) shows the time course of the heroin users
when the parameter 𝜔 that accounts for the extent of satu-
ration of heroin users is varied while the initial states and all
other parameter values are fixed to constant values. It can be
seen that not all values of 𝜔 will trigger rapid growth towards
an endemic equilibrium when 𝑅0 < 1. Indeed, parameter 𝜔
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Figure 6: (a) and (b) show the effect of increasing the parameter 𝜔 that accounts for the extent of saturation of treatment when 𝑅0 > 1.
Parameters used are the same as in Figure 5(a) except 𝑝 = 0.46 and Λ = 3 corresponding to 𝑅0 = 1.4855 > 1.
has to exceed a certain fixed threshold 𝜔𝑐, hence supporting
our theoretical findings that a nonzero equilibrium when𝑅0 < 1 can only be maintained when 𝜔 is greater than 𝜔𝑐;
see (28). Figure 5(d) shows the effect of treatment𝛼 on heroin
users.High treatment leads to a steady decline of heroin users.

Figure 6 presents a scenariowhere𝑅0 > 1. In this scenario
we expect that when a heroin user enters a heroin-free
community there will be rapid growth of heroin users until
a globally stable equilibrium point is reached. Recalling that
parameter 𝜔 does not appear in 𝑅0, nevertheless it does
affect the model dynamics. The impact of 𝜔 when 𝑅0 > 1
is different from the case where 𝑅0 < 1. For 𝑅0 < 1 it
plays a key role in inducing bistability while for 𝑅0 > 1 the
parameter𝜔 impacts the heroin dynamics by determining the
time taken for an epidemic to occur. For relatively high 𝜔
values there is a sudden decrease of susceptible subpopulation
while for relatively low values of 𝜔 there is a gradual decrease
of susceptible subpopulation. Moreover, Figure 6(b) depicts
that for any given value of 𝜔 the heroin users gradually
approach a stable endemic equilibrium point. The only strik-
ing difference is the time taken to reach the heroin endemic
equilibrium. At high values of parameter 𝜔 the heroin
endemic will rapidly approach an equilibrium.

We now verify the global stability condition obtained
using the geometric approach based on the following param-
eter values:

(i) 𝛽 = 0.001, 𝛿1 = 0.002, 𝛿2 = 0.001, 𝜉 = 0.015, 𝜇 =0.01, 𝛼 = 0.9, 𝑝 = 0.467, 𝜎 = 0.1, 𝜔 = 2, Λ =3, 𝑐0 = 50. With these parameters the corresponding𝑅0 = 1.5012 > 1 and Γ1 = 0.0088 < Γ2 = 0.0100. In
this scenario condition (67) is satisfied and the model
system (1) should be globally asymptotically stable.
Figures 7(a), 7(b), 7(c), and 7(d) show existence of an
apparently stable equilibrium.

(ii) We now use the same set of parameter values as Case
(i) except 𝜔 = 0.05. This leads to Γ1 = 0.1837 > Γ2 =0.0100. In this case the asymptotic stability condition
is not satisfied and unsurprisingly model system (1)
has periodic solutions as shown in Figures 7(e), 7(f),
7(g), and 7(h). The epidemiological interpretation of
this is that the heroin epidemic will fluctuate between
low and high endemic levels. The cycles are induced
by time delays of the transmission processes.

5.1. Uncertainty and Sensitivity Analysis. Here we conduct
sensitivity analysis so as to identify critical inputs of our
heroin epidemicmodel and gain insights on how input uncer-
tainty influences model outcome [49]. To achieve this we
make use of the Latin hypercube sampling (LHS) technique
which provides a comprehensive method of assessing model
sensitivity to parameters over multidimensional parameter
space. One of the advantages of using the LHS technique
is that it requires fewer samples of parameters than simple
random sampling to achieve the same accuracy (see [49] and
the references therein for in-depth discussion on LHS). In
our heroin epidemic model the LHS technique is important
due to the relatively large uncertainty of the model parameter
estimates we have used.The technique works in combination
with the partial rank correlation coefficient (PRCC) which
estimates the sign and strength of the relationship that exists
between each model parameter and any specified output
variable [50, 51].ThePRCCvalues are bounded between 1 and−1, with a PRCC value close to 1 (−1) indicating very strong
positive (or negative) correlation. The relative importance of
themodel parameters can be directly evaluated by comparing
the values of the PRCC [51]. The uncertainty and sensitivity
analysis using the LHS technique involves first selecting a
baseline value and a range for each parameter of the heroin
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Figure 7: Illustration of validity of global stability condition. (a), (b), (c), and (d) represent a scenario where condition (67) holds true and
global stability is predicted. (e), (f), (g), and (h) represent a scenario where condition (67) does not hold and oscillations are expected.

Table 2: Parameter baseline values and ranges used in sensitivity
analysis.

Parameter Baseline value Range SourceΛ 2 1–5 Assumed𝛽 0.001 0.0005–0.015 [7]𝜇 180 [0.01125, 0.01375] [52]𝑝 0.467 0.1–0.8 [7]𝛼 0.5 0.2–0.95 [23]𝛿1 0.002 0.0008–0.0025 Assumed𝛿2 0.001 0.00095–0.002 Assumed𝜉 0.5 0.05–0.5 Assumed𝜎 0.1 0.1–0.7 Assumed𝜔 0.01 0.008–0.25 [23]

epidemic model (1) (see Table 2) and then performing multi-
ple runs for a given outcome variable or response function. To
enhance accuracy, 1500 random samples of parameter values
were used for the sensitivity analysis and significant levels are
set for 𝑝value < 0.05.

Figure 8 displays the sensitivity analysis results for the
heroin users not in treatment𝑈1(𝑡). It is straightforward to see
that recruitment rateΛ, effective contact rate 𝛽, relapsing rate
of heroin users in treatment to heroin users not in treatment𝑝, and saturation parameter 𝜔 are positively correlated while
natural death 𝜇, treatment rate 𝛼, heroin-induced death rates
(𝛿1, 𝛿2), “self-cure” rate 𝜉, and successful recovery rate of
heroin users in treatment 𝜎 are negatively correlated. Among
the positively correlated PRCC values the parameters 𝛽, 𝑝,
and 𝜔 are strongly positively correlated to heroin users not in

Year 15 Year 20
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

Λ


p



1
2







no
t i

n 
tre

at
m

en
t

PR
CC

 o
ut

pu
t f

or
 h

er
oi

n 
us

er
sU

1

Figure 8:The PRCC output for heroin users𝑈1(𝑡) not in treatment.

treatment as evidenced by their high PRCC values. However,
at time point year 15 the effective contact rate 𝛽 has a slightly
higher PRCC value than relapsing rate 𝑝 suggesting that at
initial stage of a heroin epidemic effective contact between
heroin users 𝑈1(𝑡) and susceptibles significantly contributes
to the emergence of a heroin epidemic. On the other hand, at
time point year 30 the situation observed at time point year
15 is reversed. That is, relapsing of heroin users in treatment
has slightly higher PRCCvalues than the effective contact rate𝛽. Hence, long-term relapsing of heroin users in treatment
back to the heroin users not in treatment also plays a role in
ensuring that there will always be heroin users within the
community. Thus, attempting to control heroin usage within
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the community measures that ensure that heroin users
undergoing treatment do not relapse should be of great
importance.The extent of saturation of heroin users as a result
of failure to treat heroin users promptly which is accounted
by parameter 𝜔 also contributes to sustaining heroin epi-
demic. As suggested by the strongly negatively correlated
PRCC value of parameter 𝜎, ensuring that heroin users in
treatment are successfully treated (i.e., they do not relapse)
can substantially reduce the subpopulation of heroin users. In
general the sensitivity analysis results suggest that, to combat
heroin epidemic, policy makers and clinicians should target
controlling effective contact rate 𝛽, relapsing rate 𝑝, and the
extent of saturation of heroin users rate 𝜔 parameters.

6. Concluding Remarks

In this study we formulated a heroin epidemic model with
bilinear and saturated treatment function. The threshold
parameter 𝑅0 usually referred to as the basic reproduction
number plays a key role in the prediction of disease persis-
tence or extinction. Epidemiologically, when 𝑅0 exceeds one,
an epidemic persists and if it is belowunity the diseasewill die
out. This classical viewpoint has recently been challenged by
many researchers since it is not always true that a disease will
disappear if 𝑅0 is decreased below one. In the present
heroin epidemic model the analytical results indicate that𝑅0 is indeed the threshold when the parameter 𝜔 = 0.
However, when a saturated treatment function (i.e., 𝜔 > 0)
rather than a linear treatment rate is used, the heroin model
exhibits the phenomenon of backward bifurcation where a
heroin-free equilibrium and two nontrivial equilibria coexist
even though the basic reproduction number is below unity
(see Theorem 8—Case (iii)). The appearance of backward
bifurcation indicates that it is not sufficient to decrease the
basic reproduction number below unity for the eradication
of heroin users within the community. Thus, to effectively
control the spread of heroin users one has to reduce 𝑅0
below another threshold referred to as the critical value of
the basic reproduction number 𝑅𝐶0 . That is, heroin users can
be eradicated if 𝑅0 < 𝑅𝐶0 < 1. It is important to note that
although the parameter 𝜔might be present in the model, not
every value of 𝜔 will lead to bistability. Instead 𝜔 has to be
greater than a certain threshold 𝜔𝑐 which is an aggregate
of model parameters (see (28)). In general both analytical
(see Appendix A for center manifold) and numerical results
suggest that the saturation parameter𝜔 is the one responsible
for backward bifurcation. Failure to intervene before heroin
users have accumulated in the community will lead to
a situation where a heroin epidemic exists even though
basic reproduction number is below one. Improvement of
existing medical technology as well as channelling suffi-
cient resources in medicines can significantly facilitate early
intervention by ensuring that heroin users receive treatment
promptly.

In addition global stability properties using both the
Lyapunov direct method and geometric approach by Li and
Muldowney have been investigated. We note that, even for
a four-dimensional model, the use of the two nonlinear

stability techniques becomes nontrivial. In fact when all the
parameters of the model are accounted for, it is difficult if
not impossible to design a Lyapunov function. Using the
geometric approach we establish a global condition that
accounts for all parameters that if satisfied signals that heroin
persistencewithin the community is globally stable.However,
if the global condition is not satisfied heroin users can
oscillate periodically in number (see Figures 7(e), 7(f), 7(g),
and 7(h)). Moreover, sensitivity and uncertainty analysis
using LHS results indicate that effective contact between
susceptibles and heroin users 𝛽, the relapsing of heroin users
in treatment 𝑝, and the extent of saturation of heroin users
parameter 𝜔 are the ones which contribute to persistence of
heroin epidemic within the community.

Appendix

A. Derivation of 𝑅0
Generally the geometric sequence is given as {𝑎, 𝑎𝑟, 𝑎𝑟2,𝑎𝑟3, . . .} and the sum of a certain number of terms of the
geometric sequence is given as 𝑆𝑛 = 𝑎(1 − 𝑟𝑛)/(1 − 𝑟), where𝑆𝑛 is the sum of 𝑛 terms (𝑛th partial sum), 𝑎 is the first term,
and 𝑟 is the common ratio. Now considering the geometric
sequence from expression (12), we note that 𝑎 = 1 and 𝑟 =𝑝𝛼/(𝜇 + 𝛿1 + 𝜉 + 𝛼)(𝑝 + 𝜎 + 𝛿2 + 𝜇) < 1.

𝑆𝑛 = 𝑎 (1 − 𝑟𝑛)1 − 𝑟 = 𝑎1 − 𝑟 since 𝑟 < 1. (A.1)

Substituting 𝑎 and 𝑟 in (A.1) yields

𝑆𝑛 = (𝜇 + 𝛿1 + 𝜉 + 𝛼) (𝑝 + 𝜎 + 𝛿2 + 𝜇)(𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) + 𝛼 (𝜎 + 𝛿2 + 𝜇) . (A.2)

Multiplying (A.2) by 1/(𝜇 + 𝛿1 + 𝜉 + 𝛼) gives the required
expression 𝑝 + 𝜎 + 𝛿2 + 𝜇(𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝜎 + 𝛿2 + 𝜇) + 𝛼 (𝜎 + 𝛿2 + 𝜇) (A.3)

which if multiplied by the effective contact rate 𝛽 and the
average recruitment rate Λ/𝜇 yields the basic reproduction
number 𝑅0.
B. Proof of Existence of Backward Bifurcation

Proof. To prove existence of backward bifurcation in model
equations (1), the center manifold approach as outlined by
Castillo-Chavez and Song in [35] is used. First for clarity
and understanding of the center manifold theory the model
equations (1) variables are transformed as follows: 𝑦1 = 𝑆,𝑦2 = 𝑈1, 𝑦3 = 𝑈2, 𝑦4 = 𝑈3, and the total population 𝑁 =∑4𝑗=1 𝑦𝑗. Define 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑇 (𝑇 denotes transpose),
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such that themodel equations (1) can be rewritten as 𝑑𝑌/𝑑𝑡 =𝐹(𝑦), where 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4).Hence, it follows that𝑑𝑦1𝑑𝑡 = 𝑓1 = Λ − 𝛽𝑦1𝑦2 − 𝜇𝑦1𝑑𝑦2𝑑𝑡 = 𝑓2= 𝛽𝑦1𝑦2 + 𝑝𝑦3 − (𝜇 + 𝛿1 + 𝜉) 𝑦2 − 𝛼𝑦21 + 𝜔𝑦2𝑑𝑦3𝑑𝑡 = 𝑓3 = 𝛼𝑦21 + 𝜔𝑦2 − (𝑝 + 𝜎 + 𝛿2 + 𝜇) 𝑦3𝑑𝑦4𝑑𝑡 = 𝑓4 = 𝜎𝑦3 + 𝜉𝑦2 − 𝜇𝑦4.
(B.1)

Now let 𝛽 = 𝛽∗ be the bifurcation parameter. Observe that,
at 𝑅0 = 1,𝛽 = 𝛽∗= 𝛼 (𝜇 + 𝛿2 + 𝜎) + (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝛿2 + 𝜇 + 𝜎)𝑦∗1 (𝑝 + 𝛿2 + 𝜇 + 𝜎) , (B.2)

where 𝑦∗1 = Λ/𝜇 = 𝑆0. With 𝛽 = 𝛽∗ the transformed
model equations (B.1) have a simple eigenvalue with zero
real part and all other eigenvalues are negative (i.e., they
have a hyperbolic equilibrium point). Thus, we can apply
center manifold theory to investigate the local dynamics of
the transformed system (B.1) near 𝛽 = 𝛽∗. Now we proceed
to obtain the Jacobian matrix of the transformed system
evaluated at heroin-free equilibrium HFE as

𝐽HFE

= (−𝜇 −𝛽𝑆0 0 00 𝛽𝑆0 − (𝜇 + 𝛿1 + 𝜉 + 𝛼) 𝑝 00 𝛼 − (𝑝 + 𝜎 + 𝛿2 + 𝜇) 00 𝜉 𝜎 −𝜇) . (B.3)

It is easy to obtain the right eigenvectors of this Jacobian
matrix as 𝑉 = (Ṽ1, Ṽ2, Ṽ3, Ṽ4)𝑇, where

(Ṽ1
Ṽ2
Ṽ3
Ṽ4

) = ((((((
(

−𝛽𝑆0𝜇1𝛼𝑝 + 𝜎 + 𝛿2 + 𝜇𝜉 (𝑝 + 𝜎 + 𝛿2 + 𝜇) + 𝜎𝛼𝜇 (𝑝 + 𝜎 + 𝛿2 + 𝜇)
))))))
)

Ṽ2, (B.4)

where Ṽ2 > 0. Similarly, it is possible to obtain the left
eigenvectors which we denote by �̃� = (𝑤1, 𝑤2, 𝑤3, 𝑤4) as𝑤1 = 0,𝑤2 = 𝑤2 > 0,𝑤3 = 𝑝𝑤2𝑝 + 𝜎 + 𝛿2 + 𝜇,𝑤4 = 0.

(B.5)

Now we proceed to obtain the bifurcation coefficients 𝑎 and𝑏 as defined inTheorem 4.1 of [35].

Calculation of Coefficient 𝑎. First the nonvanishing partial
derivatives of the transformed model (B.1) evaluated at
heroin-free equilibrium are obtained as𝜕2𝑓1 (0, 0)𝜕𝑦1𝜕𝑦2 = −𝛽∗,𝜕2𝑓2 (0, 0)𝜕𝑦1𝜕𝑦2 = 𝛽∗,𝜕2𝑓2 (0, 0)𝜕2𝑦22 = 2𝜔𝛼,𝜕2𝑓3 (0, 0)𝜕2𝑦22 = −2𝜔𝛼

(B.6)

so that

𝑎 = 4∑
𝑘,𝑖,𝑗=1

𝑤𝑘Ṽ𝑖Ṽ𝑗 𝜕2𝑓𝑘 (0, 0)𝜕𝑦𝑖𝜕𝑦𝑗 = 𝑤2Ṽ1Ṽ2 𝜕2𝑓2 (0, 0)𝜕𝑦1𝜕𝑦2 + 𝑤2Ṽ2Ṽ2 𝜕2𝑓2 (0, 0)𝜕2𝑦22 + 𝑤3Ṽ2Ṽ2 𝜕2𝑓3 (0, 0)𝜕2𝑦22= 2𝑤2Ṽ22 [𝜇𝜔𝛼 (𝜎 + 𝛿2 + 𝜇) − 𝛽∗ (𝛼 (𝜇 + 𝛿2 + 𝜎) + (𝜇 + 𝛿1 + 𝜉) (𝑝 + 𝛿2 + 𝜇 + 𝜎))𝜇 (𝑝 + 𝜎 + 𝛿2 + 𝜇) ]
= 2𝑤2Ṽ22𝛼 (𝜎 + 𝛿2 + 𝜇)𝑝 + 𝜎 + 𝛿2 + 𝜇 [𝜔 − 𝜔𝑐] where 𝜔𝑐 remains as previously defined in (28) .

(B.7)

Calculation of Coefficient 𝑏. The bifurcation coefficient 𝑏 is
obtained as 𝑏 = 4∑

𝑘,𝑖=1
𝑤𝑘Ṽ𝑖 𝜕2𝑓𝑘 (0, 0)𝜕𝑦𝑖𝜕𝛽∗ = 𝑤2Ṽ2Λ𝜇 > 0. (B.8)
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According to Theorem 4.1 of [35] if both bifurcation coef-
ficients 𝑎 and 𝑏 are positive then model (1) will exhibit
backward bifurcation. Observe that 𝑏 is always positive while𝑎 > 0 if and only if 𝜔 > 𝜔𝑐. Thus, if 𝜔 > 𝜔𝑐 then model (1)
will exhibit the phenomenon of backward bifurcation.
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