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The wellbore stability analysis during underbalance drilling operation leads to avoiding risky problems. These problems include
(1) rock failure due to stresses changes (concentration) as a result of losing the original support of removed rocks and (2) wellbore
collapse due to lack of support of hydrostatic fluid column. Therefore, this paper presents an approach to simulate the wellbore
stability by incorporating finite element modelling and thermoporoelastic environment to predict the instability conditions.
Analytical solutions for stress distribution for isotropic and anisotropic rocks are presented to validate the presented model.
Moreover, distribution of time dependent shear stresses around the wellbore is presented to be compared with rock shear strength
to select appropriate weight of mud for safe underbalance drilling.

1. Introduction

Very recent studies highlighted that the wellbore instability
problems cost the oil and gas industry above 500$–1000$
million each year [1]. The instability conditions are related to
rocks response to stress concentration around the wellbore
during the drilling operation. That means the rock may
sustain the induced stresses and the wellbore may remain
stable without collapse or failure if rock strength is enormous
[2]. Factors that lead to formation instability are coming from
the temperature effect (thermal) which is thermal diffusivity
and the differences in temperature between the drilling mud
and formation temperature.This can be described by the fact
that if the drilling mud is too cold, this leads to decreasing
the hoop stress.These variations in hoop stress have the same
effect of tripping while drilling which generates swab and
surge and may lead to both tensile and shear failure at the
bottom of the well.

The interaction between the drilling fluidswith formation
fluid will cause pressure variation around the wellbore, which
results in time dependent stresses changes locally [3]. There-
fore, in this paper the interaction between geomechanics and
formation fluid [4] is taken into consideration to analyze time
dependent rocks deformation around the wellbore.

Another study shows that the two main effects causing
collapse failure are as follows: (1) poroelastic influence of
equalized pore pressure at the wellbore wall and (2) the
thermal diffusion between wellbore fluids and formation
fluids [3–5].

Numerous scientists presented powerful models to simu-
late the effect of poroelastic, thermal, and chemical effects by
varying values of formation pore pressure, rock failure situa-
tion, and critical mud weight [3, 6].These models mentioned
that controlling the component of the water present in the
drilling fluid results in controlling thewellbore stability.More
or less, there are many parameters that could be controlled
during the drilling operation as unfavorable in situ condition
[7, 8]. In addition, mud weight (MW)/equivalent circulation
density (ECD), mud cake (mud filtrate), hole inclination and
direction, and drilling/tripping practice are considered the
main parameters that affect wellbore mechanical instability
[9, 10].

The factors that affect the mechanical stability are
membrane efficiency, water activity interaction between
the drilling fluid and shale formation, the thermal expan-
sion, thermal diffusivity, and the differences in temperature
between the drilling mud and formation temperature [11, 12].
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This paper presents a realistic model to evaluate wellbore
stability and predict the optimum ECD window to prevent
wellbore instability problems.

2. Derivation of Governing Equation for
Thermoporoelastic Model

The equations used to simulate thermoporoelastic coupling
process are momentum, mass, and energy conservation.
These equations are presented in detail in this section.

2.1. Momentum Conservation. The linear momentum bal-
ance equation in terms of total stresses can be written as
follows:

∇ ⋅ 𝜎 + 𝜌𝑔 = 0, (1)

where 𝜎 is the total stress, 𝑔 is the gravity constant, and 𝜌 is
the bulk intensity of the porous media. The intensity should
be written for two phases, liquid and solid, as follows:

𝜌 = 𝜑𝜌𝑙 + (1 − 𝜑) 𝜌𝑠. (2)

Equation (1) can be written in terms of effective stress as
follows:

∇ ⋅ (𝜎󸀠 − 𝑝𝐼) + 𝜌𝑔 = 0, (3)

where 𝜎 is the effective stress, 𝑝 is the pore pressure, and𝐼 is the identity matrix. This equation for the stress-strain
relationship does not contain thermal effects and, to include
the thermoelasticity, the equation can be written as follows:

𝜎󸀠 = 𝐶 (𝜀 − 𝛼𝑇Δ𝑇 × 𝐼) , (4)

where 𝐶 is the fourth-order stiffness tensor of material
properties, 𝜀 is the total strain, 𝛼𝑇 is the thermal expan-
sion coefficient, and Δ𝑇 is the temperature difference. The
isotropic elasticity tensor 𝐶 is defined as

𝐶 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 2𝐺𝛿𝑖𝑘𝛿𝑗𝑙, (5)

where 𝛿 is the Kronecker delta and 𝜆 is the Lame constant. 𝐺
is the shear modulus of elasticity. The constitutive equation
for the total strain-displacement relationship is defined as
follows:

𝜀 = 12 (∇󳨀→𝑢 + (∇󳨀→𝑢)
𝑇) , (6)

where 󳨀→𝑢 is the displacement vector and ∇ is the gradient
operator.

2.2. Mass Conservation. The fluid flow in deformable and
saturated porous media can be described by the following
equation:

𝑆𝑠 𝜕𝑝𝜕𝑡 + 𝛽∇ ⋅ (𝜕
󳨀→𝑢𝜕𝑡 ) + ∇ ⋅ 𝑞 − 𝛼𝑇 𝜕𝑇𝜕𝑡 = 𝑄, (7)

where 𝛽 is the Biots coefficient and assumed to be = 1.0 in this
study, 𝑝 is the pore fluid pressure, 𝑇 is the temperature, 𝛼𝑇 is

the thermal expansion coefficient, 𝑞 is the fluid flux, and 𝑄 is
the sink/source, and 𝑆𝑠 is the specific storage which is defined
by

𝑆𝑠 = (1 − 𝜑𝐾𝑠 ) + (
𝜑𝐾𝑙) , (8)

where 𝐾𝑠 is the compressibility of solid and 𝐾𝑙 is the
compressibility of liquid. The fluid flux term (𝑞) in the mass
balance in (7) can be described by usingDarcy’s flow equation
because the intensity has been assumed constant in this study:

𝑞 = −𝑘𝜇 (∇𝑝 − 𝜌󳨀→𝑔) , (9)

where 𝑘 is the permeability of the domain. The Cubic law is
used in determining fracture permeability.

2.3. Energy Conservation. The energy balance equation for
heat transport through porous media can be described as
follows:

(𝜌𝑐𝑝)eff 𝜕𝑇𝜕𝑡 + ∇ ⋅ 𝑞𝑇 = 𝑄𝑇, (10)

where 𝑞𝑇 is the heat flux,𝑄𝑇 is the heat sink/source term, and𝜌𝑐𝑝 is the heat storage and equals

(𝜌𝑐𝑝)eff = 𝜑 (𝑐𝑝𝜌)liquid + (1 − 𝜑) (𝑐𝑝𝜌)solid . (11)

In this study, conduction and convection heat transfers are
considered during numerical simulation. The heat flux term
in (10) can be written as

𝑞𝑇 = −𝜆eff∇𝑇 + (𝑐𝑝𝜌)liquid V ⋅ 𝑇, (12)

where V is the velocity of the fluid. The first term on the
right hand side of (12) is the conduction term and the second
term is the convective heat transfer term and 𝜆eff is the
effective heat conductivity of the porous medium, which can
be defined as

𝜆eff = 𝜑𝜆liquid + (1 − 𝜑) 𝜆solid. (13)

2.4. Discretization of the Equations. First one discretizes
the thermoporoelastic governing equations by using Greens’
theorem [13] to derive equations weak formulations. The
weak form of mass, energy, and momentum balance in (1),
(7), and (10) can be written as follows, respectively:

∫
Ω
𝑤𝑆𝑠 𝜕𝑝𝜕𝑡 𝑑Ω + ∫Ω 𝑤𝑇𝛼∇ ⋅

𝜕󳨀→𝑢𝜕𝑡 𝑑Ω + ∫Ω 𝑤𝛽
𝜕𝑇𝜕𝑡

− ∫
Ω
∇𝑤𝑇 ⋅ 𝑞𝐻𝑑Ω + ∫

Γ
𝑞
𝐻

𝑤 (𝑞𝐻 ⋅ 𝑛) 𝑑Γ
− ∫
Ω
𝑤𝑄𝐻𝑑Ω = 0,

(14)
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∫
Γ𝑑

𝑤𝑏𝑚𝑆𝑠 𝜕𝑝𝜕𝑡 𝑑Γ + ∫Γ𝑑 𝑤𝛼
𝜕𝑏𝑚𝜕𝑡 𝑑Γ + ∫Γ𝑑 𝑤𝛽

𝜕𝑇𝜕𝑡 𝑑Γ
− ∫
Γ𝑑

∇𝑤𝑇 ⋅ (𝑏ℎ𝑞𝐻) 𝑑Ω + ∫
Γ
𝑞
𝐻

𝑤𝑏ℎ (𝑞𝐻 ⋅ 𝑛) 𝑑Γ
+ ∫
Γ𝑑

𝑤𝑞+𝐻𝑑Γ + ∫
Γ𝑑

𝑤𝑞−𝐻𝑑Γ = 0,
(15)

∫
Ω
𝑤𝑐𝑝𝜌𝜕𝑇𝜕𝑡 𝑑Ω + ∫Ω 𝑤𝑐𝑝𝜌𝑞𝐻 ⋅ ∇𝑇𝑑Ω
− ∫
Ω
∇𝑤𝑇 ⋅ (−𝜆∇𝑇) 𝑑Ω + ∫

Γ
𝑞

𝑇

𝑤 (−𝜆∇𝑇 ⋅ 𝑛) 𝑑Γ
− ∫
Ω
𝑤𝑇𝑄𝑇𝑑Ω = 0,

(16)

∫
Γ𝑑

𝑤𝑏𝑚𝑐𝑙𝑝𝜌𝑙 𝜕𝑇𝜕𝑡 𝑑Γ + ∫Γ𝑑 𝑤𝑐
𝑙
𝑝𝜌𝑙𝑏ℎ𝑞𝐻 ⋅ ∇𝑇𝑑Γ

− ∫
Γ𝑑

∇𝑤𝑇 ⋅ (−𝑏𝑚𝜆𝑙∇𝑇) 𝑑Γ
+ ∫
Γ
𝑞

𝑇

𝑤(−𝑏𝑚𝜆𝑙∇𝑇 ⋅ 𝑛) 𝑑Γ + ∫
Γ𝑑

𝑤𝑞+𝑇𝑑Γ
+ ∫
Γ𝑑

𝑞−𝑇𝑑Γ = 0,

(17)

∫
Ω
∇𝑠𝑤𝑇 ⋅ (𝜎󸀠 − 𝛼𝑝𝐼) 𝑑Ω − ∫

Ω
𝑤𝑇 ⋅ 𝜌𝑔𝑑Ω

− ∫
Γ𝑡

𝑤𝑇 ⋅ 󳨀→𝑡 𝑑Γ − ∫
Γ𝑑

𝑤+𝑇 ⋅ 󳨀→𝑡 +𝑑𝑑Γ
− ∫𝑤−𝑇 ⋅ 󳨀→𝑡 −𝑑𝑑Γ = 0,

(18)

where 𝑤 is the test function, Ω is the model domain, Γ is
the domain boundary, 𝑡 is the traction vector, superscripts+/− refer to the value of the corresponding parameters on
opposite sides of the fracture surfaces, respectively, 𝑆𝑠 is the
specific storage, 𝑛 is the porosity, 𝑞𝐻 is the volumetric Darcy
flux, 𝛽 is the thermal expansion coefficient, 𝑄𝐻 is the fluid
sink/source term between the fractures, 𝑞𝑇 is the heat flux,𝑐𝑝 is the specific heat capacity, 𝑏𝑚 and 𝑏ℎ are mechanical
and hydraulic fracture apertures, 𝑄𝑇 is the heat sink/source
term, 𝛼 is the thermal expansion coefficient, 𝜆 is the thermal
conductivity, and 𝑑 refers to the fracture plane.

Then the Galerkin method is used to spatially discretize
the weak forms of (14) to (18). The primary variables of the
field problem are pressure 𝑝, temperature 𝑇, and displace-
ment vector 𝑢. All of these variables are approximated by
using the interpolation function in finite element space as
follows:

𝑢 = 𝑁𝑢𝑢,
𝑝 = 𝑁𝑝𝑝,
𝑇 = 𝑁𝑇𝑇,

(19)

Table 1: Reservoir inputs used for validation of poroelastic numer-
ical model using circular homogenous reservoir.

Parameter Value
Poisson ratio 0.2
Young’s modulus 40GPa
Maximum horizontal stress 40MPa (5800 psi)
Minimum horizontal stress 37.9MPa (5500 psi)
Wellbore pressure (𝑃𝑤) 6.89MPa (1000 psi)
Initial reservoir pressure (𝑃𝑖) 37.9MPa (5500 psi)
Fluid bulk module (𝐾𝑓) 2.5 GPa
Fluid compressibility 1.0 × 10−5 Pa−1

Biot’s coefficient 1.0
Fluid viscosity 3 × 10−4 Pa⋅s
Matrix permeability 9.869 × 10−18m2 (0.01md)
Wellbore radius 0.1m
Reservoir outer radius 1000m
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Figure 1: Two-dimensional circular reservoir shape used for valida-
tion of poroelastic numerical model with 𝜎𝐻 = 39.9MPa and 𝜎ℎ =
37.9MPa, 𝑃𝑟 = 37.9MPa, and Δ𝑝 = 31MPa.

where𝑁 is the corresponding shape function and 𝑢, 𝑝, and 𝑇
are the nodal unknowns values.

3. Validation of Poroelastic Numerical Model

The verification of poroelastic numerical model against ana-
lytical solutions (see Appendix) is presented in this section. A
two-dimensional model of circular shaped reservoir with an
intact wellbore of 1000m drainage radius and 0.1m wellbore
radius is used (see Figure 1).The reservoir input data used are
presented in Table 1. The numerical model is initiated with
drained condition obtained by using Kirsch’s problem [14].
These conditions with the analytical solution equations for
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Figure 2: Flow chart describes how the nodal unknowns are solved using iterations process.

drained condition for the given pore pressure, displacement,
and stresses [15, 16] are presented in the Appendix. Flow
chart describes the solution process for pressure and dis-
placement for poroelastic model and also for temperature for
thermoporoelastic frameworks is presented in Figure 2. The
numerical results obtained are plotted against the analytical
solutions in Figures 3–6.

For the verification purpose, a number of assumptions are
made.

Initial State. In this study, zero time (initial state) is assumed
to represent drained situation in which pore pressure is
stabilized.

Boundary Conditions. They are boundary conditions for the
poroelastic model in this model.

Rock and Fluid Properties. In the numerical model, Young’s
modulus, Poisson’s ratio, porosity, permeability, and total sys-
tem compressibility as well as viscosity of fluid are assumed
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Figure 3: Pore pressure as a function of radius and time in
poroelastic medium with 𝜎𝐻 = 5800 psi and 𝜎ℎ = 5500 psi, 𝑃𝑟 =
5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦 = 0.01md.
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Figure 4: 𝑋-displacement along 𝑥-axis as a function of time in
poroelastic medium with 𝜎𝐻 = 5800 psi and 𝜎ℎ = 5500 psi, 𝑃𝑟 =
5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦 = 0.01md.

to be independent of time and space in order to be consistent
with the analytical solutions.

As can be seen from Figure 3, the numerical results
match well with the analytical solutions. Due to discontinuity
of initial state and the first time step in the numerical
procedure a small mismatch is observed between numerical
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Figure 5: 𝑋-component of radial stresses as a function of time in
poroelastic medium with 𝜎𝐻 = 5800 psi and 𝜎ℎ = 5500 psi, 𝑃𝑟 =
5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦 = 0.01md.
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Figure 6: 𝑋-component of tangential stresses as a function of time
in poroelastic medium with 𝜎𝐻 = 5800 psi and 𝜎ℎ = 5500 psi, 𝑃𝑟 =
5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦 = 0.01md.

and analytical solutions for 𝑡 = 1 hr. It is evident that, for
an initial drained condition and horizontal permeability
anisotropy, no directional dependence of the change in pore
pressure is observed despite the anisotropic horizontal stress
state.
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Figure 7: Pore pressure contour map after 1 hr of fluid production
(for near-wellbore region) with 𝜎𝐻 = 5800 psi and 𝜎ℎ = 5500 psi, 𝑃𝑟
= 5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦 = 0.01md.

In Figure 4 the numerical results for displacement have a
small mismatch with the analytical solutions. This is due to
the method (Patch Recovery Method) that has been used to
distribute initial reservoir displacement and calculating the
change in in situ stresses with time.

In Figure 5, the numerical results show a good agreement
with the exact solutions for different time and orientations.
For all cases, as expected, 𝜎𝑥 approaches the maximum
horizontal in situ stress (5800 psi) at far field (away from
wellbore). The discontinuity of 𝜎𝑥 at wellbore wall is due
to the imposed pressure boundary condition. It is assumed
that wellbore pressure is equal to the reservoir pressure at
zero time in order to simulate drained initial state. It is also
observed that as time progresses, the size of the area, which is
affected by the change in 𝜎𝑥, increases. This is due to change
in pore pressure.

In Figure 6 numerical results of 𝜎𝑦 match well with that
of the analytical solutions for different time. As expected, 𝜎𝑦
approaches the minimum horizontal in situ stress (5500 psi)
at far field (away from wellbore).

The results of pore pressure and effective stress after one
hour of production are presented in Figures 7–9 in reservoir
entire region. These figures (Figures 7–9) clarify how the
pressure and stresses are changing from the wall of the
wellbore to the reservoir boundary.

4. Failure Criteria

Shear failure will occur if

𝜎󸀠3 < −𝑇0, (20)

where 𝜎󸀠3 the lowest principle is effective stress and 𝑇0 is the
rock tensile strength.
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Figure 8: 𝑋-component of radial stresses contour map after 1 hr of
fluid production (for near-wellbore region) with 𝜎𝐻 = 5800 psi and𝜎ℎ = 5500 psi, 𝑃𝑟 = 5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦 =
0.01md.
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Figure 9:𝑋-component of tangential stresses contourmap after 1 hr
of fluid production (for near-wellbore region) with 𝜎𝐻 = 5800 psi
and 𝜎ℎ = 5500 psi, 𝑃𝑟 = 5500 psi, 𝑃𝑤 = 1000 psi, 𝑘𝑥 = 0.01md, and 𝑘𝑦
= 0.01md.

Using Mohr-Coulomb criteria, shear failure criteria are
met when

𝜏net = 12 cos𝜑 (𝜎󸀠1 (1 − sin𝜑) − 𝜎󸀠3 (1 + sin𝜑)) > 𝑆0, (21)

where 𝜎󸀠1 is the highest principle effective stress, 𝜏net is the
net shear stress, 𝜑 is the angle of internal friction, and 𝑆0 is
the rock shear strength. Once the maximum principle stress
surpasses the rock shear strength, rock failure takes place at
thewellbore.Therefore, evaluating the highest principle stress
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Figure 10: Shear yielding occurs for underbalanced conditions due to the absence of a support pressure on the borehole wall [16].

is important criterion to predict rock failure for analysis of
wellbore stability [16].

Drilling with underbalanced technique where the
bottom-hole pressure is lower than the formation pore
pressure regularly promotes borehole instability. Thus, it
is important to design and determine the ideal range of
the bottom-hole pressure during underbalanced drilling
operation, to avoid generating hydraulic fractures, differential
sticking, or undesirable level of formation damage [17] (see
Figure 10).

5. Case Study

This test case has been taken from a field located in southern
part of Iran. The operator is considered a well drilled at an
approximate depth of 4000 ft. the recorded pore pressure
gradient from the DST test analysis is 7.7 lb/gal. The rock
mechanical data used for wellbore stability analysis are
determined from triaxial test on core samples and presented
in Table 2. The wellbore stability analysis has been executed
using underbalance technique. Therefore, the reduction in
pore pressure during the drilling process will directly affect
the horizontal and shear stresses. To avoid either loss of
circulation problems or borehole failure, the mud pressure
should be less than the formation fracture pressure and
greater than its collapse pressure. Therefore, it is mandatory
to predict the changes of stresses values as reservoir pressure
drops. In this case study, the mud weight recommended to be
used is 5 lb/gal.

To do this analysis, a finite element mesh has been
generated as the one presented in Figure 1 and it was refined
around the wellbore. The boundary conditions have been
assigned to the model and Mohr-Coulomb criteria [18] are
used for the simulation to predict the stresses and pore
pressure distribution with time around the wellbore.

6. Results and Discussion

Breakout shear failure occurred during underbalance drilling
operation; therefore, it is very important to predict the failure
at the wellbore wall using failure criteria. Because of pore

Table 2: Case study input data.

Mechanical parameters
Poisson ratio (]) 0.2
Bulk Young’s modulus (𝐸) 4.4GPa
Maximum horizontal stress (𝜎𝐻) 16.8MPa (2436 psi)
Minimum horizontal stress (𝜎ℎ) 14MPa (2030 psi)
Wellbore pressure (𝑃𝑤) 6.89MPa (1000 psi)
Hydraulic parameters
Initial reservoir pressure (𝑃𝑖) 11.1MPa (1610 psi)
Fluid bulk module (𝐾𝑓) 0.45GPa
Fluid compressibility 1.0 × 10−5 Pa−1

Biot’s coefficient 1.0
Physical parameters
Fluid viscosity 3 × 10−4 Pa⋅s
Fluid density 1111 kg/m3

Matrix permeability 9.869 × 10−18m2
(0.01md)

Porosity (𝜙) 0.1
Wellbore radius 0.15m
Reservoir outer radius 1000m
Formation temperature (𝑇𝑓) 375 oK
Drilling mud temperature (𝑇𝑚) 330 oK
Thermal osmosis coefficient (𝐾𝑇) 1 × 10−11m2/s K
Thermal expansion coefficient of fluid (𝛼𝑓) 3 × 10−4 1/K
Thermal diffusivity (𝐶𝑇) 1.1 × 10−6m2/s
Thermal expansion coefficient of solid (𝛼𝑠) 1.8 × 10−5 1/K

pressure dissipation, the failure becomes time dependent as
the net shear stress increases with time at the borehole wall.

It can be seen from Figure 11 that the net shear stress is
the lowest for the time before starting of the underbalance
drilling operation.Then, at thewellborewall, it can be noticed
that the net shear stress drops suddenly after 4 s of the drilling
operation. In addition, at this time, the net shear stress value
is higher than net shear stress for long time of the drilling
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Figure 11: 𝑌-component of net shear stresses as a function of time
in poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ = 14MPa, 𝑃𝑟 =
11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and 𝑇𝑚 = 330K.
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Figure 12: 𝑌-component of maximum horizontal stresses as a
function of time in poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ
= 14MPa, 𝑃𝑟 = 11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and𝑇𝑚= 330K.

operation. This effect of short time of drilling operation on
the net shear stress value is uncertain, as this time may be
too short to allow failure to be devolved. But, in this case
study, by comparing the net shear stress value with the rock
shear strength, we found its value lower than the rock shear
strength (14MPa). This proves that the failure will not occur
using mud weight of 5 lb/gal. Figures 12, 13, and 14 show 𝑦-
stresses at the wellbore wall.

Distribution of the net shear stress along 𝑦-axis for the
cooling (𝑇𝑚 < 𝑇𝑓) effect of mud during the underbalance
drilling operation is presented in Figure 15. From this figure,
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Figure 13: 𝑌-component of minimum horizontal stresses as a
function of time in poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ
= 14MPa, 𝑃𝑟 = 11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and𝑇𝑚 = 330K.
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Figure 14: 𝑌-component of net shear stresses at 𝑡 = 30 s in
poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ = 14MPa, 𝑃𝑟 =
11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and 𝑇𝑚 = 330K.

it can be seen that the net shear stress accumulated at the
wellbore wall and increases the probability of failure of the
well. If the breakout occurs, it will initiate near the wellbore
not at the wall bore wall (see Figure 15). If there is a breakout,
the shear forces will cause rock to fall into the wellbore
and in this case the well status becomes unstable (wellbore
instability). But, in this case study, the net shear stress is
too low to cause failure and this well will not suffer from
instability problems even for long drilling period. Figures 16,
17, and 18 show 𝑦-stresses at the wellbore wall with the effect
of mud cooling.

The cooling process near the wellbore can alter the
stresses significantly and leads to increasing the total stresses
and the pore pressure drop inside the formation; those
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Figure 15: 𝑌-component of net shear stresses as a function of time
in poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ = 14MPa, 𝑃𝑟 =
11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and 𝑇𝑚 = 300K.
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Figure 16: 𝑌-component of minimum horizontal stresses as a
function of time in poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ
= 14MPa, 𝑃𝑟 = 11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and𝑇𝑚 = 300K.

increasing in total stresses and pore pressure cause increasing
in the effective stresses near the wellbore (see Figures 15,
17, and 18). As time increases, the mud temperature will
equilibrate with its surroundings so that the formations
higher in the section being drilled are subjected to the
increased temperature of the mud. Heating process leads to
reducing the pore pressure and net shear stresses near the
wellbore (see Figures 11 and 13).

The formation cooling increases the pore pressure (see
Figure 19) near the wellbore wall at the beginning of the
drilling operation (for 4 s, 7.5 s, and 30 s). This is due to
thermal osmosis process that results in fluid movement out
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Figure 17: 𝑌-component of maximum horizontal stresses as a
function of time in poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ
= 14MPa, 𝑃𝑟 = 11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and𝑇𝑚 = 300K.
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Figure 18: Pore pressure as a function of radius and time in
poroelastic medium with 𝜎𝐻 = 16.8MPa and 𝜎ℎ = 14MPa, 𝑃𝑟 =
11MPa, 𝑃𝑤 = 9.7MPa, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and 𝑇𝑚 = 300K.

of the formation. Then, the transient response causes pore
pressure on the 𝑦-axis to decrease.

Figure 20 shows a relationship between the mud weight
and accumulated shear stress around the wellbore. It can be
seen from the figure that, with using mud weight of 7.5 ppg,
the net shear stress (16MPa) becomes greater than the rock
strength (14MPa). Therefore, to avoid wellbore breakouts,
Mohr-Coulomb failure criterion indicates that the safe mud
weight used in this case study is between 5.5 and 7.5 ppg.
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Table 3: General description of the problem.

Inner boundary Outer boundary Wellbore pressure Pore pressure Maximum horizontal
stress

Minimum horizontal
stress

𝑟𝑤 𝑟𝑒 = ∞ 𝑃𝑤 𝑃 = 𝑃𝑖𝑖𝑛𝑡 𝜎𝐻 𝜎ℎ

Y

X

0.5

0.4

0.3

0.2

0.1

0
0.50.40.30.20.10

Figure 19: 𝑌-component of net shear stresses at 𝑡 = 30 s in
poroelastic medium with 𝜎𝐻 = 2436 psi and 𝜎ℎ = 2030 psi, 𝑃𝑟 =
1610 psi, 𝑃𝑤 = 1421 psi, 𝑘𝑥 = 0.01md, 𝑘𝑦 = 0.01md, and 𝑇𝑚 = 300K.
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Figure 20: Relationship between mud weight and net shear stress
(iteration process).

7. Conclusion

An integrated thermoporoelastic numerical model has been
presented in this paper to predict the stresses distribution and
the instability problem around the wall of the wellbore. The
model has been validated against the analytical model.

Behaviour of the stresses around the wellbore in under-
balance drilling operation is very sensitive to the mud
weight and mechanical properties of the rock as well. The
pore pressure and stresses around the wellbore are signifi-
cantly affected by the thermal effects. Thus, when the mud
temperature is lower than the formation temperature, the
pore pressure changes, and the net shear stresses values are
increased around the wellbore which increase the probability

ℎ

ℎ

HH

Pw

P = PＣＨＣＮ

Figure 21: Schematic of the problem.

of occurrence of the instability problem, if its values become
greater than the rock shear strength.

Appendix

Elastic Deformation of a Pressurized Wellbore
in a Drained Rock Subjected to Anisotropic In
Situ Horizontal Stress (Kirsch’s Problem)

General description of the problem is tabulated in Table 3
and schematic of the problem is illustrated in Figure 21. This
problem accounts for the concept of effective stress.

(i) Analytical pressure is

𝑝 (𝑟, 𝑡) = 𝑝𝑖 + (𝑝𝑤 − 𝑝𝑖) 𝑔 (𝑟, 𝑡) . (A.1)

(ii) Analytical radial stress is

𝜎𝑟𝑟 (𝑟, 𝜃) = 𝜎𝐻 + 𝜎ℎ2 (1 − 𝑟2𝑤𝑟2 )

+ 𝜎𝐻 − 𝜎ℎ2 (1 + 3𝑟4𝑤𝑟4 − 4
𝑟2𝑤𝑟2 ) cos (2𝜃)

+ 𝑝𝑤 𝑟
2
𝑤𝑟2 + 2𝜂 (𝑝𝑤 − 𝑝𝑖) 𝑟𝑤𝑟 ℎ (𝑟, 𝑡) .

(A.2)
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(iii) Analytical tangential stress is

𝜎𝜃𝜃 (𝑟, 𝜃) = 𝜎𝐻 + 𝜎ℎ2 (1 + 𝑟2𝑤𝑟2 )

− 𝜎𝐻 − 𝜎ℎ2 (1 + 3𝑟4𝑤𝑟4 ) cos (2𝜃)

− 𝑝𝑤 𝑟
2
𝑤𝑟2

− 2𝜂 (𝑝𝑤 − 𝑝𝑖) (𝑟𝑤𝑟 ℎ (𝑟, 𝑡) + 𝑔 (𝑟, 𝑡)) ,
𝑔 (𝑟, 𝑠) = 𝐾0 (𝜉)𝑠𝐾0 (𝛽) ,
ℎ̃ (𝑟, 𝑠) = 1𝑠 [ 𝐾1 (𝜉)𝛽𝐾0 (𝛽) −

𝑟𝑤𝑟
𝐾1 (𝛽)𝛽𝐾0 (𝛽)] .

(A.3)

(iv) Radial displacement is

𝑢𝑟 (𝑟, 𝜃) = 𝑟4𝐺 (𝜎󸀠𝐻 + 𝜎󸀠ℎ)(1 − 2V +
𝑟2𝑤𝑟2 )

+ 𝑟4𝐺 (𝜎󸀠𝐻 − 𝜎󸀠ℎ)
× (𝑟2𝑤𝑟2 (4 − 4V −

𝑟2𝑤𝑟2 ) + 1) cos (2𝜃)

− 𝑝󸀠𝑤2𝐺
𝑟2𝑤𝑟 − 𝜂𝐺𝑟𝑤 (𝑝𝑤 − 𝑝𝑖) ℎ (𝑟, 𝑡) .

(A.4)

(v) Tangential displacement is

𝑢𝜃 (𝑟, 𝜃) = − 𝑟4𝐺 (𝜎󸀠𝐻 − 𝜎󸀠ℎ)
⋅ (𝑟2𝑤𝑟2 (2 − 4V −

𝑟2𝑤𝑟2 ) + 1) sin (2𝜃) .
(A.5)

(vi) Analytical temperature is

𝑇 (𝑟, 𝑡) = 𝑇𝑜 + (𝑇𝑤 − 𝑇𝑜) 𝐿−1 {1𝑠
𝐾0 (𝑟√𝑠/𝑐0)
𝐾0 (𝑟𝑤√𝑠/𝑐0)} , (A.6)

where 𝑔 is the Laplace transformation of 𝑔 and

𝜉 = 𝑟√ 𝑠𝑐 ,
𝛽 = 𝑟𝑤√𝑠𝑐 ,

(A.7)

and𝐾0 and𝐾1 are the first-order modified Bessel function of
the first and second kind. Laplace inversion is solved using the
method presented byDetournay andCheng [15].The solution
in time is achieved by the following formula.

The Laplace transformation can be inverted using

𝑓 (𝑟, 𝑡) ≈ ln 2𝑡
𝑁∑
𝑛=1

𝐶𝑛 ≈𝑓 (𝑟, 𝑛 ln 2𝑡 ) , (A.8)

where (ln) represents the natural logarithm and

𝐶𝑛 = (−1)𝑛+𝑁/2
⋅ min(𝑛,𝑁/2)∑
𝑘=⌊(𝑛+1)/2⌋

𝑘𝑁/2 (2𝑘)!(𝑁/2 − 𝑘)!𝑘! (𝑘 − 1)! (𝑛 − 𝑘)! (2𝑘 − 𝑛)! .
(A.9)
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