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The output feedback eigenvalue assignment problem for discrete-time systems is considered. The problem is formulated first as
an unconstrained minimization problem, where a three-term nonlinear conjugate gradient method is proposed to find a local
solution. In addition, a cut to the objective function is included, yielding an inequality constrained minimization problem, where a
logarithmic barrier method is proposed for finding the local solution. The conjugate gradient method is further extended to tackle
the eigenvalue assignment problem for the two cases of decentralized control systems and control systems with time delay. The
performance of the methods is illustrated through various test examples.

1. Introduction

In this work, we consider the following unconstrained mini-
mization problem:

min
𝐾∈R𝑝×𝑟

𝑓 (𝐾) = 𝜌 (𝐴 (𝐾)) , (1)

where 𝑓 : R𝑝×𝑟 → R+ is generally semismooth and non-
convex and 𝜌(⋅) is the spectral radius of the matrix function𝐴(𝐾) that will be defined later on.

It is desirable to have a local solution 𝐾∗ of (1) such that𝜌(𝐴(𝐾∗)) < 1.Therefore, we include such a constraint as a cut
to the objective function implying the following inequality
constrained minimization problem:

min 𝑓 (𝐾) = 𝜌 (𝐴 (𝐾))
s.t. 𝑔 (𝐾) = 𝜌 (𝐴 (𝐾)) − 1 + 𝜏 ≤ 0, (2)

where 𝜏 ∈ (0, 1) is a given constant.
It is well known that, for any matrix norm, it holds

that 𝜌(𝑀) ≤ ‖𝑀‖, where 𝑀 is any square matrix. Then,
we can replace the eigenvalue constraint of problem (2) by

a regular inequality constraint which yields the following
relaxed minimization problem:

min
𝐾

𝑓 (𝐾) = 𝜌 (𝐴 (𝐾))
s.t. 𝑔 (𝐾) = ‖𝐴 (𝐾)‖ − 1 + 𝜏 ≤ 0, (3)

where 𝜏 is as defined above.This problem can be tackled easily
by any constrained optimization solver. However, there is no
guarantee in general that a feasible solution exists for this
problem.

The three problems (1)–(3) concern the well-known
eigenvalue assignment problem (EAP) for discrete-time sys-
tems. These problems are generally nonconvex and semis-
mooth optimization problems. Over the past decades, a
considerable amount of attention has been given to the EAP
where a lot of research can be found in systems and control
literature in particular for continuous-time systems (see,
e.g., [1–3] and the references therein). In the framework of
linear discrete-time systems, a set of eigenvalue assignment
algorithms have been developed (see, e.g., [2–11] and the
references therein).

A related problem in output feedback control design is
the linear-quadratic control problem in which the goal is to
design an output feedback gain matrix 𝐾 that minimizes a
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certain performance cost function while all eigenvalues of
the closed-loop system matrix 𝐴(𝐾) must be within the unit
circle (see, e.g., [12]). Such a controller 𝐾 can be calculated to
this problem in case of continuous-time systems by available
public software packages (e.g., HIFOO) [13]. However, for
discrete-time systems, to the best of our knowledge, public
software has not yet been developed.

In this work, we focus on the two problems (1) and (2)
where the attempt is to minimize the spectral radius of the
nonsymmetric real matrix 𝐴(𝐾). In this regard, we apply a
three-termnonlinear conjugate gradient (CG)method [14] to
find a local solution to theminimization problem (1) which is
attempting to stabilize the associated control system; see the
next section. In addition, a logarithmic barrier interior-point
method is proposed to tackle the constrained minimization
problem (2) for the same purpose.

Nonlinear conjugate gradient methods are widely studied
and comprise a class of unconstrained optimization algo-
rithms which are characterized by lowmemory requirements
and strong global convergence properties (see the survey
[15] and later references [3, 14]). We focus on a three-term
nonlinear CG method which has a nice performance (see
[14]).The CGmethods are descent direction methods, which
means that, starting from a given point 𝐾0 ∈ R𝑝×𝑟, these
methods generate a sequence {𝐾𝑘} ⊂ R𝑝×𝑟 according to the
following relation:

𝐾𝑘+1 = 𝐾𝑘 + 𝛼𝑘Δ𝐾𝑘, (4)

where the step size 𝛼𝑘 > 0 satisfies the line search rule andΔ𝐾𝑘 is a descent direction for 𝑓 at 𝐾𝑘. The update of the new
search direction varies from one CG method to another.

The logarithmic barrier interior-point method is one of
the standard methods for solving constrained optimization
problems (see, e.g., [16]). This method is employed to tackle
the constrained problem (2) which converts it into a sequence
of unconstrained minimization problems.

This article is organized as follows. In the next section,
we state the formulation of the eigenvalue assignment prob-
lem and introduce some basic concepts which are needed
in the subsequent analysis. In Section 3, we evaluate the
required derivatives of the objective function. In Section 4,
we introduce the proposed three-term CGmethod that finds
a local solution of the unconstrained minimization problem.
In Section 5, we extend the CG method to tackle the output
feedback EAP problem for decentralized control systems. In
Section 6, we reformulate the discrete-time control system
with time delay as an augmented system without any delay
so that the EAP can be tackled by the proposed CG method.
In Section 7, we introduce a logarithmic barrier method for
finding a local solution to problem (2). In Section 8, we test
the proposed methods on different test examples from the
literature. Then, we end with a conclusion.

Notations. For vectors, the symbol ‖ ⋅ ‖ is the 2-norm, while
for matrices ‖ ⋅ ‖ denotes the Frobenius norm defined by‖𝑀‖ = √⟨𝑀, 𝑀⟩, where ⟨⋅, ⋅⟩ is the inner product given by
⟨𝑀1, 𝑀2⟩ = Tr(𝑀∗𝑇2 𝑀1) and Tr(⋅) is the trace operator. The
eigenvalues of a matrix 𝑀 ∈ R𝑛×𝑛 are denoted by 𝜆𝑖(𝑀),

𝑖 = 1, . . . , 𝑛. The Greek letter 𝜌(𝑀) denotes the spectral
radius of a square matrix 𝑀 and Λ(𝑀) fl diag(𝜆1, . . . , 𝜆𝑛)
is a diagonal matrix with eigenvalues on its main diagonal.
Moreover, Re(⋅) and Im(⋅) denote the real and imaginary parts
of a complex number, respectively. Sometimes and for the
sake of simplicity, we skip the arguments of the considered
functions; for example, we use 𝑓𝑘 to denote 𝑓(𝐾𝑘).
2. Problem Formulation and Preliminary

The static output feedback eigenvalue assignment problem
for discrete-time systems can be stated as follows (see, e.g.,
the abovementioned citations and the references therein).
Consider the linear time-invariant discrete-time system with
the following state space realization:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) ,
𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

𝑘 = 0, 1, 2, . . . ,
(5)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑝, and 𝑦(𝑘) ∈ R𝑟 are the state, the
control input, and the measured output vectors, respectively.
Moreover, 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝, and 𝐶 ∈ R𝑟×𝑛 are given
constantmatrices. Such a system is often closed by the control
law 𝑢(𝑘) = 𝐾𝑦(𝑘) which yields

𝑥 (𝑘 + 1) = (𝐴 + 𝐵𝐾𝐶) 𝑥 (𝑘) = 𝐴 (𝐾) 𝑥 (𝑘) ,
𝑘 = 0, 1, 2, . . . , (6)

where𝐴(𝐾) fl 𝐴+𝐵𝐾𝐶 and𝐾 ∈ R𝑝×𝑟 is the output feedback
gain matrix which represents the unknown.

The following definitions are needed for later use.

Definition 1. The spectral radius of a matrix 𝐴 ∈ C𝑛×𝑛 with
eigenvalues 𝜆1, . . . , 𝜆𝑛 is defined as

𝜌 (𝐴) = max {󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨 : 𝑖 ∈ {1, 2, . . . , 𝑛}} . (7)

Definition 2. The discrete-time control system (6) is asymp-
totically stable (i.e., 𝑥(𝑘) → 0 as 𝑘 → ∞ for any initial 𝑥(0))
if and only if 𝜌(𝐴(𝐾)) < 1.

The eigenvalue assignment problem is to design an output
feedback gain matrix 𝐾 providing a closed-loop system in
a satisfactory stage by shifting controllable eigenvalues to
desirable locations in the complex plane. In particular, the
EAP requires the spectral radius of the closed-loop matrix𝐴(𝐾) to be strictly within the unit circle in the complex plane.

A necessary condition for the EAP by constant output
feedback is given in [9]. Fu [7] has also shown that the
EAP via static output feedback is NP-hard. Systems with a
symmetric state space realization, namely, 𝐴 = 𝐴𝑇, 𝐶 = 𝐵𝑇,
occur in different applications such as RC networks [10]. The
symmetric EAP might be stated as follows: find a matrix 𝐾
such that

𝜌 (𝐴 + 𝐵𝐾𝐵𝑇) < 1. (8)
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It is well known that the eigenvalues of a real symmetric
matrix are not everywhere differentiable. A classical theorem
(see, e.g., [17]) states that each eigenvalue of a symmetric
matrix is the difference of two convex functions, which
implies that the eigenvalues are semismooth functions. This
fact allows us to use the theory of semismoothness to establish
convergence results for the proposed methods.

Definition 3. A functional 𝜓 : R𝑝×𝑟 → R is said to be locally
Lipschitz continuous at𝐾 ∈ R𝑝×𝑟 with a constant 𝐿 > 0 if and
only if there exists a number 𝜎 > 0 such that

󵄩󵄩󵄩󵄩𝜓 (𝐾1) − 𝜓 (𝐾2)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝐾1 − 𝐾2󵄩󵄩󵄩󵄩 ,
∀𝐾1, 𝐾2 ∈ B𝜎 (𝐾) , (9)

whereB𝜎(𝐾) is an open ball with center at 𝐾 and radius 𝜎.
Let 𝜓 : R𝑝×𝑟 → R be a locally Lipschitz continuous

function. Radmacher’s theorem (see, e.g., [18]) implies that
such amapping𝜓 is differentiable almost everywhere. LetD𝜓
be the set of all 𝐾 at which 𝜓 is differentiable and let ∇𝜓𝑇 be
its Jacobian whenever it exists. LetD ⊆ R𝑝×𝑟 be the set of all𝐾 at which 𝑓 is differentiable. Such a set is open.Therefore, it
is convenient to replaceD by the following level set:

Ω fl {𝐾 ∈ D : 𝑓 (𝐾) ≤ 𝑐} , (10)

where 𝑐 > 0 is a given constant. This set is assumed to be
bounded.

3. Derivative of the Objective Function

The eigenvalues of the matrix 𝐴(𝐾) of (1) are not in general
differentiable at a point 𝐾 where 𝐴(𝐾) has repeated eigenval-
ues. Therefore, let us consider the following assumption on
eigenvalues of 𝐴(𝐾).
Assumption 4. Assume that𝐴(𝐾)has nomultiple eigenvalues
for all 𝐾 ∈ R𝑝×𝑟.

Let 𝐴(𝐾) be diagonalizable and let 𝑈(𝐾) ∈ C𝑛×𝑛 and𝑉(𝐾) ∈ C𝑛×𝑛 be a couple of matrices whose columns are the
left and right eigenvectors of 𝐴(𝐾); that is, 𝑈(𝐾), 𝑉(𝐾), andΛ(𝐴(𝐾)) satisfy

𝑈 (𝐾)𝑇𝐴 (𝐾) = Λ𝑈 (𝐾)𝑇 ,
𝐴 (𝐾) 𝑉 (𝐾) = 𝑉 (𝐾) Λ. (11)

The columns of 𝑈(𝐾) and 𝑉(𝐾) satisfy
𝑈∗𝑖 𝑉𝑖 ̸= 0, 𝑖 = 1, . . . , 𝑛. (12)

The following lemma provides the first-order derivatives
of the objective function 𝑓(𝐾) of the minimization problem
(1) required by the CG methods.

Lemma 5. Suppose that 𝐴(𝐾) satisfies Assumption 4 and𝑓(𝐾) is differentiable at 𝐾 ∈ R𝑝×𝑟. Let 𝜆̂ = Re(𝜆̂) + 𝑖 Im(𝜆̂) be

the largest in magnitude eigenvalue of 𝐴(𝐾). Then, the entries
of the gradient of the objective function 𝑓 are given by

𝜕𝑓 (𝐾)𝜕𝐾𝑘𝑙 = Re (𝜆̂)󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 (𝑢𝑇1𝐵𝐸𝑘𝑙𝐶V1 + 𝑢𝑇2𝐵𝐸𝑘𝑙𝐶V2)

+ Im (𝜆̂)󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 (𝑢𝑇1𝐵𝐸𝑘𝑙𝐶V2 − 𝑢𝑇2𝐵𝐸𝑘𝑙𝐶V1) ,
𝑘 = 1, . . . , 𝑝, 𝑙 = 1, . . . , 𝑟,

(13)

where (𝑢1+𝑖𝑢2) and (V1+𝑖V2) are the left and right eigenvectors
associated with 𝜆̂ and 𝐸𝑘𝑙 ∈ R𝑝×𝑟 is a matrix with zero entries
except at the (𝑘, 𝑙) position where its value is one.

Proof (see [19, Lemma 6.3.10]). The two eigenvectors are
normalized such that

(𝑢1 − 𝑖𝑢2)𝑇 (V1 + 𝑖V2) = 1, (14)

which by differentiation yields

(𝑢󸀠1 − 𝑖𝑢󸀠2)𝑇 (V1 + 𝑖V2) + (𝑢1 − 𝑖𝑢2)𝑇 (V󸀠1 + 𝑖V󸀠2) = 0, (15)

where the dash denotes the first-order derivative with respect
to the entries of 𝐾. The eigenvalue 𝜆̂ also satisfies that

𝜆̂ = (𝑢1 − 𝑖𝑢2)𝑇𝐴 (𝐾) (V1 + 𝑖V2) , (16)

which by differentiation gives

𝜆̂󸀠 = (𝑢1 − 𝑖𝑢2)𝑇𝐴 (𝐾)󸀠 (V1 + 𝑖V2)
= (𝑢𝑇1𝐴 (𝐾)󸀠 V1 + 𝑢𝑇2𝐴 (𝐾)󸀠 V2)

+ 𝑖 (𝑢𝑇1𝐴 (𝐾)󸀠 V2 − 𝑢𝑇2𝐴 (𝐾)󸀠 V1) .
(17)

Suppose that 𝜆̂ = Re(𝜆̂) + 𝑖 Im(𝜆̂) is the largest in magnitude
eigenvalue of 𝐴(𝐾). Then,

𝜌 (𝐴 (𝐾)) = 󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 = √Re (𝜆̂)2 + Im (𝜆̂)2, (18)

and by the chain rule we have

𝜕𝜌 (𝐴 (𝐾))𝜕𝐾𝑘𝑙
= 𝜕𝜌 (𝐴 (𝐾))

𝜕Re (𝜆̂)
𝜕Re (𝜆̂)

𝜕𝐾𝑘𝑙 + 𝜕𝜌 (𝐴 (𝐾))
𝜕Im (𝜆̂)

𝜕Im (𝜆̂)
𝜕𝐾𝑘𝑙

= Re (𝜆̂)󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 (𝑢𝑇1 𝜕 (𝐴 (𝐾))𝜕𝐾𝑘𝑙 V1 + 𝑢𝑇2 𝜕 (𝐴 (𝐾))𝜕𝐾𝑘𝑙 V2)

+ Im (𝜆̂)󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 (𝑢𝑇1 𝜕 (𝐴 (𝐾))𝜕𝐾𝑘𝑙 V2 − 𝑢𝑇2 𝜕 (𝐴 (𝐾))𝜕𝐾𝑘𝑙 V1) ,
𝑘 = 1, . . . , 𝑝, 𝑙 = 1, . . . , 𝑟.

(19)

Since 𝜕(𝐴(𝐾))/𝜕𝐾𝑘𝑙 = 𝐵𝐸𝑘𝑙𝐶, then the result follows.
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4. Three-Term CG Method for the EAP

In this section, we analyze and study a three-term nonlinear
CGmethod for computing the local solution of theminimiza-
tion problem (1) (see [14]). For a given starting𝐾0 ∈ R𝑝×𝑟, the
CG method generates a sequence of iterates according to the
relation

𝐾𝑘+1 = 𝐾𝑘 + 𝛼𝑘Δ𝐾𝑘, (20)

where Δ𝐾𝑘 ∈ R𝑝×𝑟 is supposed to be a descent direction for𝑓 at 𝐾𝑘 and 𝛼𝑘 > 0 is the step size. The new search direction
for the CG method is given by the following relation:

Δ𝐾𝑘+1 = −∇𝑓𝑘+1 − 𝛿𝑘𝑆𝑘 − 𝜂𝑘𝑌𝑘,
Δ𝐾0 = −∇𝑓0, (21)

where ∇𝑓𝑘+1 is the gradient of 𝑓 at 𝐾𝑘+1, 𝑆𝑘 = 𝐾𝑘+1 − 𝐾𝑘, 𝑌𝑘 =∇𝑓𝑘+1 − ∇𝑓𝑘, and
𝛿𝑘 = (1 + 2 󵄩󵄩󵄩󵄩𝑌𝑘󵄩󵄩󵄩󵄩2

Tr (𝑌𝑇
𝑘

𝑆𝑘)) Tr (𝑆𝑇𝑘∇𝑓𝑘+1)
Tr (𝑌𝑇
𝑘

𝑆𝑘)
− Tr (𝑌𝑇𝑘 ∇𝑓𝑘+1)

Tr (𝑌𝑇
𝑘

𝑆𝑘) ,

𝜂𝑘 = Tr (𝑆𝑇𝑘∇𝑓𝑘+1)
Tr (𝑌𝑇
𝑘

𝑆𝑘) .

(22)

In order to globalize this CG method, we recall Wolfe
conditions (see, e.g., [16]) to update a suitable step size 𝛼𝑘 for
the new iterate (20):

𝑓 (𝐾𝑘 + 𝛼𝑘Δ𝐾𝑘) ≤ 𝑓 (𝐾𝑘) + 𝛾𝛼𝑘Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘) , (23)

Tr (∇𝑓𝑇𝑘+1Δ𝐾𝑘) ≥ 𝛾Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘) , (24)

where 0 < 𝛾 < 𝛾 < 1. The strong Wolfe conditions replace
(24) by the following condition:󵄨󵄨󵄨󵄨󵄨Tr (∇𝑓𝑇𝑘+1Δ𝐾𝑘)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛾 󵄨󵄨󵄨󵄨󵄨Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘)󵄨󵄨󵄨󵄨󵄨 . (25)

The following theorem shows that the search directionΔ𝐾𝑘 is a descent direction to the objective function.

Theorem 6. Let 𝐾𝑘 ∈ D be generated by (20) and let the
step size 𝛼𝑘 satisfy Wolfe conditions (23)-(24). Then, Δ𝐾𝑘+1
evaluated by (21)-(22) is a descent direction to 𝑓 for all 𝑘 =0, 1, 2, . . ..
Proof (see also [14, Proposition 3.1]). From Wolfe’s second
condition (24), we obtain the curvature condition Tr(𝑌𝑇𝑘 𝑆𝑘) >0. Moreover, from (21)-(22), it follows that

Tr (∇𝑓𝑇𝑘+1Δ𝐾𝑘+1)
= − 󵄩󵄩󵄩󵄩∇𝑓𝑘+1󵄩󵄩󵄩󵄩2

− (1 + 2 󵄩󵄩󵄩󵄩𝑌𝑘󵄩󵄩󵄩󵄩2
Tr (𝑌𝑇
𝑘

𝑆𝑘)) (Tr (𝑆𝑇𝑘∇𝑓𝑘+1))2
Tr (𝑌𝑇
𝑘

𝑆𝑘) ≤ 0.
(26)

The three-term nonlinear CG algorithm is stated in the
following lines.

Algorithm 7 (three-term CG method for the output feedback
EAP).

(0) Let 𝐾0 ∈ R𝑝×𝑟, 0 < 𝛾 < 𝛾 < 1, 0 < 𝜏 < 1 be given
constants and 𝜖 ∈ (0, 1) be the tolerance. Moreover,
let 𝐴, 𝐵, 𝐶 be given constant matrices. Choose 𝛼0 > 0,
compute ∇𝑓0, and set Δ𝐾0 = −∇𝑓0. If ‖∇𝑓0‖ ≤ 𝜖 or𝑓0 < 1 − 𝜏, stop; otherwise, set 𝑘 ← 0 and go to the
next step.

While ‖∇𝑓𝑘‖ > 𝜖 or 𝑓𝑘 ≥ 1 − 𝜏, do
(1) Compute 𝛼𝑘 > 0 that satisfies Wolfe conditions (23)-

(24); set 𝐾𝑘+1 = 𝐾𝑘 + 𝛼𝑘Δ𝐾𝑘 and then calculate the
gradient ∇𝑓𝑘+1.

(2) If ‖∇𝑓𝑘+1‖ ≤ 𝜖 or 𝑓𝑘+1 < 1 − 𝜏, stop; otherwise, go to
the next step.

(3) Calculate a new search direction Δ𝐾𝑘+1 by (21)-(22).
(4) Set 𝑘 ← 𝑘 + 1 and repeat.

End (do)

Remark 8. For the considered linear control system, one of
the major tasks is to achieve a stabilizing output feedback
controller, that is. to calculate 𝐾 such that 𝜌(𝐴(𝐾)) is strictly
less than one. However, there is no relationship between
achieving such a controller and finding 𝐾, a local minimum
of problem (1). Therefore, it is reasonable to stop the CG
method as soon as a local solution is achieved or a stabilizing𝐾 is reached with a sufficient stability margin.

To prove global convergence of the CG algorithm, we
assume that ∇𝑓𝑘 ̸= 0 for all 𝑘; otherwise, a stationary point
is found.

Assumption 9. The following assumptions are assumed to
hold:

(a) The level set Ω as defined in (10) is bounded; that is,
there exists a constant 𝛽 > 0 such that, for all 𝐾 ∈ Ω,‖𝐾‖ < 𝛽.

(b) In some neighborhood N of the level set (10), the
gradient∇𝑓(𝐾) of the objective function𝑓 is Lipschitz
continuous.

From Assumption 9(a), one has ‖𝑆𝑘‖ ≤ ‖𝐾𝑘+1‖ + ‖𝐾𝑘‖ ≤2𝛽 and from Assumption 9(b) we deduce that there exists a
constant Γ > 0 such that

󵄩󵄩󵄩󵄩∇𝑓 (𝐾)󵄩󵄩󵄩󵄩 ≤ Γ ∀𝐾 ∈ Ω. (27)

The following lemma provides a lower bound to the step
size 𝛼𝑘; see [14, Proposition 5.1].
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Lemma 10. Let {𝐾𝑘} be generated by Algorithm 7 and suppose
that Δ𝐾𝑘 is a descent direction for 𝑓𝑘. In addition, let
Assumption 9 hold. Then,

𝛼𝑘 ≥ (1 − 𝛾) 󵄨󵄨󵄨󵄨󵄨Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘)󵄨󵄨󵄨󵄨󵄨𝐿 󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 . (28)

Proof. By subtracting Tr(∇𝑓𝑇𝑘 Δ𝐾𝑘) from both sides of (24)
and using Lipschitz condition,

(𝛾 − 1)Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘) ≤ Tr ((∇𝑓𝑘+1 − ∇𝑓𝑘) Δ𝐾𝑘)
= Tr (𝑌𝑇𝑘 Δ𝐾𝑘) ≤ 󵄨󵄨󵄨󵄨󵄨Tr (𝑌𝑇𝑘 Δ𝐾𝑘)󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩𝑌𝑘󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩 ≤ 𝛼𝑘𝐿 󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩 .

(29)

Since Δ𝐾𝑘 is a descent direction for 𝑓 and 𝛾 is less than one,
then (28) follows.

The result of the following lemma is used in proving the
main global convergence theorem.

Lemma 11. Let {𝐾𝑘} be generated by Algorithm 7 and assume
that Δ𝐾𝑘 is a descent direction. Furthermore, let Assumption 9
hold. Then,

∞∑
𝑘=1

Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘)2󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 < +∞. (30)

Proof. FromWolfe condition (23) and Lemma 10, one has

𝑓 (𝐾𝑘) − 𝑓 (𝐾𝑘 + 𝛼𝑘Δ𝐾𝑘) ≥ −𝛾𝛼𝑘 󵄨󵄨󵄨󵄨󵄨Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘)󵄨󵄨󵄨󵄨󵄨
≥ −𝛾 (1 − 𝛾)Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘)2

𝐿 󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 . (31)

Then, Assumption 9 implies condition (30).

Next, we have the following result for the three-term CG
method (see, e.g., [14, Proposition 5.3]).
Lemma 12. Let Assumption 9 hold. Consider {𝐾𝑘} to be
generated by Algorithm 7 where Δ𝐾𝑘 is a descent direction for𝑓 and 𝛼𝑘 satisfies Wolfe conditions (23) and (24). If

∑
𝑘>1

1󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 = ∞, (32)

then
lim inf
𝑘→∞

󵄩󵄩󵄩󵄩∇𝑓𝑘󵄩󵄩󵄩󵄩 = 0. (33)

Proof (see also [20, Lemma 2.2]). Suppose (33) is not true.
Then, there exists a constant 𝜀 > 0 such that󵄩󵄩󵄩󵄩∇𝑓𝑘󵄩󵄩󵄩󵄩 ≥ 𝜀 ∀𝑘. (34)

Therefore, from (32) and Lemma 11, we have

∞∑
𝑘=0

𝜀4󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 ≤ ∞∑
𝑘=0

󵄩󵄩󵄩󵄩∇𝑓𝑘󵄩󵄩󵄩󵄩4󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 ≤ ∞∑
𝑘=0

Tr (∇𝑓𝑇𝑘 Δ𝐾𝑘)2󵄩󵄩󵄩󵄩Δ𝐾𝑘󵄩󵄩󵄩󵄩2 = ∞. (35)

This contradicts Lemma 12 which completes the proof.

Under condition (30), the following global convergence
result is obtained.

Theorem 13. Let Δ𝐾𝑘 be generated by Algorithm 7. Assume
that Assumption 9 holds. Assume further that there exists a
constant Γ1 > 0 such that Tr(𝑌𝑇𝑘 𝑆𝑘) ≥ Γ1 for any 𝑘 ≥ 1. Then,
it holds that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩∇𝑓𝑘󵄩󵄩󵄩󵄩 = 0. (36)

Proof (see also [14, Theorem 5.2]). Since Tr(∇𝑓𝑇𝑘 𝑆𝑘) < 0 for all𝑘, then
Tr (𝑆𝑇𝑘∇𝑓𝑘+1) = Tr (𝑌𝑇𝑘 𝑆𝑘) + Tr (∇𝑓𝑇𝑘 𝑆𝑘)

< Tr (𝑌𝑇𝑘 𝑆𝑘) . (37)

By direct computation, we have

Δ𝐾𝑘+1 = −∇𝑓𝑘+1 + (Tr (𝑌𝑇𝑘 ∇𝑓𝑘+1)
Tr (𝑌𝑇
𝑘

𝑆𝑘)
− (1 + 2 󵄩󵄩󵄩󵄩𝑌𝑘󵄩󵄩󵄩󵄩2

Tr (𝑌𝑇
𝑘

𝑆𝑘)) Tr (𝑆𝑇𝑘∇𝑓𝑘+1)
Tr (𝑌𝑇
𝑘

𝑆𝑘) ) 𝑆𝑘

− Tr (𝑆𝑇𝑘∇𝑓𝑘+1)
Tr (𝑌𝑇
𝑘

𝑆𝑘) 𝑌𝑘.

(38)

Consequently, one has

󵄩󵄩󵄩󵄩Δ𝐾𝑘+1󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩∇𝑓𝑘+1󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨Tr (𝑌𝑇𝑘 ∇𝑓𝑘+1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Tr (𝑌𝑇

𝑘
𝑆𝑘)󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑘󵄩󵄩󵄩󵄩
+ (1 + 2 󵄩󵄩󵄩󵄩𝑌𝑘󵄩󵄩󵄩󵄩2󵄨󵄨󵄨󵄨Tr (𝑌𝑇

𝑘
𝑆𝑘)󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩𝑆𝑘󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑌𝑘󵄩󵄩󵄩󵄩
< Γ + (1 + 2𝐿Γ𝛽 + 8𝐿2𝛽2Γ1 ) 2𝛽 + 2𝐿𝛽.

(39)

Then, from Lemma 12, (36) follows.

5. The EAP for Decentralized Control Systems

Consider the linear time-invariant decentralized control
system with ] control stations:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + ]∑
𝑖=1

𝐵𝑖𝑢𝑖 (𝑘) ,
𝑦𝑖 (𝑘) = 𝐶𝑖𝑥 (𝑘) ,

𝑖 = 0, 1, 2, . . . , ],
(40)

where 𝑥(𝑘) ∈ R𝑛, 𝑢𝑖(𝑘) ∈ R𝑝𝑖 , and 𝑦𝑖(𝑘) ∈ R𝑟𝑖 are the
state, the control input, and the measured output vectors,
respectively. 𝐴 ∈ R𝑛×𝑛, 𝐵𝑖 ∈ R𝑛×𝑝𝑖 , and 𝐶𝑖 ∈ R𝑟𝑖×𝑛 are given
constant matrices, 𝑖 = 1, . . . , ].
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The output feedback EAP for the decentralized system
(40) is to find output feedback gain matrices 𝐾𝑖 ∈ R𝑝𝑖×𝑟𝑖 that
place, by using the control law

𝑢𝑖 (𝑘) = 𝐾𝑖𝑦𝑖 (𝑘) , 𝑖 = 1, . . . , ], (41)

the eigenvalues of the closed-loop system matrix 𝐴(𝐾1,. . . , 𝐾]) = 𝐴 + ∑]
𝑖=1 𝐵𝑖𝐾𝑖𝐶𝑖 to strictly lie within the unit disk.

By introducing the following augmented matrices, it is
straightforward to rewrite the decentralized control system
(40) in the original structure (5):

𝐵 = [𝐵1 ⋅ ⋅ ⋅ 𝐵]] ,
𝐶 = [𝐶𝑇1 ⋅ ⋅ ⋅ 𝐶𝑇] ]𝑇 . (42)

The corresponding closed-loop system matrix is 𝐴(𝐾) = 𝐴 +𝐵𝐾𝐶, where the output feedback gain matrix 𝐾 is given by
the block-diagonal matrix

𝐾 = diag (𝐾1, . . . , 𝐾]) , (43)

and the corresponding unconstrainedminimization problem
takes the form

min
𝐾1 ,...,𝐾]

𝑓 (𝐾1, . . . , 𝐾]) = 𝜌 (𝐴 (𝐾)) . (44)

The three-term CG method of the last section can be
applied to tackle the minimization problem (44). Let D̂ ⊆
R𝑝1×𝑟1 × ⋅ ⋅ ⋅ × R𝑝]×𝑟] be the set of all

𝐾 = diag (𝐾1, . . . , 𝐾]) ∈ R
𝑝1×𝑟1 × ⋅ ⋅ ⋅ × R

𝑝]×𝑟] (45)

at which 𝑓 is differentiable. For a given starting 𝐾0, the three-
term CG method generates a sequence of the form

𝐾𝑘+1 = 𝐾𝑘 + 𝛼𝑘Δ𝐾𝑘, 𝑘 = 0, 1, 2, . . . , (46)

where 𝛼𝑘 > 0 is the step size that must satisfy Wolfe
conditions (23)-(24), while the search direction Δ𝐾𝑘 =
diag(Δ𝐾1𝑘 , . . . , Δ𝐾]

𝑘) is a descent direction for 𝑓𝑘 at 𝐾𝑘. The
new search direction Δ𝐾𝑘+1 is updated by using (21)-(22).

Algorithm 7 is restated in the following lines to tackle
the output feedback EAP problem for decentralized control
systems.

Algorithm 14 (three-term CG method for the decentralized
output feedback EAP).

(0) Let 𝐾0 ∈ R𝑝1×𝑟1 × ⋅ ⋅ ⋅ × R𝑝]×𝑟] , 𝜖 ∈ (0, 1), 0 < 𝜏 < 1,
and 0 < 𝛾 < 𝛾 < 1 be given constants. Moreover, let𝐴, 𝐵1, . . . , 𝐵], 𝐶1, . . . , 𝐶] be given constant matrices.
Choose 𝛼0 > 0. Compute ∇𝑓0 and set Δ𝐾0 = −∇𝑓0.
If ‖∇𝑓0‖ ≤ 𝜖 or 𝑓0 < 1 − 𝜏, stop; otherwise, set 𝑘 fl 0
and go to the next step.

While ‖∇𝑓𝑘‖ > 𝜖 or 𝑓𝑘 < 1 − 𝜏, do
(1) Calculate a step size 𝛼𝑘 > 0 that satisfies Wolfe

conditions (23)-(24); set𝐾𝑘+1 = 𝐾𝑘+𝛼𝑘Δ𝐾𝑘 and then
calculate the gradient ∇𝑓𝑘+1.

(2) If ‖∇𝑓𝑘+1‖ ≤ 𝜖 or 𝑓𝑘+1 < 1 − 𝜏, stop; otherwise, go to
the next step.

(3) Calculate the new search direction Δ𝐾𝑘+1 according
to (21)-(22).

(4) Set 𝑘 ← 𝑘 + 1 and repeat.

End (do)

Remark 15. The way in which the CG method is designed
allows us to maintain the block-diagonal structure of the
unknownmatrix 𝐾 efficiently without skipping any informa-
tion of the data matrices of the control system.

6. The EAP for Time-Delay Systems

Consider the following linear discrete-time and time-delay
system (see, e.g., [21, 22]):

𝑥 (𝑘 + 1) = 𝑑∑
𝑖=0

𝐴 𝑖𝑥 (𝑘 − 𝑖) + 𝐵𝑢 (𝑘) ,

𝑦 (𝑘) = 𝑑∑
𝑖=0

𝐶𝑖𝑥 (𝑘 − 𝑖) ,
𝑘 = 0, 1, 2, . . . ,

(47)

where𝐴 𝑖 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝, and𝐶𝑖 ∈ R𝑟×𝑛 are given constant
matrices and 𝑑 ∈ N is the time delay in the state vector.

The above time-delay system has a specific feature that it
can be converted into an augmented linear system without
any delay (see, e.g., [22]). This is achieved by introducing the
augmented state vector

𝑥𝑇 (𝑘) = [𝑥𝑇 (𝑘) ⋅ ⋅ ⋅ 𝑥𝑇 (𝑘 − 𝑑)] . (48)

The time-delay system (47) is equivalently rewritten as

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) ,
𝑦 (𝑘) = 𝐶𝑥 (𝑘) , (49)

where

𝐴 =
[[[[[[[[[
[

𝐴0 𝐴1 ⋅ ⋅ ⋅ 𝐴𝑑−1 𝐴𝑑𝐼𝑛 0 ⋅ ⋅ ⋅ 0 0
0 𝐼𝑛 d 0 0
... d d

... ...
0 0 ⋅ ⋅ ⋅ 𝐼𝑛 0

]]]]]]]]]
]

,

𝐵 =
[[[[[[[[[
[

𝐵
0
0
...
0

]]]]]]]]]
]

,

𝐶 = (𝐶0, 𝐶1, . . . , 𝐶𝑑−1, 𝐶𝑑) .

(50)
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By using the control law 𝑢(𝑘) = 𝐾𝑦(𝑘), we close system
(49) as

𝑥 (𝑘 + 1) = (𝐴 + 𝐵𝐾𝐶) 𝑥 (𝑘) š 𝐴 (𝐾) 𝑥 (𝑘) , (51)

where 𝐴(𝐾) = 𝐴 + 𝐵𝐾𝐶. For such a system, one can apply
Algorithm 7 to compute an output feedback gain matrix 𝐾∗,
a local solution to the minimization problem (1). It is known
that the eigenvalues of the time-delay system coincide with
the eigenvalues of the augmented linear system (49).

We emphasize that the same approach can be considered
in case of control systems with input delay.

7. Logarithmic Barrier Method

The attempt of this section is to improve formulation (1),
where we aim to achieve a stabilizing 𝐾 together with
minimizing the spectral radius of the closed-loop system
matrix. Therefore, let us consider the inequality constrained
minimization problem (2). By following the idea of the log-
arithmic barrier method, we consider the following uncon-
strained minimization problem:

min
𝐾∈R𝑝×𝑟

𝜙𝜇 (𝐾) = 𝑓 (𝐾) − 𝜇 log (−𝑔 (𝐾)) , (52)

where 𝜇 > 0 is the barrier parameter and the functions 𝑓
and 𝑔 are as defined in (2). According to the theory of barrier
methods, the minimizer of 𝜙𝜇 approaches a local solution of
the original problem (2) as 𝜇 → 0 under certain conditions.

Let us define the following strict feasible region:

F fl {𝐾 ∈ R
𝑝×𝑟 : 𝑔 (𝐾) ≤ 0} . (53)

We assume thatF ̸= 0.
The Lagrangian functions for problem (2) are defined as

ℓ (𝐾, 𝜐) = 𝑓 (𝐾) + 𝜐𝑔 (𝐾) , (54)

where𝑓 and 𝑔 are as defined in (2) and 𝜐 ≥ 0 is the associated
Lagrange multiplier.

First-order derivative of 𝜙𝜇 with respect to the entries of𝐾 is obtained in the following lemma.

Lemma 16. Suppose that 𝐴(𝐾) satisfies Assumption 4 and𝑓(𝐾) is differentiable at 𝐾 ∈ R𝑝×𝑟. Let 𝜆̂ = Re(𝜆̂) + 𝑖 Im(𝜆̂)
be the largest in magnitude eigenvalue of 𝐴(𝐾). Then, the first
derivative of 𝜙𝜇 is given by

𝜕𝜙𝜇 (𝐾)𝜕𝐾𝑘𝑙 = (1 + 𝜇𝑔 (𝐾))

⋅ Re (𝜆̂)󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 (𝑢𝑇1𝐵𝐸𝑘𝑙𝐶V1 + 𝑢𝑇2𝐵𝐸𝑘𝑙𝐶V2)

+ (1 + 𝜇𝑔 (𝐾))

⋅ Im (𝜆̂)󵄨󵄨󵄨󵄨󵄨𝜆̂󵄨󵄨󵄨󵄨󵄨 (𝑢𝑇1𝐵𝐸𝑘𝑙𝐶V2 − 𝑢𝑇2𝐵𝐸𝑘𝑙𝐶V1) ,
𝑘 = 1, . . . , 𝑝, 𝑙 = 1, . . . , 𝑟,

(55)

where (𝑢1+𝑖𝑢2) and (V1+𝑖V2) are the left and right eigenvectors
associated with 𝜆̂ and 𝐸𝑘𝑙 ∈ R𝑝×𝑟 is a matrix with zero entries
except at the (𝑘, 𝑙) position where it has a value of one.

Proof. By differentiating 𝜙𝜇 with respect to the entries of 𝐾
and utilizing the derivative of the spectral radius 𝜌(𝐴(𝐾))
obtained in Lemma 5, the result follows.

As can be seen in (55), all terms of the first derivative of𝜙𝜇 depend on 𝜇, which leads to an ill-conditioned Hessian
matrix of the barrier function 𝜙𝜇 at the solution. Therefore,
second-order methods are not recommended to compute a
local solution of (52), but rather first-order methods such as
nonlinear CG methods of Section 4 are recommended.

The gradient of ℓ takes the form

∇𝐾ℓ (𝐾, 𝜐) = ∇𝑓 (𝐾) + 𝜐∇𝑔 (𝐾)
= (1 + 𝜐) ∇𝜌 (𝐴 (𝐾)) . (56)

From (54) and (55), we see that if 𝜐 satisfies

𝜐∗ = 𝜇∗𝑔 (𝐾∗) , (57)

then the solution obtained by the proposed log-barrier
method satisfies the stationary requirement of the Karush–
Kuhn–Tucker conditions.

The logarithmic barrier interior-pointmethod is stated in
the following lines.

Algorithm 17 (logarithmic barrier method for the output
feedback EAP).

(0) Choose a starting barrier parameter 𝜇0 > 0, outer and
inner-loop tolerances 𝜖, 𝜖in > 0, a starting feasible
point 𝐾𝑠0 ∈ R𝑝×𝑟. Let 𝑎, 𝑏, 𝜏 ∈ (0, 1) be given
constants.

For 𝑗 = 0, 1, 2, . . . , do
(1) Find an approximate local minimizer 𝐾𝑗 of 𝜙𝜇𝑗(𝐾)

starting from 𝐾𝑠𝑗; terminate if ‖∇𝜙𝜇𝑗‖ ≤ 𝜖in𝑗 .
(2) If the final stopping test ‖∇𝜙𝜇𝑗‖ ≤ 𝜖 is satisfied or𝜌(𝐴(𝐾𝑗)) < 1 − 𝜏, stop; otherwise, go to the next step.
(3) Choose a new barrier parameter 𝜇𝑗+1 ∈ (0, 𝑎𝜇𝑗) and a

new inner-loop tolerance 𝜖in𝑗+1 ∈ (0, 𝑏𝜖in𝑗 ).
(4) Choose a new starting point 𝐾𝑠𝑗+1 and set 𝑗 ← 𝑗 + 1.

End (do)

Remark 18. The major task of Algorithm 17 lies in Step (1)
where an unconstrained minimization method has to be
employed to obtain an approximate local solution up to the
prescribed accuracy represented by the inner-loop tolerance𝜖in. In the implementation, we consider the three-term CG
method of Section 4 to calculate such a local solution.
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8. Illustrative Numerical Examples

In this section, various test examples are provided to illustrate
the performance of the proposed methods. Among the
considered test problems are two examples of decentralized
control systems and two examples for time-delay systems. A
starting feasible point is required for the log-barrier method
which might be obtained by the CG method applied on
problem (1). The log-barrier method aims to obtain a local
solution for the constrained problem (2) or at least achieves
stabilizing output feedback that strictly lies within the unit
circle.

The methods are implemented using Matlab and all
computations were carried out on a Laptop with 3.07GHz
and 1GB RAM. Some of the considered test problems are
for continuous-time systems.TheMatlab function c2d from
the control toolbox is employed to provide the corresponding
discrete-time data matrices.

As mentioned in Remark 8, we stop the method as soon
as the objective function 𝑓𝑘 is strictly less than one or a
local solution is achieved. The CGmethod uses the sufficient
decrease condition (23) with 𝛾 = 10−4 for the backtracking
line search.

Example 1. This test problem is borrowed from [23]. The
constant data matrices for the corresponding discrete-time
model are

𝐴 = [[
[

1.0000 0.1000 0.0050
0 1.0000 0.1000
0 0 1.0000

]]
]

,

𝐵 = [[
[

0.1052 0.0002
0.1050 0.0050
0.1000 0.1000

]]
]

,

𝐶𝑇 = [[
[

1 0
0 1
0 0

]]
]

,

(58)

where the spectral radius of the system matrix 𝐴 is 1.0.
Starting from 𝐾0, a matrix of ones, the proposed CG
method successfully converges to a local minimizer for the
unconstrained problem (1). The achieved output feedback
gain matrix is

𝐾∗ = [−7.7969 −7.9723
−3.3475 −2.7390] , (59)

and the corresponding objective function value is 𝑓(𝐾∗) =0.9387.
Table 1 shows the convergence behavior of the considered

CG method to a local solution of problem (1), which is also a
stabilizing output feedback gain to the corresponding control
system (5).

Example 2. This test problem is the aircraft model in cruise
flight conditions [24, AC1] for a continuous-time control

Table 1: Convergence behavior of the CGmethod to a local solution
for Example 1.

𝑘 𝑓(𝐾𝑘) 󵄩󵄩󵄩󵄩∇𝑓(𝐾𝑘)󵄩󵄩󵄩󵄩
1 1.2783𝑒 + 000 1.8255𝑒 − 001
2 9.4060𝑒 − 001 5.9548𝑒 − 002
3 9.4044𝑒 − 001 5.1829𝑒 − 002... ... ...
26 9.3874𝑒 − 001 1.5049𝑒 − 002
27 9.3874𝑒 − 001 1.0949𝑒 − 005
28 9.3874𝑒 − 001 6.4275𝑒 − 006

system. The function c2d is used to have the discrete-time
counterpart with the following data matrices:

𝐴

=
[[[[[[[[
[

1.0000 0.0014 0.1132 0.0005 −0.0967
0 0.9945 −0.0171 −0.0005 0.0068
0 0.0003 1.0000 0.0957 −0.0048
0 0.0060 −0.0000 0.9131 −0.0936
0 −0.0277 0.0002 0.0973 0.9287

]]]]]]]]
]

,

𝐵 =
[[[[[[[[
[

−0.0076 0.0000 0.0003
−0.0115 0.0997 0.0000
0.0212 0.0000 −0.0081
0.4152 0.0003 −0.1589
0.1742 −0.0014 −0.0154

]]]]]]]]
]

,

𝐶 = [[
[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]]
]

.

(60)

The spectral radius of the system matrix 𝐴 is 1. Starting from𝐾0, a matrix of ones, the CG method achieves the following
stabilizing output feedback gain matrix after 12 iterations:

𝐾∗ = [[
[

0.7473 0.7490 0.0293
−0.2442 −1.2308 −2.2948
1.0950 1.1358 1.2428

]]
]

. (61)

The corresponding objective function value at both points is𝑓(𝐾0) = 1.0841 and 𝑓(𝐾∗) = 0.9836.
Example 3. This test problem represents a chemical reactor
model [24, REA1]. The data matrices of the corresponding
discrete-time system are as follows:

𝐴 = [[[[[
[

1.1782 0.0015 0.5116 −0.4033
−0.0515 0.6619 −0.0110 0.0613
0.0762 0.3351 0.5606 0.3824

−0.0006 0.3353 0.0893 0.8494

]]]]]
]

,
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𝐵 = [[[[[
[

0.0045 −0.0876
0.4672 0.0012
0.2132 −0.2353
0.2131 −0.0161

]]]]]
]

,

𝐶 = [[
[

1 0 1 −1
0 1 0 0
0 0 1 −1

]]
]

.
(62)

The spectral radius of the system matrix 𝐴 is 1.2203. The
system is clearly Schur unstable. By starting with 𝐾0, the zero
matrix, the CGmethod converges to a local solution 𝐾∗ after
25 iterations, where

𝐾∗ = [0.3847 −0.2828 0.3315
2.2667 0.4446 1.0987] , (63)

and the corresponding objective function value is 𝑓(𝐾∗) =0.9382.
8.1. The CG Method for Decentralized Control Systems

Example 4. This test problem is borrowed from [25] of a
decentralized control system with two control stations; each
station has one input and one measured output. The given
constant data matrices are

𝐴 = [[
[

1.0 0 −1.6
−1.0 1.0 −0.3

0 0.4 1.0
]]
]

,

𝐵1 = [[
[

1
0
0
]]
]

,

𝐵2 = [[
[

0
1
1
]]
]

,

𝐶1 = [1 0 0] ,
𝐶2 = [0 1 1] .

(64)

The uncontrolled system is discrete-time Schur unstable,
where 𝜌(𝐴) = 1.8154 > 1. Starting with the following 𝐾0,
the CG method requires only 6 iterations to converge to a
stabilizing output feedback gain matrix 𝐾∗, where

𝐾0 = [0.1 0
0 0.1] ,

𝐾∗ = [−1.0060 0
0 −0.4585] .

(65)

The objective function value at the two points is 𝑓(𝐾0) =1.9924 and 𝑓(𝐾∗) = 0.6996 < 1, respectively. Although

𝑓(𝐾∗) seems to be relatively small, a stationary point fails to
be achieved.

Example 5. This is a fifth-order decentralized control system
with two control stations. The data matrices are randomly
generated which are as follows:

𝐴

=
[[[[[[[[
[

0.8755 −0.1324 −0.0105 0.1762 0.0484
0.0289 0.9512 −0.0056 −0.0257 0.0048

−0.0516 −0.0153 1.0470 −0.0900 0.0207
−0.0915 0.2109 −0.0292 1.0087 −0.0915
0.1305 0.0608 0.0939 −0.1345 0.8591

]]]]]]]]
]

,

𝐵1 =
[[[[[[[[
[

−0.1251 0.0472
−0.0569 0.0821
−0.0322 0.1360
−0.1195 0.0421
−0.0267 0.1732

]]]]]]]]
]

,

𝐵𝑇2 = [0.0583 0.0432 −0.1143 −0.0340 0.0179
0.1186 0.0153 0.1403 −0.1515 −0.0926] ,

𝐶1 = [0 1 0 0 0
0 0 1 0 0] ,

𝐶2 = [0 0 0 0 1
0 0 0 0 0] .

(66)

The uncontrolled system is discrete-time Schur unstable,
where 𝜌(𝐴) = 1.1114 > 1. Starting from the following
randomly generated 𝐾0, the CGmethod reaches a stabilizing𝐾∗ after 8 iterations, where

𝐾0 = [[[[[
[

−0.9513 −1.8038 0 0
0.6090 1.2671 0 0

0 0 0.3870 0.3936
0 0 0.2648 0.4900

]]]]]
]

,

𝐾∗ = [[[[[
[

9.4329 −12.4352 0 0
−23.6142 1.2606 0 0

0 0 1.1031 1.1097
0 0 1.2748 1.5000

]]]]]
]

.
(67)

The corresponding objective function value at both points is𝑓(𝐾0) = 1.2056 and 𝑓(𝐾∗) = 0.9669, respectively.
8.2. The CG Method for Time-Delay Systems

Example 6. This test problem represents a time-delay system
(see [22]) which has the following constant data matrices:

𝐴0 = [ 0.95 0.78
−1.76 −0.87] ,
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𝐴1 = [ 0.12 0.89
−0.95 −2.97] ,

𝐵 = [ 0.5
−0.95] ,

𝐶𝑇0 = [ 0.95
−2.98] ,

𝐶1 = [0 0] ,
(68)

where 𝑑 = 1. The data matrices for this system after
converting it from continuous to discrete are as follows:

𝐴 = [[[[[
[

1.0928 0.0823 0.0087 0.0811
−0.1805 0.8957 −0.0914 −0.2903
0.1047 0.0040 1.0005 0.0042

−0.0090 0.0951 −0.0046 0.9854

]]]]]
]

,

𝐵 = [[[[[
[

0.0485
−0.0948
0.0025

−0.0047

]]]]]
]

,

𝐶𝑇 = [[[[[
[

0.9500
−2.9800

0
0

]]]]]
]

.

(69)

The spectral radius of the system matrix 𝐴 is 1.0098. Starting
from the following 𝐾0, the three-term CG method suc-
cessfully converges to a local solution of the minimization
problem (1). The starting and achieved local solutions are

𝐾0 = [−0.4838] ,
𝐾∗ = [−1.3741] . (70)

The objective function value at both points is 𝑓(𝐾0) = 1.0008
and 𝑓(𝐾∗) = 0.9887, respectively.
Example 7. This test problem represents a time-delay system
(see [22]) which has the following constant data matrices:

𝐴0 = [ 1 −0.6
0.4 0.5 ] ,

𝐴1 = [0.5 0.2
0.6 0.4] ,

𝐵 = [0.1 1
0 0.1] ,

𝐶0 = [1 0
0 1] ,

(71)

where 𝑑 = 1. By converting the system from continuous to
discrete-time, the corresponding data matrices are

𝐴 = [[[[[
[

1.1065 −0.0637 0.0507 0.0198
0.0463 1.0520 0.0626 0.0415
0.1052 −0.0031 1.0025 0.0010
0.0022 0.1026 0.0031 1.0020

]]]]]
]

,

𝐵 = [[[[[
[

0.0105 0.0207
0.0002 0.0107
0.0005 0.0010
0.0000 0.0005

]]]]]
]

,

𝐶𝑇 = [1 0 0 0
0 1 0 0] .

(72)

The spectral radius of the system matrix 𝐴 is 1.1183. Starting
from𝐾0, the three-termCGmethod successfully converges to
a local solution for theminimization problem (1).The starting
and achieved local solutions are as follows:

𝐾0 = [−147.2142 16.2595
72.9190 −39.6464] ,

𝐾∗ = [−162.5446 4.7207
52.8133 −71.3982] .

(73)

The objective function value at both points is 𝑓(𝐾0) = 1.1136
and 𝑓(𝐾∗) = 0.9989, respectively.
8.3. The Logarithmic Barrier Method. The following two
examples quite show the performance of the logarithmic
barrier interior-point method for finding a local solution to
problem (2). A starting feasible point for the method might
be obtained by executing theCGmethodwith some iterations
on problem (1) until a stabilizing 𝐾 is obtained.

Example 8. This test problem is borrowed from [23]. The
constant data matrices for the corresponding discrete-time
model are as follows:

𝐴 = [[
[

1.0000 0.1000 0.0050
0 1.0000 0.1000
0 0 1.0000

]]
]

,

𝐵 = [[
[

0.1052 0.0002
0.1050 0.0050
0.1000 0.1000

]]
]

,

𝐶𝑇 = [[
[

1 0
0 1
0 0

]]
]

,

(74)

where the spectral radius of the system matrix 𝐴 is 1.0.
Starting from the following feasible 𝐾0, the interior-point
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Table 2: Convergence behavior of the log–barrier interior–point method to a local solution for Example 9.

𝑗 𝜖in𝑗 𝜇𝑗 𝑘 𝑓(𝐾𝑘) 󵄩󵄩󵄩󵄩∇𝜙𝜇𝑗 (𝐾𝑘)󵄩󵄩󵄩󵄩
0 9.0𝑒 − 001 1.0𝑒 − 001 0 9.4856𝑒 − 001 2.9173𝑒 − 0011 9.4063𝑒 − 001 3.6122𝑒 − 001

1 9.0𝑒 − 002 4.0𝑒 − 003
0 9.4063𝑒 − 001 3.6122𝑒 − 0011 9.3240𝑒 − 001 1.0758𝑒 − 0012 9.3240𝑒 − 001 5.3765𝑒 − 001... ... ...61 8.2291𝑒 − 001 3.5946𝑒 − 00162 8.2283𝑒 − 001 1.0708𝑒 − 002

2 9.0𝑒 − 003 6.4𝑒 − 006
0 8.2283𝑒 − 001 1.0708𝑒 − 002... ... ...5 8.2282𝑒 − 001 6.5932𝑒 − 003

3 9.0𝑒 − 004 4.1𝑒 − 010
0 8.2282𝑒 − 001 6.5932𝑒 − 003... ... ...6 8.2281𝑒 − 001 7.3226𝑒 − 004

4 9.0𝑒 − 005 1.0𝑒 − 015
0 8.2281𝑒 − 001 7.3226𝑒 − 004... ... ...3 8.2281𝑒 − 001 4.5061𝑒 − 005

method successfully converges to a local solution𝐾∗.The two
matrices are as follows:

𝐾0 = [−7.79 −7.97
−3.34 −2.73] ,

𝐾∗ = [−7.7592 −7.9516
−3.3145 −2.7147] ,

(75)

where the corresponding objective function values are𝑓(𝐾0) = 0.9430 and 𝑓(𝐾∗) = 0.9388, respectively.
Example 9. This test problem represents a chemical reactor
model [24, REA2]. The data matrices for the corresponding
discrete-time system are as follows:

𝐴 = [[[[[
[

1.1805 0.0014 0.5122 −0.4038
−0.0515 0.6619 −0.0110 0.0613
0.0763 0.3351 0.5606 0.3823

−0.0006 0.3353 0.0893 0.8494

]]]]]
]

,

𝐵 = [[[[[
[

0.0045 −0.0876
0.4672 0.0012
0.2132 −0.2353
0.2131 −0.0161

]]]]]
]

,

𝐶 = [1 0 1 −1
0 1 0 0 ] .

(76)

The spectral radius of the system matrix 𝐴 is 1.2227. Start-
ing from the following feasible 𝐾0, the log-barrier method

converges after 4 outer-loop iterations and 77 inner-loop
iterations to a local solution 𝐾∗. The starting and achieved
local solutions are as follows:

𝐾0 = [0.07 −0.49
1.53 −0.09] ,

𝐾∗ = [−0.5680 −0.0131
5.8580 −0.8531] .

(77)

Table 2 shows the convergence behavior of the log-barrier
interior-point method while converging to the local solution.

The above results quite show the convergence behavior
of the proposed three-term CG method and the logarithmic
barrier interior-point method. For all the considered test
problems, the CPU time is less than 3 sec. If a local solution
fails to be achieved, the CGmethod at least finds a stabilizing
output feedback controller for the closed-loop system.

9. Conclusion

Theeigenvalue assignment problem for discrete-time systems
formulated as anunconstrained optimization is considered.A
three-term CGmethod is proposed to find a local solution of
the minimization problem or at least to achieve a stabilizing
output feedback gain matrix.

The conjugate gradient method is extended to tackle the
eigenvalue assignment problem for the case of decentralized
control systems and the case of control systems with time
delay. Global convergence is established for the conjugate
gradient method.

In order to maintain a selected stability margin for the
control system, the optimization problem is reformulated
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as an inequality constraint problem by adding a cut to the
objective function. A logarithmic barrier method is proposed
for tackling this problem.Theperformance of theCGmethod
as well as the logarithmic barrier method is shown on various
test problems. It is quite interesting to see the performance of
some variants of quasi-Newton and inexact Newtonmethods
on the eigenvalue assignment problem for discrete-time
systems.
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