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The nonlinear Brinkman-Forchheimer-Darcy equation is used to model some porous medium flow in chemical reactors of packed
bed type. The results concerning the existence and uniqueness of a weak solution are presented for nonlinear convective flows in
medium with variable porosity and for small data. Furthermore, the finite element approximations to the flow profiles in the fixed
bed reactor are presented for several Reynolds numbers at the non-Darcy’s range.

1. Introduction

In this section we introduce themathematical model describ-
ing incompressible isothermal flow in porous medium with-
out reaction. The considered equations for the velocity
and pressure fields are for flows in fluid saturated porous
media. These problems are of importance for example in oil
reservoir optimization; see [1]. Most research results for flows
in porous media are based on the Darcy equation which
is considered to be a suitable model at a small range of
Reynolds numbers. However, there are restrictions of Darcy
equation for modelling some porous medium flows; that
is, in closely packed media, saturated fluid flows at slow
velocity but with relatively large Reynolds numbers. The
flows in such closely packed medium behave nonlinearly
and cannot be modelled accurately by the Darcy equation
which is linear. The deficiency can be circumvented with
the Brinkman–Forchheimer-Darcy law for flows in closely
packed media, which leads to the following model: let Ω ⊂
R𝑛, 𝑛 = 2, 3, represent the reactor channel. We denote its
boundary by Γ = 𝜕Ω. The conservation of volume-averaged
values of momentum andmass in the packed reactor reads as
follows

−div (𝜀]∇u − 𝜀u ⊗ u) + 𝜀∇𝑝 + 𝜎 (u) = f in Ω,
div (𝜀u) = 0 in Ω,

(1)

where u : Ω → R𝑛 and 𝑝 : Ω → R denote the
unknown velocity and pressure, respectively. The positive

quantity 𝜀 = 𝜀(x) stands for porosity which describes
the proportion of the nonsolid volume to the total volume
of material and varies spatially in general. The expression𝜎(u) represents the friction forces caused by the packing
of spherical particles with one constant diameter. The right
hand side f represents an outer force (e.g., gravitation),  the
constant fluid density, and ] the constant kinematic viscosity
of the fluid, respectively. The expression u ⊗ u symbolizes the
dyadic product of u with itself.

The formula given by Ergun [2] will be used to model the
influence of the packing on the flow inertia effects

𝜎 (u) = 150] (1 − 𝜀)2𝜀2𝑑2𝑝 u + 1.751 − 𝜀𝜀𝑑𝑝 u |u| . (2)

Thereby 𝑑𝑝 stands for the diameter of pellets and | ⋅ | denotes
the Euclidean vector norm.The linear term in (2) accounts for
the head loss according toDarcy and the quadratic term is the
Forchheimer law.Themodel (1)-(2) with the pressure term of
the form ∇(𝜀𝑝) has been proposed in [3, Section 2.2]. For the
derivation of the equations, their limitations, modelling, and
homogenization questions in porous media we refer to [4–9]
and [10, Chapter 1].

To close the system (1) we prescribe Dirichlet boundary
condition

u|Γ = g, (3)
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where

∫
Γ𝑖

𝜀 g ⋅ n 𝑑𝑠 = 0 (4)

has to be fulfilled on each connected component Γ𝑖 of the
boundary Γ. The distribution of porosity 𝜀 is assumed to
satisfy the bounds

0 < 𝜀0 ≤ 𝜀 (x) ≤ 𝜀1 ≤ 1 ∀x ∈ Ω, (A1)
with some constants 0 < 𝜀0, 𝜀1 ≤ 1.

A comprehensive account of fluid flows through porous
media beyond Darcy law’s valid regimes and classified by the
Reynolds number can be found in, for example, [11]. Also,
see [12] for simulating pumped water levels in abstraction
boreholes using such nonlinear Darcy-Forchheimer law and
[13–15] for recent references on this model.

In the next section we use the porosity distribution which
is estimated for packed beds consisting of spherical particles
and takes the near wall channeling effect into account. This
kind of porosity distribution obeys assumption (A1).

Let us introduce dimensionless quantities

u∗ = u𝑈0 ,
𝑝∗ = 𝑝𝑈20 ,
x∗ = x𝑑𝑝 ,
g∗ = g𝑈0 ,

(5)

where 𝑈0 denotes the magnitude of some reference velocity.
For simplicity of notation we omit the asterisks. Then, the
reactor flow problem reads in dimensionless form as follows:

−div ( 𝜀
Re

∇u − 𝜀u ⊗ u) + 𝜀∇𝑝 + 𝛼
Re

u + 𝛽u |u| = f

in Ω,
div (𝜀u) = 0

in Ω,
u = g

on Γ,

(6)

where

𝛼 (x) = 150𝜅2 (x) ,
𝛽 (x) = 1.75𝜅 (x) , (7)

with

𝜅 (x) = 1 − 𝜀 (x)𝜀 (x) , (8)

and the Reynolds number is defined by

Re = 𝑈0𝑑𝑝
]

. (9)

The existence and uniqueness of the solution of a system
for flow, temperature, and solute transport containing the
nonlinear flow model (6) but with constant porosity and
without the convective term have been established in [16].We
will extend this result for the flow component to the case (6)
when the variable porosity depends on the location and the
convective term is included. The recent existence results for
the linear Brinkman problem with spatially varying 𝛼 can be
found in [17].

Remark 1. Equation (6) becomes a Navier-Stokes problem if𝜀 ≡ 1.
Notation. Throughout the work we use the following nota-
tions for function spaces. For 𝑚 ∈ N0, 𝑝 ≥ 1 and bounded
subdomain 𝐺 ⊂ Ω; let 𝑊𝑚,𝑝(𝐺) be the usual Sobolev space
equipped with norm ‖ ⋅ ‖𝑚,𝑝,𝐺. If 𝑝 = 2, we denote the
Sobolev space by 𝐻𝑚(𝐺) and use the standard abbreviations‖ ⋅ ‖𝑚,𝐺 and | ⋅ |𝑚,𝐺 for the norm and seminorm, respectively.
We denote by 𝐷(𝐺) the space of 𝐶∞(𝐺) functions with
compact support contained in𝐺. Furthermore,𝐻𝑚0 (𝐺) stands
for the closure of𝐷(𝐺) with respect to the norm ‖ ⋅ ‖𝑚,𝐺. The
counterparts spaces consisting of vector valued functions will
be denoted by bold faced symbols like H𝑚(𝐺) fl [𝐻𝑚(𝐺)]𝑛
or D(𝐺) fl [𝐷(𝐺)]𝑛. The 𝐿2 inner product over 𝐺 ⊂ Ω and𝜕𝐺 ⊂ 𝜕Ω will be denoted by (⋅, ⋅)𝐺 and ⟨⋅, ⋅⟩𝜕𝐺, respectively.
In the case 𝐺 = Ω the domain index will be omitted. In
the following we denote by 𝐶 the generic constant which
is usually independent of the model parameters; otherwise
dependence will be indicated.

2. Existence and Uniqueness Results

In the following the porosity 𝜀 is assumed to belong to𝑊1,3(Ω) ∩ 𝐿∞(Ω). We start with the weak formulation of
problem (6) and look for its solution in suitable Sobolev
spaces that are adjusted to the modified momentum and
mass balances in (6) and to the smoothness of the weighting
function 𝜀.
2.1. Variational Formulation. Let

𝐿20 (Ω) fl {V ∈ 𝐿2 (Ω) : (V, 1) = 0} (10)

be the space consisting of 𝐿2 functions with zero mean value.
We define the spaces

X fl H1 (Ω) ,
X0 fl H10 (Ω) ,
𝑄 fl 𝐿2 (Ω) ,
𝑀 fl 𝐿20 (Ω) ,
V fl X0 × 𝑀.

(11)
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Let us introduce the following bilinear forms:

𝑎: X × X → R, 𝑎 (u, k) = 1
Re

(𝜀∇u, ∇k) ,
𝑏: X × 𝑄 → R, 𝑏 (u, 𝑞) = (div (𝜀u) , 𝑞) ,
𝑐: X × X → R, 𝑐 (u, k) = 1

Re
(𝛼u, k) .

(12)

Furthermore, we define the semilinear form

𝑑: X × X × X → R, 𝑑 (w; u, k) = (𝛽 |w| u, k) , (13)

and trilinear form

𝑛: X × X × X → R, 𝑛 (w, u, k) = ((𝜀w ⋅ ∇)u, k) . (14)

We set

𝐴 (w; u, k) fl 𝑎 (u, k) + 𝑐 (u, k) + 𝑛 (w, u, k)
+ 𝑑 (w; u, k) . (15)

Multiplying momentum and mass balances in (6) by test
functions k ∈ X0 and 𝑞 ∈ 𝑀, respectively, and integrating
by parts implies the weak formulation

Find (u, 𝑝) ∈ X × 𝑀 with u|Γ = g

such that 𝐴 (u; u, k) − 𝑏 (k, 𝑝) = (f , k) ,
𝑏 (u, 𝑞) = 0
∀k ∈ X0, ∀𝑞 ∈ 𝑀.

(16)

First, we recall the following result from [18].

Theorem 2. The mapping 𝑢 → 𝜀𝑢 is an isomorphism from𝐻1(Ω) onto itself and from 𝐻10 (Ω) onto itself. It holds for all𝑢 ∈ 𝐻1(Ω) that
‖𝜀𝑢‖1 ≤ 𝐶 {𝜀1 + |𝜀|1,3} ‖𝑢‖1 ,𝑢𝜀

1 ≤ 𝐶 {𝜀−10 + 𝜀−20 |𝜀|1,3} ‖𝑢‖1 . (17)

In the following the closed subspace ofH10(Ω) defined by
W = {w ∈ H10 (Ω) : 𝑏 (w, 𝑞) = 0 ∀𝑞 ∈ 𝐿20 (Ω)} (18)

will be employed. Next, we establish and prove some proper-
ties of trilinear form 𝑛(⋅, ⋅, ⋅) and nonlinear form 𝑑(⋅; ⋅, ⋅).
Lemma3. Let u, k ∈ H1(Ω) andw ∈ H1(Ω)with div(𝜀w) = 0
and w ⋅ n|Γ = 0. Then we have

𝑛 (w, u, k) = −𝑛 (w, k, u) . (19)

Furthermore, the trilinear form 𝑛(⋅, ⋅, ⋅) and the nonlinear form𝑑(⋅; ⋅, ⋅) are continuous; that is,
|𝑛 (u, k,w)| ≤ 𝐶𝜀 ‖u‖1 ‖k‖1 ‖w‖1 ∀u, k,w ∈ H1 (Ω) , (20)

|𝑑 (u, k,w)| ≤ 𝐶𝜀 ‖u‖1 ‖k‖1 ‖w‖1 ∀u, k,w ∈ H1 (Ω) , (21)

and for u ∈ W and for a sequence u𝑘 ∈ W with lim𝑘→∞‖u𝑘 −
u‖0 = 0, we have also

lim
𝑘→∞

𝑛 (u𝑘, u𝑘, k) = 𝑛 (u, u, k) ∀k ∈ W. (22)

Proof. We follow the proof of [19, Lemma 2.1, §2, Chapter IV]
and adapt it to the trilinear form

𝑛 (w, u, k) = ((𝜀w ⋅ ∇) u, k) = 𝑛∑
𝑖,𝑗=1

(𝜀𝑤𝑗𝜕𝑗𝑢𝑖, V𝑖) , (23)

which has the weighting factor 𝜀. Hereby, symbols with
subscripts denote components of bold faced vectors, for
example, u = (𝑢𝑖)𝑖=1,...,𝑛. Let u ∈ H1, k ∈ D(Ω), and w ∈ W.
Integrating by parts and employing density argument, we
obtain immediately (19).
𝑛∑
𝑖,𝑗=1

(𝜀𝑤𝑗𝜕𝑗𝑢𝑖, V𝑖) = − 𝑛∑
𝑖,𝑗=1

(𝜕𝑗 (𝜀𝑤𝑗V𝑖) , 𝑢𝑖)

+ 𝑛∑
𝑖,𝑗=1

⟨𝜀𝑤𝑗𝑛𝑗𝑢𝑖, V𝑖⟩

= − 𝑛∑
𝑖,𝑗=1

(𝜀𝑤𝑗𝜕𝑗V𝑖, 𝑢𝑖)
− (div (𝜀w)u, k) + ⟨(𝜀w ⋅ n)u, k⟩

= −𝑛 (w, k, u) .

(24)

From Sobolev embedding 𝐻1(Ω) → 𝐿4(Ω) (see [20]) and
Hölder inequality follows

(𝜀𝑤𝑗𝜕𝑗𝑢𝑖, V𝑖) ≤ |𝜀|0,∞ 𝑤𝑗0,4 𝜕𝑗𝑢𝑖0 V𝑖0,4
≤ 𝐶 |𝜀|0,∞ 𝑤𝑗1 𝑢𝑖1 V𝑖1 ,

(25)

and consequently the proof of (20) is completed. Since
lim𝑘→∞‖𝑢𝑘𝑖 𝑢𝑘𝑗 − 𝑢𝑖𝑢𝑗‖0,1 = 0 and 𝜀𝜕𝑗V𝑖 ∈ 𝐿∞(Ω), the
continuity estimate (20) implies

lim
𝑘→∞

𝑛 (u𝑘, u𝑘, k) = − lim
𝑘→∞

𝑛 (u𝑘, k,u𝑘)
= − lim
𝑘→∞

𝑛∑
𝑖,𝑗=1

(𝜀𝑢𝑘𝑗𝜕𝑗V𝑘𝑖 , 𝑢𝑘𝑖 )

= − 𝑛∑
𝑖,𝑗=1

(𝜀𝑢𝑗𝜕𝑗V𝑖, 𝑢𝑖) = −𝑛 (u, k, u)
= 𝑛 (u, u, k) .

(26)

The continuity of 𝑑(⋅; ⋅, ⋅) follows from Hölder inequality and
Sobolev embedding𝐻1(Ω) → 𝐿4(Ω) (see [20]).

|𝑑 (u; k,w)| ≤ 𝛽∞ ‖u‖0,4 ‖k‖0,4 ‖w‖0
≤ 𝐶𝜀 ‖u‖1 ‖k‖1 ‖w‖1 . (27)
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In the next stage we consider the difficulties caused by
prescribing the inhomogeneous Dirichlet boundary condi-
tion. Analogous difficulties are already encountered in the
analysis ofNavier-Stokes problem.Wewill carry out the study
of three-dimensional case. The extension in two dimensions
can be constructed analogously. Since g ∈ H1/2(Γ), we can
extend g inside ofΩ in the form of

g = 𝜀−1curl h, (28)

with some h ∈ H2(Ω). The operator curl is defined then as

curl h = (𝜕2ℎ3 − 𝜕3ℎ2, 𝜕3ℎ1 − 𝜕1ℎ3, 𝜕1ℎ2 − 𝜕2ℎ1) . (29)

We note that in the two-dimensional case the vector potential
h ∈ H2(Ω) can be replaced by a scalar function ℎ ∈𝐻2(Ω) and the operator curl is then redefined as curl ℎ =(𝜕2ℎ, −𝜕1ℎ). Our aim is to adapt the extension of Hopf (see
[21]) to our model. We recall that for any parameter 𝜇 > 0
there exists a scalar function 𝜑𝜇 ∈ 𝐶2(Ω) such that

(i) 𝜑𝜇 = 1 in some neighborhood of Γ (depending on 𝜇) ,
(ii) 𝜑𝜇 (x) = 0 if 𝑑Γ (x) ≥ 2 exp(−1𝜇) , where 𝑑Γ (x) fl inf

y∈Γ
x − y denotes the distance of x to Γ,

(iii) 𝜕𝑗𝜑𝜇 (x) ≤ 𝜇𝑑Γ (x) if 𝑑Γ (x) < 2 exp(−1𝜇) , 𝑗 = 1, . . . , 𝑛.
(Ex)

For the construction of 𝜑𝜇 see also [19, Lemma 2.4, §2,
Chapter IV].

Let us define

g𝜇 fl 𝜀−1curl (𝜑𝜇h) . (30)

In the following lemmawe establish boundswhich are crucial
for proving existence of velocity.

Lemma 4. The function g𝜇 satisfies the following conditions:

div (𝜀g𝜇) = 0,
g𝜇

Γ = g,
∀𝜇 > 0,

(31)

and for any 𝛿 > 0 there exists sufficiently small 𝜇 > 0 such that
𝑑 (u + g𝜇; g𝜇, u) ≤ 𝛿 𝛽0,∞ |u|1 (|u|1 + g𝜇0)

∀u ∈ X0, (32)

𝑛 (u, g𝜇, u) ≤ 𝛿 |u|21 ∀u ∈ W. (33)

Proof. The relations in (31) are obvious. We follow [16] in
order to show (32). Since h ∈ H2(Ω) Sobolev’s embedding
theorem implies h ∈ L∞(Ω), so we get according to the
properties of 𝜑𝜇 in (Ex) the following bound:

g𝜇 ≤ 𝐶 𝜀−10 {|∇h| + 𝜇𝑑Γ (x) |h|}
≤ 𝐶{ 𝜇𝑑Γ (x) + |∇h|} .

(34)

Defining

Ω𝜇 fl {x ∈ Ω: 𝑑Γ (x) < 2 exp(−1𝜇)} , (35)

we obtain from Cauchy-Schwarz and triangle inequalities

(𝛽 u + g𝜇
 , g𝜇 ⋅ u) ≤ 𝛽0,∞ ‖u‖0 u ⋅ g𝜇0,Ω𝜇

+ 𝛽0,∞ g𝜇0 u ⋅ g𝜇0,Ω𝜇 ,
(36)

u ⋅ g𝜇20,Ω𝜇 ≤ ∫
Ω𝜇

|u|2 g𝜇2 𝑑x ≤ 𝐶∫
Ω𝜇

|u|2

⋅ {( 𝜇𝑑Γ (x))
2 + 2𝜇𝑑Γ (x) |∇h| + |∇h|2}𝑑x

≤ 𝐶{𝜇2 
u𝑑Γ


2

0,Ω𝜇

+ 2𝜇 
u𝑑Γ

0,Ω𝜇 ‖u‖0,4,Ω𝜇
⋅ ‖|∇h|‖0,4,Ω𝜇 + ‖u‖20,4,Ω𝜇 ‖|∇h|‖20,4,Ω𝜇}

≤ 𝐶{𝜇 
u𝑑Γ

0,Ω𝜇 + ‖u‖0,4 ‖|∇h|‖0,4,Ω𝜇}
2

,

(37)

and consequently

u ⋅ g𝜇0,Ω𝜇 ≤ 𝐶{𝜇 
u𝑑Γ

0,Ω𝜇 + ‖u‖0,4 ‖|∇h|‖0,4,Ω𝜇} . (38)

Applying Hardy inequality (see [20])

V𝑑Γ

0 ≤ 𝐶 |V|1 ∀V ∈ 𝐻10 (Ω) , (39)

and using Sobolev embedding 𝐻1(Ω) → 𝐿4(Ω), estimate
(38) becomes

u ⋅ g𝜇0,Ω𝜇 ≤ 𝐶𝜆 (𝜇) ‖u‖1 , (40)
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where

𝜆 (𝜇) fl max {𝜇, ‖|∇h|‖0,4,Ω𝜇} . (41)

From (36) and (40), Poincaré inequality, and the fact that
lim𝜇→0𝜆(𝜇) = 0we conclude that for any 𝛿 > 0we can choose
sufficiently small 𝜇 > 0 such that

(𝛽 u + g𝜇
 g𝜇, u) ≤ 𝛿 𝛽0,∞ |u|1 (|u|1 + g𝜇0) , (42)

holds.Therefore the proof of estimate (32) is completed. Now,
we take a look at the trilinear convective term

𝑛 (u, g𝜇, u) = ((𝜀u ⋅ ∇) g𝜇, u)Ω𝜇
= ((𝜀u ⋅ ∇) {𝜀−1curl (𝜑𝜇h)} , u)Ω𝜇
= ((u ⋅ ∇) {curl (𝜑𝜇h)} , u)Ω𝜇

− ((u ⋅ ∇𝜀) g𝜇, u)Ω𝜇 .

(43)

The first term of above difference becomes small due to [19,
Lemma 2.3, §2, Chapter IV], and it satisfies

((u ⋅ ∇) {curl (𝜑𝜇h)} , u)Ω𝜇
 =

((u ⋅ ∇) (𝜀g𝜇) , u)Ω𝜇


≤ 𝛿 |u|21 ,
(44)

as long as 𝜇 > 0 is chosen sufficiently small. Using Hölder
inequality, Sobolev embedding𝐻1(Ω) → 𝐿6(Ω) yields

((u ⋅ ∇𝜀) g𝜇, u)Ω𝜇
 ≤ 𝐶 ‖𝜀‖1,3 g𝜇 ⋅ u0 ‖u‖1 , (45)

which together with (40) implies for sufficiently small 𝜇 > 0
the bound ((u ⋅ ∇𝜀) g𝜇, u)Ω𝜇

 ≤ 𝛿 |u|21 . (46)

From (44) and (46) follows the desired estimate (33).

While the general framework for linear and nonsymmet-
ric saddle point problems can be found in [18], our problem
requiresmore attention due to its nonlinear character. Setting
w fl u − g𝜇, the weak formulation (16) is equivalent to the
following problem:

Find (w, 𝑝) ∈ V

such that 𝐴(w + g𝜇;w + g𝜇, k) − 𝑏 (k, 𝑝)
+ 𝑏 (w + g𝜇, 𝑞) = (f , k) ∀ (k, 𝑞) ∈ V.

(47)

Let us define the nonlinear mapping 𝐺 : W → W with

[𝐺 (w) , k] fl 𝑎 (w + g𝜇, k) + 𝑐 (w + g𝜇, k) − (f , k)
+ 𝑛 (w + g𝜇,w + g𝜇, k)
+ 𝑑 (w + g𝜇;w + g𝜇, k) ,

(48)

where [⋅, ⋅] defines the inner product in W via [𝑢, V] fl(∇𝑢, ∇V). Then, the variational problem (47) reads in the
spaceW as follows.

Find w ∈ W such that

[𝐺 (w) , k] = 0 ∀k ∈ W. (49)

2.2. Solvability of Nonlinear Saddle Point Problem. We start
our study of the nonlinear operator problem (49) with the
following lemma.

Lemma 5. The mapping 𝐺 defined in (48) is continuous and
there exists 𝑟 > 0 such that

[𝐺 (u) , u] > 0 ∀u ∈ W with |u|1 = 𝑟. (50)

Proof. Let (u𝑘)𝑘∈N be a sequence in W with lim𝑘→∞ ‖ u𝑘 −
u‖1 = 0. Then, applying Cauchy-Schwarz inequality and (33),
we obtain for any k ∈ W

[𝐺 (u𝑘) − 𝐺 (u) , k]
≤ 1
Re

(𝜀∇ (u𝑘 − u) , ∇k) + 1
Re

(𝛼 (u𝑘 − u) , k)
+ (𝛽 u𝑘 + g𝜇

 (u𝑘 − u) , k)
+ (𝛽 (u𝑘 + g𝜇

 − u + g𝜇
) (u + g𝜇) , k)

+ 𝑛 (u𝑘, u𝑘, k) − 𝑛 (u, u, k) + 𝑛 (u𝑘 − u, g𝜇, k)
+ 𝑛 (g𝜇, u𝑘 − u, k)

≤ 𝜀1
Re

u𝑘 − u1 |k|1 + 1
Re

‖𝛼‖0,∞ u𝑘 − u0 ‖k‖0
+ 𝛽0,∞ u𝑘 + g𝜇

0,4 u𝑘 − u0 ‖k‖0,4
+ 𝛽0,∞ u + g𝜇

0,4 u𝑘 − u0 ‖k‖0,4
+ 𝑛 (u𝑘, u𝑘, k) − 𝑛 (u, u, k)
+ 𝐶 u𝑘 − u1 g𝜇1 ‖k‖1 .

(51)

The boundedness of u𝑘 in W, (22), the Poincaré inequality,
and the above inequality imply that

[𝐺 (u𝑘) − 𝐺 (u) , k] → 0 as 𝑘 → ∞ ∀k ∈ W. (52)

Thus, employing

𝐺 (u𝑘) − 𝐺 (u)1 = sup
k∈W
k ̸=0

[𝐺 (u𝑘) − 𝐺 (u) , k]
|k|1 , (53)
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we state that𝐺 is continuous.Now,we note that for anyu ∈ W
we have

[𝐺 (u) , u] = 1
Re

(𝜀∇ (u + g𝜇) , ∇u)
+ 1
Re

(𝛼 (u + g𝜇) , u)
+ (𝛽 u + g𝜇

 (u + g𝜇) , u)
+ 𝑛 (u + g𝜇, u + g𝜇, u) − (f , u)

≥ 𝜀0
Re

|u|21 − 𝜀1
Re

(∇g𝜇, ∇u) + 1
Re

(𝛼u, u)
− 1
Re

(𝛼g𝜇, u) + (𝛽 u + g𝜇
 , |u|2)

− (𝛽 u + g𝜇
 g𝜇, u) + 𝑛 (u, g𝜇, u)

+ 𝑛 (g𝜇, g𝜇, u) − ‖f‖0 ‖u‖0
≥ 𝜀0
Re

|u|21 − 𝜀1
Re

g𝜇1 |u|1
− 1
Re

‖𝛼‖0,∞ g𝜇0 ‖u‖0
− (𝛽 u + g𝜇

 g𝜇, u) − 𝑛 (u, g𝜇, u)
− 𝐶 g𝜇21 ‖u‖1 − ‖f‖0 ‖u‖0 .

(54)

From the Poincaré inequality, we infer the estimate

‖V‖1 ≤ 𝐶 |V|1 ∀V ∈ 𝐻10 (Ω) , (55)

which together with (32), (33), and (54) results in

[𝐺 (u) , u] ≥ { 𝜀0
Re

− 𝛿 (1 + 𝛽0,∞)} |u|21 − { 𝜀1
Re

g𝜇1
+ 𝐶1 1

Re
‖𝛼‖0,∞ g𝜇0 + 𝛿 𝛽0,∞ g𝜇0 + 𝐶2 g𝜇21

+ 𝐶3 ‖f‖0} |u|1 .
(56)

Choosing 𝛿 such that

0 < 𝛿 < 𝛿0 fl 𝜀0
Re

(1 + 𝛽0,∞)−1 , (57)

and 𝑟 > 𝑟0 with

𝑟0 fl (𝜀1/Re) g𝜇1 + (1/Re) 𝐶1 ‖𝛼‖0,∞ g𝜇0 + 𝛿 𝛽0,∞ g𝜇0 + 𝐶2 g𝜇21 + 𝐶3 ‖f‖0
𝜀0/Re − 𝛿 (1 + 𝛽0,∞) , (58)

leads to the desired assertion (50).

The following lemma plays a key role in the existence
proof.

Lemma6. Let𝑌 be finite dimensional Hilbert space with inner
product [⋅, ⋅] inducing a norm ‖ ⋅ ‖ and 𝑇 : 𝑌 → 𝑌 be a
continuous mapping such that

[𝑇 (𝑥) , 𝑥] > 0 for ‖𝑥‖ = 𝑟0 > 0. (59)

Then there exists 𝑥 ∈ 𝑌, with ‖𝑥‖ ≤ 𝑟0, such that
𝑇 (𝑥) = 0. (60)

Proof. See [22].

Now we are able to prove the main result concerning
existence of velocity.

Theorem 7. The problem (49) has at least one solution u ∈ W.

Proof. We construct the approximate sequence of Galerkin
solutions. Since the space W is separable, there exists a

sequence of linearly independent elements (w𝑖)𝑖∈N ⊂ W. Let
X𝑚 be the finite dimensional subspace ofW with

X𝑚 fl span {w𝑖, 𝑖 = 1, . . . , 𝑚} , (61)

and endowed with the scalar product of W. Let u𝑚 =∑𝑚𝑗=1 𝑎𝑗w𝑗, 𝑎𝑗 ∈ R, be a Galerkin solution of (49) defined by

[𝐺 (u𝑚) ,w𝑗] = 0, ∀𝑗 = 1, . . . , 𝑚. (62)

From Lemmas 5 and 6 we conclude that

[𝐺 (u𝑚) ,w] = 0 ∀w ∈ X𝑚 (63)

has a solution u𝑚 ∈ X𝑚. The unknown coefficients 𝑎𝑗 can
be obtained from the algebraic system (62). On the other
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hand, multiplying (62) by 𝑎𝑗 and adding the equations for𝑗 = 1, . . . , 𝑚 we have

0 = [𝐺 (u𝑚) , u𝑚] ≥ { 1
Re

− 𝛿 (1 + 𝛽0,∞)} u𝑚21
− { 1

Re
g𝜇1 + 𝐶1 1

Re
‖𝛼‖0,∞ g𝜇0

+ 𝛿 𝛽0,∞ g𝜇0 + 𝐶2 g𝜇21 + 𝐶3 ‖f‖0} u𝑚1 .
(64)

This gives together with (58) the uniform boundedness inWu𝑚1 ≤ 𝑟0; (65)
therefore there exists u ∈ W and a subsequence𝑚𝑘 → ∞ (we
write for the convenience𝑚 instead of𝑚𝑘) such that

u𝑚 ⇀ u in W. (66)

Furthermore, the compactness of embedding 𝐻1(Ω) →𝐿4(Ω) implies

u𝑚 → u in L4 (Ω) . (67)
Taking the limit in (63) with𝑚 → ∞ we get

[𝐺 (u) ,w] = 0 ∀w ∈ X𝑚. (68)
Finally, we apply the continuity argument and state that (68)
is preserved for any w ∈ W; therefore u is the solution of
(49).

For the reconstruction of the pressure we need inf-sup-
theorem.

Theorem 8. Assume that the bilinear form 𝑏(⋅, ⋅) satisfies the
inf-sup condition

inf
𝑞∈𝑀

sup
k∈X0

𝑏 (k, 𝑞)
|k|1 𝑞0 ≥ 𝛾 > 0. (69)

Then, for each solution u of the nonlinear problem (49) there
exists a unique pressure 𝑝 ∈ 𝑀 such that the pair (u, 𝑝) ∈ V is
a solution of the homogeneous problem (47).

Proof. See [19, Theorem 1.4, §1, Chapter IV].
We end up this subsection by proving the existence of the

pressure.

Theorem 9. Let w be solution of problem (49). Then, there
exists unique pressure 𝑝 ∈ 𝑀.

Proof. We verify the inf-sup condition (69) of Theorem 8
by employing the isomorphism of Theorem 2. From [19,
Corollary 2.4, Section 2, Chapter I] follows that for any 𝑞 in𝐿20(Ω) there exists k inH10(Ω) such that

(div k, 𝑞) ≥ 𝛾∗ ‖k‖1 𝑞0 , (70)
with a positive constant 𝛾∗. Setting u = k/𝜀 and applying the
isomorphism inTheorem 2, we obtain the estimate

𝑏 (u, 𝑞) = (div k, 𝑞) ≥ 𝛾∗ ‖k‖1 𝑞0 ≥ 𝛾𝜀 ‖u‖1 𝑞0 , (71)

where 𝛾𝜀 = 𝛾∗/𝐶{𝜀−10 +𝜀−20 |𝜀|1,3}. From the above estimate we
conclude the inf-sup condition (69).

2.3. Uniqueness of Weak Solution. We exploit a priori esti-
mates in order to prove uniqueness of weak velocity and
pressure.

Theorem 10. If ‖g𝜇‖1, ‖f‖−1 fl sup0 ̸=k∈H1(Ω)((f , k)/‖k‖1) are
sufficiently small; then the solution of (49) is unique.

Proof. Assume that (u1, 𝑝1) and (u2, 𝑝2) are two differ-
ent solutions of (47). From (19) in Lemma 3 we obtain𝑛(w, u, u) = 0 ∀w, u ∈ W. Then, we obtain

0 = [𝐺 (u1) − 𝐺 (u2) , u1 − u2] = 𝑎 (u1 − u2, u1 − u2)
+ 𝑐 (u1 − u2, u1 − u2) − (f , u1 − u2)
+ 𝑛 (u1 + g𝜇, u1 + g𝜇, u1 − u2)
− 𝑛 (u2 + g𝜇, u2 + g𝜇, u1 − u2)
+ (𝛽 u1 + g𝜇

 (u1 + g𝜇) , u1 − u2)
− (𝛽 u2 + g𝜇

 (u2 + g𝜇) , u1 − u2)
≥ 𝜀0
Re

u1 − u2
21 − ‖f‖−1 u1 − u2

1
+ 𝑛 (u1 − u2, u2 + g𝜇, u1 − u2)
+ (𝛽 u1 + g𝜇

 (u1 − u2) , u1 − u2)
+ (𝛽 (u1 + g𝜇

 − u2 + g𝜇
) (u2 + g𝜇) , u1 − u2)

≥ 𝜀0
Re

u1 − u2
21 − ‖f‖−1 u1 − u2

1
− 𝑛 (u1 − u2, u2, u1 − u2)
− 𝑛 (u1 − u2, g𝜇, u1 − u2) − 𝛽0,∞
⋅ (u1 + g𝜇

 ⋅ u1 − u2
 , u1 − u2

) − 𝛽0,∞
⋅ (u1 + g𝜇

 − u2 + g𝜇
 ⋅ u2 + g𝜇

 , u1 − u2
) .

(72)

From Cauchy-Schwarz inequality and Sobolev embedding𝐻1(Ω) → 𝐿4(Ω) we deduce
(u1 + g𝜇

 ⋅ u1 − u2
 , u1 − u2

)
≤ 𝐶 {u10 + g𝜇0} u1 − u2

21 ,(u1 + g𝜇
 − u2 + g𝜇

 ⋅ u2 + g𝜇
 , u1 − u2

)
≤ 𝐶 {u20 + g𝜇0} u1 − u2

21 ,
(73)

and according to (20) we have

𝑛 (u1 − u2, u2, u1 − u2) ≤ 𝐶 u21 u1 − u2
21 , (74)

and by (31) we can find 𝜇 such that

𝑛 (u1 − u2, g𝜇, u1 − u2) ≤ 𝜀04Re u1 − u2
21 . (75)
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Now, we find upper bounds for u1 and u2. Testing (47) with
u results in𝜀0
Re

‖u‖21 ≤ ‖f‖−1 ‖u‖1 + 𝜀0
Re

g𝜇1 ‖u‖1 + 𝐶 g𝜇0 ‖u‖0
+ 𝐶 g𝜇21 ‖u‖1 + 𝐶 𝛽0,∞ g𝜇0 ‖u‖21
+ 𝐶 𝛽0,∞ g𝜇20,4 ‖u‖1 .

(76)

From Sobolev embedding 𝐻1(Ω) → 𝐿4(Ω) we deduce for
sufficiently small ‖ g𝜇‖1

‖u‖1 ≤ ‖f‖−1 + 𝐶1 g𝜇1 + 𝐶2 g𝜇21𝜀0/Re − 𝐶3 𝛽0,∞ g𝜇1
š 𝐶 (g𝜇1 , ‖f‖−1) .

(77)

Putting (73), (74), (75), and (77) into (72) and using the
inequality

‖f‖−1 u1 − u2
1 ≤ 𝜀04Re u1 − u2

21 + 2Re𝜀0 ‖f‖2−1 , (78)

we obtain

0 ≥ 𝜀02Re u1 − u2
21 − 2Re𝜀0 ‖f‖2−1

− 𝐶 (g𝜇1 , ‖f‖−1) 𝛽0,∞ u1 − u2
21

− 𝜀04Re u1 − u2
21 − 𝐶 (g𝜇1 , ‖f‖−1) u1 − u2

21 .
(79)

For sufficiently small ‖g𝜇‖1, ‖f‖−1 the constant𝐶(‖g𝜇‖1, ‖f‖−1)
in (77) gets small and consequently the right hand side of
(79) is nonnegative. This implies u1 = u2 and according to
Theorem 9 𝑝1 − 𝑝2 = 0.
3. A Channel Flow Problem in
Packed Bed Reactors

In this section, we provide an example of the flow problem
in packed bed reactors with numerical solutions at small
and relatively large Reynolds numbers to show the nonlinear
behavior of the velocity solutions. Our numerical tests were
conducted using the noncommercial object-oriented finite
element packageMoonMD[23] thatwas originally developed
by the research group in Magdeburg and used for several
benchmarks. The numerical results generated by MoonMD
have been also verified by commercial software packages
FLUENT� and FEMLAB�; see [24] and [3, Chapter 2.6].

Let the reactor channel with Newtonian-fluid be repre-
sented by the plain domainΩ = (0, 𝐿) × (−𝑅, 𝑅) where 𝑅 = 5
and 𝐿 = 60. In all computations we use the porosity distribu-
tion from [3, Section 2.2] which is determined experimentally
and takes into account the effect of wall channeling in packed
bed reactors

𝜀 (𝑥, 𝑦) = 𝜀 (𝑦) = 𝜀∞ {1 + 1 − 𝜀∞𝜀∞ 𝑒−6(𝑅−|𝑦|)} , (80)
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Figure 1: Varying porosity.

where 𝜀∞ = 0.45.The distribution of the porosity is presented
in Figure 1. We distinguish between the inlet, outlet, and
membrane parts of domain boundary Γ and denote them byΓin, Γout, and Γ𝑤, respectively. Let

Γin = {(𝑥, 𝑦) ∈ Γ: 𝑥 = 0} ,
Γout = {(𝑥, 𝑦) ∈ Γ: 𝑥 = 𝐿} ,
Γ𝑤 = {(𝑥, 𝑦) ∈ Γ: 𝑦 = −𝑅, 𝑦 = 𝑅} .

(81)

At the inlet Γin and at the membrane wall Γ𝑤 we prescribe
Dirichlet boundary conditions, namely, the plug flow condi-
tions

u|Γin = uin = (𝑢in, 0)𝑇 ,
u|Γ𝑤 = u𝑤 = {{{

(0, 𝑢𝑤)𝑇 for 𝑦 = −𝑅,
(0, −𝑢𝑤)𝑇 for 𝑦 = 𝑅,

(82)

where 𝑢in > 0 and 𝑢𝑤 ≥ 0. We consider the case of fixed bed
reactor, that is, 𝑢𝑤 = 0. At the outlet Γout we set the following
outflow boundary condition:

− 1
Re

𝜕u𝜕n + 𝑝n = 0, (83)

where n denotes the outer normal. This boundary condition
results from the integration by parts when deriving the weak
formulation, and it is called the do-nothing boundary condi-
tion. In order to avoid discontinuity between the inflow and
wall conditions we replace constant profile by trapezoidal one
with zero value at the corners. Our computations are carried
out on the Cartesian mesh which consists of 100 stretched
rectangular cells on the coarse level (see Figure 2) and will
be three times uniformly refined. In order to approximate the
weak solution of the dimensionless system from (6) subject to
the Dirichlet and do-nothing boundary conditions, we apply
biquadratic conforming and discontinuous piecewise linear
finite elements for the velocity and pressure, respectively.
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Figure 2: Initial mesh for reactor flow problem.
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Figure 3: Flow profiles in fixed bed reactor at 𝑥 = 50.

The detailed finite element analysis of the Brinkman-
Forchheimer-Darcy equation will be presented in the forth-
coming work. The plots of velocity magnitude in fixed bed
reactor (𝑢𝑤 = 0) are presented along the vertical axis 𝑥 = 50.
In the investigated reactor the inlet velocity is assumed to be
normalized (𝑢in = 1). Due to the variation of porosity we
might expect higher velocity at the reactor walls Γ𝑤. This tun-
neling effect can be well observed in Figure 3 which shows the
velocity profiles for different Reynolds numbers.This effect is
not present when applying standard Brinkman equation with
constant porosity. We remark that the maximum of velocity
magnitude decreases with increasing Reynolds numbers in
the considered cases Re = 1, 10, 100. Our preliminary results
are comparable with those ones obtained in [3, Chapter 4.3].
The weighted areas under each velocity profile 𝑢 = 𝑢(𝑦)
are the same due to conservation of mass. In fact, we have
according to the divergence theorem

∫
(0,50)×(−𝑅,𝑅)

div (𝜀u) 𝑑x = 0 ⇒
∫𝑅
−𝑅

𝜀 (𝑦) 𝑢 (𝑦) 𝑑𝑦 = ∫𝑅
−𝑅

𝜀 (𝑦) Vin𝑑𝑦.
(84)

However, we expect increasing maximum of the velocity
in the case of high Reynolds numbers. This case requires
stabilized finite element methods and will be considered in
the forthcoming works.

4. Conclusion

In this work, we have extended the existence and uniqueness
of solution result in literature for the porous medium flow
problem based on the nonlinear Brinkman-Forchheimer-
extended Darcy law. The existing result is valid only for
constant porosity and without the considered convection
effects, and our result holds for variable porosity and it
includes convective effects. We also provided a numerical
solution to demonstrate the nonlinear velocity solutions
at moderately large Reynolds numbers for which case the
Brinkman-Forchheimer-Darcy law applies.
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