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We examine an optimal way of eradicating rabies transmission from dogs into the human population, using preexposure
prophylaxis (vaccination) and postexposure prophylaxis (treatment) due to public education. We obtain the disease-free
equilibrium, the endemic equilibrium, the stability, and the sensitivity analysis of the optimal control model. Using the Latin
hypercube sampling (LHS), the forward-backward sweep scheme and the fourth-order Range-Kutta numerical method predict
that the global alliance for rabies control’s aim of working to eliminate deaths from canine rabies by 2030 is attainable throughmass
vaccination of susceptible dogs and continuous use of pre- and postexposure prophylaxis in humans.

1. Introduction

Rabies is an infection that mostly affects the brain of an
infected animal or individual, caused by viruses belonging to
the genus Lyssavirus of the family Rhabdoviridae and order
Mononegavirales [1, 2]. This disease has become a global
threat and it is also estimated that rabies occurs in more
than 150 countries and territories [2]. Raccoons, skunks, bats,
and foxes are the main animals that transmit the virus in
the United States [2]. In Asia, Africa, and Latin America, it
is known that dogs are the main source of transmission of
the rabies virus into the human population [2]. When the
rabies virus enters the human body or that of an animal, the
infection (virus) moves rapidly along the neural pathways to
the central nervous system; from there the virus continues
to spread to other organs and causes injury by interrupting
various nerves [2]. The symptoms of rabies are quite similar
to those of encephalitis (see [3]). Due tomovement of dogs in
homes or the surroundings, the risk of not being infected by
a rabid dog can never be guaranteed. Rabies is a major health
problem in many populations dense with dogs, especially
in areas where there are less or no preventive measures

(vaccination and treatment) for dogs and humans. Treatment
after exposure to the rabies virus is known as postexposure
prophylaxis (PEP) and vaccination before exposure to the
infection is known as preexposure prophylaxis.

The study of optimal control analysis in maximizing or
minimizing a said target was introduced by Pontryagin and
his collaborators around 1950.They developed the key idea of
introducing the adjoint function to a differential equation, by
forming an objective functional [4], and since then there has
been a considerable study of infectious disease using optimal
control analysis (see [4–12]).

Research published by Aubert [13], on the advancement
of the expense of wildlife rabies in France, incorporated
various variables.They follow immunization of domestic ani-
mals, the reinforcement of epidemiological reconnaissance
system and the bolster given to indicative research laborato-
ries, the costs connected with outbreaks of rabies, the clinical
perception of those mammals which had bitten humans,
the preventive immunization, and postexposure treatment of
people. A significant percentage (72%) of the cost was the
preventive immunization of local animals. In France, as in
other European nations in which the red fox (Vulpes) is the
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speciesmost affected, two primary procedures for controlling
rabies were assessed in [13] at the repository level to be
specific: fox termination and the oral immunization of foxes.
The consolidated costs and advantages of both systems were
looked at and included either the expenses of fox separation
or the cost of oral immunization.The total yearly costs of both
techniques stayed practically identical until the fourth year,
after which the oral immunization methodology turned out
to be more cost effective.This estimate was made in 1988 and
readjusted in 1993 and affirmed by ex-postinvestigation five
years later. Accordingly, it was presumed that fox termination
brought about a transient diminishment in the event of
the infection while oral immunization turned out to be
equipped for wiping out rabies even in circumstances in
which fox population was growing. Anderson and May [14]
formulated a mathematical model based on each time step
dynamic which was calculated independently in every cell.
Later, Bohrer et al. [15] published a paper on the viability of
different rabies spatial immunization designs in a simulated
host population.

The research presented by Bohrer [15] stated that, in
desert environments, where host population size varies over
time, nonuniform spreading of oral rabies vaccination may,
under certain circumstances, be more effective than the com-
monly used uniform spread. The viability of a nonarbitrary
spread of the immunization depends, to some extent, on
the dispersal behavior of the carriers. The outcomes likewise
exhibit that, in a warm domain in a few high-density regions
encompassed by populations with densities below the critical
threshold for the spread of the disease, the rabies infection
can persist.

Levin et al. [16] also presented a model for the immune
responses to rabies virus in bats. Coyne et al. [17] proposed
an SEIR model, which was also used in a study predicting
the local dynamics of rabies among raccoons in the United
States. Childs et al. [18] also researched rabies epidemics in
raccoons with a seasonal birth pulse, using optimal control
of an SEIRSmodel which describes the population dynamics.
Hampson et al. [19] also noted that rabies epidemic cycles
have a period of 3–6 years in dog populations in Africa, so
they built a susceptible, exposed, infectious, and vaccinate
model with an intervention response variable, which showed
significant synchrony.

Carroll et al. [20] also used compartmental models
to describe rabies epidemiology in dog populations and
explored three control methods: vaccination, vaccination
pulse fertility control, and culling. An ordinary differential
equation model was used to characterize the transmission
dynamics of rabies between humans and dogs by [21, 22].
The work by Zinsstag et al. [23] further extended the existing
models on rabies transmission between dogs to include dog-
to-human transmission and concluded that human postex-
posure prophylaxis (PEP) with a dog vaccination campaign
was the more cost effective in controlling the disease in
the long run. Furthermore, Ding et al. [24] formulated an
epidemic model for rabies in raccoons with discrete time
and spatial features. Their goal was to analyze the strategies
for optimal distribution of vaccine baits to minimize the
spread of the disease and the cost of carrying out the control.

Smith and Cheeseman [25] show that culling could be more
effective than vaccination, given the same efficacy of control,
but Tchuenche and Bauch suggest that culling could be
counterproductive, for some parameter values (see [26]).

Thework in [27, 28] also presented amathematical model
of rabies transmission in dogs and from the dog population to
the human population in China.Their study did not consider
the use optimal control analysis to the study of the rabies
virus in dogs and from the dog population to the human
population. Furthermore, the insightful work ofWiraningsih
et al. [29] studied the stability analysis of a rabies model with
vaccination effect and culling in dogs, where they introduced
postexposure prophylaxis to a rabies transmission model,
but the paper did not consider the noneffectiveness of the
pre- and postprophylaxis on the susceptible humans and
exposed humans and that of the dog population and the
use of optimal control analysis. Therefore, motivated by the
research predictions of the global alliance of rabies control
[30] and the workmention above, we seek to adjust themodel
presented in [27–29], by formulating an optimal control
model, so as to ascertain an optimal way of controlling rabies
transmission in dogs and from the dog population to the
human population taking into account the noneffectiveness
(failure) of vaccination and treatment.

The paper is petition as follows. Section 2 contains the
model formulation, mathematical assumptions, the mathe-
matical flowchart, and the model equations. Section 3 con-
tains themodel analysis, invariant region, equilibriumpoints,
basic reproduction number R0, and the stability analysis of
the equilibria. In Section 4 we present the parameter values
leading to numerical values of the basic reproduction number
R0, the herd immunity threshold and sensitivity analysis
using Latin hypercube sampling (LHS), and some numerical
plots. Section 5 contains the objective functional and the
optimality system of the model. Finally, Sections 6 and 7
contain discussion and conclusion, respectively.

2. Model Formulation

We present two subpopulation transmission models of rabies
virus in dogs and that of the human population (see Figure 1),
based on the work presented in [27–29]. The dog population
has a total of four compartments. The compartments repre-
sent the susceptible dogs, 𝑆𝐷(𝑡), exposed dogs, 𝐸𝐷, infected
dogs, 𝐼𝐷(𝑡), and partially immune dogs, 𝑅𝐷(𝑡).Thus, the total
dog population is𝑁𝐷(𝑡) = 𝑆𝐷(𝑡) + 𝐸𝐷(𝑡) + 𝐼𝐷(𝑡) + 𝑅𝐷(𝑡). The
human population also has four compartments representing
susceptible humans, 𝑆𝐻(𝑡), exposed humans, 𝐸𝐻(𝑡), infected
humans, 𝐼𝐻(𝑡), and partially immune humans, 𝑅𝐻(𝑡). Thus,
the total human population is 𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) +𝐼𝐻(𝑡) + 𝑅𝐻(𝑡). It is assumed that there is no human to human
transmission of the rabies virus in the human submodel (see
[29]). In the dog submodel, it is assumed that there is a direct
transmission of the rabies virus fromone dog to the other and
from the infected dog compartment to the susceptible human
population. It is further assumed that the susceptible dog
population, 𝑆𝐷(𝑡), is increased by recruitment at a rate 𝐴𝐷
and 𝐵𝐻 is the birth or immigration rate into the susceptible
human population, 𝑆𝐻(𝑡). It is assumed that the transmission
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Figure 1: Optimal control model of rabies transmission dynamics.

and contact rate of the rabid dog into the dog compartment
is 𝛽𝐷𝐷. Suppose that ]𝐷 represents the control strategy due to
public education and vaccination in the dogs compartment;
then the transmission dynamics become (1 − ]𝐷)𝛽𝐷𝐷𝑆𝐷𝐼𝐷,
where (1− ]𝐷) is the noneffectiveness (failure) of the vaccine.
It is also assumed that the contact rate of infectious dogs
to the human population is 𝛽𝐷𝐻. Similarly, administrating
vaccination to the susceptible humans the progression rate
of the susceptible humans to the exposed stage becomes(1 − ]𝐻)𝛽𝐷𝐻𝑆𝐻𝐼𝐷, where ]𝐻 is the preexposure prophylaxis
(vaccination), (1 − ]𝐻) represents the failure of the preex-
posure prophylaxis in the human compartment. Further-
more, administrating postexposure prophylaxis (treatment)
to affected humans at the rate 𝜌𝐻 decreases the progression
rate of the rabies virus, at the exposed class to the infectious
class as (1 − 𝜌𝐻)𝛿𝐻𝛾𝐻𝐸𝐻, where (1 − 𝜌𝐻) is the failure rate of
the postexposure prophylaxis and 𝛿𝐻𝛾𝐻 represents the rate at
which exposed humans progress to the infected compartment
[27]. The rate of losing immunity in both compartments is
represented by 𝛼𝐷 and 𝛼𝐻, respectively.

The exposed humans without clinical rabies that move
back to the susceptible population are denoted by the rate𝛿𝐻𝜀𝐻. The natural death rate of dogs is 𝑚𝐷, and 𝑚𝐻
denotes the mortality rate of humans (natural death rate), 𝜇𝐷
represents the death rate associated with rabies infection in
dogs, and 𝜇𝐻 represents the disease induce death in humans.
The rate at which exposed dogs die due to culling is 𝐶𝐷,
and 𝛿𝜀𝐷 represents the rate at which exposed dogs without
clinical rabies move back to the susceptible dog compart-
ment. Subsequently, using the idea presented in [29], we
assumed that the exposed dogs are treated or quarantined by
their owners at the rate 𝜌𝐷; this implies that (1 − 𝜌𝐷)𝛿𝛾𝐷𝐸𝐷
is the progression rate of the exposed dogs to the infectious
compartment, where (1 − 𝜌𝐷) is the failure of the treatment
or quarantined strategy, and 𝛿𝛾𝐷𝐸𝐷 denotes those exposed
dogs that develop clinical rabies [27]. Figure 1 shows the
mathematical dynamics of the rabies virus in both com-
partments.

From Figure 1 transmission flowchart and assumptions
give the disease pathways as

𝑑𝑆𝐷𝑑𝑡 = 𝐴𝐷 − (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝐷𝑅𝐷,
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𝑑𝐸𝐷𝑑𝑡 = (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷,𝑑𝐼𝐷𝑑𝑡 = (1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,𝑑𝑅𝐷𝑑𝑡 = ]𝐷𝑆𝐷 + 𝜌𝐷𝐸𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷,𝑑𝑆𝐻𝑑𝑡 = 𝐵𝐻 − (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − (𝑚𝐻 + ]𝐻) 𝑆𝐻 + 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻,𝑑𝐸𝐻𝑑𝑡 = (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻,𝑑𝐼𝐻𝑑𝑡 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,𝑑𝑅𝐻𝑑𝑡 = ]𝐻𝑆𝐻 + 𝜌𝐻𝐸𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻,
with 𝑆𝐷 (0) > 0, 𝐸𝐷 (0) ≥ 0, 𝐼𝐷 (0) ≥ 0, 𝑅𝐷 (0) ≥ 0, 𝑆𝐻 (0) > 0, 𝐸𝐻 (0) ≥ 0, 𝐼𝐻 (0) > 0, 𝑅𝐻 (0) > 0.

(1)

3. Model Analysis

Model system (1) will be studied in a biological feasible region
as outlined below. Model system (1) is basically divided into
two regions; thusΩ = Ω𝐷 × Ω𝐻.
Lemma 1. The solution set {𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻} ∈𝑅8+ of model system (1) is contained in the feasible region Ω.
Proof. Suppose {𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻} ∈ 𝑅8+ for all𝑡 > 0. We want to show that the region Ω is positively
invariant, so that it becomes sufficient to look at the dynamics
of model system (1), given that

𝑁𝐷 (𝑡) = 𝑆𝐷 (𝑡) + 𝐸𝐷 (𝑡) + 𝐼𝐷 (𝑡) + 𝑅𝐷 (𝑡) , (2)𝑁𝐻 (𝑡) = 𝑆𝐻 (𝑡) + 𝐸𝐻 (𝑡) + 𝐼𝐻 (𝑡) + 𝑅𝐻 (𝑡) , (3)

where𝑁𝐷(𝑡) is the total population of dogs at any time (𝑡) and𝑁𝐻(𝑡) is total population of humans at any time (𝑡).
Equation (2) gives

𝑑𝑁𝐷𝑑𝑡 = 𝐴𝐷 − (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)𝑚𝐷 − 𝜇𝐷𝐼𝐷− 𝐶𝐷𝐸𝐷, (4)

which yields

𝑑𝑁𝐷𝑑𝑡 = 𝐴𝐷 − 𝑚𝐷𝑁𝐷 − 𝜇𝐷𝐼𝐷 − 𝐶𝐷𝐸𝐷. (5)

Similarly (3) gives

𝑑𝑁𝐻𝑑𝑡 = 𝐵𝐻 − 𝑚𝐻𝑁𝐻 − 𝜇𝐻𝐼𝐻. (6)

Now, assuming that there are no disease induced death
rate and culling effect in the dogs’ compartment, it implies
that (5) and (6) become

𝑑𝑁𝐷𝑑𝑡 = 𝐴𝐷 − 𝑚𝐷𝑁𝐷,𝑑𝑁𝐻𝑑𝑡 = 𝐵𝐷 − 𝑚𝐻𝑁𝐻. (7)

Suppose 𝑑𝑁𝐷/𝑑𝑡 ≤ 0, 𝑑𝑁𝐻/𝑑𝑡 ≤ 0,𝑁𝐷 ≤ 𝐴𝐷/𝑚𝐷, and𝑁𝐻 ≤𝐵𝐻/𝑚𝐻, and then imposing the theorem proposed in [32] on
differential inequality results in 0 ≤ 𝑁D ≤ 𝐴𝐷/𝑚𝐷 and 0 ≤𝑁𝐻 ≤ 𝐵𝐻/𝑚𝐻.Therefore (7) becomes

𝑑𝑁𝐷𝑑𝑡 ≤ 𝐴𝐷 − 𝑚𝐷𝑁𝐷, (8)

𝑑𝑁𝐻𝑑𝑡 ≤ 𝐵𝐷 − 𝑚𝐻𝑁𝐻. (9)

Solve (8) and (9) using the integrating factor (IF)method.
Thus 𝑑𝑦/𝑑𝑡 + 𝑝(𝑡)𝑦 = 𝑄, 𝐼𝐹 = 𝑒∫𝑝(𝑡)𝑑𝑡. After some algebraic
manipulation the feasible solution of the dogs’ population in
model system (1) is in the region

Ω𝐷 = {(𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷) ∈ R
4
+, 𝑁𝐷 ≤ 𝐴𝐷𝑚𝐷} . (10)

Similarly the human population follows suit, and from (9)
this implies that the feasible solution of the humanpopulation
of model system (1) is in the region

Ω𝐻 = {(𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) ∈ R
4
+, 𝑁𝐻 ≤ 𝐵𝐻𝑚𝐻} . (11)
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Therefore, the feasible solutions are contained inΩ.ThusΩ =Ω𝐷 × Ω𝐻. From the standard comparison theorem used on
differential inequality in [33], it implies that

𝑁𝐷 (𝑡) ≤ 𝑁𝐷 (0) 𝑒−(𝑚𝐷)𝑡 + 𝐴𝐷𝑚𝐷 (1 − 𝑒−(𝑚𝐷)𝑡) ,𝑁𝐻 (𝑡) ≤ 𝑁𝐻 (0) 𝑒−(𝑚𝐻)𝑡 + 𝐵𝐻𝑚𝐻 (1 − 𝑒−(𝑚𝐻)𝑡) .
(12)

Hence, the total dog population size𝑁𝐷(𝑡) → 𝐴𝐷/𝑚𝐷 as𝑡 → ∞. Similarly, the total human population size𝑁𝐻(𝑡) →𝐵𝐻/𝑚𝐻 as 𝑡 → ∞.Thismeans that the infected state variables(𝐸𝐷, 𝐼𝐷, 𝐸𝐻, 𝐼𝐻) of the two populations tend to zero as time
goes to infinity.Therefore, the regionΩ is pulling (attracting)
all the solutions in R8+.This gives the feasible solution set of
model system (1) as

(((((((
(

𝑆𝐷𝐸𝐷𝐼𝐷𝑅𝐷𝑆𝐻𝐸𝐻𝐼𝐻𝑅𝐻

)))))))
)

∈ R
8
+ |

(((((((((((((((((
(

𝑆𝐷 > 0𝐸𝐷 ≥ 0𝐼𝐷 ≥ 0𝐼𝐷 ≥ 0𝑅𝐷 ≥ 0𝑆𝐻 > 0𝐸𝐻 ≥ 0𝐼𝐻 ≥ 0𝑅𝐻 ≥ 0𝑁𝐷 ≤ 𝐴𝐷𝑚𝐷𝑁𝐻 ≤ 𝐵𝐻𝑚𝐻

)))))))))))))))))
)

. (13)

Hence, (1) ismathematically well posed and epidemiolog-
ically meaningful.

3.1. Disease-Free Equilibrium E0. Suppose there is no infec-
tion of rabies in both compartments; then (𝐸𝐷 = 0, 𝐼𝐷 =0, 𝐸𝐻 = 0, 𝐼𝐻 = 0). Incorporating this into (1) leads to𝐴𝐷 − (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛼𝐷𝑅𝐷 = 0,

]𝐷𝑆𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷 = 0,𝐵𝐻 − (𝑚𝐻 + ]𝐻) 𝑆𝐻 + 𝛼𝐻𝑅𝐻 = 0,
]𝐻𝑆𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻 = 0.

(14)

After some algebraic manipulation of (14), the disease-
free equilibriumpoint becomesE0 = (𝑆0𝐷, 𝐸0𝐷, 𝐼0𝐷, 𝑅0𝐷, 𝑆0𝐻, 𝐸0𝐻,𝐼0𝐻, 𝑅0𝐻) with

E0 = ( 𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) , 0, 0,𝐴𝐷]𝐷𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) , 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻) , 0, 0,𝐵𝐻]𝐻𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)) .
(15)

3.2. Basic Reproduction Number R0. Here, the basic repro-
duction number (R0) measures the average number of new
infections produced by one infected dog in a completely
susceptible (dog and human) population (see also [34]). Now
taking𝐸𝐷, 𝐼𝐷, 𝐸𝐻, and 𝐼𝐻 as our infected compartments gives

𝑓1 = (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷,𝑓2 = (1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,𝑓3 = (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻,𝑓4 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,
(16)

where 𝑓1 = 𝑑𝐸𝐷/𝑑𝑡, 𝑓2 = 𝑑𝐼𝐷/𝑑𝑡, 𝑓3 = 𝑑𝐸𝐻/𝑑𝑡, and 𝑓4 =𝑑𝐼𝐻/𝑑𝑡.
Now, using the next generation matrix operator 𝐺 =𝐹𝑉−1 and the Jacobian matrix

𝐽 =(((((((
(

𝜕𝑓1𝜕𝐸𝐷 𝜕𝑓1𝜕𝐼𝐷 𝜕𝑓1𝜕𝐸𝐻 𝜕𝑓1𝜕𝐼𝐻𝜕𝑓2𝜕𝐸𝐷 𝜕𝑓2𝜕𝐼𝐷 𝜕𝑓2𝜕𝐸𝐻 𝜕𝑓2𝜕𝐼𝐻𝜕𝑓3𝜕𝐸𝐷 𝜕𝑓3𝜕𝐼𝐷 𝜕𝑓3𝜕𝐸𝐻 𝜕𝑓3𝜕𝐼𝐻𝜕𝑓4𝜕𝐸𝐷 𝜕𝑓4𝜕𝐼𝐷 𝜕𝑓4𝜕𝐸𝐻 𝜕𝑓4𝜕𝐼𝐻

)))))))
)

, (17)

as described in [34], results in

𝐽

=((
(

−((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷 0 0(1 − 𝜌𝐷) 𝛿𝛾𝐷 − (𝑚𝐷 + 𝜇𝐷) 0 00 (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻 − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 00 0 (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 − (𝑚𝐻 + 𝜇𝐻)
))
)

. (18)
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Using the fact that 𝐽 = 𝐹 − 𝑉 gives 𝐹 and 𝑉 evaluated at
E0 as

𝐹 (E0) =((((
(

0 (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) 0 00 0 0 0
0 (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻) 𝐵𝐻𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) 0 00 0 0 0

))))
)

,

𝑉(E0) =((
(

((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 0 0 0− (1 − 𝜌𝐷) 𝛿𝛾𝐷 (𝑚𝐷 + 𝜇𝐷) 0 00 0 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 00 0 − (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 (𝑚𝐻 + 𝜇𝐻)
))
)

,
(19)

where the element in matrix 𝐹 constitutes the new infection
terms, while that of matrix 𝑉 constitutes the new trans-
fer of infection terms from one compartment to another.

Now, splitting matrix 𝑉 into four 2 × 2 submatrices and
finding its corresponding inverses result in 𝐺 = 𝐹𝑉−1, given
by

𝐺

=((((
(

(1 − 𝜌𝐷) (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) 0 00 0 0 0(1 − 𝜌𝐷) 𝛿𝛾𝐷 (1 − ]𝐻) 𝛽𝐷𝐻𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻) 𝐵𝐻(𝑚𝐷 + ]𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) 0 00 0 0 0
))))
)

(20)

Letting

𝑎 = (1 − 𝜌𝐷) (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑏 = (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑐 = (1 − 𝜌𝐷) (1 − ]𝐻) 𝛿𝛾𝐷𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) ,
𝑑 = (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻) 𝐵𝐻(𝑚𝐷 + ]𝐷)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻)

(21)
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implies

𝐺 =((
(

𝑎 𝑏 0 00 0 0 0𝑐 𝑑 0 00 0 0 0
))
)

. (22)

Finding the matrix determinant of (22) and denoting it by 𝐷
give the expression𝐷 = |𝐺−I𝜆|, where I is the identitymatrix
of a 4 × 4matrix; thus

𝐷 =


𝑎 − 𝜆 𝑏 0 00 −𝜆 0 0𝑐 𝑑 −𝜆 00 0 0 −𝜆


= 0. (23)

This gives a characteristic equation of the form 𝜆3(𝑎 −𝜆) = 0; solving the characteristic polynomial results in the
following eigenvalues: 𝜆𝑖 = [0, 0, 0, 𝑎]. The basic reproduc-
tion number R0 is the spectral radius (largest eigenvalue)𝜌(𝐹𝑉−1), also defined as the dominant eigenvalue of 𝐹𝑉−1.

Therefore,

R0 = (1 − 𝜌𝐷) (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) . (24)

Remark 2. R0 contains the secondary infection produced by
the infectious compartment of dogs (in the presence of preex-
posure prophylaxis (vaccination), postexposure prophylaxis
(treatment/quarantine), and culling of exposed dogs). When
R0 < 1, the infection gradually leaves the dog compartment,
but when R0 > 1, the rabies virus remains in the dog

compartments for a longer time, thereby increasing the rate
at which the susceptible dogs and humans get infected by a
rabid dog.

3.3. Endemic Equilibrium E1. The endemic equilibrium is
given as

𝑆∗𝐷 = 𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷)R0 ,
𝐸∗𝐷 = (𝑚𝐷 + 𝜇𝐷)(1 − 𝜌𝐷) 𝛿𝛾𝐷 𝐼∗𝐷,
𝐼∗𝐷 = [(1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝛾𝐷] (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) (R0 − 1)(𝑚𝐷 + 𝛼𝐷) (1 − ]𝐷) 𝛽𝐷𝐷 [(1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝐶𝐷] + 𝑚𝐷 (1 − ]𝐷) 𝛽𝐷𝐷𝜌𝐷 ,
𝑅∗𝐷 = 𝐴𝐷]𝐷 (1 − ]𝐷) 𝛽𝐷𝐷 (1 − 𝜌𝐷) 𝛿𝛾𝐷 (𝑚𝐷 + 𝛼𝐷) + (1 − ]𝐷) 𝛽𝐷𝐷𝜌𝐷 (𝑚𝐷 + 𝜇𝐷) 𝐼∗𝐷𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷)R0 (1 − ]𝐷) 𝛽𝐷𝐷 (1 − 𝜌𝐷) 𝛿𝛾𝐷 (𝑚𝐷 + 𝛼𝐷) ,
𝑆∗𝐻 = 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻) + [𝛿𝐻𝜀𝐻 + 𝛼𝐻𝜌𝐻] 𝐸∗𝐻[(1 − ]𝐻) (𝑚𝐻 + 𝛼𝐻) 𝛽𝐷𝐻𝐼∗𝐷 + 𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)] ,
𝐸∗𝐻
= (1 − ]𝐻) 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻) 𝛽𝐷𝐻𝐼∗𝐷(𝑚𝐻 + 𝛼𝐻) [(1 − ]𝐻) 𝛽𝐷𝐻𝐼∗𝐷 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻) + (𝑚𝐻 + ]𝐻) ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻)] − (1 − ]𝐻) 𝛽𝐷𝐻𝐼∗𝐷𝛼𝐻𝜌𝐻 ,
𝐼∗𝐻 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝑚𝐻 + 𝜇𝐻 𝐸∗𝐻,
𝑅∗𝐻 = 𝐵𝐻]𝐻 (𝑚𝐻 + ]𝐻) + [(]𝐻𝛿𝐻𝜀𝐻 + ]𝐻𝛼𝐻𝜌𝐻) + 𝜌𝐻 (1 − ]𝐻) (𝑚𝐻 + 𝛼𝐻) 𝛽𝐷𝐻𝐼∗𝐷 + 𝜌𝐻𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)] 𝐸∗𝐻[(1 − ]𝐻) (𝑚𝐻 + 𝛼𝐻)2 𝛽𝐷𝐻𝐼∗𝐷 + (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻)] .

(25)

Note that if R0 = 1, it results in the disease-free equi-
librium; if R0 > 1, then there exists a unique endemic

equilibrium; if R0 < 1, then there exist two endemic equi-
libriums.
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3.4. Stability Analysis of E0. Linearizing (1) at E0 and sub-
tracting eigenvalue 𝜆 along the main diagonal yield

J (E0) =
(((((((((((
(

𝑏1 − 𝜆 𝑏7 𝑎1 𝛼𝐷 0 0 0 00 𝑎2 − 𝜆 𝑎3 0 0 0 0 00 𝑏10 𝑏2 − 𝜆 0 0 0 0 0
]𝐷 𝜌𝐷 0 𝑏3 − 𝜆 0 0 0 00 0 𝑎4 0 𝑏4 − 𝜆 𝑏5 0 𝛼𝐻0 0 𝑎5 0 0 𝑎6 − 𝜆 0 00 0 0 0 0 𝑏9 𝑏6 − 𝜆 00 0 0 0 ]𝐻 𝜌𝐻 0 𝑏8 − 𝜆

)))))))))))
)

, (26)

where

𝑎1 = − (1 − ]𝐷) 𝛽𝐷𝐷 (𝑚𝐷 + 𝛼𝐷) 𝐴𝐷𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑎2 = − ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) ,
𝑎3 = (1 − ]𝐷) 𝛽𝐷𝐷 (𝑚𝐷 + 𝛼𝐷) 𝐴𝐷𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
𝑎4 = − (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) ,
𝑎5 = (1 − ]𝐻) 𝛽𝐷𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + ]𝐻 + 𝛼𝐻) ,
𝑎6 = − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) ,𝑏1 = − (𝑚𝐷 + ]𝐷) ,𝑏2 = − (𝑚𝐷 + 𝜇𝐷) ,𝑏3 = − (𝑚𝐷 + 𝛼𝐷) ,𝑏4 = − (]𝐻 + 𝑚𝐻) ,𝑏5 = 𝛿𝐻𝜀𝐻,𝑏6 = − (𝑚𝐻 + 𝜇𝐻) ,𝑏7 = 𝛿𝜀𝐷,𝑏8 = − (𝑚𝐻 + 𝛼𝐻) ,𝑏9 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻,𝑏10 = (1 − 𝜌𝐷) 𝛿𝛾𝐷.

(27)

Simplifying matrix J(E0) gives(𝑏6 − 𝜆) (𝑎6 − 𝜆) (𝑏4 − 𝜆) (𝑏8 − 𝜆)⋅ [𝜆4 + 𝑎11𝜆3 + 𝑎12𝜆2 + 𝑎13𝜆 + 𝑎14] = 0, (28)

where𝑎11 = (−𝑏2 − 𝑎2 − 𝑏1 − 𝑏3) ,𝑎12 = ]𝐷𝛼𝐷 + 𝑎2𝑏3 + 𝑎2𝑏1 + 𝑏2𝑏3 + 𝑏2𝑏1 + 𝑏3𝑏1 + 𝑏2𝑎2− (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑎3,𝑎13 = −𝑎2]𝐷𝛼𝐷 − 𝑏2]𝐷𝛼𝐷 + 𝑎3 (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑏2 + 𝑎3 (1− 𝜌𝐷) 𝛿𝛾𝐷𝑏1 − 𝑎2𝑏2𝑏3 − 𝑏2𝑎2𝑏1 − 𝑎2𝑏3𝑏1 − 𝑏2𝑏3𝑏1,𝑎14 = (𝑏1𝑏2𝑏3𝑎2 + (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑎3𝑏3𝑏1+ (1 − 𝜌𝐷) 𝛿𝛾𝐷𝑎3]𝐷 + ]𝐷𝛼𝐷𝑏2𝑎2) .

(29)

From (28) the four characteristic factors that are negative
are 𝜆1 = 𝑏6,𝜆2 = 𝑎6,𝜆3 = 𝑏4,𝜆4 = 𝑏8,

(30)

where 𝑎6 = −((1 − 𝜌𝐻)𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻 + 𝛿𝐻𝜀𝐻),𝑏6 = −(𝑚𝐻 + 𝜇𝐻), 𝑏4 = −(]𝐻 + 𝑚𝐻), and 𝑏8 = −(𝑚𝐻 + 𝛼𝐻).
The other four characteristic factors can be obtained using the
Routh-Hurwitz criterion. Routh-Hurwitz stability criterion is
a test to ascertain the nature of the eigenvalues. If the roots
of the polynomial are all positive, then the polynomial has a
negative real part [35, 36]. The remaining four characteristic
eigenvalues are obtained as follows:

𝜆4 + 𝑎11𝜆3 + 𝑎12𝜆2 + 𝑎13𝜆 + 𝑎14 = 0. (31)

Hence, simplifying the coefficient of the above character-
istic polynomial in (31) yields

𝑎11 = ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)+ (𝑚𝐷 + 𝜇𝐷) + (𝑚𝐷 + 𝛼𝐷) + (𝑚𝐷 + ]𝐷) ,
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𝑎12 = ]𝐷𝛼𝐷 + ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)⋅ [(𝑚𝐷 + 𝛼𝐷) + (𝑚𝐷 + ]𝐷)] + (𝑚𝐷 + 𝜇𝐷)⋅ [(𝑚𝐷 + 𝛼𝐷) + (𝑚𝐷 + ]𝐷)] + (𝑚𝐷 + 𝛼𝐷)⋅ (𝑚𝐷 + ]𝐷) + ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝐶𝐷)⋅ (𝑚𝐷 + 𝜇𝐷) (1 −R0) ,𝑎13 = ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) ]𝐷𝛼𝐷+ (𝑚𝐷 + 𝜇𝐷) ]𝐷𝛼𝐷 + (𝑚𝐷 + 𝜇𝐷) (𝑚𝐷 + 𝛼𝐷)⋅ (𝑚𝐷 + ]𝐷)+ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
⋅ (𝑚𝐷 + 𝛼𝐷) (𝑚𝐷 + 𝜇𝐷) [1 − R0 (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 + 𝛼𝐷 ]
+ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
⋅ (𝑚𝐷 + 𝛼𝐷) (𝑚𝐷 + ]𝐷) [1 − R0𝑚 + 𝛼] ,𝑎14 = ]𝐷𝛼𝐷 (𝑚𝐷 + ]𝐷)⋅ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
+ (1 − 𝜌𝐷) 𝛿𝛾𝐷 (1 − ]𝐷) 𝛽𝐷𝐷 (𝑚𝐷 + 𝛼𝐷) 𝐴𝐷]𝐷𝑚𝐷 (𝑚𝐷 + 𝑚𝐷 + ]𝐷 + 𝛼𝐷)+ (𝑚𝐷 + ]𝐷) (𝑚𝐷 + 𝜇𝐷) (𝑚𝐷 + 𝛼𝐷)⋅ ((1 − 𝜌𝐷) 𝛿𝐷𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)⋅ (1 −R0) .

(32)

Therefore, from the Routh-Hurwitz criterion of order
four, it implies that the conditions, 𝑎11 > 0, 𝑎12 > 0, 𝑎13 >0, 𝑎14 > 0, and 𝑎11𝑎12𝑎13 > 𝑎213 + 𝑎211𝑎14, are satisfied if
R0 < 1. Hence, the disease-free equilibrium E0 is locally
asymptotically stable whenR0 < 1 (see [37]).
3.4.1. Global Stability of E0

Theorem 3. The disease-free equilibrium E0 of model (1) is
globally asymptotically stable ifR0 ≤ 1 and unstable ifR0 > 1.
Proof. LetV be a Lyapunov function with positive constants
K1,K2,K3, andK4 such that

V = (𝑆𝐷 − 𝑆0𝐷 − 𝑆0𝐷 ln 𝑆𝐷𝑆0𝐷) +K1𝐸𝐷 +K2𝐼𝐷
+ (𝑅𝐷 − 𝑅0𝐷 − 𝑅0𝐷 ln 𝑅𝐷𝑅0𝐷)

+ (𝑆𝐻 − 𝑆0𝐻 − 𝑆0𝐻 ln 𝑆𝐻𝑆0𝐻) +K3𝐸𝐻 +K4𝐼𝐻
+ (𝑅𝐻 − 𝑅0𝐻 − 𝑅0𝐻 ln 𝑅𝐻𝑅0𝐻) .

(33)

Taken the derivative of the Lyapunov function with
respect to time gives

𝑑V𝑑𝑡 = (1 − 𝑆0𝐷𝑆𝐷) 𝑑𝑆𝐷𝑑𝑡 +K1
𝑑𝐸𝐷𝑑𝑡 +K2

𝑑𝐼𝐷𝑑𝑡
+ (1 − 𝑅0𝐷𝑅𝐷) 𝑑𝑅𝐷𝑑𝑡 + (1 − 𝑆0𝐻𝑆𝐻) 𝑑𝑆𝐻𝑑𝑡
+K3

𝑑𝐸𝐻𝑑𝑡 +K4
𝑑𝐼𝐻𝑑𝑡 + (1 − 𝑅0𝐻𝑅𝐻) 𝑑𝑅𝐻𝑑𝑡 .

(34)

Plugging (1) into (34) results in

𝑑V𝑑𝑡 = (1 − 𝑆0𝐷𝑆𝐷) [𝐴𝐷 − (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷
− (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝑅𝐷]+K1 [(1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷]
+K2 [(1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷] + (1
− 𝑅0𝐷𝑅𝐷) []𝐷𝑆𝐷 + 𝜌𝐷𝐸𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷] + (1
− 𝑆0𝐻𝑆𝐻) [𝐵𝐻 − (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − (𝑚𝐻 + ]𝐻) 𝑆𝐻
+ 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻] +K3 [(1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝐷− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻]
+K4 [(1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻] + (1
− 𝑅0𝐻𝑅𝐻) []𝐻𝑆𝐻 + 𝜌𝐻𝐸𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻] .

(35)

Now, after forming the Lyapunov function V on the
space of the eight state variables, thus (𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷,𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻), and introducing the idea from [37], it is
clear that if 𝐸𝐷(𝑡), 𝐼𝐷(𝑡), 𝐸𝐻(𝑡), and 𝐼𝐻(𝑡) at the disease-free
equilibrium are globally stable (thus, 𝐸𝐷 = 0, 𝐼𝐷 = 0, 𝐸𝐻 = 0,
and 𝐼𝐻 = 0), then 𝑆𝐷(𝑡) → 𝐴𝐷(𝑚𝐷+𝛼𝐷)/𝑚𝐷(𝑚𝐷+𝛼𝐷+]𝐷),𝑅𝐷(𝑡) → 𝐴𝐷]𝐷/𝑚𝐷(𝑚𝐷 + 𝛼𝐷 + ]𝐷), 𝑆𝐻(𝑡) → 𝐵𝐻(𝑚𝐻 +𝛼𝐻)/𝑚𝐻(𝑚𝐻 + 𝛼𝐻 + 𝑛𝑢𝐻), and 𝑅𝐻(𝑡) → 𝐵𝐻]𝐻/𝑚𝐻(𝑚𝐻 +𝛼𝐻 + 𝐻 + ]𝐻) as 𝑡 → ∞.
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Therefore, it can be assumed that

𝑆𝐷 ≤ 𝑆0𝐷 = 𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) ,
𝑅𝐷 ≤ 𝑅0𝐷 = 𝐴𝐷]𝐷𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) ,
𝑆𝐻 ≤ 𝑆0𝐻 = 𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + 𝑛𝑢𝐻) ,
𝑅𝐻 ≤ 𝑅0𝐻 = 𝐵𝐻]𝐻𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + 𝐻 + ]𝐻) ,

(36)

(see [38]) and replacing it into (35) yields

𝑑V𝑑𝑡 ≤ K1 [(1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷) 𝐼𝐷
− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷]
+K2 [(1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷]
+K3 [(1 − ]𝐻) 𝛽𝐷𝐻𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻) 𝐼𝑑
− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻]
+K4 [(1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻] ,

(37)

This implies that

𝑑V𝑑𝑡 ≤ [K1 (1 − ]𝐷) 𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)𝑚𝐷 (𝑚𝐷 + 𝛼𝐷 + ]𝐷)−K2 (𝑚𝐷 + 𝜇𝐷)
+ K3 (1 − ]𝐻) 𝛽𝐷𝐻𝐵𝐻 (𝑚𝐻 + 𝛼𝐻)𝑚𝐻 (𝑚𝐻 + 𝛼𝐻 + ]𝐻) ] 𝐼𝐷
+ [K2 (1 − 𝜌𝐷) 𝛿𝛾𝐷−K1 ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)] 𝐸𝐷+ [K4 (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻−K3 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝛿𝐻𝜀𝐻)] 𝐸𝐻−K4 (𝑚𝐻 + 𝜇𝐻) .

(38)

Equating the coefficient of 𝐼𝐷, 𝐸𝐷, 𝐼𝐻, and 𝐸𝐻 in (38) to
zero gives

K4 = K3 = 0,
K2 = ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) ,
K1 = (1 − 𝜌𝐷) 𝛿𝛾𝐷,

(39)

and we obtain𝑑V𝑑𝑡 ≤ ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)
⋅ (𝑚𝐷 + 𝜇𝐷) (R0 − 1) 𝐼𝐷,≤ 0, if R0 ≤ 1.

(40)

Additionally 𝑑V/𝑑𝑡 = 0 if and only if 𝐼𝐷 = 0. Therefore,
for 𝐸𝐷 = 𝐼𝐷 = 𝐸𝐻 = 𝐼𝐻 = 0 it shows that 𝑆𝐷(𝑡) → 𝐴𝐷(𝑚𝐷 +𝛼𝐷)/𝑚𝐷(𝑚𝐷 +𝛼𝐷 + ]𝐷), 𝑅𝐷(𝑡) → 𝐴𝐷]𝐷/𝑚𝐷(𝑚𝐷 +𝛼𝐷 + ]𝐷),𝑆𝐻(𝑡) → 𝐵𝐻(𝑚𝐻 + 𝛼𝐻)/𝑚𝐻(𝑚𝐻 + 𝛼𝐻 + ]𝐻), and 𝑅𝐻(𝑡) →𝐵𝐻]𝐻/𝑚𝐻(𝑚𝐻 + 𝛼𝐻 + ]𝐻) as 𝑡 → ∞. Hence, the largest
compact invariant set in {(𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) ∈Ω : 𝑑V/𝑑𝑡 ≤ 0} is the singleton set {E0}. Therefore, from La
Salle’s invariance principle, we conclude that E0 is globally
asymptotically stable inΩ ifR0 ≤ 1 (see also [38, 39]).
3.5. Global Stability of Endemic Equilibrium E1

Theorem 4. The endemic equilibrium E1 of model (1) is
globally asymptotically stable wheneverR0 > 1.
Proof. Suppose R0 > 1; then the existence of the endemic
equilibrium point is assured. Using the common quadratic
Lyapunov function

𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑛∑
𝑖=1

𝑐𝑖2 (𝑥𝑖 − 𝑥∗𝑖 )2 , (41)

as illustrated in [40], we consider a Lyapunov function with
the following candidate:

V (𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) = 12 [(𝑆𝐷 − 𝑆∗𝐷)
+ (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷) + (𝑅𝐷 − 𝑅∗𝐷)]2
+ 12 [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻) + (𝐼𝐻 − 𝐼∗𝐻)
+ (𝑅𝐻 − 𝑅∗𝐻)]2 .

(42)

Now, differentiating (42) along the solution curve of (1)
gives

𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷)
+ (𝑅𝐷 − 𝑅∗𝐷)] 𝑑 (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)𝑑𝑡+ [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻) + (𝐼𝐻 − 𝐼∗𝐻)
+ (𝑅𝐻 − 𝑅∗𝐻)] 𝑑 (𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻)𝑑𝑡 .

(43)
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From (1) it implies that 𝑑(𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)/𝑑𝑡 = 𝐴𝐷 −𝑚𝐷(𝑆𝐷+𝐸𝐷+𝐼𝐷+𝑅𝐷) −𝐶𝐷𝐸𝐷−𝜇𝐷𝐼𝐷 and 𝑑(𝑆𝐻+𝐸𝐻+𝐼𝐻+𝑅𝐻)/𝑑𝑡 = 𝐵 − 𝑚(𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻) − 𝜇𝐻𝐼𝐻, which when
plugged into (43) gives

𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷)+ (𝑅𝐷 − 𝑅∗𝐷)] (𝐴𝐷 − 𝑚𝐷 (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷)− 𝐶𝐷𝐸𝐷 − 𝜇𝐷𝐼𝐷) + [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻)+ (𝐼𝐻 − 𝐼∗𝐻) + (𝑅𝐻 − 𝑅∗𝐻)] (𝐵𝐻− 𝑚 (𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻) − 𝜇𝐻𝐼𝐻) .
(44)

Now assuming

𝐴𝐷 = 𝑚𝐷 (𝑆∗𝐷 + 𝐸∗𝐷 + 𝐼∗𝐷 + 𝑅∗𝐷) + 𝐶𝐷𝐸∗𝐷 + 𝜇𝐷𝐼∗𝐷,𝐵𝐻 = 𝑚𝐻 (𝑆∗𝐻 + 𝐸∗𝐻 + 𝐼∗𝐻 + 𝑅∗𝐻) + 𝜇𝐻𝐼∗𝐻 (45)

and substituting it into (44), we have

𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷) + (𝑅𝐷− 𝑅∗𝐷)] [𝑚𝐷 (𝑆∗𝐷 + 𝐸∗𝐷 + 𝐼∗𝐷 + 𝑅∗𝐷) + 𝐶𝐷𝐸∗𝐷 + 𝜇𝐷𝐼∗𝐷− 𝑚𝐷 (𝑆𝐷 + 𝐸𝐷 + 𝐼𝐷 + 𝑅𝐷) − 𝐶𝐷𝐸𝐷 − 𝜇𝐷𝐼𝐷]+ [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻) + (𝐼𝐻 − 𝐼∗𝐻) + (𝑅𝐻− 𝑅∗𝐻)] [𝑚𝐻 (𝑆∗𝐻 + 𝐸∗𝐻 + 𝐼∗𝐻 + 𝑅∗𝐻) + 𝜇𝐻𝐼∗𝐻− 𝑚 (𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻) − 𝜇𝐻𝐼𝐻] ,𝑑V𝑑𝑡 = [(𝑆𝐷 − 𝑆∗𝐷) + (𝐸𝐷 − 𝐸∗𝐷) + (𝐼𝐷 − 𝐼∗𝐷) + (𝑅𝐷− 𝑅∗𝐷)] [(−𝑚𝐷 (𝑆𝐷 − 𝑆∗𝐷) − 𝑚𝐷 (𝐸𝐷 − 𝐸∗𝐷)− 𝑚𝐷 (𝐼𝐷 − 𝐼∗𝐷) − 𝑚𝐷 (𝑅𝐷 − 𝑅∗𝐷) − 𝐶𝐷 (𝐸𝐷 − 𝐸∗𝐷)− 𝜇𝐷 (𝐼𝐷 − 𝐼∗𝐷))] + [(𝑆𝐻 − 𝑆∗𝐻) + (𝐸𝐻 − 𝐸∗𝐻)+ (𝐼𝐻 − 𝐼∗𝐻) + (𝑅𝐻 − 𝑅∗𝐻)] [(−𝑚𝐻 (𝑆𝐻 − 𝑆∗𝐻)− 𝑚𝐻 (𝐸𝐻 − 𝐸∗𝐻) − 𝑚𝐻 (𝐼𝐻 − 𝐼∗𝐻)− 𝑚𝐻 (𝑅𝐻 − 𝑅∗𝐻) − 𝜇𝐻 (𝐼𝐻 − 𝐼∗𝐻))] .

(46)

This also implies that

𝑑V𝑑𝑡 = −𝑚𝐷 (𝑆𝐷 − 𝑆∗𝐷)2 − (𝐶𝐷 + 𝑚𝐷) (𝐸𝐷 − 𝐸∗𝐷)2
− (𝑚𝐷 + 𝜇𝐷) (𝐼𝐷 − 𝐼∗𝐷)2 − 𝑚𝐷 (𝑅𝐷 − 𝑅∗𝐷)2 − (2𝑚𝐷+ 𝐶𝐷) (𝑆𝐷 − 𝑆∗𝐷) (𝐸𝐷 − 𝐸∗𝐷) − (2𝑚𝐷 + 𝜇𝐷) (𝑆𝐷− 𝑆∗𝐷) (𝐼𝐷 − 𝐼∗𝐷) − (2𝑚𝐷 + 𝜇𝐷 + 𝐶𝐷) (𝐸𝐷 − 𝐸∗𝐷) (𝐼𝐷− 𝐼∗𝐷) − 2𝑚𝐷 (𝑅𝐷 − 𝑅∗𝐷) (𝐼𝐷 − 𝐼∗𝐷) − (2𝑚𝐷 + 𝜇𝐷

+ 𝐶𝐷) (𝑅𝐷 − 𝑅∗𝐷) (𝐼𝐷 − 𝐼∗𝐷) − 𝑚𝐻 (𝑆𝐻 − 𝑆∗𝐻)2− 𝑚𝐻 (𝐸𝐻 − 𝐸∗𝐻)2 − (𝑚𝐻 − 𝜇𝐻) (𝐼𝐻 − 𝐼∗𝐻)2− 𝑚𝐻 (𝑅𝐻 − 𝑅∗𝐻)2 − 2𝑚𝐻 (𝑆𝐻 − 𝑆∗𝐻) (𝐸𝐻 − 𝐸∗𝐻)− (2𝑚𝐻 − 𝜇𝐻) (𝑆𝐻 − 𝑆∗𝐻) (𝐼𝐻 − 𝐼∗𝐻) − (2𝑚𝐻 + 𝜇𝐻)⋅ (𝐸𝐻 − 𝐸∗𝐻) (𝐼𝐻 − 𝐼∗𝐻)− 𝑚𝐻 [(𝐼𝐻 − 𝐼∗𝐻) (𝑅𝐻 − 𝑅∗𝐻)+ (𝑆𝐻 − 𝑆∗𝐻) (𝑅𝐻 − 𝑅∗𝐻)] .
(47)

This shows that 𝑑V/𝑑𝑡 is negative and 𝑑V/𝑑𝑡 = 0, if and
only if 𝑆𝐷 = 𝑆∗𝐷, 𝐸𝐷 = 𝐸∗𝐷, 𝐼𝐷 = 𝐼∗𝐷, 𝑅𝐷 = 𝑅∗𝐷, 𝑆𝐻 =𝑆∗𝐻, 𝐸𝐻 = 𝐸∗𝐻, 𝐼𝐻 = 𝐼∗𝐻, 𝑅𝐻 = 𝑅∗𝐻. Additionally every
solution of (1) with the initial conditions approaches E1 as𝑡 → ∞ (see [38, 39]); therefore, the largest compact invariant
set in {(𝑆𝐷, 𝐸𝐷, 𝐼𝐷, 𝑅𝐷, 𝑆𝐻, 𝐸𝐻, 𝐼𝐻, 𝑅𝐻) ∈ Ω : 𝑑V/𝑑𝑡 ≤ 0}
is the singleton set {E1}. Therefore, from Lasalle’s invariant
principle [41], it implies that the endemic equilibrium E1 is
globally asymptotically stable inΩ wheneverR0 > 1.
4. Numerical Analysis

Considering the parameter values in Table 1, we will ascertain
the numerical importance of our analysis.

4.1. Different Scenarios of the Basic Reproduction Number
R0. We shall denote R0 without pre- and postexposure
prophylaxis (treatment) as R∗0 and R0 without preexpo-
sure prophylaxis and culling as R∗∗0 and the R0 without
postexposure prophylaxis (treatment) and culling as R∗∗∗0 .
Therefore, using the parameter values in Table 1, R∗0 , R

∗∗
0 ,

andR∗∗∗0 are given as follows:

R
∗
0 = 𝛽𝐷𝐷𝐴𝐷𝛿𝛾𝐷(𝛿𝛾𝐷 + 𝑚𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) × (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 ,

R
∗
0 = 3.027,

R
∗∗
0

= (1 − 𝜌𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 ,
R
∗∗
0 = 2.181,

R
∗∗∗
0

= (1 − ]𝐷) 𝛿𝛾𝐷𝛽𝐷𝐷𝐴𝐷 (𝑚𝐷 + 𝛼𝐷)(𝛿𝛾𝐷 + 𝑚𝐷 + 𝛿𝜀𝐷) (𝑚𝐷 + 𝜇𝐷)𝑚𝐷 (𝑚𝐷 + ]𝐷 + 𝛼𝐷) ,
R
∗∗∗
0 = 1.914.

(48)

Therefore, from the above calculations it indicates that the
best way in reducing or minimizing the rabies virus in the
dogs compartment is to use more of preexposure prophylaxis
(vaccination).
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Table 1: Parameter values.

Parameter Description Standard value Source𝐴𝐷 Recruitment rate of dogs 3 × 106𝑦−1 [27]𝛼𝐷 Loss of immunity in dogs 1𝑦−1 [27]𝐶𝐷 Death rate of dogs due to culling 0.3𝑦−1 Assumed𝑚𝐷 Natural death rate of dogs 0.056𝑦−1 [27]𝜇𝐷 Disease induced mortality in dogs 1𝑦−1 [27]
]𝐷 Preexposure prophylaxis for dogs 0.25𝑦−1 Assumed𝜌𝐷 Postexposure prophylaxis for dogs 0.2𝑦−1 [27]𝛽𝐷𝐷 Transmission rate in dogs 1.58 × 10−7𝑦−1 [27]𝛾𝐷 Latency period in dogs (2.37/6) 𝑦−1 [27]𝛿𝜀𝐷 Rate of no clinical rabies 0.4𝑦−1 [27]𝐵𝐻 Birth rate (humans) 0.0314𝑦−1 [31]𝛽𝐷𝐻 Transmission rate (dog-humans) 2.29 × 10−12𝑦−1 [27]𝛼𝐻 Loss of immunity (humans) 1𝑦−1 [27]𝑚𝐻 Natural death rate (humans) 0.0074𝑦−1 [31]𝜇𝐻 Disease induced mortality (humans) 1𝑦−1 [27]
]𝐻 Preexposure prophylaxis for humans 0.54𝑦−1 Assumed𝜌𝐻 Postexposure prophylaxis for humans 0.1𝑦−1 [27]𝛾𝐻 Latency rate (humans) (1/6) 𝑦−1 [27]𝛾𝐻𝜀𝐻 Rate of no clinical rabies (humans) 2.4𝑦−1 [27]

4.1.1. Herd Immunity Threshold 𝐻1. Therefore, from the
above numerical values, we are motivated to know the
number of humans or dogs that should be vaccinated when
R∗0 = 3.027.

𝐻1 fl 1 − 1
R∗0

= 0.66. (49)

This shows that if R∗0 = 3.027, then 66% of individuals
and dogs should receive vaccination.

4.2. Sensitivity Analysis. To determine parameters that con-
tribute most to the rabies transmission, we used two sensi-
tivity analysis approach: the normalised forward sensitivity
index as presented in [37] and the Latin hypercube sampling
as described in [42]. To determine the dependence of param-
eters inR0, using a sampling size, 𝑛 = 1000, the partial rank
correction coefficients (PRCC) value of the ten parameters in
R0 are shown in Figure 2(a).The longer the bar in Figure 2(a)
suggests that the statistical influence of those parameters to
changes in R0 is high. Also, using the normalised forward
sensitivity index gives the following values and the nature of
their signs in Table 2, based on the parameter value given in
Table 1.The plus sign orminus sign signifies that the influence
is positive or negative, respectively [42],

Γ𝛽𝐷𝐷
R0

= 𝜕R0𝜕𝛽𝐷 𝛽𝐷𝐷R0
= 1,

Γ𝐴𝐷
R0

= 𝜕R0𝜕𝐴𝐷 𝐴𝐷R0 = 1,
Γ𝜇𝐷
R0

= 𝜕R0𝜕𝜇𝐷 𝜇𝐷
R0

= −𝜇𝐷(𝑚𝐷 + 𝜇𝐷) = −0.95,

Γ𝛿𝜀𝐷
R0

= 𝜕R0𝜕𝛿𝜀𝐷 𝛿𝜀𝐷R0
= 𝛿𝜀𝐷((1 − 𝜌𝐷) 𝛿𝛾𝐷 − 𝛿𝜀𝐷 − 𝐶𝐷 − 𝑚𝐷 − 𝜌𝐷)= −1.61,

Γ𝐶𝐷
R0

= 𝜕R0𝜕𝐶𝐷 𝐶𝐷R0
= 𝐶𝐷((1 − 𝜌𝐷) 𝛿𝛾𝐷 − 𝛿𝜀𝐷 − 𝐶𝐷 − 𝑚𝐷 − 𝜌𝐷)= −0.45,

Γ𝛼𝐷
R0

= 𝜕R0𝜕𝛼𝐷 𝛼𝐷R0 = 0.28,
Γ𝑚𝐷
R0

= 𝜕R0𝜕𝑚𝐷 𝑚𝐷R0 = −1.64,
Γ𝛿𝛾𝐷
R0

= 𝜕R0𝜕𝛿𝛾𝐷 𝛿𝛾𝐷R0 = 1.33,
Γ𝜌𝐷
R0

= 𝜕R0𝜕𝜌𝐷 𝜌𝐷
R0

= −0.5,
Γ]𝐷
R0

= 𝜕R0𝜕]𝐷 ]𝐷
R0

= −0.52.
(50)

Therefore, from Table 2 it shows that an addition or a
reduction in the values of 𝛽𝐷𝐷, 𝛼𝐷, 𝛿𝛾𝐷, and 𝐴𝐷 will have
an increase or a decrease in the spread of the rabies virus. For
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(b) Effect of varying recruitment rate on the infected humans
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(c) Effect of an increase inR0 on the infected humans
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(d) Effect of varying the initial infected dog population size on the infected
humans

Figure 2: The graphical representation of some parameters inR0 and the effect of varying some initial state values on the model.

example, Γ𝛽𝐷
R0

= 1 indicates that increasing or reducing the
transmission rate by 5% may increase or reduce the number
of secondary infection by 5%. The negative sign in Table 2
will have a reduction in the basic reproduction number,R0,
when the values of those parameters are increased, and a
reduction in the values of 𝜌𝐷, ]𝐷, 𝜇𝐷, 𝑚𝐷, and 𝛿𝜀𝐷 will lead
to an increase in the number of secondary infections.

TheLatin hypercube sampling (LHS) in Figure 2(a) shows
that 𝜇𝐷, 𝐶𝐷, 𝛼𝐷, and 𝛿𝛾𝐷 have a minimal influence on the
rate at which the rabies virus is spread. The Latin hypercube
sampling (LHS) plots for the ten parameters inR0 show that
culling of exposed dogs does not actuallyminimize the spread

of rabies as compared to vaccination of susceptible dogs.
Figure 2(a) also shows that the most influential parameter in
spreading the infection is 𝛽𝐷𝐷 followed by 𝐴𝐷. Figure 2(c)
shows that an increase in the basic reproduction number
will contribute to a high level of secondary infection in
the human population. Similarly, Figure 2(a) shows that
vaccination of dogs ]𝐷 is themost effective way of controlling
the rabies virus in the dog population as compared to the
treatment/quarantine of exposed dogs, 𝜌𝐷. Figure 3(a) gives
the contour nature of ]𝐷 and 𝜌𝐷, which shows a more sat-
urated effect on the basic reproduction number. Figure 3(b)
shows that 𝛽𝐷𝐷 and 𝛼𝐷 have a positive relation with the basic
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Table 2: Sensitivity signs ofR0 to the parameters in (24).

Parameter Description Sensitivity sign𝛽𝐷𝐷 Transmission rate of dogs +ve𝐴𝐷 Recruitment rate of dogs +ve𝜇𝐷 Disease induce death rate of dogs −ve𝛿𝜀𝐷 Rate of no clinical rabies −ve𝐶𝐷 Culling of exposed dogs −ve𝛼𝐷 Loss of immunity in dogs +ve𝑚𝐷 Natural death rate of dogs −ve𝛿𝛾𝐷 Rate at which exposed dogs become infective (infective rate) +ve𝜌𝐷 Postexposure prophylaxis (treatment/quarantined) −ve
]𝐷 Preexposure prophylaxis (vaccination) −ve
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(c) The 3D plot ofR0 to𝑚𝐷 and 𝜇𝐷
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(d) The 3D plot ofR0 to 𝜌𝐷 and ]𝐷

Figure 3: The graphical representation of some parameters inR0.

reproduction numberR0. Therefore, an increase in 𝛽𝐷𝐷 and𝛼𝐷 will have a direct increase in the spread of the rabies virus.
Figure 2(b) indicates that with a high number of recruitment
of dogs into the susceptible dog’s compartment will have
a corresponding high increase in the number of infected
humans. Figure 2(d) demonstrates that a high number of
infected dogs in the compartment will lead to an increase

in the number of infected humans. Figure 3(c) shows that
a high increase in the number of disease induce death rate
and natural death rate will have a negative reflection on
R0; biologically, we would not recommend this approach in
minimizing the spread of the disease, since an increase in
both 𝜇𝐷 and 𝑚𝐷 may result in a high rate of the disease in
the human population, even though 𝜇𝐷 and 𝑚𝐷 naturally
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reduce the number of susceptible and infected dogs in
the population. Finally, Figure 3(d) shows the 3D plot of
Figure 3(a).

5. Objective Functional

Given that 𝑦(𝑡) ∈ 𝑌 ∈ R𝑛 is a state variable of model system
(1) and 𝑢(𝑡) ∈ 𝑈 ∈ R𝑛 are the control variables at any time (𝑡)
with 𝑡(0) ≤ 𝑡 ≤ 𝑡(𝑓), then an optimal control problem con-
sists of finding a piecewise continuous control 𝑢(𝑡) and its
corresponding state 𝑦(𝑡). This optimizes the cost functional𝐽[𝑦(𝑡), 𝑢(𝑡)] using Pontryagin’s maximum principle [43].
Therefore we set the following likelihood control strate-
gies:

(1) 𝑢1 = ]𝐷 is the control effort aimed at increasing the
immunity of susceptible dogs (preexposed prophy-
laxis).

(2) 𝑢2 = 𝜌𝐷 is the control effort aimed at treating the
exposed dogs (postexposed prophylaxis).

(3) 𝑢3 = ]𝐻 is the control effort aimed at increasing
the immunity of susceptible humans (preexposure
prophylaxis).

(4) 𝑢4 = 𝜌𝐻 is the control effort aimed at treating the
exposed humans (postexposed prophylaxis).

Our goal is to seek optimal controls such as ]∗𝐷, 𝜌∗𝐷, ]∗𝐻,
and 𝜌∗𝐻 that minimize the objective functional:

𝐽 = min ∫𝑡𝑓
𝑡0
[𝐴1𝐸𝐷 + 𝐴2𝐸𝐻 + 𝐴3𝐼𝐷 + 𝐴4𝐼𝐻 + 𝐵12 ]2𝐷 + 𝐵22 𝜌2𝐷 + 𝐵32 ]2𝐻 + 𝐵42 𝜌2𝐻] 𝑑𝑡. (51)

Therefore, (51) is subject to

𝑑𝑆𝑑𝑑𝑡 = 𝐴𝐷 − (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − (𝑚𝐷 + ]𝐷) 𝑆𝐷 + 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝐷𝑅𝐷,𝑑𝐸𝑑𝑑𝑡 = (1 − ]𝐷) 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸𝐷,𝑑𝐼𝐷𝑑𝑡 = (1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,𝑑𝑅𝐷𝑑𝑡 = ]𝐷𝑆𝐷 + 𝜌𝐷𝐸𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷,𝑑𝑆𝐻𝑑𝑡 = 𝐵𝐻 − (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝑑 − (𝑚𝐻 + ]𝐻) 𝑆𝐻 + 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻,𝑑𝐸𝐻𝑑𝑡 = (1 − ]𝐻) 𝛽𝐷𝐻𝑆𝐻𝐼𝑑 − ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻,𝑑𝐼𝐻𝑑𝑡 = (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,𝑑𝑅𝐻𝑑𝑡 = ]𝐻𝑆𝐻 + 𝜌𝐻𝐸𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻, 𝑆𝐷 > 0, 𝐸𝐷 ≥ 0, 𝐼𝐷 ≥ 0, 𝑅𝐷 ≥ 0, 𝑆𝐻 > 0, 𝐸𝐻 ≥ 0, 𝐼𝐻 ≥ 0, 𝑅𝐻 ≥ 0.

(52)

From (51) the quantities 𝐴1 and 𝐴2 denote the weight
constants of the exposed classes and𝐴3 and𝐴4 are the weight
of the infectious classes, respectively. 𝐵1, 𝐵2, 𝐵3, 𝐵4 are the
weight constants for the dog and human controls. 𝐵1]2𝐷,𝐵2𝜌2𝐷, 𝐵3]2𝐻, 𝐵4𝜌2𝐻 describe the cost associated with rabies
vaccination and treatment.The square of the control variables
shows the severity of the side effects of the vaccination and
treatment. Employing Pontryagin’s maximum principle, we
form the Hamiltonian equation with state variables 𝑆𝐷 = 𝑆∗𝐷,

𝐸𝐷 = 𝐸∗𝐷, 𝐼𝐷 = 𝐼∗𝐷, 𝑅∗𝐷 and 𝑆𝐻 = 𝑆∗𝐻, 𝐸𝐻 = 𝐸∗𝐻, 𝐼𝐻 =𝐼∗𝐻, 𝑅∗𝐻 as
𝐻 = 𝐴1𝐸∗𝐷 + 𝐴2𝐸∗𝐻 + 𝐴3𝐼∗𝐷 + 𝐴4𝐼∗𝐻 + 𝐵12 ]2𝐷 + 𝐵22

⋅ 𝜌2𝐷 + 𝐵32 ]2𝐻 + 𝐵42 𝜌2𝐻 + 𝜆1 [𝐴𝐷− (1 − ]𝐷) 𝛽𝐷𝐷𝑆∗𝐷𝐼∗𝐷 − (𝑚𝐷 + ]𝐷) 𝑆∗𝐷 + 𝛿𝜀𝐸∗𝐷
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+ 𝛼𝐷𝑅∗𝐷] + 𝜆2 [(1 − ]𝐷) 𝛽𝐷𝐷𝑆∗𝐷𝐼∗𝐷− ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷) 𝐸∗𝐷]+ 𝜆3 [(1 − 𝜌𝐷) 𝛿𝛾𝐷𝐸∗𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼∗𝐷]+ 𝜆4 []𝐷𝑆∗𝐷 + 𝜌𝐷𝐸∗𝐷 − (𝑚𝐷 + 𝛼𝐷) 𝑅∗𝐷] + 𝜆5 [𝐵𝐻− (1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷 − (𝑚𝐻 + ]𝐻) 𝑆∗𝐻 + 𝛿𝐻𝜀𝐻𝐸∗𝐻+ 𝛼𝐻𝑅∗𝐻] + 𝜆6 [(1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷− ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻) 𝐸∗𝐻]+ 𝜆7 [(1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻𝐸∗𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼∗𝐻]+ 𝜆8 []𝐻𝑆∗𝐻 + 𝜌𝐻𝐸∗𝐻 − (𝑚𝐻 + 𝛼𝐻) 𝑅∗𝐻] .
(53)

Considering the existence of adjoint functions 𝜆𝑖, 𝑖 =1, 2, . . . , 8, satisfying𝑑𝜆1𝑑𝑡 = − 𝜕𝐻𝜕𝑆∗𝐷= 𝜆1 ((1 − ]𝐷) 𝛽𝐷𝐷𝐼∗𝐷 + 𝑚𝐷 + ]𝐷)− 𝜆2 (1 − ]𝐷) 𝛽𝐷𝐷𝐼∗𝐷 − 𝜆4]𝐷,𝑑𝜆2𝑑𝑡 = − 𝜕𝐻𝜕𝐸∗𝐷= 𝜆2 ((1 − 𝜌𝐷) 𝛿𝛾𝐷 + 𝑚𝐷 + 𝜌𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)− 𝜆1𝛿𝜀𝐷 − 𝜆3 (1 − 𝜌𝐷) 𝛿𝛾𝐷 − 𝜆4𝜌𝐷 − 𝐴1,𝑑𝜆3𝑑𝑡 = − 𝜕𝐻𝜕𝐼∗𝐷= 𝜆3 (𝑚𝐷 + 𝜇𝐷) + 𝜆1 (1 − ]𝐷) 𝛽𝐷𝐷𝑆∗𝐷+ 𝜆5 (1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻 − 𝜆2 (1 − ]𝐷) 𝛽𝐷𝑆∗𝐷− 𝜆6 (1 − ]𝐻) 𝛽𝐷𝐻𝑆∗𝐻 − 𝐴3,𝑑𝜆4𝑑𝑡 = − 𝜕𝐻𝜕𝑅∗𝐷 = 𝜆4 (𝑚𝐷 + 𝛼𝐷) − 𝜆1𝛼𝐷,𝑑𝜆5𝑑𝑡 = − 𝜕𝐻𝜕𝑆∗𝐻= 𝜆5 ((1 − ]𝐻) 𝛽𝑑𝐻𝐼∗𝐷 + 𝑚𝐻 + ]𝐻)− 𝜆6 (1 − ]𝐻) 𝛽𝐷𝐻𝐼∗𝐷 − 𝜆8]𝐻,𝑑𝜆6𝑑𝑡 = − 𝜕𝐻𝜕𝐸∗𝐻= 𝜆6 ((1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝜌𝐻 + 𝛿𝐻𝜀𝐻)− 𝜆5𝛿𝐻𝜀𝐻 − 𝜆7 (1 − 𝜌𝐻) 𝛿𝐻𝛾𝐻 − 𝜆8𝜌𝐻 − 𝐴2,

𝑑𝜆7𝑑𝑡 = − 𝜕𝐻𝜕𝐼∗𝐻 = 𝜆7 (𝑚𝐻 + 𝜇𝐻) − 𝐴4,
𝑑𝜆8𝑑𝑡 = − 𝜕𝐻𝜕𝑅∗𝐻 = 𝜆8 (𝑚𝐻 + 𝛼𝐻) − 𝜆5𝛼𝐻,

(54)

with transversality condition 𝜆𝑖(𝑡𝑓) = 0 for 𝑖 = 1, . . . , 8 for
the control set 𝑢𝑖, hence we have

𝜕𝐻𝜕𝑢𝑖 = 0, where 𝑖 = 1, 2, 3, 4,
𝜕𝐻𝜕]𝐷 ]𝐷=]∗𝐷 fl 𝐵1]∗𝐷 − 𝜆1𝑆∗𝐷 + 𝜆4𝑆∗𝐷 + 𝜆1𝛽𝐷𝐷𝑆∗𝐷𝐼∗𝐷

− 𝜆2𝛽𝐷𝑆∗𝐷𝐼∗𝐷 = 0,
]∗𝐷 = (𝜆1𝑆∗𝐷 − 𝜆4𝑆∗𝐷) + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ,

𝜕𝐻𝜕𝜌𝐷 𝜌𝐷=𝜌∗𝐷 fl 𝐵2𝜌∗𝐷 − 𝜆1𝐸∗𝐷 + 𝜆4𝐸∗𝐷 + 𝜆2𝐸𝐷𝛿𝛾𝐷𝐸∗𝐷
− 𝜆3𝛿𝛾𝐷𝐸∗𝐷 = 0,

𝜌∗𝐷 = (𝜆2𝐸∗𝐷 − 𝜆4𝐸∗𝐷) + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ,
𝜕𝐻𝜕]𝐻 ]𝐻=]∗𝐻 fl 𝐵3]∗𝐻 − 𝜆5𝑆𝐻 + 𝜆8𝑆𝐻 + 𝜆5𝛽𝐷𝐻𝑆𝐻𝐼𝐷

− 𝜆6𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷 = 0,
]∗𝐻 = (𝜆5𝑆∗𝐻 − 𝜆8𝑆∗𝐻) + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ,

𝜕𝐻𝜕𝜌𝐻 𝜌𝐻=𝜌∗𝐻 fl 𝐵4𝜌∗ − 𝜆6𝐸∗𝐻 + 𝜆8𝐸∗𝐻 + 𝜆6𝛿𝐻𝛾𝐻𝐸∗𝐻
− 𝜆7𝛿𝐻𝛾𝐻𝐸∗𝐻 = 0,

𝜌∗𝐻 = (𝜆6𝐸∗𝐻 − 𝜆8𝐸∗𝐻) + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 .

(55)

Now, using an appropriate variation argument and taking
the bounds into account, the optimal control strategies are
given as

]∗𝐷 = min{max(0, (𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) ,
]𝐷max} , (56)

𝜌∗𝐷 = min{max(0, (𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) ,
𝜌𝐷max} , (57)
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]∗𝐻 = min{max(0, (𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) ,
]𝐻max} , (58)

𝜌∗𝐻 = min{max(0, (𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) ,
𝜌𝐻max} . (59)

Optimality System. Substituting the representation of the opti-
mal vaccination and treatment control with corresponding
adjoint function, we have the optimality system as

𝑑𝑆𝐷𝑑𝑡 = 𝐴𝐷 − (1 −min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max})
⋅ 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − 𝑚𝐷𝑆𝐷 −min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max}𝑆𝐷
+ 𝛿𝜀𝐷𝐸𝐷 + 𝛼𝐷𝑅𝐷,𝑑𝐸𝐷𝑑𝑡 = (1 −min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max})
⋅ 𝛽𝐷𝐷𝑆𝐷𝐼𝐷 − ((1
−min{max(0, (𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) ,
𝜌max})𝛿𝛾𝐷 + 𝑚𝐷 + 𝛿𝜀𝐷 + 𝐶𝐷)𝐸𝐷 −min{max(0,
(𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) , 𝜌𝐷max}𝐸𝐷,

𝑑𝐼𝐷𝑑𝑡 = 𝛿𝛾𝐷𝐸𝐷 − (𝑚𝐷 + 𝜇𝐷) 𝐼𝐷,
𝑑𝑅𝐷𝑑𝑡 = min{max(0,
(𝜆1 − 𝜆4) 𝑆∗𝐷 + (𝜆2 − 𝜆1) 𝛽𝐷𝐷𝐼∗𝐷𝑆∗𝐷𝐵1 ) , ]𝐷max}𝑆𝐷
− (𝑚𝐷 + 𝛼𝐷) 𝑅𝐷 +min{max(0,
(𝜆2 − 𝜆4) 𝐸∗𝐷 + (𝜆3 − 𝜆2) 𝛿𝛾𝐷𝐸∗𝐷𝐵2 ) , 𝜌𝐷max}𝐸𝐷,

𝑑𝑆𝐻𝑑𝑡 = 𝐵𝐻 − (1 −min{max(0,
(𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) , ]𝐻max})
⋅ 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − 𝑚𝐻𝑆𝐻 −min{max(0,
(𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) , ]𝐻max}𝑆𝐻
+ 𝛿𝐻𝜀𝐻𝐸𝐻 + 𝛼𝐻𝑅𝐻,𝑑𝐸𝐻𝑑𝑡 = (1 −min{max(0,
(𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) , 𝜌𝐻max})
⋅ 𝛽𝐷𝐻𝑆𝐻𝐼𝐷 − (𝛿𝐻𝛾𝐻 + 𝑚𝐻 + 𝛿𝐻𝜀𝐻) 𝐸𝐻
−min{max(0,
(𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) , 𝜌𝐻max}𝐸𝐻,

𝑑𝐼𝐻𝑑𝑡 = 𝛿𝐻𝛾𝐻𝐸𝐻 − (𝑚𝐻 + 𝜇𝐻) 𝐼𝐻,
𝑑𝑅𝐻𝑑𝑡 = min{max(0,
(𝜆5 − 𝜆8) 𝑆∗𝐻 + (𝜆6 − 𝜆5) 𝛽𝐷𝐻𝑆∗𝐻𝐼∗𝐷𝐵3 ) , ]𝐻max}𝑆𝐻
− (𝑚𝐻 + 𝛼𝐻) 𝑅𝐻 +min{max(0,
(𝜆6 − 𝜆8) 𝐸∗𝐻 + (𝜆7 − 𝜆6) 𝛿𝐻𝛾𝐻𝐸∗𝐻𝐵4 ) , 𝜌𝐻max}𝐸𝐻,

𝑑𝜆1𝑑𝑡 , 𝑑𝜆2𝑑𝑡 , 𝑑𝜆3𝑑𝑡 , 𝑑𝜆4𝑑𝑡 , 𝑑𝜆5𝑑𝑡 , 𝑑𝜆6𝑑𝑡 , 𝑑𝜆7𝑑𝑡 , 𝑑𝜆8𝑑𝑡 ,
with, 𝜆𝑖 (𝑡𝑓) = 0, 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8.

(60)

5.1. Numerical Simulations of the Optimality System. To
determine the control strategies ]𝐷, 𝜌𝐷, ]𝐻, and 𝜌𝐻, as given
in the objective functional, we began an iteration of themodel
until convergence is achieved. The results of the simulation
of the control strategies are displayed below. We consider
equal weights of (𝐴1 = 1, 𝐴2 = 1, 𝐴3 = 1, 𝐴4 = 1) for both
exposed and infected classes. We varied the cost associated
with the objective functional, which indicate that, with low
cost of vaccination, the rate at which individuals will seek for
vaccination of their susceptible dogs will increase, and this
could result in low transmission of rabies in a heterogeneous
population. We consider the various cost of preexposure
prophylaxis and postexposure prophylaxis to be (𝐵1 = 1,
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Figure 5: The trajectories of the model with and without pre- and postexposure prophylaxis on exposed humans and that of the exposed
dogs.

𝐵2 = 4, 𝐵3 = 1, 𝐵4 = 4). We found that the optimal time
in controlling the infection using preexposure prophylaxis in
dogs is much better than using postexposure prophylaxis in
dogs, as shown by the trajectories of the red line and blue line
in Figure 4, respectively. The blue line in Figure 4 indicates
that applying postexposure prophylaxiswill considerably take
a longer time in controlling of rabies in dogs. The green line
in Figure 4 signifies that preexposure prophylaxis in humans

increases the immunity levels of humans and hence reduces
the rate at which individuals move to the infected stage. Fig-
ures 5 and 6 show the effect of using only one control strategy
on themodel.Therefore, Figure 5(a) shows that applying only
postexposure prophylaxis (treatment or quarantine) of dogs
has a low positive impact on the model. Figure 5(b) shows
that sticking to the use of pre- and postexposure prophylaxis
in human without administering pre- and postexposure



Journal of Applied Mathematics 19

0

4

2

6

10 20 30 40 50 60 70 800
Time (years)

]D = D = ]H = H = 0

]D = D ̸= 0, ]H = H = 0

×106

In
fe

ct
ed

 d
og

sI
D

(a) A plot of ]𝐷 = 𝜌𝐷 ̸= 0 and ]𝐻 = 𝜌𝐻 = 0

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 800
Time (years)

]D = D = ]H = H = 0

]D = D = 0, ]H = H ̸= 0

In
fe

ct
ed

 h
um

an
sI

H

(b) A plot of ] = 𝜌 = 0 and ]𝐻 = 𝜌𝐻 ̸= 0

Figure 6: The trajectories of the model with and without pre- and postexposure prophylaxis on infected humans and that of the infected
dogs.

prophylaxis in the dog population will result in a high of the
rabies infection in the human population. Figure 6(a) also
shows that combining pre- and postexposure prophylaxis
(vaccination and treatment/quarantine) in the dog com-
partment will reduce the spread of the rabies virus, thereby
reducing the using of pre- and postexposure prophylaxis
(vaccination and treatment) in humans. Figure 6(b) indicates
that a rapid use of pre- and postexposure prophylaxis in the
human population will reduce the number of rabies deaths in
the human population. Figure 7 shows the simulation effects
of applying both controls on the model. Figure 7(a) shows
that, with the use of the optimal control strategies, the rate of
the infection in the susceptible dogs will reduce significantly.
Figures 7(b) and 7(c) show that there is a proportional
decrease in the number of exposed and infected dogs when
the control measures are applied. Similarly, Figures 7(e) and
7(f) show a significant decrease in the number of infected
and exposed humans when the control measures are applied.
Figure 7(d) shows that there is a proportional increase in the
number of recovered dogs when the control measures are
applied. Finally, Figures 8(a)–8(h) show the simulation effect
of corresponding adjoint functions.

6. Discussion

The numerical simulations of the resulting optimality system
show that, during the case where it is more expensive to
vaccinate than treatment, more resources should be invested
in treating affected individuals until the disease prevalence
begins to fall. This option, however, does not reduce the
number of individuals expose to the disease quickly enough,
thus resulting in an overall increase in the infected human
population. On the other hand, if it is more expensive to

treat than to vaccinate, then more susceptible dogs should
be vaccinated, so as to lower the rate at which newborn dogs
get infected. Nevertheless, in the case where both measures
are equally expensive, the simulation shows that the optimal
way to drive the epidemic towards eradication within any
specified period is to use more preexposure prophylaxis in
both compartments.

7. Conclusion

We studied an optimal control model of rabies transmission
dynamics in dogs and the best way of reducing death rate
of rabies in humans. The stability analysis shows that the
disease-free equilibrium is locally and globally asymptotically
stable. We also obtained an optimal control solution for the
model which predicts that the optimal way of eliminating
deaths from canine rabies as projected by the global alliance
for rabies control [30] is using more of preexposure pro-
phylaxis in both dogs and humans and public education;
however, the results show that the effective and optimal
consideration of preexposure prophylaxis and postexposure
prophylaxis in humans without an optimal use of vaccination
in the dog population is not beneficial if total elimination of
the disease is desirable in Africa and Asia. Any combination
strategy which involves vaccination in the dogs’ population
gives a better result and hence it may be beneficial in
eliminating the disease in Asia, Africa, and Latin America.
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(b) The cost function 𝜆2 for 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1 and 𝐵1 =
1, 𝐵2 = 4, 𝐵3 = 1, 𝐵4 = 4

0.5

1

1.5

2

2.5

3

3.5

4

0

Ad
jo

in
t f

un
ct

io
n

20 40 60 800
Time (years)

3

(c) The cost function 𝜆3 for 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1 and 𝐵1 =
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(e) The cost function 𝜆5 for 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1 and 𝐵1 =
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(f) The cost function 𝜆6 for 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1 and 𝐵1 =
1, 𝐵2 = 4, 𝐵3 = 1, 𝐵4 = 4

Figure 8: Continued.
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(g) The cost function 𝜆7 for 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1 and 𝐵1 =
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(h) The cost function 𝜆8 for 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 1 and 𝐵1 =
1, 𝐵2 = 4, 𝐵3 = 1, 𝐵4 = 4

Figure 8: The trajectories of the model with and without optimal control on individual compartments and corresponding adjoint function.

Science and Technology (see http://ir.knust.edu.gh/xmlui/
handle/123456789/10053).
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