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Some novel traveling waves and special solutions to the 1D nonlinear dynamic equations of rod and beam of power-law materials
are found in closed forms. The traveling solutions represent waves of high elevation that propagates without change of forms
in time. These waves resemble the usual kink waves except that they do not possess bounded elevations. The special solutions
satisfying certain boundary and initial conditions are presented to demonstrate the nonlinear behavior of the materials. This note
demonstrates the apparent distinctions between linear elastic and nonlinear plastic waves.

1. Introduction

Free vibrations of rods and beams of power-law materials are
considered. Analytic traveling wave solutions to the wave
equations for power-law materials (see [1, 2]) are obtained
which represent kink waves of single elevation that prop-
agates without change of forms in time. It is shown that,
unlike the wave equations for linear materials, the nonlinear
wave equations do not allow arbitrary traveling wave forms
in an infinite rod or beam. The results demonstrate that the
traveling fronts of the waves may sharpen or flatten as the
wave speeds increase depending upon the power-law index𝑛 and the bulk modulus. For 𝑛 > 1, the wave fronts sharpen,
whereas for 0 < 𝑛 < 1, the fronts flatten as the wave speeds
increase. The solutions also demonstrate that the speeds of
the nonlinear travelingwaves dependnot only on thematerial
properties but also on the initial energy-level. It is well known
that the speeds of waves for the linear elastic materials (𝑛 =1, Hooke’s law) depend only on the material properties in
contrast to that of the waves in nonlinear materials. As far
as we know these solutions are not available in literature,
even though there are numerous research papers and books
devoted to the discovery and study of traveling waves in
elastic and plastic solids (see [3–7] for details). In the case of
rods and beams of finite length, we also present some special
solutions satisfying certain boundary and initial conditions.
The closed formula solutions are expressed in terms of non-
Euclidean sine functions (cf. [8]), which differ from the

Euclidean sine functions corresponding to the waves in rods
and beams of linear elastic materials.

The note is organized as follows. In Section 2, the power-
law constitutive stress-strain equation is introduced. In
Section 3, the potential energy and derivations of the wave
equations of power-law materials are outlined. In Sections
4 and 5, closed-form solutions are derived. And, finally the
results are summarized in Section 6.

2. Hollomon’s Equation

It is well known that, in uniaxial state, the following power-
law stress and strain relation is used for certain elastoplastic
materials: 𝜎 = 𝐾 |𝜀|𝑛−1 𝜀, 0 < 𝑛 < ∞, (1)

where 𝜎 is the axial stress, 𝜀 is the axial strain, and 𝐾 and𝑛 are engineering constants with values depending on the
specific material. The materials satisfying (1) sometimes are
also referred to as Ludwick or as Hollomon’s materials in
literature (cf. [1, 2]).Manyheat-treatedmetals arewell-known
power-law materials. For a given annealed metal or alloy, 𝐾
and 𝑛 depend on the heat treatment received by the metal
or alloy. The values of 𝑛 are typically between 0 and 1 for
such metals. For a comprehensive list of experimental values
of 𝐾 and 𝑛 of common annealed industrial metals, see, for
example, [9]. For some geological materials, such as certain
rocks or ice, however, the values of 𝑛 are greater than 1. In
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some biological tissues, experiments also indicate that the
power-law index 𝑛 satisfies 0 < 𝑛 < 1 for bones such as
tibia and femur, while 𝑛 > 1 for cartilages such as common
carotid artery and abdominal aorta (see, e.g., [10, 11]). For a
given value of 0 < 𝑛 < 1, the stress-strain curve defined
by (1) can result in a rapid increase in the yield stress for
small strains or strain hardening. However, it can be the
opposite for values of 𝑛 > 1, for which large strains produce
small stress or softening. For these reasons, 𝑛 is called the
strain-hardening or strain-softening exponent. Study of the
mechanical properties of these heat-treated metals is very
important in industries (see, e.g., [12], for stress analysis of
beam columnsmade of Ludwickmaterials). If we allow 𝑛 = 1,
then (1) reduces to Hooke’s law for linear elastic material
and the constant 𝐾, also called the bulk modulus, equals
the corresponding Young’s modulus 𝐸. Power-law materials
are a special case of a more general class of materials called
Hencky plastics [13]. Physically, the constitutive equation (1)
describes the hardening or softening of materials showing
an elastic-plastic transition. In the following, bold letters are
used to denote vectors or matrices. A vector is considered
as a single row matrix. The transpose of a matrix A is
denoted by A𝜏, and the inner product of two vectors u and
v by uk𝜏. The time derivative 𝜕u/𝜕𝑡 is denoted by u̇. Let
u(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢(𝑥, 𝑦, 𝑧, 𝑡), V(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡)) denote
the displacement vector,𝜀𝑥 = 𝜕𝑢𝜕𝑥 ,𝜀𝑦 = 𝜕V𝜕𝑦 ,𝜀𝑧 = 𝜕𝑤𝜕𝑧 ,𝛾𝑥𝑦 = 12 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥) ,𝛾𝑦𝑧 = 12 (𝜕V𝜕𝑧 + 𝜕𝑤𝜕𝑦 ) ,𝛾𝑧𝑥 = 12 (𝜕𝑤𝜕𝑥 + 𝜕𝑢𝜕𝑧)

(2)

the strain components, and 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑧𝑥 the
corresponding stress components. The following generalized
power law can be derived from the Hencky total deformation
theory [13]:{{{{{{{{{{{{{{{

𝜎𝑥𝜎𝑦𝜎𝑧𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥

}}}}}}}}}}}}}}}
= 𝐾‖𝐷 (u)‖𝑛−1(1 + ]) (1 − 2])
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(
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}}}}}}}}}}}}}}}
,

(3)

where ‖𝐷(u)‖ = √𝜀2𝑥 + 𝜀2𝑦 + +𝜀2𝑧 + 2𝛾2𝑥𝑦 + 2𝛾2𝑦𝑧 + 2𝛾2𝑧𝑥, where𝑛, 𝐾, and ] are the material constants; see also Wei [14].
Note that (3) is the three-dimensional version of (1). In the
following two sections, wave equations of bars and beams
made of the power-law elastoplastic materials are derived
by (3) and the assumption of the Euler-Bernoulli beam
theory. There are similar versions of generalized power-
law stress-strain relations for strain-hardening or strain-
softeningmaterial in the literature and similarwave equations
can be derived (see, e.g., [15–20]).

3. The Nonlinear Wave Equations

The potential energy for a power-law elastoplastic body
occupying a three-dimension body 𝑉 can by defined by

𝑈 = 1𝑛 + 1 ∫𝑉 𝜎𝜀𝜏𝑑𝑉, (4)

where 𝜀 = (𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧) and 𝜎 = (𝜎x, 𝜎y, 𝜎z, 𝜏xy,𝜏xz, 𝜏yz). The Lagrangian energy functional 𝐼(u) equals the
kinetic energy 𝑇 minus the elastoplastic potential energy 𝑈
plus the work𝑊 done by external force. It can be written as

𝐼 (u) = 12 ∫𝑉 𝜌u̇u̇𝜏𝑑𝑉 − 1𝑛 + 1 ∫𝑉 𝜎𝜀𝜏𝑑𝑉 + ∫𝑉 fu𝜏𝑑𝑉+ ∫
𝜕𝑉

tu𝜏𝑑𝑆, (5)

where 𝜌 is the density, u̇ = (�̇�, V̇, �̇�) the velocity, f =(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) the body force, and t = (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) the surface
force. See, for example, [21], for a standard definition of 𝐼(u).
For a uniaxial bar of infinite length with cross-sectional area𝐴(𝑥), subject to axial force and zero surface force, we have
𝜎 = (𝜎𝑥, 0, 0, 0, 0, 0), u = (𝑢(𝑥, 𝑡), 0, 0), 𝜎𝑥 = 𝐾|𝜀𝑥|𝑛−1𝜀𝑥,
f = (𝑓(𝑥, 𝑡), 0, 0), and t = (0, 0, 0). For an Euler beam
of infinite length, it is assumed that the components of the
displacement satisfy 𝑢(𝑥, 𝑦, 𝑡) = −𝑦(𝜕V/𝜕𝑥), V = V(𝑥, 𝑡),𝑤 = 0, f = (0, 𝑟(𝑥, 𝑡), 0), and t = (0, 0, 0). Therefore 𝜀𝑥 =𝜕𝑢/𝜕𝑥 = −𝑦(𝜕2V/𝜕𝑥2), 𝜀𝑥𝑦 = (1/2)(𝜕𝑢/𝜕𝑦 + 𝜕V/𝜕𝑥) = 0, and𝜀𝑦 = 𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 𝜀𝑧 = 0.The potential energies for the bar
and the beam are given by

𝑈 = 1𝑛 + 1 ∫+∞−∞ 𝐾𝐴  𝜕𝑢𝜕𝑥 𝑛+1 𝑑𝑥, (6)

𝑈 = 1𝑛 + 1 ∫+∞−∞ 𝐾𝐼𝑛  𝜕2V𝜕𝑥2 𝑛+1 𝑑𝑥, (7)

respectively, where 𝐼𝑛 = ∫𝐴 |𝑦|𝑛+1𝑑𝑦𝑑𝑧 is the generalized
second moment of inertia of the beam. The 𝑥-axis is taken
to be the axial direction of the bar and the beam. For rods
and beams of finite length 𝐿, the corresponding Lagrangian
functions are given by replacing−∞ and+∞ in (6) and (7) by0 and 𝐿, respectively. Note that the assumptions made in this
section on the elastoplastic bars and the beams are standard
assumptions frequently made for elastic bars and beams (see,
e.g., [22, 23], for details). The corresponding linear wave
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equations of elastic bars and beams corresponding to 𝑛 = 1
have been studied extensively.

For completeness, the derivation of the wave equations of
the power-lawmaterials given in [14] is outlined here. It is well
known that Hamilton’s principle seeks an equilibrium state in
time dependent mechanical systems (see, e.g., [21]).

Specifically, Hamilton’s principle requires that we seek a
displacement u so that, for any time interval [𝑡1, 𝑡2], u(𝑡1) =
u(𝑡2) and u̇(𝑡1) = u̇(𝑡2), and for all displacement of the form
u + 𝜏k, where 𝜏 is any real number, the first variation of the
energy functional 𝐼 satisfies

𝛿𝐼 = ∫𝑡2
𝑡
1

𝑑𝑑𝜏 [𝐼 (u (𝑡) + 𝜏k (𝑡))]𝜏=0 𝑑𝑡 = 0 (8)

for all k satisfying k(𝑡1) = k(𝑡2) = 0 and k̇(𝑡1) = k̇(𝑡2) = 0.
The combination u(𝑡) + 𝜏k(𝑡) is referred to as an admissible
displacement for the mechanical system since it is required
to satisfy some boundary conditions. It can be shown that if
the displacement u satisfies (8) of Hamilton’s principle, then
it must also satisfy a differential wave equation under certain
conditions. In particular, suppose that the cross-sectional
area, denoted by 𝐴, is a nonzero constant, and then for the
rod, we have

𝜌𝜕2𝑢𝜕𝑡2 = 𝐾 𝜕𝜕𝑥 ( 𝜕𝑢𝜕𝑥 𝑛−1 𝜕𝑢𝜕𝑥) + 𝑓, 𝑥 ∈ R, 𝑡 ∈ R+ (9)

and for the corresponding Euler beam

𝜌𝐴𝜕2V𝜕𝑡2 = − 𝜕2𝜕𝑥2 (𝐾𝐼𝑛  𝜕2V𝜕𝑥2 𝑛−1 𝜕2V𝜕𝑥2) + 𝐴𝑟,𝑥 ∈ R, 𝑡 ∈ R+. (10)
When 𝑛 = 1, (9) reduces to the standard wave equation for
the elastic bar

𝜌𝜕2𝑢𝜕𝑡2 = 𝐾𝜕2𝑢𝜕𝑥2 + 𝑓, 𝑥 ∈ R, 𝑡 ∈ R+ (11)

and (10) to the standard wave equation for the elastic Euler
beam

𝜌𝐴𝜕2V𝜕𝑡2 = − 𝜕2𝜕𝑥2 (𝐾𝐼 𝜕2V𝜕𝑥2) + 𝐴𝑟, 𝑥 ∈ R, 𝑡 ∈ R+. (12)

The quantity 𝐼𝑛 reduces to the second moment of inertia,𝐼𝑛 = ∫𝐴 |𝑦|𝑛+1𝑑𝐴 reduces to 𝐼 when 𝑛 = 1 in the elastic
beam theory, and the material constant 𝐾 becomes Young’s
modulus 𝐸 for linear elastic materials. In deriving the wave
equations (9) and (10), we have made the assumption that
the solutions 𝑢 and V are continuously differentiable and their
appropriate lower order derivatives are bounded or vanishing
when |𝑥| → ∞. By (8), we get

∫𝑡2
𝑡
1

∫+∞
−∞
(𝜌𝐴�̇�V̇ − 𝐾𝐴  𝜕𝑢𝜕𝑥 𝑛−1 𝜕𝑢𝜕𝑥 𝜕V𝜕𝑥 + 𝐴𝑓V)𝑑𝑥𝑑𝑡= 0. (13)

Using integration by parts and interchange of the order
of integration, with V(𝑡1) = V(𝑡2) = 0, and assuming
that lim𝑥→±∞|𝜕𝑢(𝑥, 𝑡)/𝜕𝑥|𝑛−1(𝜕𝑢(𝑥, 𝑡)/𝜕𝑥) is bounded by a
constant independent of 𝑡 and lim𝑥→±∞V(𝑥, 𝑡) = 0 uniformly
in 𝑡, we get the following:
∫𝑡2
𝑡
1

∫+∞
−∞
(−𝜌𝐴�̈� + 𝜕𝜕𝑥 (𝐾𝐴  𝜕𝑢𝜕𝑥 𝑛−1 𝜕𝑢𝜕𝑥) + 𝐴𝑓)⋅ V 𝑑𝑥 𝑑𝑡 = 0 (14)

from (13). Since V, 𝑡1, and 𝑡2 are arbitrary and 𝐴 ̸= 0, we then
get (9) from (14). The corresponding beam equation (10) can
be derived similarly which was reported in [14].

4. Traveling Waves in Rods and Beams of
Arbitrary Length

In the following we will derive some traveling wave solutions
to (9) and (10) for 0 < 𝑛 < ∞ and 𝑛 ̸= 1. As far as we know,
these solutions are not available in literature, even though
there are numerous research papers and books devoted to the
discovery and study of traveling waves in elastic and plastic
solids. For the study of traveling waves in nonlinear beam
equations based on Hooke’s law (𝑛 = 1) for elastic materials,
see, for example, [3–5]. Also, see [6, 7, 24, 25], formore results
of traveling waves in solids. Assuming that 𝑓 = 𝑟 = 0 in (9)
and (10), we have𝜕2𝑢𝜕𝑡2 = 𝑐2 𝜕𝜕𝑥 ( 𝜕𝑢𝜕𝑥 𝑛−1 𝜕𝑢𝜕𝑥) , 𝑥 ∈ R, 𝑡 ∈ R+ (15)

for the bar and𝜕2V𝜕𝑡2 = 𝑐2 𝜕2𝜕𝑥2 ( 𝜕2V𝜕𝑥2 𝑛−1 𝜕2V𝜕𝑥2) , 𝑥 ∈ R, 𝑡 ∈ R+ (16)

for the beam, where 𝑐2 = 𝐾/𝜌 and 𝑐2 = −𝐾𝐼𝑛/𝜌𝐴,
respectively. We look for traveling wave solutions of the form𝑔(𝑥 − 𝜆𝑡) for both (15) and (16), where 𝜆 denotes a constant
and 𝑔 is a function to be determined. Let 𝜙(𝑡) = |𝑡|𝑛−1𝑡,
where 𝑛 is the index in power-law (3). The inverse of 𝜙 is𝜙−1(𝑡) = |𝑡|(1−𝑛)/𝑛𝑡 since

(𝜙 ∘ 𝜙−1) (𝑡) = |𝑡|(1−𝑛)/𝑛 𝑡𝑛−1 |𝑡|(1−𝑛)/𝑛 𝑡= |𝑡|(𝑛−1)/𝑛 |𝑡|(1−𝑛)/𝑛 𝑡 = 𝑡. (17)

First, let 𝜉 = 𝑥 − 𝜆𝑡 and substitute 𝑢(𝑥, 𝑡) = 𝑔(𝜉) into
(15), so 𝜆2𝑔 = 𝑐2(𝜙(𝑔)). After integration we get 𝜆2𝑔 =𝑐2𝜙(𝑔) + 𝑐1, where 𝑐1 is an arbitrary constant. Suppose that
lim𝑥→∞(𝜕𝑢/𝜕𝑥)(𝑥, 0) = 𝐴. Since 𝑢(𝑥, 0) = 𝑔(𝑥) and 𝑔(𝑥) =(𝜕𝑢/𝜕𝑥)(𝑥, 0), we have 𝑐1 = 𝜆2𝐴 − 𝑐2𝜙(𝐴). Looking for
nontrivial solutions for 𝑛 ̸= 1 and assuming that 𝐴 =(𝑐/𝜆)2/(1−𝑛), we get 𝑐1 = 0 and 𝑔 = ±(𝑐/𝜆)2/(1−𝑛) which gives
the following traveling wave solutions:

𝑢 (𝑥, 𝑡) = ± ( 𝑐𝜆)2/(1−𝑛) (𝑥 − 𝜆𝑡) + 𝑐2 (18)
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for the bar equation (15). Note that solution (18) includes
some physically meaningful solutions. For example, let us
consider a semi-infinite bar with initial displacement

𝑢 (𝑥, 0) = {{{(
𝑐𝜆)2/(1−𝑛) 𝑥 if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0, (19)

and initial velocity

�̇� (𝑥, 0) = {{{−𝜆(
𝑐𝜆)2/(1−𝑛) if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0 (20)

and boundary condition lim𝑥→+∞(𝜕𝑢/𝜕𝑥)(𝑥, 𝑡)=(𝑐/𝜆)2/(1−𝑛).
A particular solution satisfying these conditions is given by𝑢 (𝑥, 𝑡)
= {{{(
𝑐𝜆)2/(1−𝑛) (𝑥 − 𝜆𝑡) if 0 < 𝑥 − 𝜆𝑡 < +∞0 if −∞ < 𝑥 − 𝜆𝑡 ≤ 0 (21)

which is obtained from (18). The physical interpretation of
the initial condition (19) is that half of the bar is initially
subject to a constant stress and the other half is free of
stress and fixed in position, and the second initial condition
(20) means that the bar is initially moving at a constant
speed and half of it is instantaneously stopped. Solution (21)
explains that if a prestressed semi-infinite axial power-law
rod subject to initial conditions 𝜎(𝑥, 0) = 𝐾(𝑐/𝜆)2𝑛/(1−𝑛)
and �̇�(𝑥, 0) > 0 and boundary conditions 𝑢(0, 𝑡) = 0 for𝑥 = 0 and lower order derivatives are bounded or vanishing
when |𝑥| → ∞, then the displacement in the interval [0, 𝑥]
will be zero at time 𝑡 = [𝑥1+𝑛|�̇�(𝑥, 0)|1−𝑛/𝑐2]1/(1+𝑛) = 𝑥/𝜆
and the restoration of the deformed bar in interval [0, 𝑥(𝑡)]
to its undeformed configuration has a moving boundary𝑥(𝑡) which is expanding like a kink wave at a velocity 𝜆 =𝑐(𝐾/𝜎(𝑥, 0))(1−𝑛)/2𝑛.

In themore general situation, for any value of 𝑐1, the equa-
tion 𝑃(𝑡) = 𝜆2𝑡 − 𝑐2𝜙(𝑡) − 𝑐1 has at least one solution since it
is continuous, lim𝑡→+∞𝑃(𝑡) = +∞ and lim𝑡→−∞𝑃(𝑡) = −∞.
Let 𝑃(𝜀0) = 0, and then 𝑔 = 𝜀0 satisfies 𝜆2𝑔 = 𝑐2𝜙(𝑔) + 𝑐1.
We have the following similar solutions:

𝑢 (𝑥, 𝑡) = {{{
𝜀0 (𝑥 − 𝜆𝑡) if 0 < 𝑥 − 𝜆𝑡 < +∞0 if −∞ < 𝑥 − 𝜆𝑡 ≤ 0 (22)

satisfying the initial and boundary conditions

𝑢 (𝑥, 0) = {{{
𝜀0𝑥 if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0,

�̇� (𝑥, 0) = {{{
−𝜆𝜀0 if 0 < 𝑥 < +∞0 if −∞ < 𝑥 ≤ 0

(23)

for lim𝑥→+∞(𝜕𝑢/𝜕𝑥)(𝑥, 𝑡) = 𝜀0 and 𝜆𝜀20 = 𝑐2𝜙(𝜀0) + 𝑐1.

For the linear elastic bar, 𝑛 = 1, 𝜙(𝑔) = 𝑔, and if 𝑐1 = 0,
the equation 𝜆2𝑔 = 𝑐2𝜙(𝑔) is satisfied for any 𝑔 and also
makes 𝜆 = 𝑐. This shows that the linear elastic bar equation
allows arbitrary traveling wave forms 𝑔 in 𝑢(𝑥, 𝑡) = 𝑔(𝑥−𝜆𝑡),
and however thewave can travel only at a fixed velocity𝜆 = 𝐶.
If 𝑐1 ̸= 0, then equation 𝜆2𝑔 = 𝑐2𝜙(𝑔) + 𝑐1 gives 𝑔 = 𝜀0 =(𝜆2 − 𝑐2)/𝑐1 and the corresponding solution is (22), which is
similar to the solutions for 𝑛 ̸= 1.

The above shows that the difference between the nonlin-
ear solution (𝑛 ̸= 1) and the linear case (𝑛 = 1) is that all
the nonlinear traveling waves have the same shape and the
traveling velocity depends not only on the material property
but also on the initial stress-level while the linear traveling
waves can take any form while keeping a fixed traveling
velocity 𝑐 that depends only on the material property.

Similarly, by substituting V(𝑥, 𝑡) = 𝑔(𝑥−𝜆𝑡) into the beam
equation (16), we get 𝜆2𝑔 = 𝑐2(𝜙(𝑔)). After integration
twice, we get 𝜆2𝑔 = 𝑐2𝜙(𝑔) + 𝑐1𝜉 + 𝑐2, which gives 𝜆2𝑔 =𝑐2𝜙(𝑔) by setting 𝑐1 = 𝑐2 = 0. Let𝑤 = 𝑔; we get𝑤(𝑑𝑤/𝑑𝑔) =𝑔 and 𝜆2𝑔 = 𝑐2𝜙(𝑤(𝑑𝑤/𝑑𝑔)). From the last equation, we get

𝑤𝑑𝑤 = −𝜙−1 (𝜆2𝑔|𝑐|2 )𝑑𝑔 = − 𝜆𝑐 2/𝑛 𝑔(1−𝑛)/𝑛 𝑔𝑑𝑔 (24)

which gives (𝑔)2 = 𝐶 − (2𝑛/(1 + 𝑛))|𝜆/𝑐|2/𝑛|𝑔|(1+𝑛)/𝑛, where𝐶 is the integration constant.
We assume 𝑔(0) = 0 and 𝑔(0) > 0. So, the traveling wave

solutions for the corresponding elastoplastic Euler beam are
given implicitly𝑥 − 𝜆𝑡
= ±∫𝑔(𝑥−𝜆𝑡)
0

𝑑𝑠√2 |𝜆/𝑐|2/𝑛 (𝑛/ (𝑛 + 1)) (𝑔 (0)1/𝑛 𝑔 (0) − |𝑠|1/𝑛 𝑠) (25)

which results in the following formula in terms of generalized
trigonometric function defined in [26]𝑔 (𝑥 − 𝜆𝑡) = 𝑔 (0) sin2,1+1/𝑛 (𝐵 (𝑥 − 𝜆𝑡)) , (26)

where 𝐵 = |𝑐|1/𝑛/|𝑔(0)|(𝑛+1)/2𝑛𝑔(0)|𝜆|1/𝑛√2𝑛/(𝑛 + 1). Notice
that for 𝑛 = 1 we obtain the well-known Euclidean sine
traveling wave solution for the elastic Euler beam equation.
We observe that the amplitude of the wave is determined
by the initial condition V(0, 0). The traveling waves for
elastoplastic beams can be applied to study piezoelectric
robots; see [27].

5. Special Waves in Rods and Beams of
Finite Length

Let us consider some special waves in rods and beams of
finite length 𝐿 with fixed ends. Equations (15) and (16) are
solved for 𝑥 ∈ (0, 𝐿) and 𝑡 ∈ 𝑅+ with homogeneous Dirichlet
boundary conditions 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 and special initial
conditions. We present some special solutions by using the
generalized trigonometric functions developed by Drábek
and Manásevich [26]. By using the separation of variables
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Figure 1: Vibrating power-law strings: 𝑛 = 0.2 (a) and 𝑛 = 0.5 (b) at 𝑡 = 0, 0.2, 0.4, 0.5, 0.7, 0.8.
𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) in (15) and using boundary conditions𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, we have

(𝑋𝑛−1𝑋) = 𝜆𝑋,�̈� − 𝜆𝑐2 |𝑇|𝑛−1 𝑇 = 0. (27)

From the first equation and the boundary conditions, we get

(𝑋𝑛−1𝑋) = 𝜆𝑋,𝑋 (0) = 𝑋 (𝐿) = 0. (28)

By Thm 3.1 in [26], a sequence of solutions to the nonlinear
eigenvalue problem (28) are given by𝑋𝑘 = sin𝑛+1,2(𝑘(𝑥𝜋𝑛+1,2/𝐿)), where𝜆𝑘 = −((𝑘+1)𝑘/2)(𝜋𝑛+1,2/𝐿)𝑛+1 and𝜋𝑛+1,2 = ∫10 (1−𝑡2)−1/(𝑛+1)𝑑𝑡 = 𝐵(1−1/(𝑛+1), 1/2). Let us consider the initial
conditions 𝑢(𝑥, 0) = 𝑋1(𝑥) and 𝑢𝑡(𝑥, 0) = 0. In this case we
have 𝑇(0) = 1 and we can solve the second equation in (27).
A special solution of this initial value problem is given by

𝑢 (𝑥, 𝑡) = sin𝑛+1,2 (𝑥𝜋𝑛+1,2𝐿 )
⋅ sin2,𝑛+1 (−√2𝑐 (𝜋𝑛+1,2𝐿 )(𝑛+1)/2 𝑡 + 𝜋2,𝑛+12 ) . (29)

The time evolution of the special solutions for 𝑐 = 1, 𝐿 = 1,𝑛 = 0.2, and 𝑛 = 0.5 is presented in Figure 1, respectively.
Similarly, by using the separation of variables 𝑢(𝑥, 𝑡) =𝑋(𝑥)𝑇(𝑡) in (16), we have

(𝑋𝑛−1𝑋) = 𝜆𝑋,�̈� − 𝜆𝑐2 |𝑇|𝑛−1 𝑇 = 0. (30)

From the first equation and the boundary condition, we get

(𝑋𝑛−1𝑋) = 𝜆𝑋,𝑋 (0) = 𝑋 (0) = 𝑋 (𝐿) = 𝑋 (𝐿) = 0. (31)

An analytic solution to (31) is not available and is an open
problem. This is a nonlinear and nonhomogeneous eigen-
value problem which belongs to an active area of research
beyond the scope of this paper, and we post it here as
an open problem. Since superposition principle can not be
applied to nonlinear problems, the solutions to (15) and (16)
with general initial and boundary conditions require further
investigations.

6. Conclusions

Two nonlinear wave equations are derived: one is for the
longitudinal vibrations of a power-law bar and the other is
for vertical vibrations of the power-law Euler beam. Analytic
traveling wave solutions are found for these two equations
for free vibrations in terms of generalized sine functions
of two parameters. We recovered the linear elastic waves
as special cases of our solutions. The traditional ways of
determining the vibrations of a structure made of untreated
metals do not apply to the structures of heat-treated metals
with hardening and softening mechanical properties. The
obtained results can be useful in engineering applications
of the power-law materials, such as heat-treated metals and
polyimide plastics. Further study of wave propagation and
vibrations in structuresmade of the power-lawnonlinear bars
and beams seems necessary.
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