
Research Article
Improved Combinatorial Benders Decomposition for
a Scheduling Problem with Unrelated Parallel Machines

Francisco Regis Abreu Gomes1 and Geraldo RobsonMateus2

1Graduate Program in Production Engineering, Federal University of Minas Gerais and Federal Institute of Education,
Science and Technology of Ceará, Belo Horizonte, MG, Brazil
2Computer Science Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil

Correspondence should be addressed to Francisco Regis Abreu Gomes; regisgomes@ifce.edu.br

Received 27 March 2017; Accepted 29 May 2017; Published 3 July 2017

Academic Editor: Dar-Li Yang

Copyright © 2017 Francisco Regis Abreu Gomes and Geraldo Robson Mateus. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

This paper addresses the unrelated parallel machines scheduling problem with sequence and machine dependent setup times. Its
goal is to minimize the makespan. The problem is solved by a combinatorial Benders decomposition. This method can be slow to
converge.Therefore, three procedures are introduced to accelerate its convergence.The first procedure is a newmethod that consists
of terminating the execution of the master problem when a repeated optimal solution is found. The second procedure is based on
themulticut technique.The third procedure is based on the warm-start.The improved Benders decomposition scheme is compared
to a mathematical formulation and a standard implementation of Benders decomposition algorithm. In the experiments, two test
sets from the literature are used, with 240 and 600 instances with up to 60 jobs and 5 machines. For the first set the proposed
method performs 21.85% on average faster than the standard implementation of the Benders algorithm. For the second set the
proposed method failed to find an optimal solution in only 31 in 600 instances, obtained an average gap of 0.07%, and took an
average computational time of 377.86 s, while the best results of the other methods were 57, 0.17%, and 573.89 s, respectively.

1. Introduction

Thispaper addresses the unrelated parallelmachines schedul-
ing problem with sequence and machine dependent setup
times (UPMSP-SMDST). Scheduling problems with parallel
machines have been extensively studied and applied in many
manufacturing systems [1]. Because of the rising costs of
raw materials, labor, energy, and transportation, the role
of scheduling is currently essential for the planning of
companies [2]. To learn more about these kinds of problems,
the survey produced by Mokotoff [3] can be consulted. Most
of the literature on these problems ignores the setup time
between jobs.However, Allahverdi and Soroush [4] presented
a study that shows the importance of considering the setup
time to produce more realistic and effective planning.

The UPMSP-SMDST is an NP-hard problem, since a
special case of this problem with a single machine is equiv-
alent to the traveling salesman problem, which is NP-hard
[5]. Among the few studies that use exact methods for the

solution of this problem, Rocha et al. [6] is notable because
it proposed a branch-and-bound approach to minimize the
makespan and the sum of weighted tardiness of each job. de
Paula et al. [7] proposed a nondelayed relax-and-cut algo-
rithm based on the Lagrangian relaxation of a time-indexed
formulation to minimize the total weighted tardiness. Tran
and Beck [8] presented an algorithm based on a logic-based
Benders decomposition to minimize the makespan. Finally,
Avalos-Rosales et al. [1] explored many mathematical formu-
lations with a new linearization to calculate the makespan.

Most studies use heuristics and metaheuristics to solve
the UPMSP-SMDST. Among these papers, de Paula et al.
[9] proposed an approach based on variable neighborhood
search to minimize the makespan and the sum of weighted
tardiness of each job. Lin et al. [10] presented an iterated
greedy heuristic to minimize the total tardiness. Vallada
and Ruiz [11] used two versions of a genetic algorithm to
minimize the makespan. Ying et al. [12] proposed a restricted
simulated annealing algorithm to minimize the makespan,

Hindawi
Journal of Applied Mathematics
Volume 2017, Article ID 9452762, 10 pages
http://dx.doi.org/10.1155/2017/9452762

http://dx.doi.org/10.1155/2017/9452762

2 Journal of Applied Mathematics

and Lee et al. [13] evaluated an algorithm based on the tabu
search to minimize the total tardiness. Arnaout et al. [14]
presented an ant colony algorithm with two stages to mini-
mize themakespan. Finally, Avalos-Rosales et al. [1] proposed
three versions of a method based on multistart and VNDS
algorithms to minimize the makespan.

The combinatorial Benders decomposition was chosen to
solve the UPMSP-SMDST in this study because it has been
successfully applied to several scheduling problems ([8, 15–
19]).The Benders decompositionmethod consists in dividing
the original problem into a master problem and an easier
subproblem. In a minimization problem, the master problem
solution provides a lower bound (LB) and the subproblem
solution provides an upper bound (UB) to the original
problem.The subproblem is used to evaluate the feasibility of
the solutions provided by the master problem and, if neces-
sary, generate combinatorial inequalities, called Benders cuts,
which are added to the master problem iteratively until the
optimal solution of original problem is obtained [20]. As the
Benders cuts are added, the difference between the UB and
LB decreases, and when UB − LB ≤ 𝜀, where 𝜀 is some
tolerance, the optimal solution has been found. This method
is also known as the logic-based Benders decomposition.The
combinatorial Benders decomposition is a generalization of
the classic Benders decomposition because the subproblem
may be any combinatorial problem, not necessarily a linear
or nonlinear programming problem [21].

The contribution of this paper is the proposal of three
procedures to accelerate the convergence of the combinatorial
Benders decomposition as applied to the UPMSP-SMDST.
The first procedure is proposed for the first time and consists
of terminating the execution of the master problem when a
repeated optimal solution is found. The second procedure is
based on the multicut technique and generates several Ben-
ders cuts at each iteration based on quality solutions found
during the execution of the master problem.The third proce-
dure is based on thewarm-start technique and consists of per-
forming a restricted master problem that is easier and hence
quicker to solve than the original master problem, generating
Benders cuts more quickly. Moreover, with specific adapta-
tions, these procedures may be applied to other problems.

The rest of the paper is organized as follows. Section 2
presents the definition and an actual mathematical formu-
lation of the UPMSP-SMDST. Section 3 presents a defini-
tion of the Benders decomposition and reviews papers on
convergence acceleration techniques for this method. It also
describes the proposed procedures and their combination to
create the method proposed in this paper, which is called
the improved combinatorial Benders decomposition (ICBD).
Section 4 presents the results of computational experiments,
which compare the best reported mathematical formulation,
standard implementation of Benders decomposition, and
ICBD. In Section 5, the conclusions are presented.

2. Problem Formulation

In UPMSP-SMDST, a set 𝑁 of jobs is scheduled on a set
𝑀 of machines. Each job 𝑗 takes processing time 𝑝𝑖𝑗 on
machine 𝑖. The system machines are unrelated, which means

that job 𝑗 can have a processing time that is longer than
job 𝑘 on a specific machine, although the same cannot be
true for another machine. There is a setup time, 𝑠𝑖𝑗𝑘, which
corresponds to the time required between the end of job 𝑗
and the beginning of job 𝑘 on machine 𝑖. In this model, it is
necessary to use a dummy job 0, with all its parameters equal
to zero. Moreover, it is the first and last jobs of the sequences,
where 𝑁0 is the set of jobs plus dummy job 0. The goal of
the problem is to determine a schedule of job assignments for
the machines that minimizes the makespan. Using the three-
element notation of Graham et al. [22], this problem can be
classified as 𝑅 | 𝑠𝑑𝑠 | 𝐶max.

Currently, the best mathematical model for the UPMSP-
SMDST was proposed by Avalos-Rosales et al. [1]. In this
model, 𝑦𝑖𝑗 is 1 if job 𝑗 is processed in machine 𝑖 (and 0,
otherwise), 𝑥𝑖𝑗𝑘 is 1 if the job 𝑘 is processed immediately
after job 𝑗 in machine 𝑖 (and 0, otherwise), 𝐶𝑗 denotes the
completion time of job 𝑗, and 𝐶max is the makespan of the
solution. The model itself is as follows:

min 𝐶max (1)

s.a: ∑
𝑖∈𝑀

𝑦𝑖𝑗 = 1, ∀𝑗 ∈ 𝑁 (2)

∑
𝑗∈𝑁0
𝑗 ̸=𝑘

𝑥𝑖𝑗𝑘 = 𝑦𝑖𝑘, ∀𝑘 ∈ 𝑁, 𝑖 ∈ 𝑀
(3)

∑
𝑘∈𝑁0
𝑗 ̸=𝑘

𝑥𝑖𝑗𝑘 = 𝑦𝑖𝑗, ∀𝑗 ∈ 𝑁, 𝑖 ∈ 𝑀
(4)

∑
𝑘∈𝑁

𝑥𝑖0𝑘 ≤ 1, ∀𝑖 ∈ 𝑀 (5)

𝐶max ≥ ∑
𝑗∈𝑁0
𝑗 ̸=𝑘

∑
𝑘∈𝑁

𝑠𝑖𝑗𝑘𝑥𝑖𝑗𝑘 + ∑
𝑗∈𝑁

𝑝𝑖𝑗𝑦𝑖𝑗, ∀𝑖 ∈ 𝑀
(6)

𝐶𝑘 ≥ 𝐶𝑗 + 𝑠𝑖𝑗𝑘 + 𝑝𝑖𝑘 − (1 − 𝑥𝑖𝑗𝑘)𝑉,

∀𝑗 ∈ 𝑁0, 𝑘 ∈ 𝑁, 𝑗 ̸= 𝑘, 𝑖 ∈ 𝑀
(7)

𝐶max ≥ 𝐶𝑗, ∀𝑗 ∈ 𝑁 (8)

𝐶0 = 0, (9)

𝐶𝑗 ≥ 0, ∀𝑗 ∈ 𝑁 (10)

𝑥𝑖𝑗𝑘 ∈ {0, 1} , ∀𝑗, 𝑘 ∈ 𝑁0, 𝑗 ̸= 𝑘, 𝑖 ∈ 𝑀 (11)

𝑦𝑖𝑗 ∈ {0, 1} , ∀𝑗 ∈ 𝑁, 𝑖 ∈ 𝑀. (12)

Objective (1) minimizes the makespan of the solution. Con-
straints (2) ensure that each job is processed by only one
machine. Constraints (3) and (4) ensure that each job has only
one predecessor and successor, respectively. Constraints (5)
ensure that a maximum of one job is scheduled as the first job
on each machine. Constraints (6) are a new linearization to
calculate makespan that is independent of 𝑉, which is a very
high value constant. However, it is worth noting that Tran and

Journal of Applied Mathematics 3

Beck [8] were the first to propose this constraint to strengthen
the master problem. Constraints (7) ensure the correct order
of the jobs and eliminate the formation of subcycles; that is, if
𝑥𝑖𝑗𝑘 = 1 the completion time of job 𝑘 should be greater than
or equal to the completion time of job 𝑗, and if 𝑥𝑖𝑗𝑘 = 0, these
constraints become redundant. Constraints (8) also define
the makespan of the solution. Constraints (9) assign 0 to
the completion time of the dummy job. Constraints (10) to
(12) define the nonnegativity and integrality of the variables.
Finally, constraints (6) are responsible for the efficiency of this
model relative to other models applied to this problem.

3. Combinatorial Benders Decomposition

The combinatorial Benders decomposition can be used to
decompose the UPMSP-SMDST into amaster problem of job
allocation on machines and 𝑚 scheduling subproblems on
a single machine. The subproblems are used to evaluate the
feasibility of the solutions found by themaster problem and to
generate Benders cuts if needed. A standard implementation
of this method for the UPMSP-SMDST was first proposed
by Tran and Beck [8]. However, the direct application of
this method converges slowly. Therefore, this paper proposes
three procedures for accelerating its convergence.

The main issues associated with this slow convergence
are (i) the run times of the master problem and subproblems
and (ii) the quality of the produced cuts [23]. Many studies
have been carried out to develop techniques to accelerate
the convergence of the Benders decomposition. They can be
classified into two main approaches. The first uses strategies
to reduce the computational effort to solve the master prob-
lem, and the second generatesmore effective cuts to eliminate
infeasible or suboptimal solutions [24]. Because the Benders
cuts generated from any solution of the master problem are
valid, this enables the creation of many types of cuts ([23–
29]). McDaniel and Devine [30] suggested the warm-start
technique, which generates cuts using the solution of the
master problem by relaxing the integer variables. Wheatley
et al. [31] developed a scheme called restrict-and-decompose,
which consists of relaxing the integer variables of the original
master problem and executing it. When this problem does
not generate more cuts, the technique returns to the original
master problem. Geoffrion and Graves [32] proposed a
scheme in which Benders cuts are generated each time a new
feasible solution that is better than the current incumbent
solution is found. This strategy avoids having to solve the
master problem until the end in order to generate Benders
cuts. It can also economize computational time. Côté and
Laughton [33] demonstrated the benefit of using a heuristic
to find good solutions to themaster problem. Similarly, Rei et
al. [26] used the local branching strategy of Fischetti and Lodi
[34] to explore the neighborhood of each solution obtained
by the master problem to detect repeated optimal solutions.
Poojari and Beasley [35] used a genetic algorithm along with
a heuristic to find feasible solutions of the master problem.
Sherali and Lunday [24] proposed generating a set of initial
cuts for themaster problem.Huang and Zheng [36] proposed
a type of feasibility cut to iteratively remove infeasible
solutions with certain characteristics. Another strategy is

to propose and introduce valid inequalities in the master
problem before starting the method in order to eliminate
infeasible solutions ([27, 37, 38]). Generating more than one
good quality Benders cut in each iteration is known as the
multicut technique [39]. Magnanti and Wong [40] defined
the concept of Pareto-optimal cut for degenerate Benders
subproblems and applied the multicut technique.

Theproposed acceleration procedures are aimed at reduc-
ing the execution time of the master problem and multicut
generation. Methods to improve the quality and quantity
of cuts generated like Pareto-optimal cut [40], covering cut
bundle [27], maximum feasible subsystem [23], and maxi-
mization density cut [28], among other methods cited, were
not used because they depend on a linear subproblem, and
in the problem under study the subproblem is integer. The
valid inequalities found in the literature were also not used
because they are specific to the problems addressed; from a
depth analysis we did not identify any specific or generic valid
inequality for the studied problem. Furthermore, we tested
two acceleration methods cited: the first is from Geoffrion
and Graves [32], and second is the local branching strategy
from Fischetti and Lodi [34]. But, they failed to have a
better performance than the procedures that we propose.The
proposed convergence acceleration procedures are as follows.

3.1. Termination of the Master Problem Execution. In a
standard Benders decomposition sometimes the optimal
solution of the master problem (LB) is equal to the optimal
solution of the previous iteration; that is, different solutions
with the same value. Therefore, we propose a procedure
that terminates the execution of the master problem early
when a repeated optimal solution is found. Hence, when this
happens, themaster problem does not need to run to the end,
saving computational time.

Proposition 1. If, during the master problem execution, a new
solution equal to the current LB is found, the execution of the
master problem is terminated, and the LB keeps the same value.

Proof. The optimal solution value of the master problem
cannot be lower than the value of the optimal solution found
in the previous iteration. That is, given the lower bound at
iteration 𝑘 (LB𝐾), by definition, the sequence of lower bounds
obtained by the master problem is LB1 ≤ LB2 ≤ LB3 ≤ ⋅ ⋅ ⋅ ≤
LB𝑘. Otherwise, the previous solution would not be optimal.
This occurs because there can be multiple optimal solutions
with the same value. Therefore, in this case, the LB remains
the same.

3.2. Multicuts. A combinatorial Benders cut (CBC) is gen-
erated when an infeasible subproblem is identified. In the
problem in this study, this happens when the master problem
finds a job sequence for machine 𝑖 with subcycles. For
instance, consider six jobs labeled 1 to 6. Two subcycles would
be 0-1-3-4-0 and 6-5-2-6. Tran and Beck [8] proposed the cut
shown below.

LB ≥ 𝐶ℎ𝑖 − ∑
𝑗∈𝑁ℎ
𝑖

(1 − 𝑦𝑖𝑗) 𝜃ℎ𝑖𝑗, (13)

4 Journal of Applied Mathematics

where𝐶ℎ𝑖 is the completion time of the jobs in the subproblem
associated with machine 𝑖 at iteration ℎ, 𝑁ℎ𝑖 is the set of jobs
assigned tomachine 𝑖 at iteration ℎ, and 𝜃ℎ𝑖𝑗 is an upper bound
of the effect of job 𝑗 on completion time when assigned to
machine 𝑖 at iteration ℎ, calculated as 𝑝𝑖𝑗 + max(𝑠𝑖𝑘𝑗), 𝑘 ∈
𝑁ℎ𝑖 , 𝑘 ̸= 𝑗.That is, when job 𝑗 is no longer part of the solution,
the value of LB can be reduced up to 𝜃ℎ𝑖𝑗.

By analyzing the proposed cut by Tran and Back [8]
there is a failure. Given the hypothetical job sequence 𝑆 =
{𝑎, 𝑏, 𝑐, 𝑑}, if the job 𝑐 was removed, the effect on LB only by
the setup times is 𝑠𝑖𝑏𝑐 + 𝑠𝑖𝑐𝑑 − 𝑠𝑖𝑏𝑑, and if max(𝑠𝑖𝑘𝑐) ≥ 𝑠𝑖𝑏𝑐 +
𝑠𝑖𝑐𝑑−𝑠𝑖𝑏𝑑, the cut is still valid; otherwise it is not.Therefore, we
use a “no-good” cut that only eliminates an infeasible solution
that has been found. According to some authors, this type of
cut can be very weak [41], but it was used because no special
structure was found that could build stronger cuts, that is,
cuts that eliminate other infeasible or suboptimal solutions.
The only change made in relation to (13) was to replace 𝜃ℎ𝑖𝑗
by a very high value constant. Tests with the version of Tran
and Beck’ Benders algorithm using both cut types showed no
difference in performance and solutions obtained. We made
this change in cut because the previous cut is not a separation
cut as claimed, but only a no-good cut.

Experiments carried out with the standard implementa-
tion of Benders decomposition have shown that the master
problem generated many quality solutions in addition to the
optimal solution. By quality solutions, we mean those that
have a value 𝑆, LB ≤ 𝑆 ≤ UB. The optimal solution of the
next iteration may be among these solutions, if the method
has not been terminated.Therefore, these solutions, including
the optimal solution, are stored in a set called solutions pool.
Each solution of the pool is solved by the subproblem, not
just the optimal solution, which is why the procedure is a
multicut. When a job sequence of a machine in the solution
pool is found to be infeasible, a CBC is generated, as described
above. This forces the master problem to generate solutions
other than those of the solutions pool in the next iteration.
Thus, the multicut strategy reduces the number of iterations
required for the convergence of themethod, thereby reducing
computational runtime.

3.3. Warm-Start. A warm-start procedure for the combina-
torial Benders decomposition is proposed, based on the idea
of solving a restricted master problem.The aim is to produce
good quality CBCs more quickly. Many authors have shown
that the strong lower bounds found by the linear relaxations
of time-indexed formulations for machine scheduling prob-
lems provide useful information for guiding primal heuristics
called list-scheduling algorithms ([42–44]). In this sense, the
linear relaxation of the Benders decomposition master prob-
lem also provides a strong lower bound. The tests conducted
in this study show that the gap between the linear relaxation
and integer optimal solution of the master problem was on
average 7%. In addition, Fanjul-Peyro and Ruiz [45] showed
that, for a scheduling problem on parallel machines without
setup time, size-reduction heuristics produce good quality
solutions with little computational effort. These heuristics
use some clever criteria to reduce the number of variables

available during the run of the mathematical model. We join
these two ideas to propose our restricted master problem.

The restricted master problem is obtained by setting a set
of variables of the master problem to zero as follows. First, a
linear relaxation of the master problem is performed.That is,
all jobs for which the variable 𝑦𝑖𝑗 obtained a nonzero value
are inserted into the set of jobs available for machine 𝑖, which
is denoted as𝑁𝑅𝑖 . In addition, the rest of the jobs are inserted
into the set of jobs not available for machine i, denoted by
𝑁𝑂𝑖 . Thus, the restricted master problem is executed with the
variables 𝑦𝑖𝑗 of the jobs in𝑁𝑂𝑖 set to 0; that is, they cannot be
chosen, while the variables 𝑦𝑖𝑗 of the jobs in𝑁𝑅𝑖 can take the
value of 0 or 1. To increase the number of available jobs on
each machine and consequently improve the quality of the
solutions, the following size-reduction heuristic is used. We
first evaluate each job in 𝑁𝑂𝑖 and choose the one that could
possibly generate the least effect on the completion time of
machine 𝑖 (𝐶𝑖), which is then inserted into 𝑁𝑅𝑖 . To calculate
this effect, parameter 𝛿𝑖𝑘 is calculated for each job 𝑘 ∈ 𝑁𝑂𝑖 .
This parameter is the sum of the processing time of job 𝑘 on
machine 𝑖, the lowest setup time for jobs 𝑗 subsequent to job
𝑘, and the lowest setup time for jobs 𝑗 before job 𝑘, where
𝑗 ∈ 𝑁𝑅𝑖 ; that is, 𝛿𝑖𝑘 = 𝑝𝑖𝑘+min(𝑠𝑖𝑘𝑗)+min(𝑠𝑖𝑗𝑘).The job 𝑘with
the minimum 𝛿𝑖𝑘 is inserted into𝑁𝑅𝑖 and removed from𝑁𝑂𝑖 .
This procedure is repeated until𝑁𝑅𝑖 achieves the desired size.

The proposedwarm-start procedure consists of a Benders
decomposition using the restrictedmaster problemdescribed
above rather than the master problem with all available
jobs (the original master problem). The master problem is
hence solved more quickly, and thus CBC are also generated
more quickly. The warm-start procedure is executed in two
stages with different percentages of jobs in𝑁𝑅𝑖 , because they
empirically showed better performance. Each stage ends after
a fixed number of iterations or when the optimal solution of
the restrictedmaster problem is equal to theUB.Wemake the
observation that the optimal solution of the restricted master
problem is not an LB of the original problem.

3.4. ICBD. The master problem is a relaxation of the mixed-
integer formulation proposed by Avalos-Rosales et al. [1] for
the UPMSP-SMDST.This relaxation removes the elimination
constraints of the subcycles, that is, constraints (7), and con-
sequently constraints (8) and (10). For this reason, the master
problem may find job sequences with subcycles, which are
infeasible solutions. However, this relaxation provides a tight
LB and is significantly easier to solve than the complete
problem. Thus, this relaxation decomposes the UPMSP-
SMDST into a master problem of job allocations and 𝑚
scheduling subproblems on a single machine, which are used
to evaluate the existence of subcycles.

Given a solution of the master problem, where 𝐶mp
𝑖 is

the completion time of the job sequence of machine 𝑖 in the
master problem, the next step is to determine the existence of
any subcycles on each machine 𝑖 by means of a subproblem.
The resulting subproblem is equivalent to the traveling sales-
man problem with directed arcs, also known as asymmetric
traveling salesman problem. In this representation, the jobs

Journal of Applied Mathematics 5

(1) Given a solution of the master problem;
(2) 𝐶ℎmax ← 0;
(3) for 𝑖 = 1 until𝑚 do
(4) 𝐶ℎ𝑖 ← solve SPℎ𝑖 ;
(5) if 𝐶ℎ𝑖 > 𝐶mp

𝑖 (has sub-cycle) then add CBC;
(6) if 𝐶ℎ𝑖 > 𝐶ℎmax then 𝐶ℎmax ← 𝐶ℎ𝑖 ;
(7) end-for
(8) if UB > 𝐶ℎmax then UB ← 𝐶ℎmax;

Algorithm 1: Subproblem evaluation.

are the nodes and the distances between the nodes are
the setup times between jobs. The completion time of the
sequence is the sum of the distances between the nodes and
the processing time of the jobs. For each iteration ℎ of the
algorithm and machine 𝑖, one subproblem SPℎ𝑖 is generated
and its completion time 𝐶ℎ𝑖 is found. When 𝐶ℎ𝑖 > 𝐶mp

𝑖 , the
sequence has a subcycle, so a CBC is generated and added to
the master problem.The biggest 𝐶ℎ𝑖 is the iteration makespan
𝐶ℎmax. If 𝐶

ℎ
max is smaller than the UB, then it becomes the new

UB. This procedure is called subproblem evaluation, and its
pseudocode is shown in Algorithm 1.

The proposed ICBD method consists of solving the
master problem (MP) using the three proposed procedures
and the subproblems until a terminating condition is true.
In each iteration ℎ of ICBD, the master problem generates
a solution pool of size |Pool| according to the multicut
procedure outlined in Section 3.2. Algorithm 1 evaluates each
one of the solutions. The ICBD algorithm is presented in
Algorithm 2.

Algorithm 2 is used for both the restricted and original
master problems. Thus, this algorithm is executed twice
in sequence: once in the warm-start procedure with the
restricted master problem, and once with the original master
problem. The warm-start procedure is terminated at the
conclusion of its two stages or when their execution time
reaches the maximum time allowed. The original master
problem is terminated when the optimality condition (UB −
LB ≤ 0.0001) or total allowed run time is reached. It is
important to note that, during the warm-start procedure, the
optimal solution of themaster problem is not a valid LB of the
problem because it does not have all the variables available.

4. Computational Experiments

In order to test the mathematical formulation and Benders
decomposition methods, they were implemented using API
Concert Technology for C++ and solved using IBM ILOG
CPLEX 12.5. Tests were performed on a Dell Inspiron
notebook, equipped with an Intel Core i5-2430M 2.40GHz
processor with 4GB of memory and a Windows 7 operating
system. The maximum runtime allowed for any case was
3,600 s. If the solver was not able to find the optimal solution,
the best integer solution obtained is reported.

The computational experiments are performed using two
different instance sets: first with the instances used by Tran

and Beck [8] and next with instances from Vallada and
Ruiz [11] used by Avalos-Rosales et al. [1]. The test instances
obtained from Tran and Beck [8] have the following con-
figuration, with number of jobs 𝑁 ∈ {10, 20, 30, 40, 50, 60}
and number of machines 𝑀 ∈ {2, 3, 4, 5}. Setup times were
uniformly distributed at the interval: 25–50. Processing times
were uniformly distributed between 5 and 200. There were
10 replications for each possible combination of numbers of
job and machine, making a total of 240 instances. The test
instances obtained from Vallada and Ruiz (2011) are 𝑁 ∈
{20, 30, 40, 50, 60} and𝑀 ∈ {2, 3, 4, 5}. Setup times were uni-
formly distributed over three intervals: 1–49, 1–99, and 1–124.
Processing times were uniformly distributed between 1 and
99. There were 10 replications for each possible combination
of jobs and machines, and setup time, making a total of 600
instances. Last instances are available at http://soa.iti.es.

The instances were grouped by number of jobs and
machines. Therefore, each table row represents the average
results of 10 or 30 instances tested from Tran and Beck
[8] or Vallada and Ruiz [11], respectively. Table 1 compares
the results of the Benders decomposition method of Tran
and Beck [8] (T&B), and the proposed ICBD method using
instances from Tran and Beck [8]. Columns 1 and 2 refer
to the number of jobs and machines, respectively. The
remainder of the table is divided into three groups. The first
group refers to the average percentage gap between the first
iteration LB of MP (LB1) and the optimal solution (opt),
which is calculated as 100 ∗ (opt− LB1)/LB1. The second and
third group show the results from T&B and ICBD methods.
Columns of each group refer to the number of iterations
(iter), number of cuts (#cut), and run time (time).

All instances from Tran and Beck [8] were solved to
optimality by the two methods in less than 3,600 s. From
Table 1 it is noted that the average number of iterations of
T&B method was 1.69. A more detailed analysis showed that
44.2% of instances are solved with only one iteration (i.e., the
first solution of MP is equal to optimal solution) and 45.8%
of instances are solved in two iterations. However 90% of
instances are solved within two iterations, and the maximum
number of iterations was 5 which occurred once. Therefore,
with this instance set the ICBDmethod was performed using
only the multicut procedure because other procedures only
consume computational time and not bring any advantage. In
the combinations 10 × 2, 10 × 3, 10 × 4, and 20 × 4 the ICBD
method does not reduce the number of iterations or increase
the number of cuts generated. In other combinations there

http://soa.iti.es

6 Journal of Applied Mathematics

(1) begin
(2) h← 0; UB← +∞; stop← false;
(3) while (stop = false) do
(4) ℎ ← ℎ + 1;
(5) solve MP∗;
(6) for 𝑘 = 1 until |Pool| do // multi-cut
(7) evaluation of subproblems (Algorithm 1);
(8) end-for
(9) evaluate the terminating condition;
(10) end-while
(11) end

Algorithm 2: ICBD. ∗Restricted or original master problem.

Table 1: Comparison of T&B and ICBD methods using the instances from Tran and Beck (2012).

𝑛 𝑚 LB T&B ICBD
% gap Time # iter # cut Time # iter # cut Time

10

2 0.23 0.05 1.40 2.80 0.10 1.40 2.80 0.11
3 0.14 0.11 1.20 3.60 0.16 1.20 3.60 0.17
4 0.44 0.23 1.10 4.40 0.30 1.10 4.40 0.29
5 0.40 0.23 1.20 6.00 0.34 1.20 6.50 0.33

20

2 0.11 0.18 1.80 3.60 0.45 1.70 4.00 0.42
3 0.34 0.40 2.10 6.30 0.90 2.00 8.70 0.86
4 0.18 1.02 1.50 6.00 1.55 1.50 6.00 1.58
5 0.31 1.85 1.50 7.50 2.79 1.40 7.00 2.59

30

2 0.07 0.33 1.70 3.40 0.71 1.60 3.40 0.66
3 0.17 0.94 1.80 5.40 1.70 1.70 6.60 1.63
4 0.27 2.56 1.90 7.60 7.01 1.90 10.80 6.87
5 0.17 18.19 1.80 9.00 99.49 1.70 10.00 68.15

40

2 0.06 0.72 1.90 3.80 2.02 1.90 4.00 1.94
3 0.05 1.57 1.60 4.80 2.77 1.50 5.40 2.73
4 0.17 11.73 1.80 7.20 18.77 1.70 8.00 18.66
5 0.19 41.14 1.90 9.50 102.10 1.70 12.00 99.24

50

2 0.03 0.69 1.80 3.60 2.23 1.70 4.00 2.14
3 0.07 3.37 1.50 4.50 6.42 1.50 4.80 5.24
4 0.12 28.65 1.70 6.80 44.32 1.70 9.20 40.59
5 0.09 133.74 1.70 8.50 267.45 1.70 12.00 212.99

60

2 0.04 1.44 1.80 3.60 3.89 1.70 3.80 3.79
3 0.05 5.66 1.80 5.40 8.89 1.70 5.70 8.58
4 0.05 64.36 1.70 6.80 111.89 1.60 8.00 106.71
5 0.13 303.25 2.30 11.50 878.30 2.10 15.00 697.76

Average 0.16 25.93 1.69 5.90 65.19 1.62 6.90 53.50

were improvements, but as the number of iterations is small
the improvements are also small. The biggest differences in
runtimes were in the instances with five machines, usually
more difficult. Moreover, the final reduction in runtime using
the ICBD method compared to T&B method was 21.85%.

Table 2 shows the average percentage gap of results
obtained using the first solution of MP and the optimal
solution (or the best solution) for the instances from Vallada
and Ruiz [11].The first column represents the number of jobs;
the remainder of the table is divided into five groups, the first

four groups show the results for four numbers of machines
and average results for each number of jobs is shown in the
fifth group. It is noted that the gaps are greater than those
obtained using the instances from Tran and Beck [8], an
overall average gap of 1.54% versus 0.16%, respectively. Gaps
increase as the number of machines also increases, but the
opposite occurs when increasing the number of jobs.

The parameter values used by ICBD method are shown
next.The percentages of jobs in the sets𝑁𝑅𝑖 in the warm-start
procedure were set to 50% and 75%, for the first and second

Journal of Applied Mathematics 7

Table 2: Results of average percentage gap for the first MP solution using instances from Vallada and Ruiz (2011).

𝑛 𝑚 = 2 𝑚 = 3 𝑚 = 4 𝑚 = 5 Average
% gap Time % gap Time % gap Time % gap Time % gap Time

20 1.22 0.17 2.56 0.39 3.00 1.04 3.15 1.70 2.48 0.82
30 0.88 0.33 1.56 0.96 1.88 3.56 2.51 10.50 1.71 3.84
40 0.56 0.58 1.21 1.41 1.70 7.07 1.98 36.38 1.36 11.36
50 0.34 1.19 0.76 2.30 1.30 11.92 2.16 106.81 1.14 30.56
60 0.32 1.23 0.70 3.47 1.12 31.44 1.87 228.16 1.00 66.08
Average 0.66 0.70 1.36 1.71 1.80 11.01 2.33 76.71

Table 3: Comparison of the MIP, T&B, and ICBD methods based on the number of unsolved instances, average gap, and execution time.

𝑛 𝑚 # uns % gap Time
MIP T&B ICBD MIP T&B ICBD MIP T&B ICBD

20

2 0 0 0 0 0 0 0.95 0.89 1.07
3 0 0 0 0 0 0 2.52 2.14 1.87
4 0 0 0 0 0 0 8.17 9.01 4.27
5 0 0 0 0 0 0 31.12 31.05 11.65

30

2 0 0 0 0 0 0 3.48 2.79 3.06
3 0 0 0 0 0 0 17.27 34.62 10.99
4 0 1 0 0 0.01 0 145.81 233.14 83.26
5 0 0 0 0 0 0 365.14 287.38 85.61

40

2 0 0 0 0 0 0 10.85 3.41 4.93
3 0 0 0 0 0 0 66.68 30.9 16.09
4 0 0 0 0 0 0 466.00 348.09 111.52
5 2 8 2 0.15 0.67 0.05 1463.93 1446.89 743.84

50

2 0 0 0 0 0 0 40.54 5.69 9.96
3 0 1 0 0 0.01 0 257.40 280.30 103.89
4 3 4 1 0.11 0.11 0.02 1545.20 1212.69 648.19
5 18 16 11 1.87 1.22 0.53 2993.74 2542.33 2031.87

60

2 0 0 0 0 0 0 82.51 24.34 19.72
3 1 3 1 0.02 0.03 0.01 844.00 737.04 247.40
4 7 9 3 0.29 0.28 0.06 2306.63 1446.28 929.21
5 26 21 13 3.18 1.08 0.68 3473.69 2798.76 2488.82

Sum 57 63 31 Average 0.28 0.17 0.07 706.28 573.89 377.86

stages, respectively. The maximum number of iterations of
each warm-start stage was eight. A calibration of these para-
meters was attempted, although, in the combinations tested,
none had a superior statistical performance, so these tests are
not presented. The maximum time allowed for the execution
of the two warm-start stages was 1,800 s. The maximum
execution time of the original master problem was 3,600 s
minus the total execution time of the warm-start procedure.

Table 3 compares the results of the mixed-integer pro-
gramming model (MIP) of Avalos-Rosales et al. [1], the T&B
method, and the ICBD (with three proposed procedures)
method using the instances from Vallada and Ruiz [11].
Columns 1 and 2 refer to the number of jobs and machines,
respectively. The remainder of the table is divided into three
groups. The first group refers to the number of unsolved
instances until optimality (#Uns.). The second group shows
the average percentage gap (% Gap), which is calculated as
100∗ (UB−LB)/LB.The third group shows the average CPU

time elapsed in seconds (Time) when solving the instances.
There are three columns for each group and one for each
method evaluated. Values in italics indicate the best result for
a particular combination of jobs and machines.

Comparing the three methods, ICBD obtained the best
results for each one of the three performance criteria ana-
lyzed. It failed to solve only 31 instances, MIP failed to
solve 57 instances, and T&B had 63 unsolved instances.
ICBD obtained the lowest overall average gap of 0.07%,
while the T&B and MIP methods obtained 0.17% and 0.28%,
respectively. In all instance groups, ICBDobtained an average
gap that was lower than or equal to the other methods.
The instances with 60 jobs and 5 machines obtained the
highest gaps: the MIP, T&B, and ICBD methods obtained
3.18%, 1.08%, and 0.68%, respectively. The average execution
time of ICBD was 377.86 s, while those of the T&B and MIP
methods were 573.89 s and 706.28 s, respectively. The ICBD
method used 51.88% less runtime than the T&B method,

8 Journal of Applied Mathematics

Table 4: Comparison of T&B and ICBD relative to traditional and proposed convergence acceleration elements.

𝑛 𝑚 T&B ICBD
iter # cut # ta # ws iter # iter # ws cut # cut ws time Original time

20

2 4.27 0.00 0.57 5.43 1.20 22.97 3.73 1.12 0.33
3 5.17 0.00 0.53 4.87 1.50 33.73 7.60 1.97 0.75
4 5.77 0.00 0.50 4.90 1.20 44.13 6.83 5.09 1.93
5 5.13 0.00 0.43 5.07 1.73 20.80 5.37 2.22 6.44

30

2 8.07 0.00 1.07 5.80 1.83 31.47 8.10 3.59 1.18
3 10.77 0.00 1.77 7.03 1.80 62.07 10.97 23.71 6.28
4 8.80 0.00 1.13 6.20 1.33 66.63 8.07 46.64 59.3
5 3.90 0.00 0.23 4.37 1.53 16.47 4.90 7.91 35.07

40

2 8.57 0.00 1.70 6.33 1.90 36.17 8.13 7.43 1.84
3 11.70 0.00 1.53 7.60 1.23 67.93 5.77 44.02 7.75
4 9.43 0.00 2.00 6.97 1.47 88.10 10.80 347.75 45.53
5 5.90 0.00 0.97 5.37 2.20 29.00 8.03 55.59 369.05

50

2 13.63 0.00 3.70 7.20 3.90 45.10 21.83 17.25 3.4
3 11.97 0.00 2.60 8.47 1.97 80.27 11.33 293.77 83.28
4 12.27 0.00 3.40 8.43 1.67 116.30 12.97 841.21 303.00
5 8.03 0.00 1.83 6.27 2.33 49.87 11.73 307.05 947.89

60

2 12.07 0.00 3.37 7.93 2.87 50.47 16.70 42.00 8.39
3 18.17 0.00 5.17 10.73 2.73 107.07 17.40 328.53 188.97
4 10.40 0.00 4.40 9.00 1.53 130.63 13.80 1185.92 443.66
5 8.20 0.00 4.40 8.60 1.20 161.00 22.00 1802.03 1179.53

Average 9.11 0.00 2.07 6.83 1.86 63.01 10.80 268.24 184.68

higher value than that obtained using the instances fromTran
and Beck [8], because the instances from Vallada and Ruiz
[11] need more iterations to be solved; then the proposed
improvement methods obtain better results. In the T&B
method, 7.67% and 15.17% of the instances are solvedwith one
and two iterations, respectively, much lower percentages than
using instances from Tran and Beck [8]. The results indicate
that Vallada and Ruiz instances obtain the optimal solution
more difficultly. Therefore, it justifies the use of the three
improvement procedures.

The average number of iterations using the original
master problem is 1.87 for ICBD and 8.90 for T&B, and
this difference is due in part to the average number of itera-
tions performed by the warm-start procedure, which is
6.63. Adding together the number of both iterations, the
ICBD method uses on average 8.5 iterations. Although both
methods have almost the same number of iterations, the iter-
ations during the warm-start procedure consume less com-
putational time than those of the original master problem,
and since there are more of them in ICBD, it makes this
method faster. The quantity of CBCs generated by the ICBD
during the warm-start procedure (56.76) is higher than
those generated during the execution of the original master
problem (10.07). The ICBD produces on average 66.83
CBCs in both phases, much more than the T&B method,
which produces an average of 32.40 CBCs. This is because
of the multicut procedure. The early termination of the
master problem occurs on average 1.89 times in all instances;
however, as the number of jobs increases, the number of
times that this procedure is executed also increases. For

example, in the instances with 60 jobs and 3 machines, it
occurs on average 4.60 times. For ICBD, the average run time
of the warm-start procedure is 193.18 s, which is greater than
the average run time of original master problem, which is
184.68 s. The sum of these two run times is 377.86 s, which is
less than the average run time of the T&B method (573.89 s).
These results are shown in Table 4, where columns 1 and
2 refer to the number of jobs and machines, respectively.
The average numbers of iterations (#iter) and cuts (#cut)
during the execution of the original master problem were
measured for both the T&B and ICBD methods. In addition,
the average numbers of master problem terminations (#ta),
warm-start iterations (#ws iter), and CBCs generated in
the warm-start procedure (#ws cut) were measured for
ICBD. The average ICBD execution times of the warm-start
procedure (ws time) and original master problem (original
time) were also measured.

5. Conclusions

The master problem of Benders decomposition provides a
tight LB, as the optimality gap after the first iteration is atmost
5% of the UB. Hence, the difficulty of themethod is that there
may bemany solutions in themaster problem that are smaller
than the optimal solution of the original problem. Until all
these solutions are found and evaluated by the subproblem,
themethod cannot be terminatedwith a gap of 0%.Therefore,
the challenge is to find these solutions as quickly as possible.
With that in mind, the proposed procedures seek to quickly
find them.These procedures consist of an early termination of

Journal of Applied Mathematics 9

the master problem execution when a repeated LB is found,
a multicut procedure that evaluates more than one solution
at a time, and finally, a warm-start procedure, in which
quality solutions are found more quickly. No procedure was
developed to accelerate the subproblem solutions because
they consume much less computational time than the master
problem.

The proposed acceleration procedures have not before
been applied to the UPMSP-SMDST. Furthermore, they
can be used with a combinatorial Benders decomposition
in any other problem. In addition, the results show that
the procedures improve the performance of the Benders
decomposition scheme of Tran and Beck [8]. Moreover, the
proposed method also performed better than the mixed-
integer formulation of Avalos-Rosales et al. [1] relative to the
three performance criteria analyzed.

The approach used by Geoffrion and Graves [32] of
solving the master problem only once and generating a
Benders cut each time a better incumbent solution is found
was tested and used more computational time than the
traditional approach. One hypothesis of why this happened
is that, to implement this procedure, it is necessary to use a
CPLEX callback function that disables the dynamic search
used to improve CPLEX performance. The local branching
strategy of Fischetti and Lodi [34] was also tested, but it
consumed more computational time to find the repeated
solutions of the proposed procedures.

One proposal for future work is to develop a strong cut
that eliminates more solutions than just the infeasible solu-
tions as in the no-good cut. Another proposal is to develop
a heuristic to create quality cuts to be inserted into the
master problem before starting the Benders decomposition
procedures themselves, as in Sherali and Lunday [24].

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge Dr. Tony T. Tran for
providing the instances used in Tran and Beck [8], and also
the CNPq (National Council for Scientific and Technological
Development), CAPES (Coordination of Personnel Improve-
ment of Higher Education), and FAPEMIG (Foundation for
Research Support of the State of Minas Gerais) for financial
support.

References

[1] O. Avalos-Rosales, F. Angel-Bello, and A. Alvarez, “Efficient
metaheuristic algorithm and re-formulations for the unre-
lated parallel machine scheduling problem with sequence
and machine-dependent setup times,” International Journal of
AdvancedManufacturing Technology, vol. 76, no. 9-12, pp. 1705–
1718, 2014.

[2] M. Afzalirad and M. Shafipour, “Design of an efficient genetic
algorithm for resource-constrained unrelated parallel machine

scheduling problem with machine eligibility restrictions,” Jour-
nal of Intelligent Manufacturing, 2015.

[3] E. Mokotoff, “Parallel machine scheduling problems: a survey,”
Asia-Pacific Journal of Operational Research, vol. 18, no. 2, pp.
193–242, 2001.

[4] A. Allahverdi and H. M. Soroush, “The significance of reduc-
ing setup times/setup costs,” European Journal of Operational
Research, vol. 187, no. 3, pp. 978–984, 2008.

[5] J. Błażewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,
Scheduling Computer and Manufacturing Processes, Springer
Berlin Heidelberg, Berlin, Germany, 1996.

[6] P. L. Rocha, M. G. Ravetti, G. R. Mateus, and P. M. Pardalos,
“Exact algorithms for a scheduling problem with unrelated
parallel machines and sequence and machine-dependent setup
times,” Computers and Operations Research, vol. 35, no. 4, pp.
1250–1264, 2008.

[7] M. R. de Paula, G. R. Mateus, and M. G. Ravetti, “A non-
delayed relax-and-cut algorithm for scheduling problems with
parallel machines, due dates and sequence-dependent setup
times,”Computers &Operations Research, vol. 37, no. 5, pp. 938–
949, 2010.

[8] T. Tran and J. C. Beck, “Logic-based Benders decomposition
for alternative resource scheduling with sequence dependent
setups,” in Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI ’12), pp. 774–779, 2012.

[9] M. R. de Paula, M. n. Ravetti, G. R. Mateus, and P. M. Pardalos,
“Solving parallel machines scheduling problemswith sequence-
dependent setup times using variable neighbourhood search,”
IMA Journal ofManagementMathematics, vol. 18, no. 2, pp. 101–
115, 2007.

[10] S.-W. Lin, C.-C. Lu, and K.-C. Ying, “Minimization of total
tardiness on unrelated parallel machines with sequence- and
machine-dependent setup times under due date constraints,”
International Journal of Advanced Manufacturing Technology,
vol. 53, no. 1–4, pp. 353–361, 2011.

[11] E. Vallada and R. Ruiz, “A genetic algorithm for the unrelated
parallel machine scheduling problem with sequence dependent
setup times,” European Journal of Operational Research, vol. 211,
no. 3, pp. 612–622, 2011.

[12] K.-C. Ying, Z.-J. Lee, and S.-W. Lin, “Makespan minimization
for scheduling unrelated parallel machines with setup times,”
Journal of IntelligentManufacturing, vol. 23, no. 5, pp. 1795–1803,
2012.

[13] J.-H. Lee, J.-M. Yu, and D.-H. Lee, “A tabu search algorithm
for unrelated parallel machine scheduling with sequence- and
machine-dependent setups: Minimizing total tardiness,” Inter-
national Journal of AdvancedManufacturing Technology, vol. 69,
no. 9-12, pp. 2081–2089, 2013.

[14] J.-P. Arnaout, R. Musa, and G. Rabadi, “A two-stage ant colony
optimization algorithm tominimize themakespan on unrelated
parallel machines—Part II: enhancements and experimenta-
tions,” Journal of IntelligentManufacturing, vol. 25, no. 1, pp. 43–
53, 2014.

[15] J. N. Hooker, “A hybrid method for planning and scheduling,”
Constraints. An International Journal, vol. 10, no. 4, pp. 385–401,
2005.

[16] J. N. Hooker, “An integrated method for planning and schedul-
ing to minimize tardiness,” Constraints. An International Jour-
nal, vol. 11, no. 2-3, pp. 139–157, 2006.

[17] J. N. Hooker, “Planning and scheduling by logic-based Benders
decomposition,”Operations Research, vol. 55, no. 3, pp. 588–602,
2007.

10 Journal of Applied Mathematics

[18] H. Li and K. Womer, “Scheduling projects with multi-skilled
personnel by a hybrid MILP/CP benders decomposition algo-
rithm,” Journal of Scheduling, vol. 12, no. 3, pp. 281–298, 2009.

[19] E. Coban and J. N. Hooker, “Single-facility scheduling by logic-
based Benders decomposition,” Annals of Operations Research,
vol. 210, pp. 245–272, 2013.

[20] J. F. Benders, “Partitioning procedures for solving mixed-
variables programming problems,” Numerische Mathematik,
vol. 4, pp. 238–252, 1962.

[21] J. N. Hooker and G. Ottosson, “Logic-based Benders decompo-
sition,” Mathematical Programming, Series B, vol. 96, no. 1, pp.
33–60, 2003.

[22] R. L.Graham, E. L. Lawler, J. K. Lenstra, andA.H. RinnooyKan,
“Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics, vol.
5, pp. 287–326, 1979.

[23] G. K. D. Saharidis and M. G. Ierapetritou, “Improving benders
decomposition using maximum feasible subsystem (MFS) cut
generation strategy,” Computers and Chemical Engineering, vol.
34, no. 8, pp. 1237–1245, 2010.

[24] H. D. Sherali and B. J. Lunday, “On generating maximal non-
dominated Benders cuts,” Annals of Operations Research, vol.
210, pp. 57–72, 2013.

[25] N. Papadakos, “Practical enhancements to the Magnanti-Wong
method,” Operations Research Letters, vol. 36, no. 4, pp. 444–
449, 2008.

[26] W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano, “Acceler-
ating Benders decomposition by local branching,” INFORMS
Journal on Computing, vol. 21, no. 2, pp. 333–345, 2009.

[27] G. K. Saharidis, M. Minoux, and M. G. Ierapetritou, “Acceler-
ating Benders method using covering cut bundle generation,”
International Transactions in Operational Research, vol. 17, no.
2, pp. 221–237, 2010.

[28] G. K. Saharidis and M. G. Ierapetritou, “Speed-up Benders
decomposition using maximum density cut (MDC) genera-
tion,” Annals of Operations Research, vol. 210, pp. 101–123, 2013.

[29] N. Azad, G. K. Saharidis, H. Davoudpour, H. Malekly, and S.
A. Yektamaram, “Strategies for protecting supply chain net-
works against facility and transportation disruptions: an
improved Benders decomposition approach,” Annals of Oper-
ations Research, vol. 210, pp. 125–163, 2013.

[30] D. McDaniel and M. Devine, “A modified benders’ partitioning
algorithm for mixed integer programming,” Management Sci-
ence, vol. 24, no. 3, pp. 312–319, 1977.

[31] D. Wheatley, F. Gzara, and E. Jewkes, “Logic-based Benders
decomposition for an inventory-location problem with service
constraints,” Omega (United Kingdom), vol. 55, pp. 10–23, 2015.

[32] A. M. Geoffrion and G. W. Graves, “Multicommodity distri-
bution system design by benders decomposition,”Management
Science, vol. 20, no. 5, pp. 822–844, 1974.

[33] G. Côté and M. A. Laughton, “Large-scale mixed integer
programming: benders-type heuristics,” European Journal of
Operational Research, vol. 16, no. 3, pp. 327–333, 1984.

[34] M. Fischetti and A. Lodi, “Local branching,” Mathematical
Programming. A Publication of the Mathematical Programming
Society, vol. 98, no. 1-3, Ser. B, pp. 23–47, 2003.

[35] C. A. Poojari and J. E. Beasley, “Improving Benders decomposi-
tion using a genetic algorithm,” European Journal of Operational
Research, vol. 199, no. 1, pp. 89–97, 2009.

[36] Z. Huang and Q. P. Zheng, “Decomposition-based exact algo-
rithms for risk-constrained traveling salesman problems with

discrete random arc costs,” Optimization Letters, vol. 9, no. 8,
pp. 1553–1568, 2015.

[37] H. D. Sherali, K.-H. Bae, and M. Haouari, “A Benders decom-
position approach for an integrated airline schedule design and
fleet assignment problemwith flight retiming, schedule balance,
and demand recapture,” Annals of Operations Research, vol. 210,
pp. 213–244, 2013.

[38] M. Jenabi, S. M. Fatemi Ghomi, S. A. Torabi, and S. H. Hoss-
einian, “Acceleration strategies of Benders decomposition for
the security constraints power system expansion planning,”
Annals of Operations Research, vol. 235, pp. 337–369, 2015.

[39] F. You and I. E. Grossmann, “Multicut Benders decomposition
algorithm for process supply chain planning under uncertainty,”
Annals of Operations Research, vol. 210, pp. 191–211, 2013.

[40] T. L. Magnanti and R. T. Wong, “Accelerating Benders decom-
position: algorithmic enhancement and model selection crite-
ria,”Operations Research.The Journal of the Operations Research
Society of America, vol. 29, no. 3, pp. 464–484, 1981.

[41] V. Jain and I. E. Grossmann, “Algorithms for hybrid MILP/CP
models for a class of optimization problems,” INFORMS Journal
on Computing, vol. 13, no. 4, pp. 258–276, 2001.

[42] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, “Schedul-
ing to minimize average completion time: off-line and on-
line approximation algorithms,” Mathematics of Operations
Research, vol. 22, no. 3, pp. 513–544, 1997.

[43] C. Phillips, C. Stein, and J. Wein, “Minimizing average com-
pletion time in the presence of release dates,” Mathematical
Programming, vol. 82, no. 1-2, Ser. B, pp. 199–223, 1998.

[44] J.M. van denAkker, C. P. vanHoesel, andM.W. Savelsbergh, “A
polyhedral approach to single-machine scheduling problems,”
Mathematical Programming. A Publication of the Mathematical
Programming Society, vol. 85, no. 3, Ser. A, pp. 541–572, 1999.

[45] L. Fanjul-Peyro and R. Ruiz, “Size-reduction heuristics for the
unrelated parallel machines scheduling problem,” Computers
and Operations Research, vol. 38, no. 1, pp. 301–309, 2011.

