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The risk neutral density is an important tool for analyzing the dynamics of financial markets and traders’ attitudes and reactions
to already experienced shocks by financial markets as well as the potential ones. In this paper, we present a new method for the
extraction information content from option prices. By eliminating bias caused by daily variation of contract maturity through
a completely nonparametric technique based on kernel regression, we allow comparing evolution of risk neutral density and
extracting from time continuous indicators that detect evolution of traders’ attitudes, risk perception, and belief homogeneity.
This method is useful to develop trading strategies and monetary policies.

1. Introduction

The risk neutral density is an important tool for analyzing
the dynamics of financial markets and traders’ attitudes and
reactions to already experienced shocks by financial markets
as well as the potential ones.

Interest in RND continues to grow mainly due to the
proliferation of financial crises. Indeed, one of the virtues
of these densities is the ability to predict crises through
extreme shock probabilities revealed by densities flattening
coefficients. One of the possible applications of RND is to
extract traders’ risk aversion with regard to the underlying
historical density. The estimation of the bias between the
two densities gives an idea about the market risk premium;
indeed themarket risk premium should be positive under the
assumption that investors are risk averse. As to the specific
magnitude and its volatility over time, several key results
emerge from the academic literature (Dimson et al. (2003),
Cochrane (2005), van Binsbergen et al. (2012), and Berg
(2012)), which will help to develop more effective trading
strategies. These densities are also an important tool for
developing monetary policies. Indeed, financial authorities
are using these densities to estimate the effectiveness of
monetary policies through direct observation of changes in
agents’ attitudes and beliefs regarding future maturities.

TheRNDallows comparing expectationswith the average
market opinion, which will help investors to explicitly adjust
their positions according to market trends revealed by these
densities. In this sense, the risk neutral density is used
to develop confidence intervals for determined predictions
based on standard deviations of the skewed distribution in
a similar approach to the concept of value-at-risk.

From the end of the 70s, the research on RND has pro-
liferated thanks to the martingale presentation of Harrison
[1] writing option price as a function of underlying expected
return. The work of Breeden and Letzenberger constitutes
the core of future research addressing the RND showing that
this density is simply the second derivative of the option
price with respect to the option strike. The existence of small
number of option contracts at different strike prices for the
same maturity is the major problem of RND curve drawing.

Further works have proposed several methods to solve
this problem. Some authors have assumed a definite form of
the density (log-normalmixture). Others havemade assump-
tions on the underlying diffusion model (jump model).
There are also completely nonparametric models without any
assumptions neither on the underlying diffusion process nor
on the shape of density, and methods called semiparametric
mainly use nonparametric technology and are assisted by
some assumptions due to convergence problems. Several
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authors have presented deep analysis of the dynamics of
financial markets and traders’ behavior based on RND.
For instance, Gemmill and Saflekos [2] exploited densities
extracted from options on FTSE to study the market expec-
tations during the British elections. When analyzing the
information content of option prices during the crash of the
Hong Kong Stock Exchange in 1997, Souissi and Aloulou [3]
deduced that CAC40 implied volatility is a good estimator
of future volatility. Lynch and Panigirtzoglou [4] analyzed
the densities extracted from S&P 500 index options during
the period 1985–2001.They found that densities responded to
events of the steps, but they were less convenient to predict.

Taylor et al. [5] showed a relationship between the
risk neutral skew and the size of the firm, systemic risks,
market and firm volatility, liquidity, and the leverage effect
ratio. Hamidieh (2010) examined the density tails during the
second half of 2008; he found that the left tail was thinner
at the peak of the crisis. Birru and Figlewski [6] examined
the RND in the S&P 500 during the subprime crisis. They
showed that the arbitrage kept the densities average closely
related to the market index. They also found a strong density
reaction to the index movement. The central portions of
densities amplified this change of more than 50% in some
cases, especially in hawsers periods.

Melick andThomas (1998) made two warnings about the
estimated densities. The first is related to the functional form
of the estimated density, leading to a particular distribution.
The simplest example is the density extracted via the Black-
Scholes model whose distribution is always symmetrical
whatever the level of investor’s loss aversion is. The second
is related to the “unknown extent” in which the attitude to
risk is incorporated in the prices of options contracts which
complicates the interpretation of the estimated densities.

The two authors added that the analyses at the Federal
Reserve based on DNR were generally built on “instant”
comparisons involving short periods during which it could
be assumed that the risk attitude did not change according
to the marginalization of foreshortening maturity changes.
These comparisons were useful only for very short periods
which did not allow detecting changes in agent’s attitudes and
beliefs. According to Melick and Thomas, eliminating bias
caused by daily variation time to maturities would make it
possible to compare the evolution of densities and thus to
extract continuous indicators reflecting changes in attitudes
and expectations.

In this context, we will develop in the second section a
new approach to better exploit the option prices information
content through the elimination of bias caused by the daily
variation of maturities. This will allow us to compare the risk
neutral densities and extract continuous indicators reflecting
attitudes (especially risk perception) and operative character-
istics such as the heterogeneity of their beliefs.

2. Risk Neutral Density

Oneof the basic assumptions of the popularmodels in finance
is the absence of arbitrage opportunity. This means that it
would be no way to gain some wealth in a future date without
initial cost. In a perfect market, two portfolios generating

same cash flows should have the same value at any time.
Accidentally, arbitrage opportunities can be detected due to
market imperfections which are rapidly depleted by market
players whose concern is to enjoy these abnormalities.

These agents, through their actions, bring prices back to
the no-arbitrage price. So the opportunities are disappearing
rapidly, which further legitimizes the general assumption of
no arbitrage.The direct consequence of this assumption is the
existence of a single measure called martingale probability. It
follows that asset prices are equal to their expected return.

Breeden and Litzenberger [7] were the first to identify a
relationship between the option price and the distribution of
the underlying price. They extracted RND by deriving twice
the price of a derivative with respect to the strike.

According to these authors, the price of the call according
to the no-arbitrage assumption had to be equal to the
expected future returns:

𝐶 (𝑡, 𝑇, 𝑆, 𝑋)
= 𝑒−𝑟𝑡(𝑡)(𝑇−𝑡) ∫∞

0

max (𝑆𝑡 − 𝑋𝑐, 0) 𝑞 (𝑆𝑇) 𝑑𝑆𝑇
⋅ 𝑃 [𝑎 ≤ 𝑥 ≤ 𝑏] ,

𝐶 (𝑡, 𝑇, 𝑆, 𝑋) = 𝑒−𝑟𝑡(𝑡)(𝑇−𝑡) ∫∞
𝑋𝑐

(𝑆𝑡 − 𝑋𝑐) 𝑞 (𝑆𝑡) 𝑑𝑆𝑡

(1)

where 𝑇 is time to maturity, 𝐶 is option price, 𝑟 is free risk
interest rate, 𝑆 is underlying price, 𝑋𝑐 is strike, and 𝑞(⋅) is
probability density.

The first derivative of the European call option with
respect to the exercise price is

𝜕𝐶
𝜕𝑋𝑐 = −𝑒

−𝑟𝑡 ∫∞
𝑋𝑐

𝑞 (𝑆𝑡) 𝑑𝑆𝑡

= −𝑒−𝑟𝑡 [1 − ∫𝑋𝑐
∞

𝑞 (𝑆𝑡) 𝑑𝑆𝑡]
= −𝑒−𝑟𝑡 [1 − 𝑄 (𝑆𝑡)]𝑆

𝑡
=𝑋𝑐

𝜕𝐶
𝜕𝑋𝑐 = −𝑒

−𝑟𝑡𝑃 (𝑆𝑡 > 𝑋𝑐) .

(2)

The first derivative of the European call option with respect
to the exercise price is equal to the probability that the option
is on the money multiplied by −1.

From this result, we can notice that when the option is
deep out of the money, the option price is not significantly
affected by strike variation

𝜕𝐶
𝜕𝑋𝑐 ≅ 0. (3)

In the opposite case, if the strike is much lower than the
underlying price, the option has very high chance of being
exercised. Strike variation of one currency unit will cause a
change in the opposite direction of the option price of one
updated currency unit

𝜕𝐶
𝜕𝑋𝑐 ≅ −𝑒

−𝑟𝑡. (4)
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When we drift again the price of the call to Strike, we obtain
the Breeden and Litzenberger formula

𝜕2𝐶
𝜕𝑋𝑐2

𝑆
𝑡
=𝑋𝑐

= −𝑒−𝑟𝑡𝑞 (𝑆𝑡) . (5)

This approach requires digital approximation using the
method of finite difference. This presupposes the existence
of sufficient number of listed options contracts for the
same maturity with different strikes. However, the major
limitation of this method revolves around the robustness of
the empirical application due to insufficient exercise price
quotes.

To solve this problem, some authors introduced mainly
two ideas.The first was to make nonparametric interpolation
to obtain sufficient observations to the extraction of second
derivatives. The second way was to make assumptions about
the underlying diffusion process or the shape of the density
to grant (structural models). Jackwerth [8] and Figlewski [9]
provided a detailed review of the work on the extraction of
RND.

Among these works, we could cite those of Jarrow and
Rudd [10] who developed option pricing method assuming
that the underlying asset did not follow a log-normal. These
authors obtained the risk neutral density by Edgeworth
expansion around the log-normal distribution. Corrado and
Su [11] used the Jarrow and Rudd method to determine the
third and the fourth moments of the SP500 options prices.

Shimko (1993) estimated the risk neutral density by
smoothing smile. Heston [12] offered a quasi-analytical solu-
tion for option prices in a context of stochastic volatility.
Rubinstein [13] developed an implicit tree to estimate asset
price from options prices, minimizing the gap between the
implied probability of the tree and the probabilities obtained
from the Cox and Ross tree (1976). Jackwerth and Rubinstein
[14] proposed a method based on binomial trees. Madan and
Milne [15] and Abken et al. [16] obtained the risk neutral
density from Hermite polynomial approximation. Chiarell
[17] used the work of Fourier-Hermite to assess the EU
and US share options. Bahra [18] and Sherrick et al. [19]
introduced a nonparametric method to evaluate European
options. These authors presented the risk neutral density
as a linear combination of log-normal densities. Melik and
Thomas [20] adjust this method for American options. Adir
and Rockinger [21] determined the option price formulas by
using the Kummer hypergeometric functions. Backus [22]
used the Gram-Charlier expansion series to approximate the
conditional distribution of the underlying price. Ait-Sahalia
[23] and Ait-Sahalia and Lo [24, 25] obtained the risk neutral
density from the S&P 500 options by the kernel estima-
tion technique. Bondarenko [26] proposed a nonparametric
method based on a positive convolution approximation.
Rompolis and Tzavalis [27] used a new density extraction
method based on exponential Gram-Charlier series to ensure
always positive values. Monteiro and Vecentec [28] presented
a new approach for estimating RND achieved in the space
of cubic splines ensuring positivity for the polynomial func-
tions. Rompolis [29] suggested a new method of using the
principle of entropy maximization. Figlewski [9] combined

smoothing techniques to reflect the bid-ask spread and a
new method of completing the density with tails from a
generalized extreme value distribution. Fabozzi et al. [30]
applied the Levy process to estimate the risk neutral density.

Several authors were interested in comparing RND
extraction methods. Jondeau [31] compared the log-normal
mixing method, Heston model, jump model, and Edgew-
erth approximating. According to their study on options
on exchange rates, they found that the mixing log-normal
method gave the best results. However, in times of crises,
density extracted from jumping model offered the best
results.

Coutant [32] carried out the comparison between the
entropy maximizing method, the mixture of log-normal
distribution, and the Gram-Charlier expansion based on
three criteria: these are robustness of estimation, convergence
speed, and ease of application. They argued that the method
which is based on the Gram-Charlier expansion provides
the most stable results for options on interest rates. Bliss
and Panigrizoglou [33] analyzed the robustness of the results
provided by the Shimko method and that of the log-normal
mixture. They showed that the smile smoothing method
provided a slightly better performance.However, thismethod
could not cover the leptokurtic distribution after a certain
level of exercise prices.

Hamdi and Lemennicier (2011) compared six methods of
RND extraction. They find that mixing log-normal method
as well as Hermite polynomials and jumping model fits best
historical densities.

3. Maturity Effect on Risk Neutral Density

The effect of maturity on traders’ expectations is capital.
The more the deadline is approaching, the more traders are
confident in their expectations and show less risk aversion.
Humphreys [34] suggested that uncertainty embodied in the
densities tended to decline as we approached the expiration
date and a very few exchanges usually took place on days
immediately preceding this date.

Figure 1 shows the effect of the maturity on the traders’
expectations. Indeed, the distributions of probability densi-
ties show that traders aremore confident in their expectations
for the first date.

According to Table 1, the market is twice more confident
on its expectation about underlying price expectation on the
first maturity than the second farthest of 34 days. Also, note
that the probability granted by the market to an extreme
disturbance increases by more than 200 times. To analyze
the dynamics of changes in attitudes, in particular risk
perception, it is imperative to eliminate bias caused by daily
maturity variation, which does not allow comparing the
evolution of densities.

Melik and Thomas [20] discussed the problem of daily
change in the maturity options as well as that of replac-
ing contracts which reached maturity. They suggested two
“possible” methods to correct these problems. One idea was
to incorporate the dependence of maturity explicitly in the
functional of the probability density. Butler and Davies [35]
applied a correction of this kind to the implied probability
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Figure 1: RND 3 July 2012 extracted from S&P TSX 60 index.

Table 1: Maturity effect on traders’ expectations.

Maturity of 44 days Maturity of 78 days
Most anticipated value (𝑚) 661.870 659.160
𝑃(𝑥) = 𝑚 0.0102 0.0050
𝑃(𝑥 ≤ 𝑚) − 𝑃(𝑥 ≥ 𝑚) 0.0466 0.0977
𝑃(𝑥 ≤ 540) − 𝑃(𝑥 ≥ 860) 0.00019 0.04133

densities in the interest rate contracts on three-month Euro-
sterling. The major drawback of this idea was that, using the
Black-Scholes model, the density would be a log-normal, so
it did not reflect the distribution asymmetry and the fear
of extreme shock. The second method is to freely estimate
probability densities and to correct the results under the
dependence of maturity. The disadvantage of this technique
was that the correction will be very arbitrary and that it will
be hard to check result’s robustness.

The authors were faced with the daily variation problem
maturities in option contracts when exploring two areas, the
first topic being the study of the predictive power of implied
volatility of future changes in assets and the second being
the dynamic analysis of daily changes in attitudes of agents
through risk neutral densities. Panigirtzoglou and Proudman
[36] developed a method for obtaining a constant maturity
series based on an interpolation of the implicit volatilities.
This technique consisted of obtaining a smooth function of
the smile via the technique of cubic spline. This method
has been used by several subsequent works in analyzing
the behavior of agents via the RND evolution. Indeed, this
technique allowed Bliss and Panigirtzoglou [37] to estimate
the implied risk aversion at different horizons. They showed
that for the FTSE 100 and S&P 500, the degree of risk aversion
decreased greatly with the forecast horizon and was lower
during periods of high market volatility. Panigirtzoglou and
Skiadopoulos [38] presented a new approach to modeling
the dynamics of implied distributions obtained through con-
stant maturity option prices on the S&P 500. They applied a

principal component analysis and “Monte Carlo” simulation
to model the evolution of the entire distribution over time.
Lynch and Panigirtzoglou [4] analyzed the evolution of
the risk neutral densities extracted from constant maturity
option prices. Kostakis, Panigirtzoglou, and Skiadopoulos
(2011) developed an approach that used the constantmaturity
options price for a better allocation and portfolio manage-
ment on the S&P 500.

Themajor drawback of themethod of Panigirtzoglou and
Proudman [36] on which all this work was based was that,
to get the price of options for a fixed maturity horizon, the
authors were forced to go through a pricing model (Black-
Scholes model) to extract the price from implied volatilities.
Indeed, this model and even every other pricing model were
subject to much criticism. We developed a new option price
of obtaining constant maturity approach fully nonparametric
which has the advantage of not resorting to any pricing
model.

4. Constant Maturity Series

To compare the daily evolution of the risk neutral densities
and collect time continuous indicators measuring the above
variables, we developed an approach similar to that of
Panigirtzoglou and Proudman [36].These authors developed
amethod to obtain a series of constant maturity option prices
based on an interpolation of the implicit volatilitieswith cubic
spline.
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Figure 2:Options on S&PTSX60 January 10, 2011, implied volatility
surface.

The major drawback of the method of Panigirtzoglou
Proudman [36] related to the fact that these authors were
forced to go through a pricing model (Black-Scholes model
[22]) to extract prices from implied volatilities. Indeed, this
model and even every other pricing model were subject to
much criticism.

We have developed a new fully nonparametric approach
to obtain constant maturity option price series which has
the advantage of not resorting to any pricing model inspired
from Ait-Sahalia and Lo [25] using kernel smoothing. This
allowed us to compare the probabilities extracted from risk
neutral densities and create a time continuous indicator
reflecting the evolution of the traders’ risk perception and
their homogeneity belief degree. The method of Ait-Sahalia
and Lo [25] supposed that this surface was smooth enough
that the value at a given time could be calculated by taking
the weighted average of all neighboring points. The weight
given to each neighboring point decreased as the point
was located farther from the target point. To calculate the
corresponding implied volatility, the authors used a kernel
density function which included smoothing parameter that
indicated a weighted average of the neighboring points to
include. On this volatility surface, the corresponding value
of implied volatility could be identified for each couple (𝑆/𝐾
ratio, remaining time to maturity) (see Figure 2).

Kermiche [39] extracted from the volatility surface cor-
responding smile curves for one-, three-, and six-month
maturity. Then, she uses the Black-Scholes model for the
corresponding options prices.

We used themethod of Ait-Sahalia and Lo [25] to directly
build a price surface to avoid any bias in pricing, and we
adapted the smoothing parameters used by these authors.
Indeed, their goals were to build a sufficiently smooth surface
to be interpretable. The choice of parameters of the kernel
function is forced to produce a sufficiently smooth surface
while getting less biased values possible. Our goal is just to get
the least biased option prices. We try to optimize the choice
of parameters in this direction regardless of the constraint of
having smooth surfaces (see Figure 2).

The principle of the kernel regression is based on smooth-
ing techniques. It seeks to estimate the link function 𝑓(𝑥𝑖)
at any point 𝑥. This method is developed by Nadaraya and
Watson [40].

Thekernel estimator (kernel estimate) of the link function
evaluated at the point 𝑥0 noted 𝑓(𝑥0) is defined by

𝑓 (𝑥0) =
𝑁

∑
𝑖=1

𝑤𝑖 (𝑥0) 𝑦𝑖 (6)

with

𝑤𝑖 (𝑥0) = 𝑘 ((𝑥𝑖 − 𝑥0) /𝛾)
∑𝑁𝑖=1 𝑘 ((𝑥𝑖 − 𝑥0) /𝛾)

, (7)

where 𝑘 is a kernel function, 𝛾 > 0 is a smoothing parameter
(bandwidth parameter), and𝑁 is the size of the sample used
for estimation.

The link function evaluated at point 𝑥0 is the weighted
sum of the observations with 𝑦𝑖, where the weights𝑤𝑖(𝑥0) are
dependent on 𝑥0.

The 𝑤𝑖(𝑥0) function where 𝑤(𝑥0; 𝑥𝑖) defines the weight
to be assigned to the couple of observations (𝑥𝑖; 𝑦𝑖) in the
value of the link function evaluated at 𝑥-axis of 𝑥0. Generally,
the more the points 𝑥𝑖 are close to 𝑥0, the more the weight
will be important:𝑤(𝑥0; 𝑥𝑖) decreases with distance (𝑥𝑖 −𝑥0).
These weights depend on kernel function that represents the
probability density functions.

A kernel function 𝑘((𝑥𝑖 − 𝑥0)/𝛾) = 𝑘(𝑢) satisfies the
following properties:

(i) 𝐾(𝑢) ≥ 0.
(ii) ∫𝐾(𝑢)𝑑𝑢 = 1.
(iii) 𝐾(𝑢) reaches pts maximum in 0 when 𝑥𝑖 = 𝑥0 and

decreases with the distance (𝑥𝑖 − 𝑥0).
(iv) 𝐾(𝑢) is symmetrical: kernel does not depend on the

distance (𝑥𝑖; 𝑥0) and on the sign of 𝑥𝑖 − 𝑥0.
Different kernel functions can be used (uniform, triangular,
quadratic, BiWeight, Epanechnikov, and Triweight). Gener-
ally, the choice of the kernel function slightly influences the
estimation results. The only notable exception is related to
the use of a uniform kernel function that can yield different
results from other functions.

The parameter 𝛾 represents the distance beyond which
the observations 𝑥𝑖 have a light weight in the value of
𝑤𝑖(𝑥0). This parameter represents the radius of the values of
𝑥𝑖 window around 𝑥0, the weight of which is significantly
influential in computing 𝑚(𝑥0) = 𝑓(𝑥0). This window
magnitude is 2.

The choice of 𝛾 corresponds to an arbitration smooth-
ing/bias. In our sample, there are always options with an
initial maturity of 1 and 2 months. Therefore, there is always
a close observation of less than 15 days of the estimated value.
In our study, since there is no advantage of having smooth
surfaces but a less biased interpolation, we set the smoothing
parameter as 1/2 of the maximum distance that can separate
the little reckoning of observation:

𝛾 = (15/365)
2 ⇒ 𝑦 = 0.020. (8)
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Figure 3: Options on S&P TSX 60 January 10, 2011, surface price.

In the obtained surface, we can get every day the price
of option contracts defined by the pair maturity, mean
(Figure 3).

This technique has two advantages. Firstly it is performed
directly on price and not on implied volatilities, which helps
avoid any bias caused by the use of a model of pricing such
as that of Black and Scholes [22]. Secondly, it optimizes the
choice s of the kernel function parameter in order to obtain
the least biased possible prices.

5. Robustness Check

We use kernel technique to obtain a series of constant
maturity (one month or 22 working days) from the index
options series S&P TSX 60 traded on the Canadian stock
exchange. To test the robustness of the method, we perform
an interpolation of the price of options maturing on the last
Friday of the second coming months, through the price of
other options traded on the market. Then, we compare the
series obtained via the kernel technique and the observed
series. Figures 4 and 5 show the observed series and those
interpolated calls and puts on 04/01/2011 by the deadline of
18/02/2011.

The interpolation results seem to be acceptable. Indeed,
the interpolated series and the observed are nearly coinci-
dent.We calculate for 30 random chosen days the mean error
of the interpolated price compared to that observed for the
puts and calls traded.

Table 2 shows the absolute values of the average dif-
ferences between the observed prices and the interpolated
calls and puts; indeed 93.33% of interpolated observations
are acceptable at the 95% threshold. The interpolation error
average is 3.6% which justifies the use of kernel method.

6. Possible Application

The presented method is helpful to deeply analyze financial
market dynamics and traders beliefs evolutions.We apply this
method on Canadian market during period from 1 January
2012 to 31 December 2013 to extract 3 different indicators
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Figure 4: The figure calls interpolated and observed Series on
04/01/2011 (maturity 18/02/2011).
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Figure 5: The figure puts interpolated and observed Series on
04/01/2011 (maturity 18/02/2011).

related to the evolution of asymmetry perception, extreme
risk fear, and belief heterogeneity.

6.1. Asymmetry Perception. Asymmetry perception can be
obtained comparing the lower anticipated value at the matu-
rity to the highest index values and this is summarized in
Figure 6.

We collected from obtained densities the difference
between these two corresponding probabilities:

𝑃 (𝑥 ≤ 𝑚) − 𝑃 (𝑥 ≥ 𝑚) = ∫𝑚
0

𝑓 (𝑥) 𝑑𝑥 − ∫∞
𝑚

𝑓 (𝑥) 𝑑𝑥 (9)

with𝑚 being most anticipated value.
The evolution of the series during the study period is

summarized in Figure 7. Statistics are presented in Table 3.
On average probability given by the market that the

underlying has a value less than the most anticipated value is
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Table 2: The table puts and calls estimation error average.

Day Puts error average Calls error average Error average
1 0.0345987 0.0215185 0.0280586
2 0.0259826 0.0416025 0.0337926
3 0.0417035 0.0279804 0.0348420
4 0.0219605 0.0319890 0.0269747
5 0.0415346 0.0451279 0.0433313
6 0.0322403 0.0350111 0.0336257
7 0.0510708 0.0287885 0.0399296
8 0.0330091 0.0407680 0.0368885
9 0.0497968 0.0504886 0.0501427
10 0.0451203 0.0238962 0.0345082
11 0.0462980 0.0305246 0.0384113
12 0.0209187 0.0289141 0.0249164
13 0.0433114 0.0213045 0.0323079
14 0.0258682 0.0387042 0.0322862
15 0.0315140 0.0407331 0.0361236
16 0.0422745 0.0200599 0.0311672
17 0.0210142 0.0392219 0.0301181
18 0.0413103 0.0532919 0.0473011
19 0.0396415 0.0252387 0.0324401
20 0.0353776 0.0497175 0.0425475
21 0.0358715 0.0338359 0.0348537
22 0.0216254 0.0433042 0.0324648
23 0.0444826 0.0285212 0.0365019
24 0.0239272 0.0403968 0.0321620
25 0.0482972 0.0206399 0.0344686
26 0.0376054 0.0398404 0.0387229
27 0.0321795 0.0400345 0.0361070
28 0.0477441 0.0408422 0.0442932
29 0.0446228 0.0301299 0.0373764
30 0.0511225 0.0409829 0.0460527
Mean 0.0370675 0.0351136 0.0360906
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Figure 6: Asymmetry perception.

higher than the probability of exceeding this value by 4%.This
reference to the asymmetry of the price of options is relative
to market expectations and reflected the margin of safety

ASS
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Figure 7: Asymmetry perception evolution in 2012-2013.

required by investors to hedge against the risk of adverse
changes in asset prices financial.

The causality test (Table 4) shows that the fear of asym-
metry is one of the influential variables in the overall risk
perception in themarkets. Conversely, this fear of asymmetry
increases with market volatility. Indeed, if the market is
quite volatile and risky, agents require a higher margin to
compensate for the risk resulting in an asymmetry in the
prices of options contracts.
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Figure 8: Extreme risk fear and index evolution in 2012-2013.

Table 3: Asymmetry perception evolution statistics in 2012-2013.

Statistics Values
Mean 0.038821
Median 0.039917
Maximum 0.177359
Minimum −0.088242
Std. Dev. 0.029453
Skewness −0.196402
Kurtosis 6.717279
Jarque-Bera 259.6549
Probability 0.000000
Sum 17.31427
Sum Sq. Dev. 0.386036

Table 4: Asymmetry perception andVIX causality test in 2012-2013.

Hypothesis 𝐹-statistic
VIX does not cause SSA Granger 10.8958
SSA does not cause VIX Granger 3.34954

6.2. Extreme Risk Fear. We have assimilated the leptokurtic
effect of the probability distribution that has values below 540
or above 860. Mathematically,

𝑃 (𝑥 ≤ 540) + 𝑃 (𝑥 ≥ 860)
= ∫540
0

𝑓 (𝑥) 𝑑𝑥 + ∫∞
860

𝑓 (𝑥) 𝑑𝑥.
(10)

The graphic analysis (Figure 8) shows that during the first
half of 2012 the agents develop a growing fear of underlying
extreme variation. This extreme variation has occurred and
there has been a sharp drop in the SP TSX60.

This indicator could prevent a quarter rather the loss of
almost 25% of the of the index value. Indeed, the S&P TSX 60
index fell from 819.25 on 04/03/2012 to 642.34 on 04/10/2012.

When we explore Table 5, we can conclude that the
market gives 1.7% chance achieving extreme shock; this
probability has reached almost 15% in the first half of 2012
expressing a growing fear of sudden drop in the index over.

Table 5: Extreme risk fear statistics in 2012-2013.

Statistics Values
Mean 0.017088
Median 0.004684
Maximum 0.142669
Minimum 2.77𝐸 − 17
Std. Dev. 0.026435
Skewness 2.095155
Kurtosis 7.198268
Jarque-Bera 653.8389
Probability 0.000000
Sum 7.621446
Sum Sq. Dev. 0.310977

Table 6: Extreme risk fear and VIX causality test in 2012-2013.

Hypothesis 𝐹-statistic
VIX does not cause LEP (Granger) 12.2352
LEP does not cause VIX (Granger) 1.96869

The Granger causality summarized in Table 6 shows that
the fear of extreme shock is affected by changes in the market
volatility index. However, this fear does not significantly
influence the VIX.

6.3. Belief Heterogeneity. Options prices, like any financial
asset, are the result of balancing by operative on the market.
The more traders are heterogeneous, the more their expecta-
tions about the underlying future distributions are divergent.
This translates into flat or multimodal densities. In this case,
the density is characterized by a high dispersion and thus a
lower concentration of the percentage given by the market
around the maximum of the distribution.

In the opposite case, the market is characterized by high
homogeneity, which leads to more convergent expectations,
resulting in curves and acute united modal densities. The
probability of density in this case is much less scattered
and shows strong percentage concentration around the most
expected value. At the end of detecting the daily change of
the beliefs heterogeneity in the Canadian market, we set a
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Figure 9: [𝑚 − 10,𝑚 + 10] confidence interval.
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Figure 10: Belief homogeneity evolutions 2012-2013.

confidence interval ranging from 𝑚 − 10 to 𝑚 + 10, where
𝑚 is the most expected value.

∫𝑚+10
𝑚−10

𝑓 (𝑥) 𝑑𝑥 = 𝑃 [𝑚 − 10 ≤ 𝑥 ≤ 𝑚 + 10] 𝑑. (11)

The indicator obtained in Figure 9 informs about prob-
ability granted, since the underlying at maturity ends in
the interval predefined; that is to say the underlying does
not deviate more than 10 monetary units from the most
anticipated value (which is from 1 to 1.5% of the value of the
index).

According to Table 7 we conclude that, during the study
period, we found that on average 20% of traders developed
convergent expectations and formed the core of market
average opinion. It should be noted that during this period
we noticed homogeneity beliefs peak of 50%.

The obtained indicator was volatile reflecting very
dynamic reactions of traders in Canadian market which
would be interesting to study more closely (Figure 10).

This indicator could be used as a proxy of switching
evolution during this period.

7. Conclusion

The risk neutral densities offer investors as well as the mone-
tary authorities a powerful tool for analyzing the dynamics of
financial markets and the response of the people operating on
potential shocks or already experienced by financial markets.
Indeed they can test, monitor, and adjust the adopted mon-
etary policies and ensure the credibility of the institutions
through direct observations of their influences on the beliefs
of agents as future maturities.

The risk neutral densities also allow investors to compare
expectations about future developments of financial assets

Table 7: Homogeneity belief statistics in 2012-2013.

Statistics Values
Mean 0.207012
Median 0.196507
Maximum 0.499756
Minimum 0.070050
Std. Dev. 0.071223
Skewness 1.350903
Kurtosis 6.248885
Jarque-Bera 331.0617
Probability 0.000000
Sum 92.12052
Sum Sq. Dev. 2.252315

with the average opinion of the market, which will allow
investors to adjust their positions according to market trends
explicitly revealed by these densities. However, the risk neu-
tral densities allow only instantaneous or bearing analysis on
short periods during which it canmarginalize foreshortening
of the maturity of the contracts. The creation of a virtual
option spectrum obtained tradable options on the Canadian
stock exchange via technical “kernel” which has allowed us to
eliminate the bias caused by the daily variation of maturity.
This legitimates comparison of daily densities obtained to
analyze the changing beliefs and attitudes operative on
financial markets.

This offers an advanced tool to extract advantage of
information content of option prices. The elimination of the
bias caused by the variation of maturities has also allowed us
to examine the evolution of operative attitudes to risk more
closely. Indeed, we have created two continuous indicators
over time. The first indicator reflects the operative risk per-
ception in the market and their fear of adverse price change
relative to their expectations inferred from the asymmetric
densities obtained.

The second indicator reflects the evolution of the fear
of extreme shock of realization of investors exhibited by
the leptokurtic distribution densities. Both indicators reveal
two important components in the formation of attitudes
and behaviors of agents to risk. The elimination of daily
stress variation maturities has allowed us also to develop
a continuous indicator over time of the evolution of the
heterogeneity beliefs operative in the Canadian market. This
will allow studying the effect of this heterogeneity on the
dynamics of asset prices as well as market stability.
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