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The numerical solutions of linear integrodifferential equations of Volterra type have been considered. Power series is used as the
basis polynomial to approximate the solution of the problem. Furthermore, standard and Chebyshev-Gauss-Lobatto collocation
points were, respectively, chosen to collocate the approximate solution. Numerical experiments are performed on some sample
problems already solved by homotopy analysis method and finite difference methods. Comparison of the absolute error is obtained
from the present method and those from aforementioned methods. It is also observed that the absolute errors obtained are very
low establishing convergence and computational efficiency.

1. Introduction

Integrodifferential equation is a hybrid of integral and differ-
ential equations which have found extensive applications in
sciences and engineering since it was established by Volterra
[1]. A special class of these equations are the Volterra type
which have been used to model heat and mass diffusion pro-
cesses, biological species coexisting together with increasing
and decreasing rate of growth, electromagnetic theory, and
ocean circulations, among others [2].

First-order integrodifferential equation (IDE) of the
Volterra type is generally of the form

𝑦 = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑦 (𝑡0) = 𝑦0, (1)

where

𝑧 (𝑡) = ∫𝑡
𝑡0

𝐾(𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼. (2)

In solving (1), we seek the unknown function 𝑦(𝑡) given the
kernel 𝐾, a nonsingular function defined on 𝑆 × R with 𝑆 fl{(𝑡, 𝑠), 𝑡0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}. This kernel determines the nature
of the solutions of integral equation (2) depending on its type

[3]. In this paper, only separable or degenerate kernels have
been considered.

The theory and application of integrodifferential equa-
tions are important subjects in appliedmathematics.The exis-
tence and uniqueness of the solutions of integrodifferential
equations, usually discussed in terms of their kernel, had been
established already in Linz [1]. Generally, methods for solving
integrodifferential equations combine methods of solving
both integral and differential equations. Also, since closed
form solutions may not be tractable for most applications,
numerical methods are employed to obtain approximations
to the exact solutions.

Some numerical approaches in literature include iterative
methods [4], successive approximation methods [5], and
standard integral collocation approximation methods [6].
Other methods such as power series methods, where Cheby-
shev and Legendre’s polynomials are used as basis functions,
have been applied to obtain solutions of some higher order
IDE of linear type. Akyaz and Sezer [7], for instance,
presented Chebyshev collocation method for solving linear
integrodifferential equations by truncated Chebyshev series.
Recently, Gegele et al. [8] used power and Chebyshev series
approximation methods to find numerical solution to higher
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order linear Fredholm integrodifferential equations using
collocation methods. The result presented showed that the
methods can give accurate results when compared with
the exact solution. These methods proved efficient in the
respective applications from the results provided but they
seem yet to be applied to integrodifferential equations of
Volterra type.

It is our aim here to extend the approach in Gegele et
al. [8] to obtain approximate solutions for integrodifferential
equations of Volterra type.

In the next section, we shall discuss the derivation of
our methods; then the implementation using some sample
problems is presented in Section 3. Finally, in Section 4 we
shall present the results and draw our conclusions.

2. Methodology

In the sequel, the combination of the power series approxi-
mation and collocation method is employed for the solution
of IDE of Volterra type.

To proceed, (1) is reduced to the form

𝑦 (𝑥) = 𝐹 (𝑥) + ∫𝑥
𝑎
𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡, (3a)

𝑦(𝑗) (0) = 𝑎𝑗, 𝑗 = 0, 1, (3b)

where 𝑦(𝑗) = 𝑑𝑗𝑦/𝑑𝑥𝑗 and 𝑦(0) = 𝑦. The initial conditions
(3b) are required in order to find particular solutions of (3a).

Now, let the solution 𝑦(𝑥) of Volterra type IDE, (3a) and
(3b), be analytic and therefore possess the power series

𝑦 (𝑥) = 𝑁∑
𝑖=0

𝑎𝑖𝑥𝑖, 𝑖 ≥ 0, (4)

where 𝑥𝑖s are monomial bases and 𝑎𝑖s are real coefficients to
be determined.

Substituting equation (4) into both sides of (3a) gives

𝑁∑
𝑖=0

𝑖𝑎𝑖𝑥(𝑖−1) = 𝐹 (𝑥) + 𝑁∑
𝑖=0

𝑎𝑖 ∫𝑥
𝑎
𝑡𝑖𝐾 (𝑥, 𝑡) 𝑑𝑡. (5)

Hence,

𝐹 (𝑥) = 𝑁∑
𝑖=0

𝑎𝑖 (𝑖𝑥(𝑖−1) − ∫𝑥
𝑎
𝑡𝑖𝐾 (𝑥, 𝑡) 𝑑𝑡) , (6)

where 𝐹(𝑥) and𝐾(𝑥, 𝑡) are known functions.
For an arbitrary choice of 𝑁, (6) is obtained as a linear

algebraic equation in𝑁 + 1 unknowns as follows:
𝑎0 + 𝑎1𝜏1 (𝑥) + 𝑎2𝜏2 (𝑥) + ⋅ ⋅ ⋅ + 𝑎𝑁−1𝜏𝑁−1 (𝑥)

+ 𝑎𝑁𝜏𝑁 (𝑥1) = 𝐹 (𝑥) . (7)

We note that 𝑎0 is given by the initial condition (3b) while
the remaining 𝑎𝑖, 𝑖 = 1, . . . , 𝑁, are to be determined by
collocation method.

To generate the collocation points, we shall consider
two methods, namely, the standard and Chebyshev-Gauss-
Lobatto Collocation Methods, respectively.

2.1. Standard Collocation Method (SCM). This method is
used to determine the desired collocation points within an
interval, say, [𝜗, 𝜎], and is given by

𝑥𝑝 = 𝜗 + (𝜎 − 𝜗)
𝑁 𝑝, 𝑝 = 1, 2, 3, . . . , 𝑁. (8)

2.2. Chebyshev-Gauss-Lobatto Collocation Method (CGLCM).
The collocation points are obtained as follows:

𝑥𝑝 = cos(𝜋𝑝𝑁 ) 𝑝 = 1, 2, 3, . . . , 𝑁. (9)

Interestingly, Chebyshev-Gauss-Lobatto points have also
been used as collocation and interpolation points in the
solutions of optimal control problems governed by Volterra
integrodifferential equations [9, 10].

Using either of the two collocation points to collocate (7)
together with the initial conditions given in (3b) will result
in a system of 𝑁 + 1 linear algebraic equations in 𝑁 + 1
unknowns. Hence, the resultant matrix problem is as follows:

[[[[[[[[[[[[
[

1 0 0 ⋅ ⋅ ⋅ 0 0
0 𝜏1 (𝑥1) 𝜏2 (𝑥1) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥1) 𝜏𝑁 (𝑥1)
0 𝜏1 (𝑥2) 𝜏2 (𝑥2) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥2) 𝜏𝑁 (𝑥2)

... ... ...
0 𝜏1 (𝑥𝑁−1) 𝜏2 (𝑥𝑁−1) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥𝑁−1) 𝜏𝑁 (𝑥𝑁−1)
0 𝜏1 (𝑥𝑁) 𝜏2 (𝑥𝑁) ⋅ ⋅ ⋅ 𝜏𝑁−1 (𝑥𝑁) 𝜏𝑁 (𝑥𝑁)

]]]]]]]]]]]]
]

[[[[[[[[[[[[
[

𝑎0
𝑎1
𝑎2
...

𝑎𝑁−1
𝑎𝑁

]]]]]]]]]]]]
]

=

[[[[[[[[[[[[
[

𝐹 (𝑥0)
𝐹 (𝑥1)
𝐹 (𝑥2)

...
𝐹 (𝑥𝑁−1)
𝐹 (𝑥𝑁)

]]]]]]]]]]]]
]

, (10)

where 𝜏𝑗(𝑥𝑝), 𝑗 = 1, 2, 3, . . . , 𝑁, are polynomials evaluated
at each collocation point 𝑥𝑝. The values of the unknowns can
be obtained using any convenient method of solving matrix
equations of the form 𝐴𝑋 = 𝐵, where 𝐴 is invertible.

Substituting the values of the 𝑎𝑖, 𝑖 = 0, 1, 2, . . . , 𝑁,
obtained from (4) yields the approximate solution. We note
that the accuracy level desired for the approximate solution is
determined by the degree of the approximating polynomial.
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3. Results

In this section, standard and Chebyshev-Gauss-Lobatto col-
location points have been employed, respectively, to solve
sample problems as described in Section 2. The numerical
solutions obtained using the present method had been
compared with the exact solutions of the sample problems.
Similarly, absolute errors of results from this present method
have been compared with those obtained in Behrouz [11]
by homotopy analysis method (HAM) and finite difference
method (FDM) for the same problems.

The absolute error of computation is defined in all cases
as follows:

𝑦 (𝑥𝑖) − 𝑌 (𝑥𝑖) 𝜗 ≤ 𝑥𝑖 ≤ 𝜎, 𝑖 = 1, 2, 3, . . . . (11)

Problem 1.

𝑦 (𝑥) + 𝑦 (𝑥) = (𝑥2 + 2𝑥 + 1) 𝑒−𝑥 + 5𝑥2 + 8
− ∫𝑥
0
𝑡𝑦 (𝑡) 𝑑𝑡, 𝑦 (0) = 10. (12)

Exact solution: 𝑦(𝑥) = 10 − 𝑥𝑒−𝑥.
Using SCM, we obtained the following approximate

solutions:

𝑦 (𝑥) = 10 − 0.999955𝑥 + 0.999606𝑥2 − 0.498312𝑥3
+ 0.162656𝑥4 − 0.0362999𝑥5
+ 0.00442505𝑥6.

(13)

Similarly using CGLCM, we obtained the approximate solu-
tion as follows:

𝑦 (𝑥) = 10 − 𝑥 + 1.00115𝑥2 − 0.499641𝑥3
+ 0.163495𝑥4 − 0.0434569𝑥5 + 0.0107202𝑥6. (14)

The solutions obtained from the implementation of the
method for Problem 1 using SCM and CGLCM are compared
with the exact solution in Table 1. Also absolute errors
obtained are compared with absolute errors obtained from
HAM and FDM in Table 2.

Problem 2.

𝑦 (𝑥) + 𝑦 (𝑥) = ∫𝑥
0
𝑒𝑡−𝑥𝑦 (𝑡) 𝑑𝑡, 𝑦 (0) = 1. (15)

Exact solution: 𝑦(𝑥) = 𝑒−𝑥 cosh𝑥.
Using SCM, we obtained the following approximate

solutions:

𝑦 (𝑥) = 1 − 0.999759𝑥 + 0.997930𝑥2 − 0.658238𝑥3
+ 0.314202𝑥4 − 0.107608𝑥5 + 0.0235161𝑥6
− 0.00237066𝑥7.

(16)

Table 1: Comparison of exact solution with numerical solutions for
Problem 1.

𝑥𝑖 Exact SCM CGLCM
0.0000 0.0000 0.0000 0.0000
0.0714 9.933495516 9.933497240 9.933501428
0.1429 9.876160300 9.876162226 9.876183411
0.2143 9.827046197 9.827047975 9.827095298
0.2857 9.785292202 9.785293839 9.785371414
0.3571 9.750116951 9.750118464 9.750223918
0.4286 9.720811832 9.720813173 9.720936698
0.5000 9.696734670 9.696735770 9.696860288
0.5714 9.677303930 9.677304767 9.677407809
0.6429 9.661993413 9.661994038 9.662051938
0.7143 9.650327386 9.650327889 9.650322899
0.7857 9.641876128 9.641876560 9.641807476
0.8571 9.636251847 9.636252142 9.636149063
0.9286 9.633104936 9.633104922 9.633048727
1.0000 9.632120559 9.632120150 9.632267300

Similarly, using CGLCM we obtained the approximate solu-
tion as follows:

𝑦 (𝑥) = 1 − 0.99941𝑥 + 0.999958𝑥2 − 0.671295𝑥3
+ 0.331381𝑥4 − 0.123419𝑥5 + 0.0496174𝑥6
− 0.0193272𝑥7.

(17)

The solutions obtained from the implementation of the
method for Problem 2 using SCMandCGLCMare compared
with the exact solution in Table 3. Also absolute errors
obtained are compared with absolute errors obtained from
HAM and FDM in Table 4.

4. Conclusion

In this paper, numerical solution of Volterra type integrod-
ifferential equation of first order with degenerate kernels is
obtained by power series collocation method based on two
collocating points methods, namely, Standard Collocation
Method (SCM) and Chebyshev-Gauss-Lobatto Collocation
Method (CGLCM), presented.

The two methods for selecting collocation points yielded
different schemes from which approximate solutions were
obtained, respectively, and compared with the exact solutions
as shown inTables 1 and 3. From the results presented, the two
methods gave good results for first-order integrodifferential
equations of Volterra type.

The comparison of absolute errors of the results obtained
by the present method with those by homotopy analysis
method and finite difference method for the same problems
revealed that themethod is efficient and cheap for the numer-
ical solutions of first-order integrodifferential equation of
Volterra type as illustrated in Tables 2 and 4.The performance
of the present method against homotopy analysis method is
expected as the latter is a semianalytic method.
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Table 2: Comparison of absolute errors for Problem 1

𝑥𝑖 SCM CGLCM FDM HPM
0.0000 0.0000 0.0000 0.0000 0.0000
0.0714 1.72431𝐸 − 06 5.91262𝐸 − 06 2.85397𝐸 − 04 5.15735𝐸 − 07
0.1429 1.92637𝐸 − 06 2.31105𝐸 − 05 2.98284𝐸 − 04 3.00036𝐸 − 07
0.2143 1.77825𝐸 − 06 4.91013𝐸 − 05 5.43393𝐸 − 04 2.80293𝐸 − 06
0.2857 1.63695𝐸 − 06 7.92123𝐸 − 05 5.11413𝐸 − 04 1.47980𝐸 − 05
0.3571 1.51288𝐸 − 06 1.06967𝐸 − 04 7.15638𝐸 − 04 4.60491𝐸 − 05
0.4286 1.34028𝐸 − 06 1.24865𝐸 − 04 6.54200𝐸 − 04 1.11168𝐸 − 04
0.5000 1.09939𝐸 − 06 1.25617𝐸 − 04 8.18261𝐸 − 04 2.40330𝐸 − 04
0.5714 8.36590𝐸 − 07 1.03879𝐸 − 04 7.38321𝐸 − 04 4.73070𝐸 − 04
0.6429 6.24770𝐸 − 07 5.85256𝐸 − 05 8.64022𝐸 − 04 8.52587𝐸 − 04
0.7143 5.03018𝐸 − 07 4.48751𝐸 − 06 7.73248𝐸 − 04 1.45361𝐸 − 03
0.7857 4.31615𝐸 − 07 6.86526𝐸 − 05 8.63249𝐸 − 04 2.36487𝐸 − 03
0.8571 2.95402𝐸 − 07 1.02783𝐸 − 04 7.66939𝐸 − 04 3.71115𝐸 − 03
0.9286 1.39661𝐸 − 08 5.62088𝐸 − 05 8.24573𝐸 − 04 5.63206𝐸 − 04
1.0000 4.08829𝐸 − 07 1.46741𝐸 − 04 7.26353𝐸 − 04 8.32344𝐸 − 04

Table 3: Comparison of exact solution with numerical solution for Problem 2.

𝑥𝑖 Exact SCM CGLCM
0.0000 0.0000 0.0000 0.0000
0.0833 0.9232408624 0.9232506225 0.923287006
0.1667 0.8582656553 0.8582754765 0.858341248
0.2500 0.8032653299 0.8032737684 0.803340755
0.3333 0.7567085595 0.7567163057 0.756749451
0.4167 0.7172991043 0.7173066673 0.717278486
0.5000 0.6839397206 0.6839470433 0.683851372
0.5833 0.6557016120 0.6557084119 0.655570212
0.6667 0.6317985691 0.6318047191 0.631680300
0.7500 0.6115650801 0.6115707282 0.611530371
0.8333 0.5944378014 0.5944432050 0.594525790
0.9167 0.5799398730 0.5799451069 0.580071957
1.0000 0.5676676416 0.5676724400 0.567505200

Table 4: Comparison of absolute errors for Problem 2.

𝑥𝑖 SCM CGLC FDM HPM
0.0000 0.0000 0.0000 0.0000 0.0000
0.0833 9.76008𝐸 − 06 4.61438𝐸 − 05 1.77203𝐸 − 02 1.85469𝐸 − 09
0.1667 9.82124𝐸 − 06 7.55931𝐸 − 05 2.16887𝐸 − 03 3.13105𝐸 − 10
0.2500 8.43856𝐸 − 06 7.54254𝐸 − 05 1.89273𝐸 − 03 1.14368𝐸 − 09
0.3333 7.74622𝐸 − 06 4.08918𝐸 − 05 4.52374𝐸 − 03 8.37039𝐸 − 11
0.4167 7.56304𝐸 − 06 2.06182𝐸 − 05 2.06181𝐸 − 02 2.65354𝐸 − 09
0.5000 7.32270𝐸 − 06 8.83487𝐸 − 05 7.13624𝐸 − 03 3.14279𝐸 − 10
0.5833 6.79994𝐸 − 06 1.31400𝐸 − 05 1.10585𝐸 − 02 1.24270𝐸 − 09
0.6667 6.15006𝐸 − 06 1.18269𝐸 − 05 8.20866𝐸 − 03 5.57863𝐸 − 10
0.7500 5.64809𝐸 − 06 3.47095𝐸 − 05 3.41335𝐸 − 03 1.32579𝐸 − 09
0.8333 5.40361𝐸 − 06 8.79889𝐸 − 05 8.16328𝐸 − 03 6.81219𝐸 − 10
0.9167 5.23390𝐸 − 06 1.32084𝐸 − 05 2.89396𝐸 − 03 5.16015𝐸 − 09
1.0000 4.79838𝐸 − 06 1.62442𝐸 − 05 3.27168𝐸 − 03 9.48169𝐸 − 09
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