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In this paper, the alternating direction method of multipliers (ADMM) algorithm is applied to the compressed sensing theory to
realize the sparse optimization of vibration signal. Solving the basis pursuit problem for minimizing the 𝐿1 norm minimization
under the equality constraints, the sparse matrix obtained by the ADMM algorithm can be reconstructed by inverse sparse
orthogonal matrix inversion. This paper analyzes common sparse orthogonal basis on the reconstruction results, that is, discrete
Fourier orthogonal basis, discrete cosine orthogonal basis, and discrete wavelet orthogonal basis. In particular, we will show that,
from the point of view of central tendency, the discrete cosine orthogonal basis is more suitable, for instance, at the vibration
signal data because its error is close to zero. Moreover, using the discrete wavelet transform in signal reconstruction there still are
some outliers but the error is unstable. We also use the time complex degree and validity, for the analysis of the advantages and
disadvantages of the ADMM algorithm applied to sparse signal optimization.The advantage of this method is that these abnormal
values are limited in the control range.

1. Introduction

The monitoring and forecast technique of mechanical fault
state is mainly applied to extract or separate the fault features
which can reflect the development trend of the equipment
fault. Monitoring enables to predict both the tendency of
the fault features, and the running healthy state, and make
feasible a better maintenance scheme according to the deteri-
oration level of the equipment. However, in order to improve
the accuracy of prediction, a large amount of vibration data
must be collected from the equipment which runs for long
time (e.g., half a year). We always expect to store the data
quickly and efficiently and operate at real time.

Compressed sensing (CS) theory [1] breakthroughs the
limit of traditionalNyquist SamplingTheorem, data sampling
and compression are performed at the same time, thus greatly
reducing the sampling costs and storage resource. We can
forecast the changing trend of the equipment state and the
probable fault through the analysis of a long-time vibration
signal; there results a big data processing via the long-time
monitoring of equipment status.

The key technique of CS is signal reconstruction, and dif-
ference reconstruction algorithmdirectly affects the accuracy
of the original vibration reconstruction. The most popular

algorithms in signal reconstruction are: the Minimum algo-
rithm 𝐿0, the orthogonal matching pursuit (OMP) algorithm
[2] and its improved type, the 𝐿1-magi algorithm [3, 4], the
weighted algorithm 𝐿1 [5], the Homotopy algorithm [6], the
Lq-FL algorithm [7]. These reconstructions, however, have
to face some cumbersome problems both on the uncertainty
arising in the mathematical inverse problem, and on the
computational complexity due to the deficiency of a small
quantity of sparse value. There follows a group of highly
undetermined equations, some approximation errors, and a
very high complexity, thus making a problem with large scale
data a very hard task.

In this paper we study the application of ADMM algo-
rithm in the sparse reconstruction problem for the vibration
signal of an equipment. We will show that, comparing with
the other current methods, the ADMM is more accurate
and has low computational costs, thus being the more
suitablemethod in engineering applications for the long-time
monitoring of an equipment status.

2. ADMM Reconstruction Compares with
OPM and Dual Interior Point

ADMM blends decomposability of dual ascent and excellent
convergence of Lagrange multiplier [8], it is a simple and
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effective new method to solve the optimization problem of
separable target. ADMM is a new algorithm deduced based
on augmented Lagrange [9].

Compared with augmented Lagrange, ADMM may
decompose original problem into much alternating mini-
mization subproblems; the algorithm can make full use of
the advantage on the separability of the objective function.
The separatingminimization subproblems byADMMcan get
global solutions and display solutions more easily.

In this section we give an overview of ADMM for basis
pursuit:

min 𝑓 (𝑥) + 𝑔 (𝑧)
subject to 𝐴𝑥 + 𝐵𝑧 = 𝑐, (1)

where variables 𝑥 ∈ 𝑅𝑛, 𝑧 ∈ 𝑅𝑚, 𝐴 ∈ 𝑅𝑝×𝑛, 𝐵 ∈ 𝑅𝑝×𝑚, 𝑐 ∈
𝑅𝑝;𝑓 and 𝑔 are convex.We follow closely the development in
Section 6.2 of Boyd et al. [10]: For (1) optimization problem,
corresponding to ADMM form, 𝐴 = 𝐼, 𝐵 = −𝐼, and 𝐶 = 0.

Let 𝑓(𝑥) = ‖�̂�‖1 and 𝑔(𝑧) = ‖𝑧‖1, then ADMM for basis
pursuit can be written as follows:

min 𝑓 (�̂�) + 𝑔 (𝑧) = min ‖�̂�‖1 + ‖𝑧‖1
subject to �̂� − 𝑧 = 0, (2)

where 𝑓 ∈ {�̂� ∈ 𝑅𝑛 | 𝐴�̂� = 𝑏} and satisfies 𝑓(�̂�) = {0, 𝐴�̂� =
𝑏; +∞,𝐴�̂� ̸= 𝑏}. Obviously, ‖�̂�‖1 and ‖𝑧‖1 are convex, and
ADMM basis pursuit solution of �̂�𝑘+1- recursion is

�̂�𝑘+1 fl∏(𝑧𝑘 − 𝑢𝑘) ,
𝑧𝑘+1 fl 𝑆1/𝜌 (�̂�𝑘+1 + 𝑢𝑘) ,
𝑢𝑘+1 fl 𝑢𝑘 + �̂�𝑘+1 − 𝑧𝑘+1.

(3)

In (3),𝑢𝑘+1 is dual variable for �̂� and is also called Lagrange
operator. 𝑆1/𝜌 is a soft threshold and a proximity operator of
ℓ1 norm. ∏ is the projection onto {�̂� ∈ 𝑅𝑛 | 𝐴�̂� = 𝑏}, and
�̂�𝑘+1 recursion form is a minimum Euclidean norm problem
under linear equality-constrained, which is as follows:

�̂�𝑘+1 fl (𝐼 − 𝐴𝑇 (𝐴𝐴𝑇)−1 𝐴) (𝑧𝑘 − 𝑢𝑘)

+ 𝐴𝑇 (𝐴𝐴𝑇)−1 𝑏.
(4)

Proof. In terms of (4),

�̂�𝑘+1 = argmin(𝑓 (𝑥) + 12
𝐴�̂� + 𝐵𝑧𝑘+1 − 𝑐 + 𝑢𝑘


2

2
) (5)

corresponding to ADMM for basis pursuit, 𝐴 = 𝐼, 𝐵 = −𝐼,
and 𝐶 = 0; then,

�̂�𝑘+1 = argmin(𝑓 (𝑥) + 12
�̂� − 𝑧𝑘 + 𝑢𝑘


2

2
) , (6)

where 𝑓 ∈ {�̂� ∈ 𝑅𝑛 | 𝐴�̂� = 𝑏} is called indicator function and
satisfies

𝑓 (�̂�) = {{
{
0 𝐴�̂� = 𝑏
+∞ 𝐴�̂� ̸= 𝑏. (7)

Equation (6) is equivalent to min (1/2)‖𝑥 − (𝑧𝑘 − 𝑢𝑘)‖22 s.t.𝐴𝑥 = 𝑏 (construction Lagrangian function). For (6), we get
𝐿 = (1/2)‖�̂� − 𝑧𝑘 + 𝑢𝑘‖22 + 𝑦𝑇(𝐴𝑥 − 𝑏) and solve maximum
value

𝜕𝐿
𝜕𝑥 = 𝑥 − (𝑧

𝑘 − 𝑢𝑘) + 𝐴𝑇𝑦 = 0
𝜕𝐿
𝜕𝑦 = 𝐴𝑥 − 𝑏 = 0

⇓
𝑥 = 𝑧𝑘 − 𝑢𝑘 + 𝐴𝑇𝑦
𝐴𝑥 = 𝑏.

(8)

Get 𝐴[(𝑧𝑘 − 𝑢𝑘) − 𝐴𝑇𝑦] = 𝑏, and 𝑦 = (𝐴𝐴𝑇)−1𝐴(𝑧𝑘 − 𝑢𝑘) −
(𝐴𝐴𝑇)−1𝑏 inserts into 𝑥 = 𝑧𝑘 − 𝑢𝑘 + 𝐴𝑇𝑦, and we get

𝑥 = (𝑧𝑘 − 𝑢𝑘)
+ 𝐴𝑇 [(𝐴𝐴𝑇)−1 𝐴(𝑧𝑘 − 𝑢𝑘) − (𝐴𝐴𝑇)−1 𝑏]

= (𝐼 − 𝐴𝑇 (𝐴𝐴𝑇)−1 𝐴) (𝑧𝑘 − 𝑢𝑘) − 𝐴𝑇 (𝐴𝐴𝑇)−1 𝑏.
(9)

By caching factorization of 𝐴𝐴𝑇, subsequent projections are
much cheaper than the first one. ADMM for basis pursuit can
been interpreted as reducing the solution of a least ℓ1. In the
paper, the test bearing was used to study only included one
kind of surface fault: the bearing was damaged on the outer,
sampling frequency is 20KHz, signal series is 1024 sampling
data, original signal waveform is shown as Figure 1(a). Sparse
by FFT, DCT, WDT, the reconstruction signal of ADMM for
basis pursuit are shown as Figures 1(b), 1(c), and 1(d).

The updates step of ADMM for basis pursuit is shown in
Figure 2. 𝑥-axis is the number of iteration steps, and 𝑦-axis is
the value of object function 𝑓(𝑥𝑘) + 𝑔(𝑧𝑘). When the object
function is enough small, exit update process, the result is
optimal solution.

Figures 3 and 4 show a signal reconstruction by dual
interior point method and OPM, respectively.

3. Sparse Basis Selection during
Reconstruction of ADMM

Whenwe choose the different sparse bases during the process
of reconstruction of ADMM, the error would be different
and we compare them in two ways: central tendency and
dispersion tendency.

(A) One of the measurement indexes of central tendency
is arithmetic average and the equation is

𝑥 = 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑛𝑛 = ∑𝑥𝑛 , (10)

where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are the values of variables.
(B) Another measurement index of central tendency is

median. The median of a finite list of numbers can be
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Figure 1: Reconstruction on ADMM for basis pursuit.
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Figure 2: Iteration of ADMM for basis pursuit.
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Figure 3: Signal reconstruction by dual interior point.
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Figure 4: Original signal reconstruction by OPM.
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Figure 5: Contrast waveform of three reconstruction algorithms.
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Figure 6: Error contrast waveform of three reconstruction algorithms.

found by arranging all the observations from lowest
value to highest value and picking themiddle one.The
numbers of lower values are equal to the higher values
in general and themost commonway tomedian is the
direct method which arranges the data from large to
small. The equations are as follows:

𝑛 is odd:𝑀 = 𝑋((𝑛+1)/2),

𝑛 is even: (𝑋𝑛/2 + 𝑋(𝑛/2+1))2 .
(11)

(C) Dispersion tendency (variation index) reflects the
difference between each individual value. The greater
the degree of data separation, the greater the varia-
tion index. The dispersion tendency indexes include
range, variance and standard deviation which could
measure the error of reconstruction. Among them,
range is received by the difference value of the max-
imum and the minimum, so it reflects the difference
of the overall scope.

From Table 1, we can see that the reconstruction error
of the DCT of vibration signal is closest to zero. From
the dispersion tendency, the reconstruction error of FFT
shows little batch difference, while it has the abnormal value
compared with DWT which is instability. The results of DCT
are in between.

Table 1:The error trend indicator during reconstruction of ADMM.

Category FFT DCT DWT
Mean 0.3035 8.48𝐸 − 14 8.48𝐸 − 14
Median −0.4562 −0.4562 −0.4562
Range 273.9749 230.0274 216.3107
Variance 477.3905 699.6706 807.7146
Standard deviation 21.8493 26.4513 28.4203

4. The Comparison between the ADMM and
Other Algorithms

We compare the ADMM with primal-dual interior point
algorithm and orthogonal matching pursuit (OMP) in the
time complexity and error which reflect the effect of recon-
struction. The results are shown in Table 2.

Figure 5 shows the effect contrast of different restructur-
ing algorithms.

From the error indicator of Table 2, in the centralized
tendency, the mean and median of ADMM, respectively, are
1.85967𝑒 − 13 and −0.2223, while the OMP are 1.2141𝑒 − 7
and 0.1803 and the primal-dual interior point algorithms are
−0.0330 and −0.5372. All of them are close to zero and the
values of ADMM are the least. It means that the effect of
refactoring of ADMM is the best and primal-dual interior
point algorithm is worst in the centralized tendency. Figure 6
shows the error contrast waveform of three reconstructions.
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Table 2: The comparison between the ADMM and other algorithms.

Evaluation criteria ADMM OMP Primal-dual interior point algorithm
Execution time (s) 1.784414 23.718855 2.310212
Mean 1.86𝐸 − 13 1.21𝐸 − 07 −0.033
Median −0.2223 0.1803 −0.5372
Range 248.0199 244.985 306.9224
Variance 737.01444 748.0127 1.48𝐸 − 13
Standard deviation 27.148 27.3498 38.4285

Although the range of ADMM is not the minimum of
three, the variance and the standard deviation are quite
small which indicate the superiority of ADMM. So, ADMM
possesses the good performance in sparse reconstruction
compared with primal-dual interior point algorithm and
OMP.

5. Conclusion

In the aspect of error, the mean of ADMM is the minimum
and the median is after OMP in view of the central tendency.
It indicates the reconstruction error of ADMM is the best and
the OMP takes second place. And in view of the dispersion
tendency, despite the range of ADMM is not the minimum
of three, the variance and the standard deviation are quite
small. So, ADMM possesses the good performance in sparse
reconstruction compared with primal-dual interior point
algorithm and OMP. The insufficient of the algorithm is the
present of abnormal value which is not obvious through
range. As a result, ADMM sparse optimization algorithm to
deal with the problemof sparse reconstruction in compressed
sensing has good performance.
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