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This work presents the application of the reduced differential transform method (RDTM) to find solutions of partial differential-
algebraic equations (PDAEs). Two systems of index-two and index-three are solved to show that RDTM can provide analytical
solutions for PDAEs in convergent series form. In addition, we present the posttreatment of the power series solutions with the
Laplace-Padé resummation method as a useful technique to find exact solutions. The main advantage of the proposed technique is
that it is based on a few straightforward steps and does not generate secular terms or depend on a perturbation parameter.

1. Introduction

As widely known, the importance of research on partial
differential-algebraic equations (PDAEs) is that many phe-
nomena, practical or theoretical, can be easily modelled by
such equations. Those kinds of equations arise in fields like
nanoelectronics [1], electrical networks [2–4], and mechani-
cal systems [5], among others.

In recent years, PDAEs have received much attention.
Nevertheless, the theory in this field is still young. For
linear PDAEs, the convergence of Runge-Kutta method is
investigated in [6]. The numerical solution to linear PDAEs
with constant coefficients and the study of indices are given
in [7–10]. Linear and nonlinear PDAEs are characterized
by means of indices which play an important role in the
treatment of these equations. The differentiation index is
defined as the minimum number of times that all or part of
the PDAEmust be differentiatedwith respect to time, in order
to obtain the time derivative of the solution, as a continuous
function of the solution and its space derivatives [11].

Higher-index PDAEs (differentiation index greater than
one) are known to be difficult to treat even numerically.

Often such problems are first transformed to index-one
systems before applying numerical integrationmethods.This
procedure called index-reduction can be very expensive and
may change the properties of the solution. Since application
problems in science and engineering often lead to higher-
index PDAEs, new techniques are required to solve these
problems efficiently.

Modern methods like differential transform method
(DTM) [12, 13], reduced differential transform method
(RDTM) [14–16], homotopy perturbation method (HPM)
[17, 18], homotopy analysis method (HAM) [19], variational
iteration method (VIM) [20], and generalized homotopy
method [21], amongothers, are powerful tools to approximate
linear and nonlinear problems. Recently, the modifications
of the HPM have been used to solve DAEs [22–25]. Besides,
the multivariate Padé series [26] was applied to solve PDAEs.
Analytical solutions aid researchers in studying the effect of
different variables or parameters of functions under consid-
eration easily [27].

Among the abovementioned methods, the DTM is high-
lighted by its simplicity and versatility to solve nonlin-
ear differential equations. This method does not rely on
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a perturbation parameter or a trial function like other popular
approximation methods. In [12], the DTMwas introduced to
the engineering field as a tool to find approximate solutions
of electrical circuits. DTM produces approximations based
on an iterative procedure derived from the Taylor series
expansion. This method is very effective and powerful for
solving various kinds of differential equations as nonlinear
biochemical reaction model [13], two-point boundary-value
problems [28], differential-algebraic equations [29], the KdV
and mKdV equations [30], the Schrodinger equations [31],
fractional differential equations [32], and the Riccati differ-
ential equation [33], among others. Later, the RDTM [14–
16] was proposed in order to provide a simplified (but not
less powerful) version of DTM. The computation resources
required by RDTM aremuch less than those for DTM.More-
over, using RDTM, the solution to initial valued problems
can be expressed as an infinite power series. Later, taking
advantage of the resummation methods capabilities [34–38],
the domain of convergence of such power series can be
extended leading in some cases to the exact solution. As
well, the RDTM has been applied successfully to problems
such as fractional differential equations [39], generalizedKdV
equations [16], generalized Hirota-Satsuma coupled KdV
equation [40], Fornberg-Whitham equations [41], Newell-
Whitehead-Segel equation [42], time-fractional telegraphic
equation [43], radial diffusivity equation [44], and nonlinear
evolutions equations [45].

Therefore, in this paper we present the application of
a hybrid technique combining RDTM, Laplace transform,
and Padé approximant [46] to find analytical solutions for
PDAEs [34–38]. Solutions to PDAEs are first obtained in
convergent series form using the RDTM. To improve the
solution obtained from RDTM’s truncated series, we apply
Laplace transform to it and then convert the transformed
series into a meromorphic function by forming its Padé
approximant. Finally, we take the inverse Laplace transform
of the Padé approximant to obtain the analytical solution.
This hybrid method (LPRDTM) which combines RDTM
with Laplace-Padé posttreatment greatly improves RDTM’s
truncated series solutions in convergence rate. In fact, the
Laplace-Padé resummation method enlarges the domain of
convergence of the truncated power series and often leads to
the exact solution.

It is important to remark that LPRDTM can obtain
exact solutions without requiring an index-reduction for
the PDAEs. The proposed method does not produce noise
terms also known as secular terms as the homotopy per-
turbation based techniques [22]. This property of RDTM
greatly reduces the volume of computation and improves
the efficiency of the method in comparison to the per-
turbation based methods. What is more, LPRDTM does
not require a perturbation parameter like the perturbation
based techniques (including HPM). Finally, LPRDTM is
straightforward and can be programmed using computer
algebra packages like Maple or Mathematica.

The rest of this paper is organized as follows. In the next
section, we describe how the RDTM can be applied to solve
PDAEs.Themain idea behind the Padé approximant is given
in Section 3. In Section 4, we give the basic concept of the

Laplace-Padé resummation method. In Section 5, we apply
LPRDTM to solve two PDAEs problems of index-two and
index-three. In Section 6, we give a brief discussion. Finally,
a conclusion is drawn in the last section.

2. Reduced Differential Transform
Method (RDTM)

In this section we will describe the reduced differential
transform method to solve PDAEs.

Definition 1. If a function 𝑢(𝑡, 𝑥) is analytical and continu-
ously differentiable with respect to time 𝑡 and space 𝑥 in the
domain of interestΩ, then

𝑈𝑘 (𝑥) =

1

𝑘!

[

𝜕
𝑘

𝜕𝑡
𝑘
𝑢 (𝑡, 𝑥)]

𝑡=0

, 𝑥 ∈ Ω, (1)

is the transformed function of 𝑢(𝑡, 𝑥).

Definition 2. The differential inverse transform of {𝑈𝑘(𝑥)}
𝑛

𝑘=0

is defined by

𝑢 (𝑡, 𝑥) =

∞

∑

𝑘=0

𝑈𝑘 (𝑥) 𝑡
𝑘
. (2)

Substituting (1) into (2), we deduce that

𝑢 (𝑡, 𝑥) =

∞

∑

𝑘=0

1

𝑘!

[

𝜕
𝑘

𝜕𝑡
𝑘
𝑢 (𝑡, 𝑥)]

𝑡=0

𝑡
𝑘
. (3)

From the above definitions, it is easy to see that the concept
of the RDTM is obtained from the power series expansion.
To illustrate the application of the proposed RDTM to solve
PDAEs, we consider the following nonlinear PDAE system:

𝐴

𝜕

𝜕𝑡

𝑢 (𝑡, 𝑥) + 𝐵

𝜕
2

𝜕𝑥
2
𝑢 (𝑡, 𝑥) + 𝑁 (𝑢 (𝑡, 𝑥)) = 𝑔 (𝑡, 𝑥) ,

𝑡 ≥ 0, 𝑥 ∈ Ω,

(4)

where 𝐴 and 𝐵 are 𝑛 × 𝑛 square matrices with 𝐴 singular,
𝑁 (𝑢(𝑡, 𝑥)) is a nonlinear differential operator, and 𝑔 is a
known analytical function.

PDAE (4) is supplied with some consistent initial condi-
tions:

𝑢 (0, 𝑥) = 𝑓 (𝑥) , 𝑥 ∈ Ω. (5)

In contrast to parabolic or hyperbolic initial value problems,
initial conditions for PDAEs cannot be prescribed for all com-
ponents of the solution vector arbitrarily as initial conditions
have to fulfill certain consistency conditions.

RDTM establishes that the solution to a differential
equation can be written as

𝑢 (𝑡, 𝑥) =

∞

∑

𝑘=0

𝑈𝑘 (𝑥) 𝑡
𝑘
, (6)
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where 𝑈0 (𝑥), 𝑈1 (𝑥) , . . . are unknown functions to be deter-
mined by RDTM.

Applying the RDTM to initial condition (5) and PDAE
(4), respectively, we obtain the transformed initial condition

𝑈0 (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ Ω, (7)

and the recursion system

(1 + 𝑘)𝐴𝑈𝑘+1 (𝑥) + 𝐵

𝑑
2

𝑑𝑥
2
𝑈𝑘 (𝑥) + 𝑁 (𝑈0 (𝑥) , . . . , 𝑈𝑘 (𝑥))

= 𝐺 (𝑥) , 𝑥 ∈ Ω, 𝑘 = 0, 1, 2, . . . ,

(8)

where (𝑑2/𝑑𝑥2)𝑈𝑘(𝑥),𝑁(𝑈0(𝑥), . . . , 𝑈𝑘(𝑥)), and𝐺(𝑥) are the
reduced differential transforms of (𝜕2/𝜕𝑥2)𝑢(𝑡, 𝑥),𝑁(𝑢(𝑡, 𝑥)),
and 𝑔(𝑡, 𝑥), respectively.

Substituting (7) into (8) and solving the resulting system,
we determine the unknown functions 𝑈𝑘(𝑥), 𝑘 = 0, 1, 2, . . ..
Then, the differential inverse transformation of the set of
functions {𝑈𝑘(𝑥)}

𝑛

𝑘=0
gives the approximate solution

𝑢 (𝑡, 𝑥) =

𝑛

∑

𝑘=0

𝑈𝑘 (𝑥) 𝑡
𝑘
, (9)

where 𝑛 is the approximation order of the solution.The exact
solution to problem (4)-(5) is then given by

𝑢 (𝑡, 𝑥) =

∞

∑

𝑘=0

𝑈𝑘 (𝑥) 𝑡
𝑘
. (10)

If 𝑈𝑘(𝑥) and 𝑉𝑘(𝑥) are the reduced differential transforms of
𝑢(𝑡, 𝑥) and V(𝑡, 𝑥), respectively, then the main operations of
RDTM are shown in Table 1.

The process of RDTM can be described as follows.

(1) Apply the reduced differential transform to the initial
conditions.

(2) Apply the reduced differential transform to the PDAE
to obtain a recursion system for the unknown func-
tions 𝑈0 (𝑥), 𝑈1 (𝑥) , . . ..

(3) Use the transformed initial conditions and solve the
recursion system for the unknown functions 𝑈0 (𝑥),
𝑈1 (𝑥) , . . ..

(4) Use differential inverse transform formula (9) to
obtain an approximate or exact solution for the
PDAE.

The solutions series obtained from RDTM may have
limited regions of convergence, even if we take a large number
of terms. Therefore, we propose to apply the Laplace-Padé
resummation method to RDTM truncated series to enlarge
the convergence region as depicted in the next section.

3. Padé Approximant

Let 𝑢(𝑡) be an analytical function withMaclaurin’s expansion:

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢𝑛𝑡
𝑛
, 0 ≤ 𝑡 ≤ 𝑇. (11)

Table 1: Main operations of RDTM.

Function Reduced differential transform
𝛼𝑢(𝑡, 𝑥) ± 𝛽𝑣(𝑡, 𝑥) 𝛼𝑈

𝑘
(𝑥) ± 𝛽𝑉

𝑘
(𝑥)

𝑢(𝑡, 𝑥)𝑣(𝑡, 𝑥)

𝑘

∑

𝑟=0

𝑈𝑟(𝑥)𝑉𝑘−𝑟(𝑥)

𝜕

𝜕𝑡

[𝑢(𝑡, 𝑥)] (𝑘 + 1)𝑈𝑘+1(𝑥)

𝜕

𝜕𝑥

[𝑢(𝑡, 𝑥)]

𝑑

𝑑𝑥

𝑈𝑘(𝑥)

𝑥
𝑚
𝑡
𝑛

{

{

{

𝑥
𝑚
, 𝑘 = 𝑛

0, 𝑘 ̸= 𝑛

𝑥
𝑚
𝑡
𝑛
𝑢(𝑡, 𝑥) 𝑥

𝑚
𝑈𝑘−𝑛(𝑥)

𝑒
𝜆𝑡 𝜆

𝑘

𝑘!

sin (𝜔𝑡 + 𝛼) 𝜔
𝑘

𝑘!

sin(𝜋𝑘
2

+ 𝛼)

cos (𝜔𝑡 + 𝛼) 𝜔
𝑘

𝑘!

cos(𝜋𝑘
2

+ 𝛼)

Then the Padé approximant to 𝑢 (𝑡) of order [𝐿,𝑀]which we
denote by [𝐿/𝑀]𝑢 (𝑡) is defined by [46]

[

𝐿

𝑀

]

𝑢

(𝑡) =

𝑝0 + 𝑝1𝑡 + ⋅ ⋅ ⋅ + 𝑝𝐿𝑡
𝐿

1 + 𝑞1𝑡 + ⋅ ⋅ ⋅ + 𝑞𝑀𝑡
𝑀
, (12)

where we considered 𝑞0 = 1, and the numerator and
denominator have no common factors.

The numerator and the denominator in (12) are con-
structed so that 𝑢 (𝑡) and [𝐿/𝑀]𝑢 (𝑡) and their derivatives
agree at 𝑡 = 0 up to 𝐿 +𝑀. That is,

𝑢 (𝑡) − [

𝐿

𝑀

]

𝑢

(𝑡) = 𝑂 (𝑡
𝐿+𝑀+1

) . (13)

From (13), we have

𝑢 (𝑡)

𝑀

∑

𝑛=0

𝑞𝑛𝑡
𝑛
−

𝐿

∑

𝑛=0

𝑝𝑛𝑡
𝑛
= 𝑂 (𝑡

𝐿+𝑀+1
) . (14)

From (14), we get the following algebraic linear systems:

𝑢𝐿𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿−𝑀+1𝑞𝑀 = −𝑢𝐿+1,

𝑢𝐿+1𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿−𝑀+2𝑞𝑀 = −𝑢𝐿+2,

.

.

.

𝑢𝐿+𝑀−1𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿𝑞𝑀 = −𝑢𝐿+𝑀,

(15)

𝑝0 = 𝑢0

𝑝1 = 𝑢1 + 𝑢0𝑞1

.

.

.

𝑝𝐿 = 𝑢𝐿 + 𝑢𝐿−1𝑞1 + ⋅ ⋅ ⋅ + 𝑢0𝑞𝐿.

(16)
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From (15), we calculate first all the coefficients 𝑞𝑛, 1 ≤ 𝑛 ≤ 𝑀.
Then, we determine the coefficients 𝑝𝑛, 0 ≤ 𝑛 ≤ 𝐿, from (16).

Note that, for a fixed value of 𝐿 + 𝑀 + 1, error (13) is the
smallest when the numerator and denominator of (12) have
the samedegree orwhen the numerator has one degree higher
than the denominator.

4. Laplace-Padé Resummation Method

Several approximate methods provide power series solutions
(polynomial). Nevertheless, sometimes, this type of solutions
lacks large domains of convergence. Therefore, Laplace-Padé
[34–38] resummation method is used in literature to enlarge
the domain of convergence of solutions or inclusive to find
exact solutions.

The Laplace-Padé method can be explained as follows.

(1) First, Laplace transformation is applied to power
series (9).

(2) Next, 𝑠 is substituted by 1/𝑡 in the resulting equation.
(3) After that, we convert the transformed series into a

meromorphic function by forming its Padé approx-
imant of order [𝑁/𝑀]. 𝑁 and 𝑀 are arbitrarily
chosen, but they should be of smaller values than
the order of the power series. In this step, the Padé
approximant extends the domain of the truncated
series solution to obtain better accuracy and conver-
gence.

(4) Then, 𝑡 is substituted by 1/𝑠.
(5) Finally, by using the inverse Laplace 𝑠 transformation,

we obtain the exact or approximate solution.

5. Test Problems

In this section, we will demonstrate the effectiveness and
accuracy of the LPRDTM described in the previous sections
through two PDAE systems of index-two and index-three.

5.1. Nonlinear First Order Index-Two PDAE. Consider the
following nonlinear index-two PDAE:

𝜕𝑢1

𝜕𝑡

−

𝜕
2
𝑢1

𝜕𝑥
2
− 2𝑢1

𝜕𝑢1

𝜕𝑥

+ (1 + 𝑥
2
) 𝑢3 = 0,

(17)

𝜕𝑢2

𝜕𝑡

−

𝜕
2
𝑢2

𝜕𝑥
2
− 2𝑢2

𝜕𝑢2

𝜕𝑥

+ (1 + 𝑥
2
) 𝑢3 = 0,

(18)

5𝑢1 − 3𝑢2 − 2𝑒
−𝑡 cos𝑥 = 0, (19)

a coupled system of two parabolic equations and one alge-
braic equation, with −∞ < 𝑥 < +∞ and 𝑡 ≥ 0.

This PDAE is subject to the following initial conditions:

𝑢1 (0, 𝑥) = cos𝑥, 𝑢2 (0, 𝑥) = cos𝑥, −∞ < 𝑥 < +∞.

(20)

Note here that no initial condition is prescribed for the
variable 𝑢3 as this is determined by the PDAEs (17)–(19) and

(20).Moreover, since differentiating (19) twice with respect to
time and using (17)–(19) determine 𝜕𝑢3/𝜕𝑡 in terms of 𝑢1, 𝑢2
and their space derivatives, then the index of PDAEs (17)–(19)
is two. Therefore, this PDAE is difficult to solve numerically.

Applying the reduced differential transform to initial
conditions (20) and PDAEs (17)–(19), respectively, we get

𝑈1,0 (𝑥) = cos𝑥, 𝑈2,0 (𝑥) = cos𝑥, −∞ < 𝑥 < +∞, (21)

and the recursion system

(𝑘 + 1)𝑈1,𝑘+1 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈1,𝑘 (𝑥)

− 2

𝑘

∑

𝑟=0

𝑈1,𝑟 (𝑥)

𝑑

𝑑𝑥

𝑈1,𝑘−𝑟 (𝑥) + (1 + 𝑥
2
)𝑈3,𝑘 (𝑥) = 0,

(𝑘 + 1)𝑈2,𝑘+1 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈2,𝑘 (𝑥)

− 2

𝑘

∑

𝑟=0

𝑈2,𝑟 (𝑥)

𝑑

𝑑𝑥

𝑈2,𝑘−𝑟 (𝑥) + (1 + 𝑥
2
)𝑈3,𝑘 (𝑥) = 0,

5𝑈1,𝑘 (𝑥) − 3𝑈2,𝑘 (𝑥) −

2 (−1)
𝑘

𝑘!

cos𝑥 = 0,
(22)

for 𝑘 = 0, 1, 2 . . ..
System (22) can be written as

𝑘𝑈1,𝑘 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈1,𝑘−1 (𝑥) − 2

𝑘−1

∑

𝑟=0

(𝑈1,𝑟 (𝑥)

×

𝑑

𝑑𝑥

𝑈1,𝑘−1−𝑟 (𝑥))

+ (1 + 𝑥
2
)𝑈3,𝑘−1 (𝑥) = 0,

𝑘𝑈2,𝑘 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈2,𝑘−1 (𝑥) − 2

𝑘−1

∑

𝑟=0

(𝑈2,𝑟 (𝑥)

×

𝑑

𝑑𝑥

𝑈2,𝑘−1−𝑟 (𝑥))

+ (1 + 𝑥
2
)𝑈3,𝑘−1 (𝑥) = 0,

5𝑈1,𝑘 (𝑥) − 3𝑈2,𝑘 (𝑥) −

2 (−1)
𝑘

𝑘!

cos𝑥 = 0,

(23)

for 𝑘 = 1, 2, 3 . . ..
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Using (21) and solving the 3 × 3 algebraic linear system
(23) for 𝑈1,𝑘 (𝑥), 𝑈2,𝑘 (𝑥), and 𝑈3,𝑘−1 (𝑥) for 𝑘 = 1, 2, 3 . . ., we
have

𝑈1,1 (𝑥) = 𝑈2,1 (𝑥) = − cos𝑥, 𝑈3,0 (𝑥) = −

sin 2𝑥
1 + 𝑥
2
,

𝑈1,2 (𝑥) = 𝑈2,2 (𝑥) =

1

2

cos𝑥, 𝑈3,1 (𝑥) =

2 sin 2𝑥
1 + 𝑥
2
,

𝑈1,3 (𝑥) = 𝑈2,3 (𝑥) = −

1

3!

cos𝑥, 𝑈3,2 (𝑥) = −

2 sin 2𝑥
1 + 𝑥
2
,

𝑈1,4 (𝑥) = 𝑈2,4 (𝑥) =

1

4!

cos𝑥, 𝑈3,3 (𝑥) =

3 sin 2𝑥
4 (1 + 𝑥

2
)

,

𝑈1,5 (𝑥) = 𝑈2,5 (𝑥) = −

1

5!

cos𝑥, 𝑈3,4 (𝑥) = −

2 sin 2𝑥
3 (1 + 𝑥

2
)

,

.

.

.

(24)

Then, using (9) and (24), we get the fourth order approxima-
tion solution:

𝑢1 (𝑡, 𝑥) = 𝑢2 (𝑡, 𝑥) ≅

4

∑

𝑘=0

𝑈1,𝑘 (𝑥) 𝑡
𝑘

= (1 − 𝑡 +

𝑡
2

2!

−

𝑡
3

3!

+

𝑡
4

4!

) cos𝑥,

𝑢3 (𝑡, 𝑥) ≅

4

∑

𝑘=0

𝑈3,𝑘 (𝑥) 𝑡
𝑘

= −(1 − 2𝑡 +

2
2
𝑡
2

2!

−

2
3
𝑡
3

3!

+

2
4
𝑡
4

4!

)

sin 2𝑥
1 + 𝑥
2
.

(25)

The solutions series obtained from the RDTM may have
limited regions of convergence, even if we take a large
number of terms. Therefore, we propose to apply the 𝑡-
Padé approximation technique to these series to increase the
convergence region. First 𝑡-Laplace transform is applied to
(25).Then, 𝑠 is substituted by 1/𝑡 and the 𝑡-Padé approximant
is applied to the transformed series. Finally, 𝑡 is substituted
by 1/𝑠 and the inverse Laplace 𝑠-transform is applied to
the resulting expression to obtain the approximate or exact
solution.

Applying Laplace transforms to 𝑢1 (𝑡, 𝑥), 𝑢2 (𝑡, 𝑥), and
𝑢3 (𝑡, 𝑥) yields

L [𝑢1 (𝑡, 𝑥)] = L [𝑢2 (𝑡, 𝑥)] = (
1

𝑠

−

1

𝑠
2
+

1

𝑠
3
−

1

𝑠
4
) cos𝑥,

L [𝑢3 (𝑡, 𝑥)] = − (
1

𝑠

−

2

𝑠
2
+

4

𝑠
3
−

8

𝑠
4
)

sin 2𝑥
1 + 𝑥
2
.

(26)

For simplicity let 𝑠 = 1/𝑡; then

L [𝑢1 (𝑡, 𝑥)] = L [𝑢2 (𝑡, 𝑥)] = (𝑡 − 𝑡
2
+ 𝑡
3
− 𝑡
4
) cos𝑥,

L [𝑢3 (𝑡, 𝑥)] = − (𝑡 − 2𝑡
2
+ 4𝑡
3
− 8𝑡
4
)

sin 2𝑥
1 + 𝑥
2
.

(27)

All of the [𝐿/𝑀] 𝑡-Padé approximants of (27) with 𝐿 ≥ 1 and
𝑀 ≥ 1 and 𝐿 +𝑀 ≤ 4 yield

[

𝐿

𝑀

]

𝑢
1

(𝑡, 𝑥) = [

𝐿

𝑀

]

𝑢
2

(𝑡, 𝑥) = (

𝑡

1 + 𝑡

) cos𝑥,

[

𝐿

𝑀

]

𝑢
3

(𝑡, 𝑥) = − (

𝑡

1 + 2𝑡

)

sin 2𝑥
1 + 𝑥
2
.

(28)

Now since 𝑡 = 1/𝑠, we obtain [𝐿/𝑀]𝑢
1

, [𝐿/𝑀]𝑢
2

, and [𝐿/𝑀]𝑢
3

in terms of 𝑠 as follows:

[

𝐿

𝑀

]

𝑢
1

(𝑡, 𝑥) = [

𝐿

𝑀

]

𝑢
2

(𝑡, 𝑥) = (

1

1 + 𝑠

) cos𝑥,

[

𝐿

𝑀

]

𝑢
3

(𝑡, 𝑥) = − (

1

2 + 𝑠

)

sin 2𝑥
1 + 𝑥
2
.

(29)

Finally, applying the inverse Laplace transform to Padé
approximants (29) yields an approximate solution which in
this case is the exact solution:

𝑢1 (𝑡, 𝑥) = 𝑒
−𝑡 cos𝑥,

𝑢2 (𝑡, 𝑥) = 𝑒
−𝑡 cos𝑥,

𝑢3 (𝑡, 𝑥) = −

𝑒
−2𝑡 sin 2𝑥
1 + 𝑥
2
,

−∞ < 𝑥 < +∞, 𝑡 ≥ 0.

(30)

5.2. Linear Second Order Index-Three PDAE. Consider the
following index-three PDAE [47]:

𝜕
2
𝑢1

𝜕𝑡
2
−

𝜕
2
𝑢1

𝜕𝑥
2
− 𝑢3 sin𝜋𝑥 = 0, (31)

𝜕
2
𝑢2

𝜕𝑡
2
−

𝜕
2
𝑢2

𝜕𝑥
2
− 𝑢3 cos𝜋𝑥 = 0, (32)

𝑢1 sin𝜋𝑥 + 𝑢2 cos𝜋𝑥 − 𝑒
−𝑡
= 0, (33)

a coupled system of two hyperbolic equations and one
algebraic equation, with −∞ < 𝑥 < +∞ and 𝑡 ≥ 0.

System (31)–(33) is subject to the following initial condi-
tions:

𝑢1 (0, 𝑥) = sin𝜋𝑥, 𝜕𝑢1

𝜕𝑡

(0, 𝑥) = − sin𝜋𝑥,

𝑢2 (0, 𝑥) = cos𝜋𝑥, 𝜕𝑢2

𝜕𝑡

(0, 𝑥) = − cos𝜋𝑥,

−∞ < 𝑥 < +∞.

(34)

Note here that no initial condition is prescribed for the
variable 𝑢3 as this is determined by the PDAEs (31)–(33) and
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(34). Moreover, since differentiating (33) three times with
respect to time and using (31)–(33) determine 𝜕𝑢3/𝜕𝑡 in terms
of 𝑢1, 𝑢2 and their space derivatives, then the index of PDAEs
(31)–(33) is three. Therefore, this PDAE is difficult to solve
numerically.

Applying the reduced differential transform to initial
conditions (34) and PDAEs (31)–(33), respectively, we obtain

𝑈1,0 (𝑥) = sin𝜋𝑥, 𝑈1,1 (𝑥) = − sin𝜋𝑥,

𝑈2,0 (𝑥) = cos𝜋𝑥, 𝑈2,1 (𝑥) = − cos𝜋𝑥,

−∞ < 𝑥 < +∞,

(35)

and the recursion system

(𝑘 + 1) (𝑘 + 2)𝑈1,𝑘+2 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈1,𝑘 (𝑥) − 𝑈3,𝑘 (𝑥) sin𝜋𝑥 = 0,

(𝑘 + 1) (𝑘 + 2)𝑈2,𝑘+2 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈2,𝑘 (𝑥) − 𝑈3,𝑘 (𝑥) cos𝜋𝑥 = 0,

𝑈1,𝑘 (𝑥) sin𝜋𝑥 + 𝑈2,𝑘 (𝑥) cos𝜋𝑥 −
(−1)
𝑘

𝑘!

= 0,

for 𝑘 = 0, 1, 2, . . . .
(36)

System (36) can be written as

(𝑘 − 1) 𝑘𝑈1,𝑘 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈1,𝑘−2 (𝑥) − 𝑈3,𝑘−2 (𝑥) sin𝜋𝑥 = 0,

(𝑘 − 1) 𝑘𝑈2,𝑘 (𝑥) −

𝑑
2

𝑑𝑥
2
𝑈2,𝑘−2 (𝑥) − 𝑈3,𝑘−2 (𝑥) cos𝜋𝑥 = 0,

𝑈1,𝑘 (𝑥) sin𝜋𝑥 + 𝑈2,𝑘 (𝑥) cos𝜋𝑥 −
(−1)
𝑘

𝑘!

= 0,

for 𝑘 = 2, 3, . . . .
(37)

Using (35) and solving the 3 × 3 algebraic linear system (37)
for 𝑈1,𝑘 (𝑥), 𝑈2,𝑘 (𝑥), and 𝑈3,𝑘−2 (𝑥) for 𝑘 = 2, 3, 4 . . ., we have

𝑈1,2 (𝑥) =

1

2

sin𝜋𝑥, 𝑈2,2 (𝑥) =

1

2

cos𝜋𝑥,

𝑈3,0 (𝑥) = 1 + 𝜋
2
,

𝑈1,3 (𝑥) = −

1

6

sin𝜋𝑥, 𝑈2,3 (𝑥) = −

1

6

cos𝜋𝑥,

𝑈3,1 (𝑥) = − (1 + 𝜋
2
) ,

𝑈1,4 (𝑥) =

1

24

sin𝜋𝑥, 𝑈2,4 (𝑥) =

1

24

cos𝜋𝑥,

𝑈3,2 (𝑥) =

1

2

(1 + 𝜋
2
) ,

.

.

.

(38)

Using (9) and (38), we get the approximate solution

𝑢1 (𝑡, 𝑥) ≅

4

∑

𝑘=0

𝑈1,𝑘 (𝑥) 𝑡
𝑘

= (1 − 𝑡 +

1

2

𝑡
2
−

1

3!

𝑡
3
+

1

4!

𝑡
4
) sin𝜋𝑥,

𝑢2 (𝑡, 𝑥) ≅

4

∑

𝑘=0

𝑈2,𝑘 (𝑥) 𝑡
𝑘

= (1 − 𝑡 +

1

2

𝑡
2
−

1

3!

𝑡
3
+

1

4!

𝑡
4
) cos𝜋𝑥,

𝑢3 (𝑡, 𝑥) ≅

2

∑

𝑘=0

𝑈3,𝑘 (𝑥) 𝑡
𝑘
= (1 + 𝜋

2
) (1 − 𝑡 +

1

2

𝑡
2
) .

(39)

Similarly, the coefficients 𝑈1,𝑘 (𝑥), 𝑈2,𝑘 (𝑥), and 𝑈3,𝑘−2 (𝑥) for
𝑘 ≥ 5 can be found from (37). The solutions series obtained
from the RDTM may have limited regions of convergence,
even ifwe take a large number of terms.Therefore, we propose
to apply the 𝑡-Padé approximation technique to these series to
increase the convergence region. First 𝑡-Laplace transform is
applied to (39). Then, 𝑠 is substituted by 1/𝑡 and the 𝑡-Padé
approximant is applied to the transformed series. Finally, 𝑡
is substituted by 1/𝑠 and the inverse Laplace 𝑠-transform is
applied to the resulting expressions to get the approximate or
exact solutions.

Applying Laplace transforms to 𝑢1 (𝑡, 𝑥), 𝑢2 (𝑡, 𝑥), and
𝑢3 (𝑡, 𝑥) yields

L [𝑢1 (𝑡, 𝑥)] = (
1

𝑠

−

1

𝑠
2
+

1

𝑠
3
) sin𝜋𝑥,

L [𝑢2 (𝑡, 𝑥)] = (
1

𝑠

−

1

𝑠
2
+

1

𝑠
3
) cos𝜋𝑥,

L [𝑢3 (𝑡, 𝑥)] = (1 + 𝜋
2
) (

1

𝑠

−

1

𝑠
2
+

1

𝑠
3
) .

(40)

For simplicity let 𝑠 = 1/𝑡; then

L [𝑢1 (𝑡, 𝑥)] = (𝑡 − 𝑡
2
+ 𝑡
3
) sin𝜋𝑥,

L [𝑢2 (𝑡, 𝑥)] = (𝑡 − 𝑡
2
+ 𝑡
3
) cos𝜋𝑥,

L [𝑢3 (𝑡, 𝑥)] = (1 + 𝜋
2
) (𝑡 − 𝑡

2
+ 𝑡
3
) .

(41)

All of the [𝐿/𝑀] 𝑡-Padé approximants of (41) with 𝐿 ≥ 1 and
𝑀 ≥ 1 and 𝐿 +𝑀 ≤ 3 yield

[

𝐿

𝑀

]

𝑢
1

(𝑡, 𝑥) = (

𝑡

1 + 𝑡

) sin𝜋𝑥,

[

𝐿

𝑀

]

𝑢
2

(𝑡, 𝑥) = (

𝑡

1 + 𝑡

) cos𝜋𝑥,

[

𝐿

𝑀

]

𝑢
3

(𝑡, 𝑥) = (1 + 𝜋
2
) (

𝑡

1 + 𝑡

) .

(42)
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Now since 𝑡 = 1/𝑠, we obtain [𝐿/𝑀]𝑢
1

, [𝐿/𝑀]𝑢
2

, and [𝐿/𝑀]𝑢
3

in terms of 𝑠 as follows:

[

𝐿

𝑀

]

𝑢
1

(𝑡, 𝑥) = (1 + 𝑠)
−1 sin𝜋𝑥,

[

𝐿

𝑀

]

𝑢
2

(𝑡, 𝑥) = (1 + 𝑠)
−1 cos𝜋𝑥,

[

𝐿

𝑀

]

𝑢
3

(𝑡, 𝑥) = (1 + 𝜋
2
) (1 + 𝑠)

−1
.

(43)

Finally, applying the inverse Laplace transform to Padé
approximants (43) we obtain an approximate solution which
in this case is the exact solution:

𝑢1 (𝑡, 𝑥) = 𝑒
−𝑡 sin𝜋𝑥,

𝑢2 (𝑡, 𝑥) = 𝑒
−𝑡 cos𝜋𝑥,

𝑢3 (𝑡, 𝑥) = (1 + 𝜋
2
) 𝑒
−𝑡
,

−∞ < 𝑥 < +∞, 𝑡 ≥ 0.

(44)

6. Discussion

In this paper, we presented the reduced differential transform
method (RDTM) as a useful analytical tool to solve partial
differential-algebraic equations (PDAEs). The coupling of
RDTM and Laplace-Padé enabled us to obtain the exact
solution to two PDAE problems of index-two and index-
three without the need for a preprocessing step of index-
reduction.This is a relevant result given the fact that a higher-
index PDAE is often difficult to treat numerically without
reducing its index to one and that the index-reduction can
be very expensive and may not preserve the properties of the
solution to the original PDAE. For each of the two problems
solved here, the RDTM transformed the PDAE into an easily
solvable linear algebraic recursion system for the coefficient
functions of the power series solution. As aforementioned, in
order to enlarge the domain of convergence of the RDTM
power series solution, a Laplace-Padé resummation was
applied to the RDTM’s truncated series leading to the exact
solution.

TheRDTM solution procedure does not involve unneces-
sary computation like that related to noise terms [22], which
is a common problem for approximation methods like the
HPM or others. This property of RDTM greatly reduces the
volume of computation and improves the efficiency of the
method. It should be noted that the high complexity of these
problems was effectively handled by LPRDTM method due
to the malleability of RDTM and resummation capability
of Laplace-Padé. What is more, there is not any standard
analytical or numericalmethod to solve higher-index PDAEs,
converting the LPRDTM method into an attractive tool to
solve such problems.

On the one hand, semianalyticmethods likeHPM,HAM,
and VIM, among others, require an initial approximation
for the solutions sought and the computation of one or
several adjustment parameters. If the initial approximation

is properly chosen, then the results can be highly accu-
rate. Nonetheless, there is no general method to choose
such initial approximation. This issue motivates the use of
adjustment parameters obtained by minimizing the least-
squares error with respect to the numerical solution. On the
other hand, RDTM or LPRDTM methods do not require
any trial equation or a procedure for least-squares error
minimization. As well, RDTM obtains its coefficients using
an easily computable straightforward procedure that can be
implemented into programmes like Maple or Mathematica.

It is important to remark that even if the Laplace-Padé
resummation strategy fails to obtain the exact solution to the
PDAE under study, it can still produce a good approximation
with an enlarged domain of convergence. The treatment of
higher-index PDAEs is still an open issue in science and
requires further research.

7. Conclusion

This work presented LPRDTM method as a combination of
the RDTM and a resummation method based on Laplace
transforms and the Padé approximant. Firstly, the solutions
of PDAEs are obtained in convergent series forms using
RDTM. Next, in order to enlarge the domain of convergence
of the truncated power series, a posttreatment combining
Laplace transforms and the Padé approximant is applied.This
technique that we call LPRDTM greatly improves RDTM’s
truncated series solutions in convergence rate and often leads
to the exact solution. Additionally, RDTM is an attractive
tool, because it does not require a perturbation parameter to
work and it does not generate secular terms (noise terms) as
other semianalytical methods like HPM, HAM, or VIM.

By solving two problems, we presented the LPRDTM as
a handy tool with a great potential to solve linear/nonlinear
higher-index PDAEs. Additionally, the LPRDTM does not
require an index-reduction to solve higher-index PDAEs.
Furthermore, we obtained successfully the exact solutions
of such two problems highlighting the efficiency of the
LPRDTM. The proposed method is based on a straightfor-
ward procedure, producing highly accurate approximations.
Therefore, it is suitable for engineers and in particular
for those in fields of mechanics, electronics, and electrical
engineering where application problems give rise to higher-
index PDAEs. Finally, further research should be performed
to solve other higher-index nonlinear PDAE systems.
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