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The inferences for semiparametric models with functional data are investigated.We propose an integral least-squares technique for
estimating the parametric components, and the asymptotic normality of the resulting integral least-squares estimator is studied.
For the nonparametric components, a local integral least-squares estimation method is proposed, and the asymptotic normality of
the resulting estimator is also established. Based on these results, the confidence intervals for the parametric component and the
nonparametric component are constructed. At last, some simulation studies and a real data analysis are undertaken to assess the
finite sample performance of the proposed estimation method.

1. Introduction

In the recent literature, there has been increased interest in
regression modeling for functional data, where both the pre-
dictor and response are random functions. Compared with
the discretemultivariate analysis, functional data analysis can
take into account the smoothness of the high dimensional
covariates and can suggest some new approaches to the
problems that have not been discovered before. Examples
of functional data can be found in different application
fields such as biomedicine, economics, and archaeology
(see Ramsay and Silverman [1]). Furthermore, the statistical
analysis for the regression model with functional data also
has been considered by many authors. For example, Ramsay
and Silverman [2] studied the linear regression model with
functional data. Ait-Säıdi et al. [3] proposed a cross-validated
estimation procedure for the single-functional index model.
Ferraty et al. [4] and Chen et al. [5] considered the inferences
for single andmultiple index functional regressionmodels by
using the functional projection pursuit regression technol-
ogy. In addition, Ferraty and Vieu [6] and Rachdi and Vieu
[7] considered the nonparametric regression modeling for
functional data. More works for the functional data analysis
can be found in [8–10] and among others.

However, the linear functional model, which assumes
that the model satisfies the linear relationship between

the response and the covariates, may be too restrictive. Then,
the semiparametric model with functional data is a useful
extension of functional linear regression models and func-
tional nonparametric regressionmodels.More specifically, let
𝑋(𝑡),𝑍(𝑡), and𝑌(𝑡) be continuous random functions of index
𝑡; then, the semiparametric regression model with functional
data has the following structure:

𝑌 (𝑡) = 𝑋(𝑡)
𝑇
𝜃 (𝑡) + 𝑍(𝑡)

𝑇
𝛽 + 𝜖 (𝑡) , (1)

where 𝑌(𝑡) is the response variable,𝑋(𝑡) is the 𝑝×1 covariate
vector, 𝑍(𝑡) is the 𝑞 × 1 covariate vector, 𝛽 = (𝛽

1
, . . . , 𝛽

𝑞
)
𝑇

is a vector of unknown parameters, 𝜃(𝑡) = (𝜃
1
(𝑡), . . . , 𝜃

𝑝
(𝑡))
𝑇

is a vector of unknown function of 𝑡, and 𝜖(𝑡) is a zero-mean
stochastic process.Here, without loss of generality, we assume
that index 𝑡 ranges over a nondegenerate compact interval
such as [0, 1].

Because the samples of response and covariate are func-
tions of index 𝑡, the Euclidean distance cannot measure the
distance between 𝑌(𝑡) and 𝑋(𝑡). Hence, the ordinary least-
squares method cannot be implemented directly. Recently,
the studies for such semiparametric regression model with
functional data have been considered by many papers (see
Aneiros-Pérez and Vieu [11], Shin [12], and Lian [13]). In
this paper, we provide additional positive results of the
inferences for semiparametric models with functional data
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and extend the application literature of the classical least-
squares technology. More specifically, we propose an integral
least-squares method for estimating the parametric compo-
nents and the nonparametric component. Furthermore, the
asymptotic normalities of the integral profile least-squares
estimators are studied. Some simulation studies and a real
data application imply that the proposedmethod is workable.

The rest of this paper is organized as follows. In Section 2,
we introduce the integral least-squares based estimation
procedure for the parametric components and the nonpara-
metric components. The asymptotic distributions of these
estimators are also derived under some regularity conditions.
In Section 3, some simulations and a real data analysis
are carried out to assess the performance of the proposed
estimation method. The technical proofs of all asymptotic
results are provided in the Appendix.

2. Estimation and Asymptotic Distributions

Suppose {𝑋
𝑖
(𝑡), 𝑍
𝑖
(𝑡), 𝑌
𝑖
(𝑡)}
𝑛

𝑖=1
is a random sample of size 𝑛.

From (1), we have that

𝑌
𝑖 (𝑡) = 𝑋

𝑇

𝑖
(𝑡) 𝜃 (𝑡) + 𝑍𝑖(𝑡)

𝑇
𝛽 + 𝜖
𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑛. (2)

In this paper, we assume that, for given 𝑡, (𝑌
𝑖
(𝑡), 𝑋
𝑖
(𝑡), 𝑍
𝑖
(𝑡))

and 𝜖
𝑖
(𝑡) are i.i.d. for different 𝑖 and 𝐸{𝜀

𝑖
(𝑡) | 𝑋

𝑖
(𝑡), 𝑍
𝑖
(𝑡)} = 0.

Now, we in turn model (2); for 𝑡 in a small neighborhood
of 𝑡
0
, 𝜃
𝑘
(𝑡) can be locally approximated by a linear function

𝜃
𝑘 (𝑡) = 𝜃𝑘 (𝑡0) + 𝜃



𝑘
(𝑡
0
) (𝑡 − 𝑡

0
) ≡ 𝑎
𝑘
+ 𝑏
𝑘
(𝑡 − 𝑡
0
) ,

𝑘 = 1, . . . , 𝑝.

(3)

For given 𝛽, applying the integral least-squares method, we
can get the weighted local integral least-squares estimator of
{𝜃
1
(𝑡), . . . , 𝜃

𝑝
(𝑡)} by minimizing

𝑛

∑

𝑖=1

∫

1

0

{𝑌
𝑖 (𝑠) − 𝑍

𝑇

𝑖
(𝑠) 𝛽 −

𝑝

∑

𝑘=1

[𝑎
𝑘
+ 𝑏
𝑘 (𝑠 − 𝑡)]𝑋𝑖𝑘 (𝑠)}

2

× 𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠,

(4)

where 𝐾
ℎ
(⋅) = ℎ

−1
𝐾(⋅/ℎ), 𝐾(⋅) is a kernel function, ℎ is a

bandwidth, and 𝑋
𝑖𝑘
(𝑠) denote the 𝑘th component of 𝑋

𝑖
(𝑠).

Let

𝐷
𝑥𝑦 (𝑡) = (

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠) 𝑌𝑖 (𝑠) 𝐾ℎ (𝑡 − 𝑠) 𝑑𝑠

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠) 𝑌𝑖 (𝑠)

𝑡 − 𝑠

ℎ
𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

) ,

𝐷
𝑥𝑧 (𝑡) = (

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠) 𝑍

𝑇

𝑖
(𝑠) 𝐾ℎ (𝑡 − 𝑠) 𝑑𝑠

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠) 𝑍

𝑇

𝑖
(𝑠)
𝑡 − 𝑠

ℎ
𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

) ,

𝐷
𝑥𝑥 (𝑡) = (

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠)𝑋

𝑇

𝑖
(𝑠) 𝐾ℎ (𝑡 − 𝑠) 𝑑𝑠

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠)𝑋

𝑇

𝑖
(𝑠)
𝑡 − 𝑠

ℎ
𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠)𝑋

𝑇

𝑖
(𝑠)
𝑡 − 𝑠

ℎ
𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠)𝑋

𝑇

𝑖
(𝑠) (

𝑡 − 𝑠

ℎ
)

2

𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

) .

(5)

Then, the solution to (4) is given by

𝜃 (𝑡) = (𝐼𝑝, 0𝑝)𝐷𝑥𝑥(𝑡)
−1
[𝐷
𝑥𝑦 (𝑡) − 𝐷𝑥𝑧 (𝑡) 𝛽] , (6)

where 𝐼
𝑝
is 𝑝 × 𝑝 identity matrix and 0

𝑝
is 𝑝 × 𝑝 zero matrix.

Substituting (6) into (2), and by a simple calculation, we have

�̆�
𝑖 (𝑡) = �̆�

𝑇

𝑖
(𝑡) 𝛽 + 𝜖𝑖 (𝑡) , (7)

where
�̆�
𝑖 (𝑡) = 𝑍𝑖 (𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡) ,

�̆�
𝑖 (𝑡) = 𝑌𝑖 (𝑡) − 𝑋

𝑇

𝑖
(𝑡) 𝑔 (𝑡) ,

(8)

𝜇 (𝑡) = (𝐼𝑝, 0𝑝)𝐷𝑥𝑥(𝑡)
−1
𝐷
𝑥𝑧 (𝑡) ,

𝑔 (𝑡) = (𝐼𝑝, 0𝑝)𝐷𝑥𝑥(𝑡)
−1
𝐷
𝑥𝑦 (𝑡) .

(9)

Applying the integral least-squares technology to linear
model (7), we can get the integral least-squares estimator of
𝛽, say 𝛽, by minimizing

𝑛

∑

𝑖=1

∫

1

0

{�̆�
𝑖 (𝑡) − �̆�

𝑇

𝑖
(𝑡) 𝛽}
2

𝑑𝑡. (10)
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Let

Γ̂ =
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

�̆�
𝑖 (𝑡) �̆�𝑖(𝑡)

𝑇
𝑑𝑡. (11)

If the matrix Γ̂ is invertible, 𝛽 can be given by

𝛽 = Γ̂
−1 1

𝑛

𝑛

∑

𝑖=1

∫

1

0

�̆�
𝑖 (𝑡) �̆�𝑖 (𝑡) 𝑑𝑡. (12)

Let

Γ = 𝐸{∫

1

0

[𝑍(𝑡) − 𝜇
𝑇
(𝑡) 𝑋 (𝑡)]

⊗2

𝑑𝑡} , (13)

𝐵 = 𝐸(∫

1

0

{[𝑍 (𝑡) − 𝜇(𝑡)
𝑇
𝑋(𝑡)] 𝜖 (𝑡)} 𝑑𝑁 (𝑡))

⊗2

, (14)

where 𝐴⊗2 = 𝐴𝐴𝑇, 𝜇(𝑡) = Ψ−1(𝑡)Φ(𝑡), Φ(𝑡) = 𝐸{𝑋(𝑡)𝑍𝑇(𝑡) |
𝑡}, and Ψ(𝑡) = 𝐸{𝑋(𝑡)𝑋𝑇(𝑡) | 𝑡}. The following result states
the asymptotic normality of 𝛽.

Theorem 1. Suppose that conditions (𝐶1)–(𝐶5) in the
Appendix hold; then, one has

√𝑛 (𝛽 − 𝛽)
L
→ 𝑁(0, Σ) , (15)

where Σ = Γ−1𝐵Γ−1.

In order to construct the confidence interval of 𝛽 by
Theorem 1, we give the estimator of Σ, say Σ̂ = Γ̂−1𝐵(𝛽)Γ̂−1,
where Γ̂ is defined in (11) and

𝐵 (𝛽) =
1

𝑛

𝑛

∑

𝑖=1

𝜂
𝑖
(𝛽) 𝜂
𝑇

𝑖
(𝛽) . (16)

Invoking ‖𝛽 − 𝛽‖ = 𝑂
𝑝
(𝑛
−1/2
), with the similar argument to

Lemma A.6, we can prove that Σ̂ is a consistent estimator of
Σ. Thus, by Theorem 1, we have

Σ̂
−1/2
√𝑛 (𝛽 − 𝛽)

L
→ 𝑁(0, 𝐼

𝑞
) , (17)

where 𝐼
𝑞
is an identity matrix of order 𝑞. Therefore, the

confidence region of 𝛽 can be constructed by using (17).
Furthermore, substituting 𝛽 into (6), we can get the

integral least-squares estimator of 𝜃(𝑡) as

𝜃 (𝑡) = (𝐼𝑝, 0𝑝)𝐷𝑥𝑥(𝑡)
−1
[𝐷
𝑥𝑦 (𝑡) − 𝐷𝑥𝑧 (𝑡) 𝛽] . (18)

We state the asymptotic normality of 𝜃(𝑡) in the following
theorem.

Theorem 2. Suppose that conditions (𝐶1)–(𝐶5) in the
Appendix hold. For given 𝑡

0
, then one has

√𝑛ℎ {𝜃 (𝑡
0
) − 𝜃 (𝑡

0
) − 𝑏 (𝑡

0
)}

L
→ 𝑁(0, 𝑉 (𝑡

0
)) , (19)

where 𝑏(𝑡
0
) = (1/2)𝜃


(𝑡
0
)ℎ
2
∫
1

0
𝑡
2
𝐾(𝑡)𝑑𝑡, 𝑉(𝑡

0
) =

Ψ
−1
(𝑡
0
)𝜎
2
(𝑡
0
) ∫
1

0
𝐾
2
(𝑡)𝑑𝑡.

Let

Ψ̂ (𝑡
0
) =

1

𝑛ℎ

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑡) 𝑋𝑖(𝑡)

𝑇
𝐾
ℎ
(𝑡 − 𝑡
0
) 𝑑𝑡,

�̂� (𝑡
0
) =

1

𝑛ℎ

𝑛

∑

𝑖=1

∫

1

0

[𝜃 (𝑡) − 𝜃 (𝑡0)]𝐾ℎ (𝑡 − 𝑡0) 𝑑𝑡,

�̂�
2
(𝑡
0
) =

1

𝑛ℎ

𝑛

∑

𝑖=1

∫

1

0

[𝑌
𝑖 (𝑡) − 𝑍𝑖(𝑡)

𝑇
𝛽 − 𝑋

𝑖(𝑡)
𝑇
𝜃 (𝑡)]
2

× 𝐾
ℎ
(𝑡 − 𝑡
0
) 𝑑𝑡.

(20)

Using the law of large numbers, with the similar argument
to Lemma A.2 and Proposition 4.1 of Xue and Zhu [14] and
Lemma 1 of Wu et al. [15], it can be shown that �̂�2(𝑡

0
), Ψ̂(𝑡
0
),

and �̂�(𝑡
0
) are consistent estimators of 𝜎2(𝑡

0
), Ψ(𝑡
0
), and 𝑏(𝑡

0
),

respectively. Finally, we can obtain the estimator �̂�(𝑡
0
) by

substituting Ψ−1(𝑡
0
) and 𝜎2(𝑡

0
) in 𝑉(𝑡

0
) with Ψ̂−1(𝑡

0
) and

�̂�
2
(𝑡
0
), respectively. It can be shown that �̂�(𝑡

0
) and �̂�(𝑡

0
) are

the consistent estimators of 𝑏(𝑡
0
) and 𝑉(𝑡

0
), respectively. By

Theorem 2, we have that

�̂�(𝑡
0
)
−1/2
√𝑛ℎ {𝜃 (𝑡

0
) − 𝜃 (𝑡

0
) − �̂� (𝑡

0
)}

L
→ 𝑁(0, 𝐼

𝑝
) ,

(21)

where 𝐼
𝑝
is the unit matrix of order 𝑝.

Using (21), a pointwise confidence interval for 𝜃
𝑟
(𝑡
0
) can

be given by

𝜃
𝑟
(𝑡
0
) − (𝑛ℎ)

−1/2
�̂�
𝑟
(𝑡
0
) ± 𝑍
𝛼/2(𝑛ℎ)

−1/2]̂
𝑟
(𝑡
0
) ,

𝑟 = 1, . . . , 𝑝,

(22)

where �̂�
𝑟
(𝑡
0
) is the 𝑟th component of �̂�(𝑡

0
), ]̂
𝑟
(𝑡
0
) is the (𝑟, 𝑟)th

element of �̂�(𝑡
0
), and 𝑍

𝛼/2
is the 1 − 𝛼/2 quantile value of the

standard normal distribution.

3. Numerical Results

In this section, we conduct several simulation experiments
to illustrate the finite sample performances of the proposed
method and consider a real data set analysis for further
illustration.

3.1. Simulation Studies. To evaluate the performance of the
proposed method, we consider the following model:

𝑌 (𝑡) = sin (2𝜋𝑡)𝑋 (𝑡) + 2.5𝑍 (𝑡) + 𝜖 (𝑡) , (23)

where 𝛽 = 2.5 and 𝜃(𝑡) = sin(2𝜋𝑡). To perform the simula-
tion, we generated 𝑛 = 30, 50, 100 samples, respectively. The
covariates𝑋(𝑡) and𝑍(𝑡) are generated according to themodel

𝑋 (𝑡) = 𝑋01(0.5 − 𝑡)
2
+ 𝑋
02
, 𝑍 (𝑡) = 𝑍01(0.5 − 𝑡)

3
+ 𝑍
02
,

(24)

where 𝑋
01
∼ 𝑈(5, 7), 𝑋

02
∼ 𝑁(0, 1.5), 𝑍

01
∼ 𝑁(0, 5), and

𝑍
02
∼ 𝑁(0, 1), respectively.
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Figure 1: The pointwise confidence intervals for 𝜃(𝑡).

Table 1: The estimators and the 95% confidence intervals for 𝛽.

𝑛 𝛽 SD (𝛽
𝐿
, 𝛽
𝑈
) Length Coverage

30 2.472 0.166 (2.326, 2.618) 0.292 0.937
50 2.491 0.136 (2.389, 2.594) 0.205 0.945
100 2.502 0.096 (2.441, 2.562) 0.121 0.951

We use the Epanechnikov kernel function𝐾(𝑡) = 0.75(1−
𝑡
2
)
+

and use the cross-validation method to determine
bandwidth ℎ. Let 𝜃

−𝑖
(⋅) and 𝛽

−𝑖
be the integral least-squares

estimators of 𝜃(⋅) and 𝛽, respectively, which are computed
with all of the measurements but not the 𝑖th observation.
Define the integral least-squares cross-validation function

CV (ℎ) = 1
𝑛

𝑛

∑

𝑖=1

∫

1

0

{𝑌
𝑖 (𝑡) − 𝑋𝑖(𝑡)

𝑇
𝜃
−𝑖 (𝑡) − 𝑍𝑖(𝑡)

𝑇
𝛽
−𝑖
}
2

.

(25)

The cross-validation bandwidth is the one that minimizes
(25); that is,

ℎ̂CV = arg min
ℎ

CV (ℎ) . (26)

For the parametric component 𝛽, the average and stan-
dard deviation of the estimator 𝛽, based on 1000 simulations,
are reported in Table 1. In addition, the average length and
coverage probability of the confidence interval (𝛽

𝐿
, 𝛽
𝑈
), with

a nominal level 1 − 𝛼 = 95%, are computed with 1000
simulation runs. The results are also summarized in Table 1.

For the nonparametric component 𝜃(𝑡), the average
pointwise confidence intervals, based on 1000 simulations,
with a nominal level 1 − 𝛼 = 95% are presented in Figure 1,
and the corresponding coverage probabilities are presented in
Figure 2.

Table 1 shows that, for the parametric component, our
method can give a shorter confidence interval and the corre-
sponding coverage probability is close to real nominal level.
Figures 1 and 2 show that the average interval length decreases
as the sample size increases, while the corresponding cover-
age probability increases. In addition, we can see that, for the
nonparametric component, the proposed estimation method
works well except for boundary points.
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Figure 2: The corresponding coverage probabilities.

Table 2: The estimators and the 95% confidence intervals for 𝛽.

𝛽 Estimator Confidence interval Interval length
𝛽
1

−1.758 (−1.907, −1.609) 0.298

𝛽
2

−0.661 (−0.743, −0.579) 0.164

3.2. Application to Spectrometric Curves Data. In this section,
we present an application of the proposed estimationmethod
to spectrometric curves data. This original data comes from
a quality control problem in the food industry. This data set
concerns a sample of finely chopped meat, and each food
sample contains finely chopped pure meat with different fat,
protein, and moisture (water) contents. The sample size of
this data set is 𝑛 = 240, and, for each food sample, the func-
tional data consist of 100 channel spectrum of absorbances,
which were recorded on the Tecator Infratec Food and Feed
Analyzer working in the wavelength range 850–1050 nm by
the near infrared transmission (NIT) principle. Because of
the fineness of the grid, we can consider each subject as a
continuous curve. Thus, each spectrometric analysis can be
summarized by some continuous curves giving the observed
absorbance as function of the wavelength. More details of the
data can be found in Ferraty and Vieu [16].

The aim is to find the relationship between the percentage
of fat content 𝑌(𝑡) and the corresponding percentages of
protein content 𝑋

1
(𝑡), the moisture content 𝑋

2
(𝑡), and the

spectrometric curve 𝑡. The results, obtained by Aneiros-
Pérez and Vieu [11], indicate that there is a strong linear
relationship between the fat content and the protein and
moisture contents, but the spectrometric curve 𝑡 has a
functional effect on the fat content. Hence, we consider the
following semiparametric model:

𝑌 (𝑡) = 𝜃 (𝑡) + 𝛽1𝑋1 (𝑡) + 𝛽2𝑋2 (𝑡) + 𝜀. (27)

We computed the estimators of the parametric compo-
nents 𝛽

1
and 𝛽

2
and the nonparametric component 𝜃(⋅) by

using the proposed integral least-squares method.The results
for the parametric components are reported in Table 2, and
the results for the nonparametric components are reported
in Figure 3, where the solid curve is the estimator of 𝜃(⋅)
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Figure 3: The estimator and 95% pointwise confidence interval for
𝜃(𝑡).

and the dashed curve is the pointwise confidence interval
of 𝜃(⋅). From Table 2, we can see that there is a significant
negative correlation relationship between the fat content and
the protein and moisture contents. In addition, Figure 3
indicates that the baseline function 𝜃(⋅) really varies over the
spectrometric curve 𝑡.This finding basically agrees with what
was discovered by Aneiros-Pérez and Vieu [11].

Appendix

Proof of Theorems

For convenience and simplicity, let 𝑐 denote a positive
constant which may be different value at each appearance
throughout this paper. Before we prove our main theorems,
we list some regularity conditions which are used in this
paper.

(𝐶1) The bandwidth satisfies ℎ = 𝑐𝑛−1/5, for some constant
𝑐 > 0.

(𝐶2) The kernel 𝐾(⋅) is a symmetric probability density
function, and ∫ 𝑡4𝐾(𝑡)𝑑𝑡 < ∞.

(𝐶3) 𝜃(𝑡), Φ(𝑡), and Ψ(𝑡) are twice continuously differen-
tiable on (0, 1).

(𝐶4) sup
0≤𝑡≤1

𝐸(𝜖(𝑡)
4
| 𝑡) < ∞, sup

0≤𝑡≤1
𝐸(𝑋
𝑟
(𝑡)
4
| 𝑡) < ∞,

and 𝐸(𝜖(𝑡)4 | 𝑡) and 𝐸(𝑋
𝑟
(𝑡)
4
| 𝑡) are continuous at

𝑡, 𝑟 = 1, . . . , 𝑝, where 𝑋
𝑟
(𝑡) is the 𝑟th component of

𝑋(𝑡).
(𝐶5) For given 𝑡, Ψ(𝑡) is positive definite matrix.

The proofs of Theorems 1 and 2 rely on the following
lemmas.

Lemma A.1. Let 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
and 𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
(𝑏
1
≥ 𝑏
2
≥

, . . . , ≥ 𝑏
𝑛
) be two sequences of real numbers. Let 𝑆

𝑘
= ∑
𝑘

𝑖=1
𝑎
𝑖
;

then, one has


𝑛

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖



≤ 𝑐max
1≤𝑖≤𝑛

𝑏𝑖
max
1≤𝑖≤𝑛

𝑆𝑖
 . (A.1)

Lemma A.2. Let 𝑒
𝑖
, 𝑖 = 1, . . . , 𝑛, be a sequence of multi-

independent random variate with 𝐸(𝑒
𝑖
) = 0 and 𝐸(𝑒2

𝑖
) < 𝑐 <

∞. Then, one has

max
1≤𝑘≤𝑛



𝑘

∑

𝑖=1

𝑒
𝑖



= 𝑂
𝑝
(√𝑛 log 𝑛) . (A.2)

Further, let (𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a permutation of (1, 2, . . . , 𝑛).

Then, we have

max
1≤𝑘≤𝑛



𝑘

∑

𝑖=1

𝑒
𝑗𝑖



= 𝑂
𝑝
(√𝑛 log 𝑛) . (A.3)

Lemma A.3. Let (𝑋
1
, 𝑌
1
), . . . , (𝑋

𝑛
, 𝑌
𝑛
) be i.i.d. random vec-

tors, where 𝑌
𝑖
is scalar random variables. Further, assume

that 𝐸|𝑌
1
|
𝑠
< ∞, sup

𝑥
∫ |𝑦|
𝑠
𝑓(𝑥, 𝑦)𝑑𝑦 < ∞, where 𝑓(⋅, ⋅)

denotes the joint density of (𝑋, 𝑌). Let 𝐾(⋅) be a bounded
positive function with a bounded support, satisfying a Lipschitz
condition. Then,

sup
𝑥



1

𝑛

𝑛

∑

𝑖=1

{𝐾
ℎ
(𝑋
𝑖
− 𝑥)𝑌

𝑖
− 𝐸 [𝐾

ℎ
(𝑋
𝑖
− 𝑥)𝑌

𝑖
]}



= 𝑂
𝑝
({

log(1/ℎ)
𝑛ℎ

}

1/2

)

(A.4)

provided that 𝑛2𝛿−1ℎ → ∞ for some 𝛿 < 1 − 𝑠−1.

Lemma A.4. Suppose that conditions (𝐶1)–(𝐶5) hold. Then,
one has

sup
0<𝑡<1


𝜇 (𝑡) − Ψ

−1
(𝑡) Φ (𝑡)


= 𝑂
𝑝
(𝐶
𝑛
) ,

sup
0<𝑡<1


𝑔 (𝑡) − Ψ

−1
(𝑡) Φ (𝑡) 𝛽 − 𝜃 (𝑡)


= 𝑂
𝑝
(𝐶
𝑛
) ,

(A.5)

where 𝜇(𝑡), 𝑔(𝑡) are defined in (9) and𝐶
𝑛
= {log(1/ℎ)/𝑛ℎ}1/2+

ℎ
2.

Proof. Let

𝑆
𝑛𝑙 (𝑡) =

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠)𝑋𝑖(𝑠)

𝑇
(
𝑠 − 𝑡

ℎ
)

𝑙

𝐾
ℎ (𝑠 − 𝑡) 𝑑𝑠,

𝑙 = 0, 1, 2;

(A.6)

then, a simple calculation yields

𝐸 {𝑆
𝑛𝑙 (𝑡)} = 𝑛Ψ (𝑡) ∫

1

0

𝑠
𝑙
𝐾 (𝑠) 𝑑𝑠 + 𝑜 (1) , 𝑙 = 0, 1, 2.

(A.7)

Note that

𝐷
𝑥𝑥 (𝑡) = (

𝑆
𝑛0 (𝑡) 𝑆𝑛1 (𝑡)

𝑆
𝑛𝑙 (𝑡) 𝑆𝑛2 (𝑡)

) ; (A.8)
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together with (A.6), (A.7), by using Lemma A.3, we obtain

𝐷
𝑥𝑥 (𝑡) = 𝑛Ψ (𝑡) ⊗ (

1 0

0 ∫

1

0

𝑠
2
𝐾 (𝑠) 𝑑𝑠

){1 + 𝑂
𝑝
(𝐶
𝑛
)} ,

(A.9)

uniformly for 𝑡 ∈ (0, 1), where ⊗ is the Kronecker product. By
using the same argument, we have

𝐷
𝑥𝑧 (𝑡) = 𝑛Φ (𝑡) ⊗ (1, 0)

𝑇
{1 + 𝑂

𝑝
(𝐶
𝑛
)} (A.10)

uniformly for 𝑡 ∈ (0, 1). Combining (A.9), (A.10), and (9)
yields

𝜇 (𝑡) = Ψ
−1
(𝑡) Φ (𝑡) {1 + 𝑂𝑝 (𝐶𝑛)} , (A.11)

uniformly for 𝑡 ∈ (0, 1). With the similar proof to (A.11), we
have
𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠) 𝑌𝑖 (𝑠) (

𝑠 − 𝑡

ℎ
)

𝑙

𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

=

𝑛

∑

𝑖=1

∫

1

0

𝑋
𝑖 (𝑠) [𝑋

𝑇

𝑖
(𝑠) 𝜃 (𝑠) + 𝑍

𝑇

𝑖
(𝑠) 𝛽 + 𝜖𝑖 (𝑠)]

× (
𝑠 − 𝑡

ℎ
)

𝑙

𝐾
ℎ (𝑡 − 𝑠) 𝑑𝑠

= 𝑛 {Ψ (𝑡) 𝜃 (𝑡) + Φ (𝑡) 𝛽} ∫

1

0

𝑠
𝑙
𝐾 (𝑠) 𝑑𝑠 {1 + 𝑂𝑝 (𝐶𝑛)} ,

𝑙 = 0, 1.

(A.12)

Combining (A.12) with (5), we can prove that

𝐷
𝑥𝑦 (𝑡) = 𝑛 [Ψ (𝑡) 𝜃 (𝑡) + Φ (𝑡) 𝛽] ⊗ (1, 0)

𝑇
{1 + 𝑂

𝑝
(𝐶
𝑛
)} ,

(A.13)

uniformly for 𝑡 ∈ (0, 1).
Invoking (A.9) and (A.13), it is easy to show that

𝑔 (𝑡) = (𝐼𝑝, 0𝑝) [𝐷𝑥𝑥 (𝑡)]
−1
𝐷
𝑥𝑦 (𝑡)

= [𝜃 (𝑡) + Ψ
−1
(𝑡) Φ (𝑡) 𝛽] {1 + 𝑂𝑝 (𝐶𝑛)} .

(A.14)

This completes the proof of Lemma A.4.

Lemma A.5. Suppose that conditions (𝐶1)–(𝐶5) hold. Then,
one has that

1

√𝑛

𝑛

∑

𝑖=1

𝜂
𝑖
(𝛽)

L
→ 𝑁(0, 𝐵) , (A.15)

where 𝐵 is defined by (14) and 𝜂
𝑖
(𝛽) = ∫

1

0
�̆�
𝑖
(𝑡)[�̆�
𝑖
(𝑡) −

�̆�
𝑖
(𝑡)
𝑇
𝛽]𝑑𝑡.

Proof. By (8), a simple calculation yields

�̆�
𝑖 (𝑡) = [𝑍𝑖 (𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡)] + [𝜇 (𝑡) − 𝜇 (𝑡)]

𝑇
𝑋
𝑖 (𝑡) ,

�̆�
𝑖 (𝑡) − �̆�𝑖(𝑡)

𝑇
𝛽 = 𝑋

𝑖(𝑡)
𝑇
[𝜃 (𝑡) − 𝑔 (𝑡) + 𝜇 (𝑡) 𝛽] + 𝜀𝑖 (𝑡) ,

(A.16)

where 𝜇(𝑡) = Ψ(𝑡)−1Φ(𝑡). Then, we have

𝜂
𝑖
(𝛽)

= ∫

1

0

[𝑍
𝑖 (𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡)] 𝜀𝑖 (𝑡) 𝑑𝑡

+ ∫

1

0

[𝜇 (𝑡) − 𝜇 (𝑡)]
𝑇
𝑋
𝑖 (𝑡) 𝜀𝑖 (𝑡) 𝑑𝑡

+ ∫

1

0

[𝑍
𝑖 (𝑡)−𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡)]𝑋𝑖(𝑡)

𝑇
[𝜃 (𝑡)−𝑔 (𝑡)+𝜇 (𝑡) 𝛽] 𝑑𝑡

+ ∫

1

0

[𝜇 (𝑡)−𝜇 (𝑡)]
𝑇
𝑋
𝑖 (𝑡) 𝑋𝑖(𝑡)

𝑇
[𝜃 (𝑡)−𝑔 (𝑡) + 𝜇 (𝑡) 𝛽] 𝑑𝑡

≡ 𝐽
𝑖1
+ 𝐽
𝑖2
+ 𝐽
𝑖3
+ 𝐽
𝑖4
.

(A.17)

Hence, we get

1

√𝑛

𝑛

∑

𝑖=1

𝜂
𝑖
(𝛽)

=
1

√𝑛

𝑛

∑

𝑖=1

𝐽
𝑖1
+
1

√𝑛

𝑛

∑

𝑖=1

𝐽
𝑖2
+
1

√𝑛

𝑛

∑

𝑖=1

𝐽
𝑖3
+
1

√𝑛

𝑛

∑

𝑖=1

𝐽
𝑖4

≡ 𝐽
1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
.

(A.18)

Note that 𝐽
𝑖1
, 𝑖 = 1, . . . , 𝑛, are i.i.d. It is easy to show that

𝐸(𝐽
𝑖1
) = 0, Var(𝐽

𝑖1
) = 𝐵 + 𝑜(1). Using the central limit

theorem, we have

𝐽
1

L
→ 𝑁(0, 𝐵) . (A.19)

Hence, to prove this lemma, we only need to prove 𝐽]
𝑃

→

0, ] = 2, 3, 4. Now, we deal with 𝐽
2
. Let 𝑏

𝑟𝑠
(𝑡) be the

(𝑟, 𝑠) component of [𝜇(𝑡) − 𝜇(𝑡)]𝑇 and let 𝑎
𝑖𝑠
(𝑡) be the 𝑠th

component of𝑋
𝑖
(𝑡)𝜖
𝑖
(𝑡), 𝑠 = 1, . . . , 𝑝. Moreover, let

∫

1

0

𝑏
𝑟𝑠0
(𝑡) 𝑎𝑖𝑠0

(𝑡) 𝑑𝑡 = max
1≤𝑠≤𝑝

{∫

1

0

𝑏
𝑟𝑠 (𝑡) 𝑎𝑖𝑠 (𝑡) 𝑑𝑡} . (A.20)
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Let 𝐽
2,𝑟

be the 𝑟th component of 𝐽
2
. By Lemmas A.1–A.4, we

obtain

𝐽2,𝑟
 =

1

√𝑛



𝑛

∑

𝑖=1

𝑝

∑

𝑠=1

∫

1

0

𝑏
𝑟𝑠 (𝑡) 𝑎𝑖𝑠 (𝑡) 𝑑𝑡



≤
𝑝

√𝑛



𝑛

∑

𝑖=1

∫

1

0

𝑏
𝑟𝑠0
(𝑡) 𝑎𝑖𝑠0

(𝑡) 𝑑𝑡



≤
𝑐

√𝑛
sup
0≤𝑡≤1


𝑏
𝑟𝑠0
(𝑡)

max
1≤𝑘≤𝑛



𝑘

∑

𝑖=1

∫

1

0

𝑎
𝑖𝑠0
(𝑡) 𝑑𝑡



=
𝑐

√𝑛
𝑂
𝑝
(𝐶
𝑛
) 𝑂
𝑝
(√𝑛 log 𝑛) = 𝑜

𝑝 (1) .

(A.21)

That is, 𝐽
2

𝑃

→ 0. By Lemma A.4, a simple calculation yields

sup
0<𝑡<1

𝜃 (𝑡) − 𝑔 (𝑡) + 𝜇 (𝑡) 𝛽
 = 𝑂𝑝 (𝐶𝑛) . (A.22)

Together with 𝐸{[𝑍
𝑖
(𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖
(𝑡)]𝑋
𝑖
(𝑡)
𝑇
} = 0, and similar

to the proof of 𝐽
2
, we have 𝐽

3

𝑃

→ 0. In addition, by Lemma A.4,
we have ‖𝐽

4
‖ ≤ 𝑂

𝑝
(√𝑛𝐶

2

𝑛
) = 𝑜
𝑝
(1). This completes the proof

of Lemma A.5.

Lemma A.6. Suppose that conditions (𝐶1)–(𝐶5) hold; then,
one has

Γ̂
𝑃

→ Γ, (A.23)

where Γ̂ and Γ are defined in (11) and (13), respectively.

Proof. Combining (8) and (11), a simple calculation yields

Γ̂ =
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

[𝑍
𝑖 (𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡)] [𝑍𝑖 (𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡)]
𝑇

𝑑𝑡

=
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

[𝑍
𝑖 (𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖 (𝑡)]𝑋𝑖(𝑡)

𝑇
[𝜇 (𝑡) − 𝜇 (𝑡)] 𝑑𝑡

=
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

[𝜇 (𝑡) − 𝜇 (𝑡)]
𝑇
𝑋
𝑖 (𝑡) [𝑍𝑖(𝑡)

𝑇
− 𝑋
𝑖(𝑡)
𝑇
𝜇 (𝑡)] 𝑑𝑡

=
1

𝑛

𝑛

∑

𝑖=1

∫

1

0

[𝜇 (𝑡) − 𝜇 (𝑡)]
𝑇
𝑋
𝑖 (𝑡) 𝑋𝑖(𝑡)

𝑇
[𝜇 (𝑡) − 𝜇 (𝑡)] 𝑑𝑡

≡ 𝐴
1
+ 𝐴
2
+ 𝐴
3
+ 𝐴
4
.

(A.24)

By the law of large numbers, we can derive that 𝐴
1

𝑃

→ Γ. We
now show 𝐴

2

𝑃

→ 0. From Lemma A.4, we have that

sup
0<𝑡<1

𝜇 (𝑡) − 𝜇 (𝑡)
 = 𝑂𝑝 (𝐶𝑛) . (A.25)

Together with 𝐸{[𝑍
𝑖
(𝑡) − 𝜇(𝑡)

𝑇
𝑋
𝑖
(𝑡)]𝑋
𝑖
(𝑡)
𝑇
} = 0, using the

similar argument to Lemma A.5, we can prove 𝐴
2

𝑃

→ 0.
Similarly, we can prove that 𝐴

3

𝑃

→ 0. In addition, by (A.25),
it is easy to show that ‖𝐴

4
‖ = 𝑂

𝑝
(𝐶
2

𝑛
). This completes the

proof.

Proof of Theorem 1. From (12), we can derive that

𝛽 = Γ̂
−1 1

𝑛

𝑛

∑

𝑖=1

∫

1

0

�̆�
𝑖 (𝑡) �̆�𝑖 (𝑡) 𝑑𝑡

= Γ̂
−1 1

𝑛

𝑛

∑

𝑖=1

∫

1

0
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(A.26)

Together with Lemmas A.5 and A.6, it is easy to show that

√𝑛 (𝛽 − 𝛽) = Γ̂
−1 1

√𝑛

𝑛

∑

𝑖=1

𝜂
𝑖
(𝛽)

L
→ 𝑁(0, Σ) . (A.27)

This completes the proof of Theorem 1.

Proof of Theorem 2. For 𝑡 in a small neighborhood of 𝑡
0
, such

that |𝑡 − 𝑡
0
| ≤ ℎ, by using Taylor expansion, we can get

𝜃 (𝑡) = 𝜃 (𝑡0) + 𝜃

(𝑡
0
) (𝑡 − 𝑡

0
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1

2
𝜃

(𝑡
0
) (𝑡 − 𝑡

0
)
2
+ 𝑂
𝑝
(ℎ
3
) .

(A.28)

Together with (5) and (1), we can derive that

𝐷
𝑥𝑦
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1
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0
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0
)
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𝑥𝑧
(𝑡
0
) 𝛽 + 𝐷

𝑥𝜖
(𝑡
0
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𝑝
(𝑛ℎ
3
) ,

(A.29)

where
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0
) = (
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(A.30)

Invoking (18), (A.9), and (A.29), it is easy to show that
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(A.31)
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Let Δ
𝑛
(𝑡
0
) = 𝑛
−1
𝐷
𝑥𝜖
(𝑡
0
); we can prove that 𝐸{Δ
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), where
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(A.32)

By the central limit theorem, we have that

√𝑛ℎΔ
𝑛
(𝑡
0
)

L
→ 𝑁(0, Δ (𝑡

0
)) . (A.33)

Combining this with (A.9), we can prove that
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(A.34)

Using the similar argument to (A.9) in Lemma A.4, we can
get
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(A.35)

Together with (A.9) and 𝛽 − 𝛽 = 𝑂
𝑝
(𝑛
−1/2
), it is easy to prove

that
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(A.36)

Invoking (A.31), (A.34), and (A.36), a simple calculation
yields

√𝑛ℎ (𝜃 (𝑡
0
) − 𝜃 (𝑡

0
) − 𝑏 (𝑡

0
))

L
→ 𝑁(0, 𝑉 (𝑡

0
)) . (A.37)

This completes the proof of Theorem 2.
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