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We consider the pullback D-attractor for the nonautonomous nonlinear equations of thermoelastic coupled rod with a nonlinear
moving heat source. By Galerkin method, the existence and uniqueness of global solutions are proved under homogeneous
boundary conditions and initial conditions. By prior estimates combined with some inequality skills, the existence of the pullback
D-absorbing set is obtained. By proving the properties of compactness about the nonlinear operator g, (-), g,(:), and then proving
the pullback D-condition (C), the existence of the pullback D-attractor of the equations previously mentioned is given.

1. Introduction

In this paper, we consider a thermoelastic coupled rod system:

Uy, — PAU + yu, + VO + g1 () = f(x1), 1)
6, — kAG + Vi, = g, (0) + Q(x,1), )
ulag =0, VO, =0, xedQ, (3)

ue) = uy (x), (1) =po(x), B(x,7) =0,

x €
(4)

with an external force function and a nonlinear moving heat
source function. Here u(x, t) is the rod elastic displacement.
6(x, t) is the dimensionless temperature. 3, y, k are all positive
constants, where f3 is the square of wave velocity, y is the
damping coefficient, and k is the thermal diffusivity. Q ¢ R?
is abounded smooth domain. f(x;,t) is the external force and
f(x,t) is locally square integrable with respect to time for
t € R x € O;thatis, f(x,t) € L} (R, L*(Q)). Q(x, 1) is the
moving heat source and Q(x,t) is locally square integrable
in time for t € R, x € Q; thatis, Q(x,t) € LfOC(R, L*(Q)).
g, (u) and gz(g) are all the nonlinear function, and g, () and

g,(0) are continuous on R, respectively. We give the pullback
D-attractor for the nonautonomous nonlinear equations of
thermoelastic coupled rod in space E; = D(A) xV xV, where
A=-AV =HQ).

Recently the research of the nonautonomous infinite
dimensional dynamical system has been paid much attention
and developed fast as evidence by the references cited in [1-
7]. Chepyzhov and Vishik [1] firstly extend the notion of
global attractor in the autonomous case to the concept of
the uniform attractor for the nonautonomous case. But the
uniform attractor is not applicable to the nonautonomous
systems in which the trajectories can be unbounded as
time increases to infinity. Therefore some new concepts and
theories must be brought up for such nonautonomous case,
where the concepts and the theorem of existence of the
pullback D-attractor were advanced in [2-8] and so on.

Caraballo et al. [2] and so forth gave the existence of
the pullback D-attractor for a nonautonomous N-S equa-
tion under the assumptions of asymptotic compactness and
existence of a family of absorbing sets. Wang and Zhong
[3] advanced the existence of the pullback D-attractor for
the dissipative Sine-Gordon wave equation in an unbounded
domain in which the external force did not need to be
bounded. In [4, 5], The author studied the pullback attrac-
tor of the reaction-diffusion equation and the generalized
Korteweg-de Vries-Burgers equation, respectively. S. H. Park
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and J. Y. Park [6] considered the nonautonomous modified
Swift-Hohenberg equation

u, + A*u +2Au + au + b|Vul* +u° = g(x,t) (5)

and proved the existence of the pullback attractor when its
external force has exponential growth. The abovementioned
systems are all specific systems. For the widespread used
nonautonomous structural system in engineering, the study
has been paid less attention. Park and Kang [7] studied the
existence of the pullback D-attractor for nonautonomous
suspension bridge equation because of being motivated by
Maetal. [8,9]:

uyy + Nu+ pu, +kut + g ) = f (1), (6)

In this paper, based on Al-Huniti et al. [10] as the
relaxation time T is not considered and Carlson [11], we
study a more general nonlinear thermoelastic coupled system
(1)-(4) ofarod due to a nonlinear moving heat source Q(x;, t).
We give the existence of a pullback D-attractor of above
system by proving the existence of a pullback D-absorbing
set and pullback condition (C) for the external force f(x,t)
unnecessarily bounded.

In fact, we assume that the external forces f(x,t)
and Q(x,t) satisfy f(x,t) € L} (R L*Q), f(xt) ¢
L%OC(R, L*(Q)), and Q(x, 1) € LfOC(R, L2(Q)), respectively, and
foranyt € R

j C(If P+ G +1QWI)ds < oo, ()

where § > 0 is a small real number which will be character-
ized later.

On the assumptions of the nonlinear function g, (-), Park
and Kang gave the assumption

|91 (5)| -0, (8)

lim sup o
EETE

(where 0 < y < 00) for nonautonomous suspension bridge
equations in [7]. At present, we remove the assumption of [7]
and we assume that the nonlinear function g, (-) € C*(R,R)
satisfies the following assumptions:

(H,) we denote by G(s) the primitive of g, (s); thatis, G(s) =
J: g, (1)dt, and then

lim infIG (ZS)|
[sl200 S

> 0; 9)

(H,) g,(u) <1+ |u|’*! for some 0 < p < 00;
(H;) gy(u) < C'(1 + [ul®) for some 0 < p < co;
(H,) there exists a constant C, > 0 such that

591 (s) = CyG (s) S0

lim inf 5 ; (10)

|s| = oo N

(Hs) g,(0) = 0.
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We also assume that the nonlinear function g,(-) €
C'(R, R) satisfies the following assumptions: there exists a
constant a; such that

g, (0) =0, |g; (s)| <a, VseR (11)

Throughout this paper, we introduce the spaces H =
L*(Q)and V = Hé(Q) and endow these spaces with the
usual scalar products and norms (-,-), | - |, ((,)), | - [l, where
(u,v) = _[Q uvdx, ((u,v)) = J VuVvdx. Because of defining
A = —A, with reference to [%] we have the scalar products
(Au, Au) and norm |Au|? in the space D(A). By the Poincare
inequality, there exists a proper constant A;, A, > 0 such that

lull® = Ay ul®, YueV,
(12)
|Aul* = M,llul®,  Vu e D(A).

2. Pullback D, j; -Attracting Set

By normal Galerkin method (see [1, 12-14]), we have the
following theorem of existence and uniqueness of solutions
to problems (1)-(4).

Theorem 1. Assume that 3, y, k > 0, f(x,t), Q(x,t) €
L} (R, H) and the assumptions of the functions ng’ g,()
hold; then, for all T > 0 and any givenu, € V, p, € H, 0, € H,
problems (1)-(4) have a unique solution (u, 0) such that

ueC’(R;V)nC' (R;H), 0eC’(R;H), (13)

where R, = [, 00}
Moreoverf'(x, t) € L%OC(T, T;H), forallT > 0,u, € D(A),
po €V, 0, €V;then

ueC’(R;DA)NC (R;V), 0eC’(R;V). (14)

For simplicity, we write y(r) = (u(r),aru(r),é(r)) =
u(r), p(r),0(r)), y, = (t4g o> 0,). We denote by E, = V x
H x H the space of vector functions y(r) = (u(r), p(r), 0(r))
with the norm ||y||E0 = |lul® + Ipl2 + IFGVI2 in E, and denote
by E; = D(A) x V x V the space of vector functions y(r) =

_ ~ 2

(u(r), p(r), 6(r)) with the norm ||yl = |Aul> +1|pll> +16]l" in
E,. We can construct the nonautonomous dynamical system

generated by problems (1)-(4) in E, or E,. We consider Q =
R, 0,7 = T + t, and then we define

O (57 y0) = y (t+ 7.7, )
=(ut+1),pt+1),0¢t+1), (15

Te€R, 20, y,€Ey,E,.

The uniqueness of solutions to problems (1)-(4) implies that

O (t,1,5) =P (ts+7,P (57, %)) »
(16)
T €R,

£>0, y,€Ey,E,.
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And, for all 7 € R, t > 0, the mapping ®(t,7,:) : E, — E,
(or E;, — E,) defined by (15) is continuous. Consequently,
the mapping O(t, 7, -) defined by (15) is a continuous cocycle
on Ejor E;.

Let R be the set of all functions 7 : R — (0, +00) such
that

tlim &2 (t) =0, 17)

where 0 < § < 2«a; and oy = min{3a/16,y/2,kA/4,aC,/2}
and Ds g, denotes the class of all families D = {D(t);t € R} ¢
P(E,) such that D(¢) c B0, r5(t)) for some r5 € Ry, where
B(0, r5(t)) denotes the closed ball in E; centered on 0 with
radius r5(t).

Theorem 2. Assume that 3, y, k > 0 and the assumptions
of the functions g,(-), gz() hold. Suppose that f(x,t) €

ZOC(R H) and Q(x,t) € LZOC(R H) satisfy (7). Then there
exists a pullback D g -attracting set in E, for the nonau-
tonomous dynamical system (6, @) defined by (15).

Proof. Lett € R, 7 > 0,and y, = (uy, py,0,) € E, be fixed.
Define

u(r)=u(r,t-1uy),

7, o)
0(r) (rt—r,@),

p(r)=u (rit-

(18)
forr>t-r,

(ur),p(r),0(r)

=O(r—t+1,t-1,))

forr>t-r.

Taking the scalar product in H of (1) with v = u + au

and taking the scalar product in H of (2) with 0, after a
computation of addition, we obtain

2 (Bl + o+ (A7) ol -

+ oBlul’ + Ko +a? (w,v) 1)

-y (u,v) + a(V@, u) + (g, (u),v)
= (f7)+(9:(6).0) + (.9).

For simplicity, define ¢(u) =
(H,), it is obvious that ¢(u)
g:(-), we have

J G(u)dQ. By the assumption
> 0. By the assumption (H,) of

(9 @.0) = Cy | G+ il >-M, @0

SO

(g1 (@), v)
= (91 (u) ,u') +a(g, (u),u)

d Ao
“ ol —aM
> JQ er(u)d(2+ocC0 LG(u)d(Z oc16|u| «

d A
>~ () + aCop () - ocl—6|u|2 — aM.

(1)

Considering assumption (11) of g,(-), we have

(9:(8).8

By the Young inequality and (12), we have

Ly2 Y 2
I(f,v)IS;IfI + M5
(Q6)| <5

2
2 %4 2« 2

o (u,v) > ——\ul” = —\v[5 23
(u,v) 2|| 2|| (23)

0)| < 9. (8)| o] < a6 (22)

—IQP + —|0| < —IQF + —||§||2,

29? A
— e (u,v) = L - ‘%W;

oc(Véu >——|9' —(Xﬁ" I

Letting 0 < o« < min{fA/2 + A/4,—(1 + 2y*/A) +

\/(2)/2//1 +1)% + y/2,kAB/2,1} and taking a,/k < A/4 and
B = 1, we infer from (19) that

%% (Bl + 1w/ + |§|2 +20(u))

/3 e Il + Iel +aCup(u)  (24)

2 2
< Y|f| + oM + )Llel )
Also taking &¢; = min{3a/16,y/2,kA/4, aC,/2}, we have
d 2 2 ~2
= (Bll? + v +[6]" + 29 )
2 2 |3
+ 200 (Blull> + P +[B] +20 ) (29)
< %|f|2 +20M + %lelz.
Note that
d s 2 2 13)?
e (Bl + v+ [B] + 26 @)
= 8¢ (Blull + v + [B] + 26 ) (26)
T d A12
v (BllP + 1> +18] + 26 ),
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t
and by (25), we have +C1€76tj 665<%lf|2+ﬁ|Q|2>d$
t—7
d 8r
e (Blul’ + v+ |B” + 20 @) +2C18(XM<1_€_5T)

s(a_zal)e‘” (Bl + v+ 0] +260))  27)

5 ) < CCoe " [lut -0 +|p(t -0
+e ()—/|f|2 +2aM + Elle)'

w o -0 +2p - 7)]

+Ce ™ Jt e <%|f|2 + i|Q|2) ds
! t-1 Yy Ak

oM (1 - ef‘ST).

By integrating (27) over the interval [t — 7, t], we obtain

S (Blu@IP + voF +8 ) +260)

< (Blut -0 + v e - 5
(31)
= 2
— 2 _ _
+ 'B(t T)| +2¢ (u(t T))) Let Dy, be given. Forall y(t - 7) = y, € D(t - 7),t € R
t 5 20M [ 5 s and 7 > 0, from the assumption (H,) of g,(-), we know that
+ J < IfI" + —IQl > ds + 5 (e - ) ¢(u(t — 1)) is bounded. So we easily obtain from (31)
t

' O(t,t-1, )|
o[ @-20) e (Bl + o [t =7 50)l,

., < CiCe [lutt - I+ |p(t - 0)f
+1609)| +2¢(u(s))>ds

~ 2
(28) +[oe-o| +20 @ -] (2
Since § < 2a;, we have ot J < 2)
C z d
+Ce™ | IF” + k|Q| s
~ 2
Blu @I + v @) + |6 )] +26 () 2C,aM (1-¢)
+——(1-¢
-0t 2 2 9
< (Blute -0 +1v(t - 1)
forall y, € D(t —7),t € R,and 7 > 0. Set
~ 2
+foe-0) +20 @) i , y
(Rs (1)) = zcle*‘”j e55(—|f| + E|Q|2>ds
— Y
te 6tJ ( |f| —|Q|2>d5+@(l—e_&). t (33)
t— k 6 4C1(XM 5T
(29) =5 (1-¢),
Note that and consider the family 1§5)E0 of closed balls in E,, defined by

Bs(t) = {y € E,, IIyIIEU < Rs(t)}. Tt is easy to check that E&,EO €

Dy g, and By is pullback Dy £, -absorbing for the cocycle ® by
(30)  (15). O

~2
lul® + |p|* + 0] +2¢ (w)

1+— ) +21v)* + |6 + 26 ().

( AB ) (ﬁ ) | | ¢ In order to prove the pullback D;  -attractor, let Rs be
the set of all functions 7 : R — (0, +00) which satisfies (17)

If we take C; = max{2,1 + 20c2/)tﬁ}, we infer from (29) that and Dy denotes the class of all families D = {D(¢); f € R} €

P(E,) such that D(t) ¢ B(0, r5(t)) for some r5 € Ry, where
||u||2 + |p|2 + '§|2 +2¢ (u) B(o, r5(t)) denotes the closed ball in E; centered on 0 with
radius r5(t).

2 2 | 1a/?
<G (/3||u|| i |9' *29 (u)) Theorem 3. Assume that 3, y, k > 0 and the assumptions

of 1), g,() hold. f(x,t) € L (RL*Q).f'(x,t) ¢
L} (R,L*(Q), and Q(x,t) € L (R L*Q)) satisfy (7).

_ 2 Then there exists a pullback Ds g -attracting set in E, for the
+ |9 (t- T)| +2¢ (u(t - T))) nonautonomous dynamical system (0, @) defined by (15)

<Ce (Blut - + vt - D
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Proof. Lett € R, > 0and y, = (uy, py,0,) € E, be fixed.
Take the scalar product in H of (1) with Av = Au' + aAu,

and take the scalar product in H of (2) with AB; then make
summation to get

%d— (BlAul + I + [8]7) + ylvt? - vl

+ oc/3|Au|2 + k'A§|2 +a’ ((u,v)) (34)

-y (Au,v) + « (Al/zé, Au) + (g, (u), Av)
= (9,(6),40) + (f, Av) + (Q A0).
Since
(g1 (W), Av)
= (gl (1) ,Au') +a(g, (u),Au)
= % (g, (W), Au) - (gi (u) u’,Au) +a(g, (u),Au);

(f,Av)

= %(f,Au)+oc(f,Au)—(f’,Au),
(35)

we infer from (34) that

1d

ar 2(f, Au)

(BlAul + I + 8] +2 (g (), Au) -
+yIVIP = el + Bl Aul? + K[ AB]” + o (Au,v)
-y (Au,v) + « (Al/zé, Au) +a(g, (), Au) - a(f, Au)

- (f',Au) + (Q, Aé) + (g2 (5) ,Aé) + (gi (u) u',Au).

(36)
Also
2 af 2 40’ 2
o (Au,v) = ——|Au|” = —1v|;
16 B
af, o Ma
—ya(Auv) =~ |Au* - LW
yo (Au, v) 16| ul 3 vl
o (A (B), Au) = - 2|40 - %),
P (37)

- (f', Au) ﬁlf "+ “§|Au|2;

ki =32

and consider the assumption (H;) of g;(-) combined with
Sobolev-embed theorem

(91 wyu', Au)|

= J g; () u' Audx
Q

IN

|C'| J |(1 + [ul?) u'Au| dx

IN

SCIZ CI2
|p| |Au| + — of J |u|2/>(u,)2dx

8C'2 ) 4C" 2 s Yy o2
1ol Lian o )+ 21

(38)

IN

and then we infer from (36) that

1d 12

S (Blaul + 1P + 6] +2 (9 ), Au) - 2(f, Au))

11 ~
e D = atol? + B a4 2K agf
2 16 4

4ot =2

- I+ oy 0. 40) - (1 40

3 2
< gl T paf + Flon (O +

L2 (S0 T e 5
2 aff 4 aff Pl

Let 0 < a < min{3kAB/(16 + 23),3y/4}. By the Gronwall
lemma we have from (39)

(39)

BlAul + v + 6] +2 (g, ), Au) 2 (£, Au)
< & (BlAugl” + ol + 6]

+2(g1 (), Atg) =2 (f (¢ = 1), Auy) )
! —a(t-s 8 ! 4 4“
o[ e >{@|f P+ Ao + 2 [ap

3 2
+MM2} ds

t 2 12\ 2 2
—a(t—s) 06_ 4C 2 8C 2
o e ”<2 ) ]Y"”” "o Ly

(40)
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Considering that + GG Jt G ( |f| |Q|2> ds
-0 ) Ak
Lo J 2 0 “
2(g, (W), Au) > 4|Au| 4 5 lg; )| dx; ) 2C,CaM
1 2 as
2(f, Au) > - Al - 4|1, (44)
J |9, (u)lde < J (1 n |u|(P+1))2dx <210 + 2||ul%, and then we have from (42)
Q Q
(41) |Au|2 + “puz . “5"2
by the assumption (H,) of g, (-), we have )
o o ((2p+ 212 1))yl dugl
|Aul® + v + ] sl
—aT =112 =~ 12
< 267 (BlAu [ + [voll* + 6] + 2ol + |6 )
+2(gy (4y), Aug) = 2(f (t - T), Aug) ) +2Cse ™" (|Q|2 +|f(t- r)|2)
t 202 -2 CiGGCs —or Aul? 2. la 2
4 —alt-s) | A2 242, 2% + e ([ Auo|” + [ po]” + " 0"
- Le {“/3|f| +21QP + =2[f] ok
2C C,C,Cy _
4(oc3+ocy2) 5 242 ) ; — 6T¢( )
+——3——(mﬂ+7ww) GG [ 2 a2,
p—- J, e (t—s)(;|f| +E|Q| >ds
062 4C’2 g 2 *
<?+cw> i P OGCe  cyc
o
t
8CI2|p| } xj e o9 (|f|2 +1QI*) ds + 16|
—00
O + 161t 2 8L + 161l + 8 £
+ 16 + 16||ul|” + 8| f|".
(42) < (CIC;§3C6 O 4 C5C6e_m>
Set 2 2 ~ 12
8(’+9°)a’ oy [ac?\ % (|A“°| +eol+ ”60" )
C, = — T =)y, .
3 max{ ) + 5 +(0€/3>Y ZCC;C3C6 5,(/)( )
4 2.2 2 52
8a” + 80;; +8C ’ 2%} ’ +2Ce ™ (|Q|2 +lf (- T)lz) N C1C_36Cs
P22 2 2> 2MC,C;Cq
C4=max{§,%}, (43) Xj_m<y|f| +/\k|Q| ds + 5 +C,Cq
t
2 =) (LF1P 4+ 1Q1F) ds + 16C4|Q
C5=2ﬁ+4a,\+2+4, Xj_ooe (177 +1ar) ds ol
L +16C|lul® + 8Cq| f|*-
C6=max{l+%,2]». (45)
Since § < a, we have from (32) LetD € Dsp, be given. For all y(t —7) = y, € D(t —71),t € R

QJiEWﬂﬁwwu+p@|lmm}

C GG o 2}
< 22 (janl + Il + [a])
+ —ZCISZQ e % (uy)

and 7 > 0, from the assumption (H,) of g,(:), we know that
¢(u(t — 1)) is bounded and positive. So we easily obtain from
(45)

CIAEESH]
< <C1C2C3C6 o

” + CSCGe_“T)
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2C,C,CC, _
+ 1236657
(04

x (|Augl + ol + |Bo]) ¢ (uo)

+2Cee™ (107 +|f (t - D)

C,C;Cq Jf (2 2 2 2> 2MC,C,Cq
1736 el = ds + 2o 1-3+6
t e Lo \GHT gl Jds e ==

t
+C,Cy J e (|f|2 +1QI) ds + 16CQf*
—00
2 2
+ 16C;[lull” + 8Cs|f]
(46)

forall y, € D(t —7),t € R,and 7 > 0. Set
2
(Ra,El (f))
C,C5Cq Jt _5(t—s) (2 2 2 2)
{ a-0 Jof M gl ds

2MC,C5C
" 1%3%6

15554 0,6 j e (| £ + Q1) ds

t
—00

+ 16Co|Q* + 16C¢(Rs (t))z + 8C6|f|2} :

(47)

The family 1§5’E1 of closed balls in E,
Bsg, () = {y € Ev, |¥]l5, < Ro, (1)} (48)
is pullback Dg  -absorbing for the cocycle @ in E;. O

3. The Pullback D,  -Attractor in E,

In order to get the existence of the pullback Dy  -attractor,
we first introduce the following Lemma.

Lemma 4. Let H be an infinite dimensional Hilbert space and
let the family {w;};cn be an orthonormal basis of H. Suppose

that f(x,t), f’(x, 1), Q(x,t) € L2 (R, H) and for any t € R,

loc

J»t & (|f(x, s)|i, + |f' (x, t)'; +1Q (x, s)|§{) ds < o0,

for any o0 > 0.
(49)

Then

im [ e (-2 £ e 0f + [0 - P F (9,

n— 00

+ (I - Pn)Q(x,S)ﬁl) ds =0,

Vt € R,
(50)

where P, : ,w,} is the orthogonal

projector.

H — spanfw,,w,,...

Proof. Let n;(t) = (f(x,t),w)ps & = (f'(x.1), @), and
Ci(t) = (Q(-x; t), wi): SO

fen=Yn®w,  fx)=)&M0w,
i=1 i=1

(51)
Q) =Y (.
i=1

Foranyt € Rand any e > 0,

[ 9b o1 ol 101598,
. (52)

=S (O + 18 GF + o) ds < o0
i=1 77

we can choose Ny, N,, N; large enough so that

i

>

t gs 2 €
| emopas<:

J_ eIE, (5)ds < &, (53)

W m

Ine

00t

gs 2 €
Z j_ooe [C; ()| ds < 3

i=N;

Then for any t+ € R and any ¢
max{N,, N,, N;} to get

> 0, we put N, =

00

> [ e ol vl 6P + o) ds < s

i=N,
That is, forany t € R,any ¢ > 0,and n > N,
‘ gs 2 ] 2
| e (la=r) f sl [P £ 9],
- (55)
+|(I-P,)Q(x, s)lil) ds <e.

So

nleréo J_ & (l(] - Pn)f(x,S)lil + '(I ~P,) fl (x75)|;
+|(1-R)Qx9)[F;)ds = 0.
(56)

O

In order to obtain the pullback Dj g -attractor in E;,
we also need the following Lemmas of the properties of
compactness about the nonlinear operator g,(-), g,(-).

Lemma 5. Let g,(-) be a C*(R,R) function from R into R
satisfying (H,); then g, : D(A) — HS(Q) is continuously
compact; that is, g, (+) is continuous and maps a bounded subset
of D(A) into a precompact subset of Hy (Q)).



Proof. Let B = B4, be abounded set in D(A). Assume that
{u,} is a bounded sequence in B. From Sobolev embedding
Theorem, the embeddings D(A) — Lf, Vp > 1 and
D(A) — w"P (Vp = 1) are compact. We assume that {u,}
is bounded and converges to u, in L? and W"?, respectively.
By Minkowski inequality, we see that

([ 1701 () g0 CaPe)

1/2

|| 1ot @) =gl ) v Jax} 67

[ L6} w0 v -]

By Holder inequality, we have

{L [g; (u,) - g, (uo)]zdx}l/z

< ([ ot ) - G Pex) ([ o)

< C(Ry s, ) |g] (1) - g (uy)

1/2q

e’

(58)
where 1/p’ +1/q' +1/2 = 1 and C(R(ZS)E1 (t)) is a constant
depending on Rf;,El (t) and the embedding constant. Due to

the assumption (Hj) of g, (-) and a classical continuity result,
it follows that

|9t (w,) = g1 (1o)|,., — 0. (59)

Also by the Holder inequality

{J.Q [91 (o) V (u, — uo)]2dx}1/2 —0. (60)

The proof is completed. O

L%

Lemma 6. Let g,(:) be a CY(R,R) function from R into R
satisfying (11); then g, = Hy(Q) — L*(Q) is continuously
compact.

Proof. Let B = By () be abounded set in H,(Q) and assume

{6} to be a bounded sequence in B. From Sobolev embedding
theorem, the embedding Hy (Q) +— L?,Vp > 1 is compact, so
we assume that ,, is bounded and converges to 6, in L?. Let
6, — 0, = w,; then there exists 8 = O(x) € [0, 1] such that

(] 02 (0 - s @) "

(61)
= {J [g; ((;0 + Qa)n) wn]zdx}l/z.
Q
By Holder inequality, we have
_ Cn N2
(L (e@)-s@)a)

< |g; (50 + Gwn)

20 |wn I 124>

Journal of Applied Mathematics

where g’ is the conjugate of p' (i.e., 1/p' + 1/q’ = 1). Com-
bined with the assumption (11), the proof is completed. [

Lemma 7. Let g,(:) be a C*(R,R) function from R into R
satisfying (H,); moreover, g,(0) = 0. Let B be a bounded subset
of D(A). Then for any € > 0, there exists some n such that when
n>mn

I(I-p,) g, W] <e Vuceb, (63)

where P, : V. — span{w;,w,,...

projection.

,w,} is the orthogonal

Proof. Note that g,(u) € L*(Q) for u € D(A). By
Lemma 5, we see that g,(-) maps bounded subsets of D(A)
into precompact subsets of Hj (Q)). Let B be a bounded subset
of D(A) and let ¢ > 0 be given arbitrarily. Since g,(B) is
precompact in H,(Q), there is a finite number of elements
V1> Vys .. os Vi € g1(B) such that

9. (B) ng (vl-, %) (64)

We take 7, > 0 sufficiently large so that

IT-B) g )] <e,

forall 1 <i <k, when n > n;. Then by g, (B)C,_;B(v;,€/2),
we have

Vu € B (65)

IT-R)g W] <e

where P, : D(A) — span{w,...,w,} is the orthogonal
projection. O

Yuev, (66)

Lemma 8. Let g,(-) be a C*(R,R) function from R into R
satisfying (11). Let B be a bounded subset ofHS (Q). Then for
any € > 0, there exists some ny such that when n > n,

|(1-p.) 9, (6)| <& VOeB, (67)

where P, : HS(Q) — span{w;, w,, ...
projection.

,w,} is the orthogonal

Theorem 9. Assume that 5, y, k > 0 and the assumptions
of (), g2(-), B() hold. f(x,t) € Lj, (R,L*(Q)), f'(x,t) €
L} (R, L*(Q)), and Q(x,t) € L3 (R L*Q)) satisfy (7);

then there exists a pullback Dg g -attractor in E, for the
nonautonomous dynamical system (0, @) defined by (15).

Proof. In order to prove the result of the theorem, we only
need to check the pullback D p -condition (C).

Let {w;};>, be an orthonormal basis of H which consists
of eigenvectors of A. The corresponding eigenvalues are
denoted by A, k = 1,2,...and 0 < A; < A, < A5 < ..,
A; — o00,as j — oo. Then {w}.o, is also an orthonormal
basis of V and D(A). We write V,, = {w,,w,,...,w,} and
P, .V — V, is an orthogonal projector. For any u € V,
we write

u=Pu+(I-P)u=u +u,. (68)
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Take the scalar product in H of (1) with Av, = Au; +

&Au,, and take the scalar product in H of (2) with Af,; then
make summation to get

1d
2dr

(Blawsf + ol + |0u) + vl - vl
+ af|Au,|* + k'Agz‘z + o ((uyov,))

—ya (Au,y,v,y) + (Al/zéz,Auz)
+((T=P,) g1 (W), 7,))

=((1-P,) 9,(8).46,) + (I - P,) f. Av,)

+((1-P,)Q 45,).

(69)

Since

(Xz 062
o (1)) 2 =l = =

ay? o
- ya (Auy, vy) 2 _%lvzl2 - Zﬁ|A”2|2;

1
(=P g1 (), v)| < CIT =P gy G + Sl

(=29, (8). 48, < L]t - 2) 2 @ + 5 J45]
|((I-P,) £, A,)]

= i (fz’Auz) +a(fy Auy) - (f’,Auz)

(fz:Auz ﬁ|A 2| _|f2 oc[)’|f2'
(70)

here weset f, = (I - P,) f,and

1

((1-P,)Q 46,)| < p

(1-P)Qf + §|A§2|2, (71)
and letting 0 < o« < min{fA/4,((-1 + y*/B) +

\/(/\ +92/B)* + PA2[2)/A, kAB[2}, setting oy = min{a/8,
yA/2,kA[4}, we have, from (69),

d
5(/3

+ 2, ([3

Au,y —

| + 1+ )

1

ﬂ 2

1 2 2 ~ 12
Efz + v, +||92'|>

Au, —

9
2 ~\ 12
< 2= ) gy @ + 31~ )0, ()
2 2
+2|-p)Ql §|<I—Pn>f2|2
2
|(1 P+ % fzafz) S af
(72)
By the Gronwall lemma, we obtain
2
BlAu, - % AR A
2 1 2
<e T [ﬁAuz (t-1)- sz(t—'f)
-0 +[8, ¢ - T)”Z]
+ L_T e—Zal(t—s) (%"(I _ Pn) g, (u)llz
+2|(r-) g, (B) + 2I1- )l
+—|(I P) o + ﬁ|(1 P)f2|
+% (fz)le) + %Cllfz'Z)ds
(73)

So

~ 12
A+ o] + 2]
20T 2 20‘2 2 2
< 2 [2(/3 +T>|Au2(t—‘r)| v 2 py (¢~ o)
~ 2 2
+]8, ¢ - +3|f2 (t—r)lz]
! —2a, (t-s) 2 2
] M S (G APAG]

k' gl (6)'2
+§|(I—Pn>o|2
+ %XKI_ P,) f2|2

+j—/3|<r—Pn>f;|2
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+% (f2>f2’) + %|f2|2>d5

2
+ 207 uy|” + E|f2|2.
(74)

Then given any D € Dy p,, we have
|®, (7.t -, )’o)“fe1

2
<2e77 [2 (ﬁ2 + 2%) |Au, (¢ = 1) + 2] p, (e - D]
~ 2 2 2
+ "62 (f—T)“ + Elfz (t- T)| ]
‘ =20 (t—s 2
e2f e (2ju-p) g 0ol

+2[(1-7) g, (@) ) ds

200 + 4 + 20

B
“(ag ) l0-R AT )as

2
r 2l + Z1AF

+2J—m<%|(l_Pn)Q|2+ (1-P,) £,

=L+L+1+1,
(75)

forany y(t —7) = y, € D(t —7)andt € R, 7 > 0. Now
we estimate I}, I,, I5, I, one by one. Given any ¢ > 0 and any
t € R, it is easy to see that

%Ilez — 0, (76)

so there exists 7; > 0 such that

€
I <- 77
< 77)

forall T > 7, y, € D(t - 7).

By Lemmas 7-8, we can choose n; € N such that
€

I, <- 78
= 79)

foranyn > n;, 7 > 1,.
By Lemma 4, we can choose 1, large enough such that

I < (79)

B~ m

forn > n,.
By (32), there exists 73 > 0 such that, for T > 13,
lu®)|> < oo and the embedding from D(A) into V is
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compact combined with (2/)| f2|2 — 0, so we can choose

n, large enough such that

I < (80)

| m

forn >n3, 7 > 15.
By above analysis, if we choose 7, = max{z,, 7,, 73}, 1y =
max{n,, n,, ns}, then

o, (7.t - 7. 3 “E =
(81)
foranyt>1, n=mny, y,e€D{Et-T1).
This implies pullback D; ; -condition (C). O
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