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In our work, a generalized KdV type equation of neglecting the highest-order infinitesimal term, which is an important water wave
model, is discussed by using the simplest equation method and its variants. The solutions obtained are general solutions which are
in the form of hyperbolic, trigonometric, and rational functions. These methods are more effective and simple than other methods
and a number of solutions can be obtained at the same time.

1. Introduction

In recent decades, the study of nonlinear partial differen-
tial equations (NLEEs) modelling physical phenomena has
become an important research topic. Seeking exact solutions
ofNLEEs has long been one of the central themes of perpetual
interest inmathematics and physics.With the development of
symbolic computation packages likeMaple andMathematica,
many powerfulmethods for finding exact solutions have been
proposed, such as the homogeneous balance method [1], the
extended 𝐹-expansion method [2], the auxiliary equation
method [3], the sine-cosine method [4], the Jacobi elliptic
function method [5], the exp-function method [6], the tanh-
function method [7], the (𝐺/𝐺)-expansion method [8], and
the (𝐺/𝐺, 1/𝐺)-expansion method [9, 10].

The simplest equation method is a very powerful math-
ematical technique for finding exact solutions of nonlinear
ordinary differential equations. It has been developed by
Kudryashov [11, 12] and used successfully by many authors
for finding exact solutions of ODEs in mathematical physics
[12, 13].

Recently, Bilige et al. introduced a method called the
extended simplest equation method, as an extension of the
simplest equation method, to look for the exact traveling
wave solutions of NLEEs [14, 15]. This method can construct
different forms of exact traveling wave solutions which
cannot be obtained by using the tanh-function method, F-
expansion method, and the exp-function method.

In 1995, based on the physical and asymptotic consid-
erations, Fokas [16] derived the following generalized KdV
equation:
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which is an important water wave model, where 𝛼 = 3𝐴/2,
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which is given by Tzirtzilakis et al. in [17].They called it high-
order wave equation of KdV type. Just as Tzirtzilakis et al.
[17] said these two equations are both water wave equations
of KdV type, which are more physically and practically
meaningful.
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Assuming that the waves are unidirectional and neglect-
ing terms of 𝑂(𝛼2, 𝛼3, 𝛼𝛽), (1) can be reduced to the classical
KdV equation
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Neglecting two high-order infinitesimal terms of𝑂(𝛼3, 𝛼2𝛽),
(1) can be reduced to another high-order wave equation of
KdV type [17–20] as follows:
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If onlyweneglect the highest-order termof (𝛼2𝛽), then (1)

can be reduced to a new generalized KdV equation as follows:
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In fact, (5) is another special case of (1) for 𝜌
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0. It is also third-order approximate equation of KdV type.
Of course, on describing dynamical behaviors of water

waves, (4) is only a rough approximative model of (1)
compared with (5); that is, the precision of model (5) is better
than that of model (4) on describing dynamical behaviors
of water waves. In other words, model (5) exhibits a much
richer phenomenology than the model (4). Therefore, the
investigation of exact traveling wave solutions for (5) is more
practically meaningful than that of (4).

Equation (5) is studied by Wu et al. in [21] using the
integral bifurcation method and some exact solutions in
parameter form are given. In [22], some exact traveling wave
solutions of (5) are given by using the extended F-expansion
method [2]. In this paper, regarding the 𝜌

𝑖
(𝑖 = 1, 2, 3, 4) as

free parameters and by using the simplest equation method
and its variants, we will investigate exact traveling wave
solutions of (5).

The organization of the paper is as follows. In Section 2,
a brief description of the simplest equation method and its
variants for finding traveling wave solutions of nonlinear
equations are given. In Section 3, we will study (5) by the sim-
plest equation methods and its variants. Finally conclusions
are given in Section 4.

2. Description of the Simplest
Equation Method and Its Variants

Consider a general nonlinear partial differential equation
(PDE) for 𝑢(𝑥, 𝑡) in the form
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where𝑁 is a polynomial in its arguments.

By taking 𝑢(𝑥, 𝑡) = 𝑢(𝜉) and 𝜉 = 𝑥 − 𝑐𝑡, we look
for traveling wave solutions of (6) and transform it to the
ordinary differential equation (ODE)
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where 𝐻(𝜉) satisfies the Bernoulli or Riccati equation, 𝑛
is a positive integer that can be determined by balancing
procedure, and 𝐴
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The Bernoulli equation we consider in this paper is
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For the Riccati equation

𝐻


(𝜉) = 𝑎𝐻
2

(𝜉) + 𝑏𝐻 (𝜉) + 𝑠, (11)

where 𝑎, 𝑏, and 𝑠 are constants. Equation (11) has 27 special
solutions [23]; in this paper, we will use the following two
solutions:
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2
− 4𝑎𝑠.

Substitute (8) into (7) with (9) (or (11)); then the left-
hand side of (7) is converted into a polynomial in 𝐻(𝜉);
equating each coefficient of the polynomial to zero yields
a set of algebraic equations for 𝐴

𝑖
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Solving the algebraic equations by symbolic computation, we
can determine those parameters explicitly.
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𝑖
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can be obtained and substituting the results into (8), then we
obtain the exact traveling wave solutions for (6).

Remark 1. In (9), when 𝑎 = 𝐴 and 𝑏 = −1 we obtain the
Bernoulli equation
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Equation (13) admits the following exact solutions:
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2.2. The Generalized Simplest Equation Method. We Suppose
the solution 𝑢 of (7) can be expressed in the following form:
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where 𝐺 = 𝐺(𝜉) satisfies the following auxiliary ordinary
differential equation (ODE):
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where the prime denotes derivative with respect to 𝜉.𝐴, 𝐵, 𝐶,
and 𝐸 are real parameters.

To determine the positive integer 𝑛, take the homoge-
neous balance between the highest-order nonlinear terms
and the highest-order derivatives appearing in (7). Substitut-
ing (16) and (18) including (17) into (7) with the value of 𝑛
obtained and we obtain polynomials in 𝐻
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of the resulted polynomials to zero, yields a set of algebraic
equations for 𝑎
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into (16), we can obtain a more general type and new exact
traveling wave solutions of the nonlinear partial differential
equation (6).

The general solutions of (18) can be listed as follows:
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(3) when Ψ = 𝐴 − 𝐶 andΩ = 𝐵
2
+ 4𝐸(𝐴 − 𝐶) = 0,

𝐻(𝜉) =
𝐵

2Ψ
−

𝐴𝐶
2

(𝐶
1
− 𝐶
2
𝜉)Ψ

. (21)

2.3.TheExtended Simplest EquationMethod. WeSuppose the
solution 𝑢 of (7) can be expressed in the following form:
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mined by considering the homogeneous balance between the
highest-order derivatives and nonlinear terms appearing in
(7). The function 𝜙 = 𝜙(𝜉) satisfies the second order linear
ODE in the form
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where 𝛿 and 𝜇 are constants. Equation (23) has three types of
general solution with double arbitrary parameters as follows:
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1
and 𝐴

2
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By substituting (22) into (7) and using the second order
linear ODE (23) and (25), collecting all terms with the
same order of 1/𝜙𝑖 and (1/𝜙

𝑖
)(𝜙

/𝜙) together, the left-hand

side of (7) is converted into another polynomial in 1/𝜙
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and (1/𝜙𝑖)(𝜙/𝜙). Equating each coefficient of these different
power terms to zero yields a set of algebraic equations for
𝑎
𝑖
, 𝑏
𝑗
(𝑖 = 0, 1, 2, . . . , 𝑛; 𝑗 = 0, 1, 2, . . . , 𝑛 − 1), 𝛿, and 𝜇.

Assume constants 𝑎
𝑖
, 𝑏
𝑗
(𝑖 = 0, 1, 2, . . . , 𝑛; 𝑗 =

0, 1, 2, . . . , 𝑛 − 1), 𝛿, and 𝜇 can be determined by solving the
nonlinear algebraic equations. Then substituting these terms
and the general solutions (24) of (23) into (7), we can obtain
more exact traveling wave solutions of (6).

3. Exact Solutions of (5)
Making a transformation 𝜂(𝑥, 𝑡) = 𝑢(𝜉), with 𝜉 = 𝑥 − 𝑐𝑡, (5)
can be reduced to the following ODE:
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where 𝑐 is wave velocity which moves along the direction of
𝑥-axis and 𝑐 ̸= 0. Integrating (11) once and setting the integral
constant as 𝑅 yield
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3.1. Using the Simplest Equation Method

3.1.1. Solutions of (27) Using the Bernoulli Equation as the
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Substituting (28) into (27) and making use of the
Bernoulli equation (9) and then equating the coefficients of
the functions𝐻𝑖(𝜉) to zero, we obtain an algebraic system of
equations in terms of 𝐴

𝑖
(𝑖 = 0, 1), 𝑎, 𝜌

𝑖
(𝑖 = 1, 2, 3, 4), and 𝑏

as follows:

𝐻(𝜉)
4: (1/4)𝜌

4
𝛼
3
𝐴
4

1
+ (3/2)𝛼𝛽𝜌

2
𝐴
2

1
𝑏
2
+ (1/2)𝛼𝛽𝐴

2

1
𝜌
3
𝑏
2
= 0,

𝐻(𝜉)
3: 𝜌
4
𝛼
3
𝐴
0
𝐴
3

1
+ 2𝛼𝛽𝜌

2
𝐴
1
𝐴
0
𝑏
2
+ 2𝛽𝐴

1
𝑏
2
+ 𝛼𝛽𝐴

2

1
𝜌
3
𝑏𝑎 +

(1/3)𝜌
1
𝛼
2
𝐴
3

1
+ 2𝛼𝛽𝜌

2
𝐴
2

1
𝑏𝑎 = 0,

𝐻(𝜉)
2: (1/2)𝛼𝛽𝐴2

1
𝜌
3
𝑎
2 + (3/2)𝜌

4
𝛼
3
𝐴
2

0
𝐴
2

1
+ 3𝛼𝛽𝜌

2
𝐴
1
𝐴
0
𝑏𝑎 +

3𝛽𝐴
1
𝑏𝑎 + 𝜌

1
𝛼
2
𝐴
0
𝐴
2

1
+ (1/2)𝛼𝐴2

1
+ (1/2)𝛼𝛽𝜌

2
𝐴
2

1
𝑎
2
=

0,

𝐻(𝜉)
1: 𝛽𝐴

1
𝑎
2
+ 𝐴
1
+ 𝛼𝐴
0
𝐴
1
+ 𝛼𝛽𝜌

2
𝐴
1
𝐴
0
𝑎
2
+ 𝜌
4
𝛼
3
𝐴
3

0
𝐴
1
+

𝜌
1
𝛼
2
𝐴
2

0
𝐴
1
− 𝑐𝐴
1
= 0,

𝐻(𝜉)
0: −𝑐𝐴

0
+ (1/2)𝛼𝐴

2

0
+ (1/3)𝜌

1
𝛼
2
𝐴
3

0
+ (1/4)𝜌

4
𝛼
3
𝐴
4

0
+𝐶+

𝐴
0
= 0.

On solving the above algebraic equations using theMaple,
we get the following results:

𝐴
0
=

(3 − √3) 𝑎𝐴
1

6𝑏
, 𝑐 = 1 +

𝑎
4
𝛽
2
𝜌
3

3
,

𝛼 = −
2𝛽𝑎𝑏√3

𝐴
1

, 𝜌
1
=
𝑎
2
𝛽 (𝜌
3
+ 2𝜌
2
) − 1

2𝑎2𝛽
,

𝜌
4
= −

3𝜌
2
+ 𝜌
3

6𝑎2𝛽
.

(29)

Therefore, using solutions (10) of (9), ansatz (28), we
obtain the following exact solution of (5):

𝜂
1
(𝜉) =

(3 − √3) 𝑎𝐴
1

6𝑏

−
𝐴
1
𝑎𝐶
1

𝑏 (𝐶
1
+ cosh (𝑎 (𝜉 + 𝜉

0
)) − sinh (𝑎 (𝜉 + 𝜉

0
)))

,

(30)

𝜂
2
(𝜉) =

(3 − √3) 𝑎𝐴
1

6𝑏

−
𝐴
1
𝑎 (cosh (𝑎 (𝜉 + 𝜉

0
)) + sinh (𝑎 (𝜉 + 𝜉

0
)))

𝑏 (𝐶
2
+ cosh (𝑎 (𝜉 + 𝜉

0
)) + sinh (𝑎 (𝜉 + 𝜉

0
)))

,

(31)

where 𝜉 = 𝑥 − (1 + 𝑎
4
𝛽
2
𝜌
3
/3)𝑡, 𝜌

1
and 𝜌

4
are determined in

(29), and 𝜌
2
, 𝜌
3
, 𝐴
1
, 𝐶
1
, 𝐶
2
, 𝑎, and 𝑏 are arbitrary constants.

3.1.2. Solutions of (27) Using Riccati Equation as the Simplest
Equation. Suppose the solution of (27) is of the form

𝑢 (𝜉) = 𝐵
0
+ 𝐵
1
𝐻(𝜉) . (32)

Substituting (32) into (27) and making use of the Riccati
equation (11) and then equating the coefficients of the func-
tions𝐻𝑖(𝜉) to zero, we obtain an algebraic systemof equations
in terms of𝐵

𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, 𝜌

𝑖
(𝑖 = 1, 2, 3, 4), and 𝑠 as follows:

𝐻(𝜉)
4: (3/2)𝛼𝛽𝜌

2
𝐵
2

1
𝑎
2
+ (1/2)𝛼𝛽𝐵

2

1
𝜌
3
𝑎
2
+ (1/4)𝜌

4
𝛼
3
𝐵
4

1
= 0,

𝐻(𝜉)
3: 𝛼𝛽𝐵2

1
𝜌
3
𝑎𝑏 + 2𝛼𝛽𝜌

2
𝐵
1
𝐵
0
𝑎
2
+ 2𝛽𝐵

1
𝑎
2
+ (1/3)𝜌

1
𝛼
2
𝐵
3

1
+

𝜌
4
𝛼
3
𝐵
0
𝐵
3

1
+ 2𝛼𝛽𝜌

2
𝐵
2

1
𝑏𝑎 = 0,

𝐻(𝜉)
2: 𝜌
1
𝛼
2
𝐵
0
𝐵
2

1
+ (1/2)𝛼𝛽𝐵

2

1
𝜌
3
𝑏
2 + 𝛼𝛽𝜌

2
𝐵
2

1
𝑎𝑠 +

(1/2)𝛼𝛽𝜌
2
𝐵
2

1
𝑏
2 + (3/2)𝜌

4
𝛼
3
𝐵
2

0
𝐵
2

1
+ 3𝛼𝛽𝜌

2
𝐵
1
𝐵
0
𝑏𝑎 +

(1/2)𝛼𝐵
2

1
+ 3𝛽𝐵

1
𝑎𝑏 + 𝛼𝛽𝐵

2

1
𝜌
3
𝑎𝑠 = 0,

𝐻(𝜉)
1: 𝛽𝐵
1
𝑏
2
+ 𝛼𝛽𝐵

2

1
𝜌
3
𝑏𝑠 + 𝐵

1
+ 𝛼𝛽𝜌

2
𝐵
1
𝐵
0
𝑏
2
+ 𝜌
1
𝛼
2
𝐵
2

0
𝐵
1
+

𝛼𝐵
0
𝐵
1
+2𝛼𝛽𝜌

2
𝐵
1
𝐵
0
𝑎𝑠+2𝛽𝐵

1
𝑎𝑠+𝜌
4
𝛼
3
𝐵
3

0
𝐵
1
−𝑐𝐵
1
= 0,

𝐻(𝜉)
0: −(1/2)𝛼𝛽𝐵2

1
𝜌
2
𝑠
2

+ 𝛽𝐵
1
𝑏𝑠 + (1/3)𝜌

1
𝛼
2
𝐵
3

0
+

(1/4)𝜌
4
𝛼
3
𝐵
4

0
+ 𝐵
0
+ 𝛼𝛽𝜌

2
𝐵
1
𝐵
0
𝑏𝑠 + (1/2)𝛼𝐵

2

0
+

𝐶 − 𝑐𝐵
0
+ (1/2)𝛼𝛽𝐵

2

1
𝜌
3
𝑠
2
= 0.
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On solving the above algebraic equations using theMaple,
we get the following results:

𝐵
0
=

(3𝑏 + √3𝑁)𝐵
1

6𝑎
, 𝑐 =

𝛽
2
𝜌
3
𝑁
2

3
+ 1,

𝛼 =
2𝑎𝛽√3𝑁

𝐵
1

, 𝜌
1
=
𝑁𝛽 (𝜌

3
+ 2𝜌
2
) − 1

2𝛽𝑁
,

𝜌
4
= −

3𝜌
2
+ 𝜌
3

6𝛽𝑁
,

(33)

where𝑁 = 𝑏
2
− 4𝑎𝑠.

Therefore, using solutions (12) of (11), ansatz (32), we
obtain the following exact solution of (5):

𝜂
3
(𝜉) =

(3𝑏 + √3𝑁)𝐵
1

6𝑎
−
𝐵
1

2𝑎
(𝑏 + 𝜃 tanh(𝜃

2
(𝜉 + 𝜉

0
))) ,

(34)

𝜂
4
(𝜉) =

(3𝑏 + √3𝑁)𝐵
1

6𝑎
−
𝐵
1

2𝑎
(𝑏 + 𝜃 tanh(𝜃

2
𝜉))

+
𝐵
1
sech ((𝜃/2) 𝜉)

𝐶 cosh ((𝜃/2) 𝜉) − (2𝑎/𝜃) sinh ((𝜃/2) 𝜉)
,

(35)

where 𝜉 = 𝑥 − (𝛽
2
𝜌
3
𝑁
2
/3 + 1)𝑡, 𝜃 = √𝑏2 − 4𝑎𝑠,𝑁 = 𝑏

2
− 4𝑎𝑠,

𝜌
1
and 𝜌
4
are determined in (33), and 𝜌

2
, 𝜌
3
, 𝐵
1
, 𝐶, 𝑠, 𝑎, and 𝑏

are arbitrary constants.

3.2. Using Generalized Simplest Equation. Suppose the solu-
tion of (27) is of the form

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝐻(𝜉) +

𝑏
1

𝐻(𝜉)
, (36)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined later and

function 𝐻 = 𝐻(𝜉) satisfies (17) and auxiliary differential
equation (18).

Substituting (36) together with (17) and (18) into (27),
the left-hand side is converted into polynomials in 𝐻

𝑖, (𝑖 =
. . . , −2, −1, 0, 1, 2, . . .). We collect each coefficient of these
resulted polynomials to zero, yields a set of simultaneous
algebraic equations for 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜌
𝑖
(𝑖 = 1, 2, 3, 4), and 𝑐.

Solving this system of algebraic equations, with the aid of
Maple, we obtain

𝑎
0
=

𝑏
1
(√3𝑀 + 3𝐵)

6𝐸
, 𝑎

1
= −

𝑏
1
Ψ

𝐸
,

𝑐 =
3𝐴
4
+ 12𝛽

2
𝐸𝐵𝜌
3
Ψ√3𝑀 + 𝛽

2
𝜌
3
𝑀
2

3𝐴4
,

𝜌
1
=
𝛽 (2𝜌
2
+ 𝜌
3
)𝑀 − 𝐴

2

2𝛽𝑀
, 𝜌

4
= −

𝐴
2
(3𝜌
2
+ 𝜌
3
)

6𝛽𝑀
,

𝛼 =
2𝛽𝐸√3𝑀

𝑏
1
𝐴2

,

(37)

where 𝑀 = 𝐵
2
− 8𝐸Ψ and Ψ = 𝐴 − 𝐶. 𝐴, 𝐵, 𝐶, 𝐸, 𝑏

1
, 𝜌
2
, 𝜌
3
,

and 𝛽 are free parameters.
Substituting (37) into (36), along with (19) and simplify-

ing, yields the following traveling wave solutions (if 𝐶
1
= 0,

but 𝐶
2

̸= 0; 𝐶
2
= 0, but 𝐶

1
̸= 0), respectively:

𝜂
5
(𝜉) =

𝑏
1
(√3𝑀 + 3𝐵)

6𝐸
−

𝑏
1

2𝐸
(𝐵 + √Ω coth(

√Ω

2𝐴
𝜉))

+ 2Ψ𝑏
1
(𝐵 + √Ω coth(

√Ω

2𝐴
𝜉))

−1

,

(38)

𝜂
6
(𝜉) =

𝑏
1
(√3𝑀 + 3𝐵)

6𝐸
−

𝑏
1

2𝐸
(𝐵 + √Ω tanh(

√Ω

2𝐴
𝜉))

+ 2Ψ𝑏
1
(𝐵 + √Ω tanh(

√Ω

2𝐴
𝜉))

−1

,

(39)

where 𝜉 = 𝑥−𝑐𝑡,𝑀 = 𝐵
2
−8𝐸Ψ,Ψ = 𝐴−𝐶,Ω = 𝐵

2
+4𝐸Ψ, 𝑐,

𝜌
1
, and 𝜌

4
are determined in (37), and 𝜌

2
, 𝜌
3
, 𝐴, 𝐵, 𝐶, 𝐸, and

𝑏
1
, are arbitrary constants.
Substituting (37) into (36), along with (20) and simplify-

ing, yields the following traveling wave solutions (if 𝐶
1
= 0,

but 𝐶
2

̸= 0; 𝐶
2
= 0, but 𝐶

1
̸= 0), respectively:

𝜂
7
(𝜉) =

𝑏
1
(√3𝑀 + 3𝐵)

6𝐸
−

𝑏
1

2𝐸
(𝐵 + √−Ωcot(

√−Ω

2𝐴
𝜉))

+ 2Ψ𝑏
1
(𝐵 + √−Ωcot(

√−Ω

2𝐴
𝜉))

−1

,

𝜂
8
(𝜉) =

𝑏
1
(√3𝑀 + 3𝐵)

6𝐸
−

𝑏
1

2𝐸
(𝐵 − √−Ω tan(

√−Ω

2𝐴
𝜉))

+ 2Ψ𝑏
1
(𝐵 − √−Ω tan(

√−Ω

2𝐴
𝜉))

−1

,

(40)

where 𝜉 = 𝑥 − 𝑐𝑡,𝑀 = 𝐵
2
− 8𝐸Ψ, Ψ = 𝐴 − 𝐶,Ω = 𝐵

2
+ 4𝐸Ψ,

𝑐, 𝜌
1
, and 𝜌

4
are determined in (37), and 𝜌

2
, 𝜌
3
,𝐴, 𝐵,𝐶, 𝐸, and

𝑏
1
, are arbitrary constants.
Substituting (37) into (36), along with (21), and simplify-

ing, our obtained solution becomes

𝜂
9
(𝜉) = −

8𝐶
2

2
𝐴
2
𝑏
1
Ψ

(2𝐴𝐶
2
+ 𝐵𝐶
2
𝜉 − 𝐵𝐶

1
) (𝐶
1
− 𝐶
2
𝜉) 𝐵2

, (41)

where 𝜉 = 𝑥−𝑐𝑡,Ψ = 𝐴−𝐶, 𝜌
1
and 𝜌
4
are determined in (37),

and 𝜌
2
, 𝜌
3
, 𝐴, 𝐵, 𝐶

1
, 𝐶
2
, and 𝑏

1
are arbitrary constants.
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3.3. Using Extended Simplest Equation. Suppose the solution
of (27) is of the form

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1

𝜙


𝜙
+ 𝑏
1

1

𝜙
, (42)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined later and

function 𝜙 = 𝜙(𝜉) satisfies the second order linear ODE (23).
By substituting (42) into (27) and using the second order

linear ODE expressions (23) and (25), collecting all terms
with the sameorder of 1/𝜙𝑖 and (1/𝜙𝑖)(𝜙/𝜙) together, the left-
hand side of (27) is converted into another polynomial in 1/𝜙𝑖

and (1/𝜙𝑖)(𝜙/𝜙). Equating each coefficient of these different
power terms to zero yields a set of algebraic equations for 𝑎

0
,

𝑎
1
, 𝑏
1
, 𝜌
1
, 𝜌
2
, 𝜌
3
, 𝜌
4
, 𝛼, 𝛽, 𝑐, 𝛿, and 𝜇. Solving these equations,

we obtain the following results.
If 𝛿 < 0, we obtain

(1) 𝑏
1
= 0,

𝑐 = −
2𝛼𝛽𝑎
3

0
𝜌
3
− 6𝛽𝑎

2

0
+ 2𝛼𝛽𝑎

0
𝜌
3
𝑎
2

1
𝛿 − 2𝛽𝑎

2

1
𝛿 − 𝑎
2

1

𝑎
2

1

,

𝜇 = 0,

𝜌
1
=

6 (3𝑎
2

0
𝛽 (3 − 𝑎

0
𝛼𝜌
3
) − 𝑎
2

1
(𝑎
0
𝛼 + 𝛽𝛿 + 𝑎

0
𝛼𝛽𝜌
3
𝛿))

𝛼2𝑎
2

1
(3𝑎
2

0
+ 𝑎
2

1
𝛿)

,

𝜌
2
=
6𝑎
0
𝛽 (2 − 𝑎

0
𝛼𝜌
3
) − 𝛼𝑎

2

1
(2𝛽𝜌
3
𝛿 + 1)

2𝛼𝛽 (3𝑎
2

0
+ 𝑎
2

1
𝛿)

,

𝜌
4
=
𝛼𝑎
2

1
(4𝛽𝜌
3
𝛿 + 3) + 12𝑎

0
𝛽 (𝑎
0
𝛼𝜌
3
− 3)

𝛼3𝑎
2

1
(3𝑎
2

0
+ 𝑎
2

1
𝛿)

.

(43)

(2) 𝑎
0
= √

−𝛿

3
𝑎
1
, 𝑏

1
= 0, 𝑐 = 1 +

16𝛽
2
𝜌
3
𝛿
2

3
,

𝜇 = 0, 𝛼 =
4√−3𝛿𝛽

𝑎
1

,

𝜌
1
=
1 + 8𝛽𝜌

2
𝛿 + 4𝛿𝛽𝜌

3

8𝛿𝛽
,

𝜌
4
=
3𝜌
2
+ 𝜌
3

24𝛽𝛿
.

(44)

(3) 𝐴
1
= ± 𝐴

2
, 𝑎

0
= −

1

𝛼𝜌
2

, 𝑏
1
= 0,

𝑐 =
−2 − 𝑎

2

1
𝛿𝛼
2
𝜌
2

2
+ 𝜌
2
𝑀

𝜌
2
𝑀

, 𝛽 = −
𝛼
2
𝑎
2

1
𝜌
2

𝑀
,

𝜌
1
=
6𝜌
2

𝑀
, 𝜌

3
= −2𝜌

2
,

𝜌
4
=
2𝜌
2

2

𝑀
, 𝑀 = 6 + 𝑎

2

1
𝛿𝛼
2
𝜌
2

2
.

(45)

(4) 𝑎
0
= −

1

𝛼𝜌
2

, 𝑏
1
= 0,

𝑐 =
−2𝑎
2

1
𝛿𝛼
2
𝜌
2

2
− 1 + 𝜌

2
𝑁

𝜌
2
𝑁

,

𝜇 = √𝐴
2

1
− 𝐴
2

2
𝛿, 𝛽 =

𝛼
2
𝑎
2

1
𝜌
2

𝑁
, 𝜌

1
=
3𝜌
2

𝑁
,

𝜌
3
= − 5𝜌

2
, 𝜌

4
=
𝜌
2

2

𝑁
, 𝑁 = 3 + 2𝑎

2

1
𝛿𝛼
2
𝜌
2

2
.

(46)

(5) 𝐴
1
=

√𝜇2 + 𝛿2𝐴
2

2

𝛿
, 𝑎

0
= −

𝛿𝛽

𝛼
, 𝑎

1
=

√−3𝛿𝛽

𝛼
,

𝑏
1
= 0, 𝑐 = 2𝜌

4
𝛿
3
𝛽
3
+ 1 − 𝛿

2
𝛽
2
𝜌
2
,

𝜌
1
=
1 − 𝛽𝜌

2
𝛿 + 6𝛿

2
𝜌
4
𝛽
2

2𝛽𝛿
, 𝜌

3
= −3𝜌

2
+ 6𝛿𝛽𝜌

4
.

(47)

(6) 𝐴
1
= ± 𝐴

2
, 𝑎

0
= −

𝛿𝛽

𝛼
, 𝑎

1
=

√−3𝛿𝛽

𝛼
,

𝑏
1
= 0, 𝑐 =

1

3
𝛿𝛽 + 1, 𝜌

1
=

2

𝛽𝛿
,

𝜌
2
=

1

𝛽𝛿
, 𝜌

3
= −

2

𝛽𝛿
, 𝜌

4
=

2

3𝛽2𝛿2
.

(48)

(7) 𝐴
1
=

√9𝐴
2

2
𝛽2𝛿2 − 3𝑏

2

1
𝛼2

3𝛿𝛽
, 𝑎

0
= −

𝛿𝛽

𝛼
,

𝑎
1
=

√−3𝛿𝛽

𝛼
, 𝑐 = 2𝜌

4
𝛿
3
𝛽
3
− 𝛽𝛿 + 1, 𝜇 = 0,

𝜌
1
= 3𝛿𝛽𝜌

4
, 𝜌

2
=

1

𝛽𝛿
, 𝜌

3
=

3 (2𝛿
2
𝜌
4
𝛽
2
− 1)

𝛽𝛿
.

(49)

(8) 𝑎
0
=

𝑏
1
√3 (𝐴

2

2
− 𝐴
2

1
)

3 (𝐴
2

1
− 𝐴
2

2
)

, 𝑎
1
=

𝑏
1

√𝛿 (𝐴
2

1
− 𝐴
2

2
)

,

𝑐 = 2𝜌
4
𝛿
3
𝛽
3
+ 1 − 𝛿

2
𝛽
2
𝜌
2
, 𝜇 = 0,

𝛼 =

√3 (𝐴
2

2
− 𝐴
2

1
)𝛿𝛽

𝑏
1

, 𝜌
1
=
1 − 𝛽𝜌

2
𝛿 + 6𝛿

2
𝜌
4
𝛽
2

2𝛽𝛿
,

𝜌
3
= 6𝛿𝛽𝜌

4
− 3𝜌
2
.

(50)

(9) 𝐴
1
= ± 𝐴

2
, 𝑎

0
=
𝑏
1
𝛿

𝜇
, 𝑎

1
=
√−𝛿𝑏

1

𝜇
,

𝑐 = 1 − 𝛽𝛿, 𝜌
1
= −

3𝜇 (𝛼𝛽𝜌
2
𝑏
1
𝛿 + 2𝛽𝜇 + 𝛼𝑏

1
)

2𝑏
2

1
𝛿𝛼2

,
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𝜌
3
=
3𝛽𝜇 + 𝛼𝑏

1
− 𝛼𝛽𝜌

2
𝑏
1
𝛿

𝑏
1
𝛿𝛼𝛽

,

𝜌
4
=
𝜇
2
(2𝛼𝛽𝜌

2
𝑏
1
𝛿 + 3𝛽𝜇 + 𝛼𝑏

1
)

2𝑏
3

1
𝛿2𝛼3

.

(51)

(10) 𝐴
1
=

√𝛿2𝐴
2

2
− 2𝜇2

𝛿
, 𝑎

0
=
𝑏
1
𝛿

3𝜇
,

𝑎
1
=

√−3𝛿𝑏
1

3𝜇
,

𝑐 =
27𝜇
3
− 2𝜌
4
𝛼
3
𝑏
3

1
𝛿
3
− 3𝑏
2

1
𝛿
2
𝜇𝛼
2
𝜌
2

27𝜇3
,

𝛽 = −
𝑏
1
𝛼

3𝜇
,

𝜌
1
= −

𝛼𝜌
2
𝜇𝑏
1
𝛿 + 3𝜇

2
+ 2𝑏
2

1
𝛿
2
𝜌
4
𝛼
2

2𝜇𝑏
1
𝛿𝛼

,

𝜌
3
= −

3𝜇𝜌
2
+ 2𝜌
4
𝛼𝑏
1
𝛿

𝜇
.

(52)

Substituting (43)–(52) into (42) and making use of solu-
tions (24) of (23), we can obtain, respectively, exact traveling
wave solutions expressed by hyperbolic functions of (5).
Consider

𝜂
10
= 𝑎
0
+

𝑎
1
√−𝛿 (𝐴

1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉)

,

(53)

where 𝜉 = 𝑥 + ((2𝛼𝛽𝑎
3

0
𝜌
3
− 6𝛽𝑎

2

0
+ 2𝛼𝛽𝑎

0
𝜌
3
𝑎
2

1
𝛿 − 2𝛽𝑎

2

1
𝛿 −

𝑎
2

1
)/𝑎
2

1
)𝑡, 𝜌
1
, 𝜌
2
, and 𝜌

4
are determined in (43), and 𝛼, 𝛽, 𝜌

3
,

𝑎
0
, 𝑎
1
, 𝐴
1
, 𝐴
2
, and 𝛿 are arbitrary constants. Consider

𝜂
11
=
√−3𝛿

3
𝑎
1

+

𝑎
1
√−𝛿 (𝐴

1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉)

,

(54)

where 𝜉 = 𝑥−(1+16𝛽
2
𝜌
3
𝛿
2
/3)𝑡, 𝛼, 𝜌

1
, and 𝜌

4
are determined

in (44), and𝛽, 𝜌
2
, 𝜌
3
, 𝑎
1
,𝐴
1
,𝐴
2
, and 𝛿 are arbitrary constants.

Consider

𝜂
12
= −

1

𝛼𝜌
2

+

𝑎
1
√−𝛿 (±𝐴

2
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

±𝐴
2
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

,

(55)

where 𝜉 = 𝑥 − ((−2 − 𝑎
2

1
𝛿𝛼
2
𝜌
2

2
+ 𝜌
2
(6 + 𝑎

2

1
𝛿𝛼
2
𝜌
2

2
))/𝜌
2
(6 +

𝑎
2

1
𝛿𝛼
2
𝜌
2

2
))𝑡, 𝛽, 𝜌

1
, 𝜌
3
, and 𝜌

4
are determined in (45), and 𝛼,

𝑎
1
, 𝐴
2
, 𝜌
2
, 𝜇, and 𝛿 are arbitrary constants. Consider

𝜂
13
= −

1

𝛼𝜌
2

+

𝑎
1
√−𝛿 (𝐴

1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + √𝐴

2

1
− 𝐴
2

2

,

(56)

where 𝜉 = 𝑥 − ((−2𝑎
2

1
𝛿𝛼
2
𝜌
2

2
− 1 + 𝜌

2
(3 + 2𝑎

2

1
𝛿𝛼
2
𝜌
2

2
))/𝜌
2
(3 +

2𝑎
2

1
𝛿𝛼
2
𝜌
2

2
))𝑡, 𝛽, 𝜌

1
, 𝜌
3
, and 𝜌

4
are determined in (46), and 𝛼,

𝑎
1
, 𝐴
1
, 𝐴
2
, 𝜌
2
, and 𝛿 are arbitrary constants. Consider

𝜂
14
= −

𝛿𝛽

𝛼

× (1 +

√3 (𝐴
1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

) ,

(57)

where 𝜉 = 𝑥 − (2𝜌
4
𝛿
3
𝛽
3
+ 1 − 𝛿

2
𝛽
2
𝜌
2
)𝑡, 𝐴
1
, 𝜌
1
, and 𝜌

3
are

determined in (47), and 𝛼, 𝛽,𝐴
2
, 𝜌
2
, 𝜌
4
, 𝜇, and 𝛿 are arbitrary

constants. Consider

𝜂
15
= −

𝛿𝛽

𝛼

× (1 −

√3 (±𝐴
2
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

±𝐴
2
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

) ,

(58)

where 𝜉 = 𝑥−((1/3)𝛿𝛽+1)𝑡, 𝜌
1
, 𝜌
2
, 𝜌
3
, and 𝜌

4
are determined

in (48), and 𝛼, 𝛽, 𝐴
2
, 𝜇, and 𝛿 are arbitrary constants.

Consider

𝜂
16
= −

𝛿𝛽

𝛼
(1 +

√3 (𝐴
1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉)

)

+
𝑏
1

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉)

,

(59)

where 𝜉 = 𝑥 − (2𝜌
4
𝛿
3
𝛽
3
− 𝛽𝛿 + 1)𝑡, 𝐴

1
, 𝜌
1
, 𝜌
2
, and 𝜌

3
are

determined in (49), and 𝛼, 𝛽, 𝑏
1
, 𝐴
2
, 𝜌
4
, and 𝛿 are arbitrary

constants. Consider

𝜂
17

=

𝑏
1
√3 (𝐴

2

2
− 𝐴
2

1
)

3 (𝐴
2

1
− 𝐴
2

2
)

+

(𝑏
1
/√𝐴
2

2
− 𝐴
2

1
)(𝐴
1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉)) + 𝑏

1

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉)

,

(60)
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where 𝜉 = 𝑥 − (2𝜌
4
𝛿
3
𝛽
3
+ 1 − 𝛿

2
𝛽
2
𝜌
2
)𝑡, 𝛼, 𝜌

1
, and 𝜌

3
are

determined in (50), and 𝛽, 𝑏
1
, 𝐴
1
, 𝐴
2
, 𝜌
2
, 𝜌
4
, and 𝛿 are

arbitrary constants. Consider

𝜂
18
=
𝑏
1
𝛿

𝜇

× (1 −

±𝐴
2
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉)

±𝐴
2
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

)

+
𝑏
1

±𝐴
2
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

,

(61)

where 𝜉 = 𝑥 − (1 − 𝛽𝛿)𝑡, 𝜌
1
, 𝜌
3
, and 𝜌

4
are determined in (51),

and 𝛼, 𝛽, 𝑏
1
,𝐴
2
, 𝜌
2
, 𝜇, and 𝛿 are arbitrary constants. Consider

𝜂
19
=
𝑏
1
𝛿

3𝜇

× (1 −

√3 (𝐴
1
sinh (√−𝛿𝜉) + 𝐴

2
cosh (√−𝛿𝜉))

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

)

+
𝑏
1

𝐴
1
cosh (√−𝛿𝜉) + 𝐴

2
sinh (√−𝛿𝜉) + 𝜇/𝛿

,

(62)

where 𝜉 = 𝑥 − ((27𝜇
3
− 2𝜌
4
𝛼
3
𝑏
3

1
𝛿
3
− 3𝑏
2

1
𝛿
2
𝜇𝛼
2
𝜌
2
)/27𝜇

3
)𝑡, 𝐴
1
,

𝛽, 𝜌
1
, and 𝜌

3
are determined in (52), and 𝛼, 𝑏

1
, 𝐴
2
, 𝜌
2
, 𝜌
4
, 𝜇,

and 𝛿 are arbitrary constants.
If 𝛿 > 0, we obtain

(1) 𝑎
0
= 𝑖𝑎
1
√
𝛿

3
, 𝑏

1
= 0, 𝑐 = 1 +

16𝛽
2
𝜌
3
𝛿
2

3
,

𝛼 =
4𝛽𝑖√3𝛿

𝑎
1

, 𝜌
1
=
1 + 8𝛽𝜌

2
𝛿 + 4𝛿𝛽𝜌

3

8𝛿𝛽
,

𝜇 = 0, 𝜌
4
=
3𝜌
2
+ 𝜌
3

24𝛽𝛿
.

(63)

(2) 𝐴
1
= 𝑖𝐴
2
, 𝑎

0
= −

1

𝛼𝜌
2

, 𝑏
1
= 0,

𝑐 =
−2 − 𝑎

2

1
𝛿𝛼
2
𝜌
2

2
+ 𝜌
2
𝑀

𝜌
2
𝑀

, 𝛽 = −
𝛼
2
𝑎
2

1
𝜌
2

𝑀
,

𝜌
1
=
6𝜌
2

𝑀
, 𝜌

3
= −2𝜌

2
,

𝜌
4
=
2𝜌
2

2

𝑀
, 𝑀 = 6 + 𝑎

2

1
𝛿𝛼
2
𝜌
2

2
.

(64)

(3) 𝐴
1
=

√𝜇2 − 𝛿2𝐴
2

2

𝛿
, 𝑎

0
= −

𝛿𝛽

𝛼
, 𝑎

1
=

√3𝛿𝛽𝑖

𝛼
,

𝑏
1
= 0, 𝑐 = 2𝜌

4
𝛿
3
𝛽
3
+ 1 − 𝛿

2
𝛽
2
𝜌
2
,

𝜌
1
=
1 − 𝛽𝜌

2
𝛿 + 6𝛿

2
𝜌
4
𝛽
2

2𝛽𝛿
, 𝜌

3
= −3𝜌

2
+ 6𝛿𝛽𝜌

4
.

(65)

(4) 𝐴
1
= 𝑖𝐴
2
, 𝑎

0
= −

𝛿𝛽

𝛼
, 𝑎

1
=

√3𝛿𝛽𝑖

𝛼
,

𝑏
1
= 0, 𝑐 =

1

3
𝛿𝛽 + 1, 𝜌

1
=

2

𝛽𝛿
,

𝜌
2
=

1

𝛽𝛿
, 𝜌

3
= −

2

𝛽𝛿
, 𝜌

4
=

2

3𝛽2𝛿2
.

(66)

(5) 𝐴
1
=

√−9𝐴
2

2
𝛽2𝛿2 − 3𝑏

2

1
𝛼2

3𝛿𝛽
, 𝑎

0
= −

𝛿𝛽

𝛼
,

𝑎
1
=

√3𝛿𝛽𝑖

𝛼
, 𝑐 = 2𝜌

4
𝛿
3
𝛽
3
− 𝛿
2
𝛽
2
𝜌
2
+ 1,

𝜇 = 0, 𝜌
1
=
1 − 𝛽𝜌

2
𝛿 + 6𝛿

2
𝜌
4
𝛽
2

2𝛽𝛿
,

𝜌
3
= − 3𝜌

2
+ 6𝛿𝛽𝜌

4
.

(67)

(6) 𝐴
1
= 𝑖𝐴
2
, 𝑎

0
=
𝑏
1
𝛿

𝜇
, 𝑎

1
=

√𝛿𝑏
1
𝑖

𝜇
,

𝑐 = 1 − 𝛽𝛿, 𝜌
1
= −

3𝜇 (𝛼𝛽𝜌
2
𝑏
1
𝛿 + 2𝛽𝜇 + 𝛼𝑏

1
)

2𝑏
2

1
𝛿𝛼2

,

𝜌
3
=
3𝛽𝜇 + 𝛼𝑏

1
− 𝛼𝛽𝜌

2
𝑏
1
𝛿

𝑏
1
𝛿𝛼𝛽

,

𝜌
4
=
𝜇
2
(2𝛼𝛽𝜌

2
𝑏
1
𝛿 + 3𝛽𝜇 + 𝛼𝑏

1
)

2𝑏
3

1
𝛿2𝛼3

.

(68)

(7) 𝐴
1
=

√−𝛿2𝐴
2

2
− 2𝜇2

𝛿
, 𝑎

0
=
𝑏
1
𝛿

3𝜇
,

𝑎
1
=
𝑖√3𝛿𝑏

1

3𝜇
,

𝑐 =
27𝜇
3
− 2𝜌
4
𝛼
3
𝑏
3

1
𝛿
3
− 3𝑏
2

1
𝛿
2
𝜇𝛼
2
𝜌
2

27𝜇3
, 𝛽= −

𝑏
1
𝛼

3𝜇
,

𝜌
1
= −

𝛼𝜌
2
𝜇𝑏
1
𝛿 + 3𝜇

2
+ 2𝑏
2

1
𝛿
2
𝜌
4
𝛼
2

2𝜇𝑏
1
𝛿𝛼

,

𝜌
3
= −

3𝜇𝜌
2
+ 2𝜌
4
𝛼𝑏
1
𝛿

𝜇
.

(69)
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Substituting (63)–(69) into (42) and making use of solu-
tions (24) of (23), we can obtain, respectively, exact traveling
wave solutions expressed by trigonometric functions of (5).
Consider

𝜂
20
=

√3𝛿𝑎
1
𝑖

3
+

𝑎
1
√𝛿 (−𝐴

1
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝐴
1
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉)

,

(70)

where 𝜉 = 𝑥−(1+16𝛽
2
𝜌
3
𝛿
2
/3)𝑡, 𝛼, 𝜌

1
, and 𝜌

4
are determined

in (63), and 𝛽, 𝜌
2
, 𝜌
3
, 𝑎
1
,𝐴
1
,𝐴
2
, and 𝛿 are arbitrary constants.

Consider

𝜂
21
= −

1

𝛼𝜌
2

+

𝑎
1
√𝛿 (−𝑖𝐴

2
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝑖𝐴
2
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

,

(71)

where 𝜉 = 𝑥 − ((−2 − 𝑎
2

1
𝛿𝛼
2
𝜌
2

2
+ 𝜌
2
(6 + 𝑎

2

1
𝛿𝛼
2
𝜌
2

2
))/𝜌
2
(6 +

𝑎
2

1
𝛿𝛼
2
𝜌
2

2
))𝑡, 𝛽, 𝜌

1
, 𝜌
3
, and 𝜌

4
are determined in (64), and 𝛼,

𝑎
1
, 𝐴
2
, 𝜌
2
, 𝜇, and 𝛿 are arbitrary constants. Consider

𝜂
22
= −

𝛿𝛽

𝛼
(1 −

√3𝑖 (−𝐴
1
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝐴
1
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

) ,

(72)

where 𝜉 = 𝑥 − (2𝜌
4
𝛿
3
𝛽
3
+ 1 − 𝛿

2
𝛽
2
𝜌
2
)𝑡, 𝐴
1
, 𝜌
1
, and 𝜌

3
are

determined in (65), and 𝛼, 𝛽,𝐴
2
, 𝜌
2
, 𝜌
4
, 𝜇, and 𝛿 are arbitrary

constants. Consider

𝜂
23
= −

𝛿𝛽

𝛼
(1 −

√3𝑖 (−𝑖𝐴
2
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝑖𝐴
2
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

) ,

(73)

where 𝜉 = 𝑥−((1/3)𝛿𝛽+1)𝑡, 𝜌
1
, 𝜌
2
, 𝜌
3
, and 𝜌

4
are determined

in (66), and 𝛼, 𝛽, 𝐴
2
, 𝜇, and 𝛿 are arbitrary constants.

Consider

𝜂
24
= −

𝛿𝛽

𝛼
(1 −

√3𝑖 (−𝐴
1
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝐴
1
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉)

)

+
𝑏
1

𝐴
1
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉)

,

(74)

where 𝜉 = 𝑥 − (2𝜌
4
𝛿
3
𝛽
3
− 𝛿
2
𝛽
2
𝜌
2
+ 1)𝑡, 𝐴

1
, 𝜌
1
, and 𝜌

3
are

determined in (67), and 𝛼, 𝛽, 𝑏
1
,𝐴
2
, 𝜌
2
, 𝜌
4
, and 𝛿 are arbitrary

constants. Consider

𝜂
25
=
𝑏
1
𝛿

𝜇
(1 +

𝑖 (−𝑖𝐴
2
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝑖𝐴
2
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

)

+
𝑏
1

𝑖𝐴
2
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

,

(75)

where 𝜉 = 𝑥− (1−𝛽𝛿)𝑡, 𝜌
1
, 𝜌
3
, and 𝜌

4
are determined in (68),

and 𝛼, 𝛽, 𝑏
1
,𝐴
2
, 𝜌
2
, 𝜇, and 𝛿 are arbitrary constants. Consider

𝜂
26
=
𝑏
1
𝛿

3𝜇
(1 +

√3𝑖 (−𝐴
1
sin (√𝛿𝜉) + 𝐴

2
cos (√𝛿𝜉))

𝐴
1
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

)

+
𝑏
1

𝐴
1
cos (√𝛿𝜉) + 𝐴

2
sin (√𝛿𝜉) + 𝜇/𝛿

,

(76)

where 𝜉 = 𝑥 − ((27𝜇
3
− 2𝜌
4
𝛼
3
𝑏
3

1
𝛿
3
− 3𝑏
2

1
𝛿
2
𝜇𝛼
2
𝜌
2
)/27𝜇

3
)𝑡, 𝐴
1
,

𝛽, 𝜌
1
, and 𝜌

3
are determined in (69), and 𝛼, 𝑏

1
, 𝐴
2
, 𝜌
2
, 𝜌
4
, 𝜇,

and 𝛿 are arbitrary constants.
If 𝛿 = 0, we obtain

(1) 𝑎
0
= 0, 𝑎

1
= 0, 𝑐 = 1, 𝛼 = −

6𝛽𝜇

𝑏
1

,

𝜌
1
=
3𝛽𝜌
3
𝜇
2
+ 2𝜇𝐴

2
+ 6𝛽𝜌

2
𝜇
2
− 𝐴
2

1

6𝛽𝜇2
,

𝜌
4
=
6𝜌
2
𝜇𝐴
2
− 3𝜌
2
𝐴
2

1
− 𝜌
3
𝐴
2

1
+ 2𝜌
3
𝜇𝐴
2

18𝛽𝜇2
.

(77)

(2) 𝐴
2
=
𝑎
0
𝐴
2

1
− 𝜇𝑏
1

2𝑎
0
𝜇

, 𝑎
1
= 0, 𝑐 =

6𝛽
2
𝑎
2

0
𝜇
2
𝜌
3
+ 𝑏
2

1

𝑏
2

1

,

𝛼 =
6𝛽𝜇

𝑏
1

, 𝜌
1
=
6𝛽𝜌
2
𝑎
0
𝜇 + 3𝛽𝜇𝜌

3
𝑎
0
− 𝑏
1

6𝜇𝛽𝑎
0

,

𝜌
4
= −

𝑏
1
(3𝜌
2
+ 𝜌
3
)

18𝜇𝛽𝑎
0

.

(78)

(3) 𝑏
1
= 0, 𝑐 =

6𝑎
2

0
𝛽 − 2𝑎

3

0
𝛼𝛽𝜌
3
+ 𝑎
2

1

𝑎
2

1

, 𝜇 = 0,

𝜌
1
=

2 (9𝑎
0
𝛽 − 3𝛼𝑎

2

0
𝛽𝜌
3
− 𝛼𝑎
2

1
)

𝑎
0
𝛼2𝑎
2

1

,

𝜌
2
=
12𝑎
0
𝛽 − 6𝛼𝑎

2

0
𝛽𝜌
3
− 𝛼𝑎
2

1

6𝛼𝑎
2

0
𝛽

,

𝜌
4
=
4𝛼𝑎
2

0
𝛽𝜌
3
− 12𝑎
0
𝛽 + 𝛼𝑎

2

1

𝛼3𝑎
2

0
𝑎
2

1

.

(79)

(4) 𝐴
1
=

𝑏
1

𝑎
1

, 𝑐 =
1

2
𝛼𝑎
0
(1 − 𝜌

4
𝛼
2
𝑎
2

0
) + 1,

𝜇 = 0, 𝜌
1
= −

3𝜌
4
𝛼
2
𝑎
2

0
+ 1

2𝛼𝑎
0

,

𝜌
2
= −

3𝜌
4
𝛼
3
𝑎
2

0
𝑎
2

1
+ 3𝑎
0
𝛽 − 𝛼𝑎

2

1

3𝛼𝑎
2

0
𝛽

,

𝜌
3
=
𝜌
4
𝛼
3
𝑎
2

0
𝑎
2

1
+ 3𝑎
0
𝛽 − 𝛼𝑎

2

1

𝛼𝑎
2

0
𝛽

.

(80)
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Figure 1: 2D and 3D figures of solution 𝜂
1
(𝜉) in (30) with 𝑎 = 1, 𝑏 = 1, 𝐶

1
= 1, 𝜉

0
= 0, 𝜌

3
= 0.1, 𝛼 = 0.1, and 𝛽 = 0.2 in the intervals

𝑥 ∈ [−30, 30].
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Figure 2: 2D and 3D figures of solution 𝜂
2
(𝜉) in (31) with 𝑎 = 1, 𝑏 = 1, 𝐴

1
= 2, 𝐶

2
= −2, 𝜉

0
= 0, 𝜌

3
= 1, 𝛼 = 1, and 𝛽 = 1 in the intervals

𝑥 ∈ [−30, 30].

(5) 𝐴
2
=
𝐴
2

1

2𝜇
, 𝑏

1
= 0, 𝑐 =

1

2
𝛼𝑎
0
(1 − 𝜌

4
𝛼
2
𝑎
2

0
) + 1,

𝜌
1
= −

3𝜌
4
𝛼
2
𝑎
2

0
+ 1

2𝛼𝑎
0

,

𝜌
2
= −

3𝜌
4
𝛼
3
𝑎
2

0
𝑎
2

1
+ 3𝑎
0
𝛽 − 𝛼𝑎

2

1

3𝛼𝑎
2

0
𝛽

,

𝜌
3
=
𝜌
4
𝛼
3
𝑎
2

0
𝑎
2

1
+ 3𝑎
0
𝛽 − 𝛼𝑎

2

1

𝛼𝑎
2

0
𝛽

.

(81)

(6) 𝑐 =
3𝑎
2

0
𝛽 + 3𝑎

3

0
𝛼𝛽𝜌
2
+ 2𝛼𝑎

0
𝑎
2

1
+ 6𝑎
2

1

6𝑎
2

1

,

𝜌
1
=
3𝑎
0
𝛽 + 3𝛼𝑎

2

0
𝛽𝜌
2
− 2𝛼𝑎

2

1

2𝑎
0
𝛼2𝑎
2

1

,
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Figure 3: 3D figures of solution 𝜂
3
(𝜉) in (34) and 𝜂

4
(𝜉) in (35) with 𝑎 = −1, 𝑏 = 1, 𝐵

1
= −2,𝑁 = 12, 𝜉

0
= 2, 𝜃 = 1, 𝜌

3
= 5, and 𝛽 = 0.2 in the

intervals 𝑥 ∈ [−30, 30], 𝑡 ∈ [−2, 2].
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−20
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(a) 𝜂
5
, 𝑏
1
= 2, −2

5

2

1

3

0 10−10 −5

−1

−2

−3

𝜉

(b) 𝜂
6
, 𝑏
1
= −2

Figure 4: 2D figures of solution 𝜂
5
(𝜉) in (38) and 𝜂

6
(𝜉) in (39) with 𝑎 = −1, 𝐵 = −4, Ω = 4,𝑀 = 3, 𝐸 = 1, Ψ = 1, and 𝐴 = 1 in the intervals

𝜉 ∈ [−10, 10].

𝜌
3
=
6𝑎
0
𝛽 − 3𝛼𝑎

2

0
𝛽𝜌
2
− 2𝛼𝑎

2

1

3𝛼𝑎
2

0
𝛽

,

𝜌
4
= −

3𝑎
0
𝛽 + 3𝛼𝑎

2

0
𝛽𝜌
2
− 𝛼𝑎
2

1

3𝛼3𝑎
2

0
𝑎
2

1

,

𝐴
2
=
𝑎
2

1
𝐴
2

1
− 𝑏
2

1

2𝜇𝑎
2

1

.

(82)

Substituting (77)–(82) into (42) and making use of
solutions (24) of (23), we can obtain, respectively, exact
traveling wave solutions expressed by rational functions of
(5). Consider

𝜂
27
=

2𝑏
1

2𝐴
1
𝜉 + 2𝐴

2
+ 𝜇𝜉2

, (83)
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Figure 5: 2D figures of solution 𝜂
10
(𝜉) in (53) with 𝑎

0
= 1, 𝐴

1
= 2, 𝐴

2
= 1, and 𝛿 = −1 and 𝜂

20
(𝜉) in (70) with 𝑎

1
= 1, 𝐴

1
= 2, 𝐴

2
= 1, and

𝛿 = 1.

where 𝜉 = 𝑥 − 𝑡, 𝛼, 𝜌
1
, and 𝜌

4
are determined in (77), and 𝛽,

𝑏
1
, 𝐴
1
, 𝐴
2
, 𝜌
2
, 𝜌
3
, and 𝜇 are arbitrary constants. Consider

𝜂
28
= 𝑎
0
+

2𝑏
1

2𝐴
1
𝜉 + (𝑎

0
𝐴
2

1
− 𝜇𝑏
1
) /𝑎
0
𝜇 + 𝜇𝜉2

, (84)

where 𝜉 = 𝑥 − ((6𝛽
2
𝑎
2

0
𝜇
2
𝜌
3
+ 𝑏
2

1
)/𝑏
2

1
)𝑡, 𝛼, 𝜌

1
, and 𝜌

4

are determined in (78), and 𝛽, 𝑎
0
, 𝑏
1
, 𝐴
1
, 𝜌
2
, 𝜌
3
, and 𝜇 are

arbitrary constants.Consider

𝜂
29
= 𝑎
0
+

𝑎
1
𝐴
1

𝐴
1
𝜉 + 𝐴

2

, (85)

where 𝜉 = 𝑥 − ((6𝑎
2

0
𝛽 − 2𝑎

3

0
𝛼𝛽𝜌
3
+ 𝑎
2

1
)/𝑎
2

1
)𝑡, 𝜌
1
, 𝜌
2
, and 𝜌

4

are determined in (79), and 𝛼, 𝛽, 𝑎
0
, 𝑎
1
, 𝐴
1
, 𝐴
2
, and 𝜌

3
are

arbitrary constants. Consider

𝜂
30
= 𝑎
0
+

2𝑏
1
𝑎
1

𝑏
1
𝜉 + 𝐴

2
𝑎
1

, (86)

where 𝜉 = 𝑥 − ((1/2)𝛼𝑎
0
(1 − 𝜌

4
𝛼
2
𝑎
2

0
) + 1)𝑡, 𝜌

1
, 𝜌
2
, and 𝜌

3
are

determined in (80), and𝛼,𝛽,𝑎
0
,𝑎
1
, 𝑏
1
,𝐴
2
, and𝜌

4
are arbitrary

constants. Consider

𝜂
31
= 𝑎
0
+

2𝜇𝑎
1
(𝐴
1
+ 𝜇𝜉)

2𝜇𝐴
1
𝜉 + 𝐴
2

1
+ 𝜇2𝜉2

, (87)

where 𝜉 = 𝑥 − ((1/2)𝛼𝑎
0
(1 − 𝜌

4
𝛼
2
𝑎
2

0
) + 1)𝑡, 𝜌

1
, 𝜌
2
, and 𝜌

3
are

determined in (81), and 𝛼, 𝛽, 𝑎
0
, 𝑎
1
,𝐴
1
, 𝜌
4
, and 𝜇 are arbitrary

constants. Consider

𝜂
32
= 𝑎
0
+

2𝜇𝑎
2

1
(𝑎
1
(𝐴
1
+ 𝜇𝜉) + 𝑏

1
)

2𝜇𝑎
2

1
𝐴
1
𝜉 − 𝑏
2

1
+ 𝑎
2

1
𝐴
2

1
+ 𝑎
2

1
𝜇2𝜉2

, (88)

where 𝜉 = 𝑥− ((3𝑎
2

0
𝛽+3𝑎

3

0
𝛼𝛽𝜌
2
+2𝛼𝑎
0
𝑎
2

1
+6𝑎
2

1
)/6𝑎
2

1
)𝑡, 𝜌
1
, 𝜌
3
,

and 𝜌
4
are determined in (82), and 𝛼, 𝛽, 𝑎

0
, 𝑎
1
, 𝑏
1
,𝐴
1
, 𝜌
2
, and

𝜇 are arbitrary constants.

4. Figures of Some Exact Solutions

In this section, some typical wave figures are given as in
Figures 1, 2, 3, 4, and 5.

5. Conclusions

In this paper, with the aid of Maple, we successfully obtained
wider classes of exact traveling solutions of (5) by using the
simplest equation method and its variants. And some new
exact solutions expressed by hyperbolic function, trigono-
metric function, and rational functions are obtained and
some typical wave figures are given including periodic wave,
solitary wave, kink wave, and some new types. The simplest
equation method and its variants can construct different
forms of exact traveling wave solutions which cannot be
obtained by using the tanh-function method, 𝐹-expansion
method, (𝐺/𝐺)-expansion method, and the exp-function
method. The correctness of all the solutions is verified by
substituting them into original equation (5). Comparing
with [21, 22], it is easy to see that our method is more
straightforward and the form of the solutions obtained in our
paper is also more simple and many solutions are new. The
related results are enriched.
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