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Textures often occur in real-world images and may cause considerable difficulties in image segmentation. In order to segment
texture images, we propose a new segmentation model that combines image decomposition model and active contour model.
The former model is capable of decomposing structural and oscillating components separately from texture image, and the
latter model can be used to provide smooth segmentation contour. In detail, we just replace the data term of piecewise
constant/smooth approximation in CCV (convex Chan-Vese) model with that of image decomposition model-VO (Vese-Osher).
Therefore, our proposed model can estimate both structural and oscillating components of texture images as well as segment
textures simultaneously. In addition, we design fast Split-Bregman algorithm for our proposed model. Finally, the performance
of our method is demonstrated by segmenting some synthetic and real texture images.

1. Introduction

Unsupervised texture segmentation is a popular topic in
image processing. It is an important technique for image
analysis and understanding. Texture images are difficult to be
segmented as the texture on an object is very similar to its
boundary. The strong contrast of the texture always leads to
wrong segmentation result.

Active contour models provide a very good framework
for variational image segmentation. Some active contour
models use the gradient information of the image to detect
edge but may lead to unclear boundaries between two
textures. For instance, some active contour models based
on edge stopping function are mentioned in [1–9]. How-
ever, edge-based segmentation methods are limited in many
applications where the objects have no clear edges such
as in medical images. To deal with this problem, many
features such asmean value, variance, and probability density
function (pdf) have been incorporated into the segmentation
models. Chan-Vese model [10] is one of the variational
image segmentation models based on estimation of different

means of different regions. Other statistical features such as
the variance and pdf estimator are used to carry out the
segmentation task in [11]. Zhu in [12] and Paragios et al. in
[13, 14] used mixture of Gaussian models to approximate the
pdf. Herbulot et al. in [15–17] carried out the segmentation
task by updating the pdf of the object and the background at
every step of the iteration. The aforementioned models are
not suitable for general texture segmentation because they
use some specific features and some prior estimation models
which are not suitable for textures.

Most active contour models for texture segmentation
contain two steps. Firstly, different features of different tex-
tures are analyzed and modeled. Secondly, different modeled
features are adopted into a general framework of active
contour models. Statistical models are often used by the
assumption that statistics features of each texture are often
stationary [18, 19]. These methods can only deal with regular
textures, and they often fail in real textural cases. In many
cases, the original image must be transformed to meet
the real demand. Doretto et al. [20] used Gauss-Markov
model to process the relationships among pixels in different
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regions.They also proposed that nonparametric statistics and
higher order statistics models can be used for feature space
classification.

Different filters are used for assisting texture segmen-
tations. The commonly used types of filters are Gabor and
Wavelet which can decompose the image into a set of
different subbands [6, 21–23]. The responses of Gabor or
Wavelet are different in different textures in different scales
or orientations. The summation of the filter responses can
synthesize a new imagewithout texturewhich is the basic idea
of the texture segmentation using filter theory. In the filtering
process, the edges are also blurred, so such type of active
contour models must search for help from the edge detecting
methods. The texture segmentation results also rely on the
effect of edge detectionmethods. Usually, filters based texture
segmentation methods are very time consuming because
many assisting images are generated by different filters with
different scales and orientations.

Some sophisticated feature descriptors are also used
in texture segmentation. Bigun et al. in [24] dealt with
texture segmentation by making use of the structure tensors
[25] which form a matrix composed of partial derivatives
smoothed by aGaussian kernel.The structure tensors contain
the information of scalar value and texture orientation which
are good properties of texture discrimination.

Recently, LBP (local binary pattern) method which is
an excellent operator for texture analysis was used in active
contour models for texture segmentation [26–28]. The LBP
features achieve higher classification accuracy and need lower
computational burden than Gabor andWavelet features [29–
31]. LBP guided active contour models [26–28] use regional
information of LBPdistributionswhich is estimated bymeans
of the log-likelihood statistics.

All the segmentation methods mentioned above enable
us to find local minimizers of the segmentation problem. It
means that the quality of the segmentation results depends
on the choice of the initial condition. To solve the problem
of local minimization, authors of [32, 33] reformulated the
Chan-Vese model as a convex one which can be called CCV
(convex Chan-Vese) model which leads to global minimizer.
Fast methods such as dual method and splitting technology
are also designed for accelerating the process of the segmenta-
tion such as unsupervised segmentationmethod based on the
Kullback-Leibler distance and nonparametric estimation of
pdf [34].The Split-Bregman algorithm [35, 36] was proposed
for solving L1 norm and also introduced in convexified active
contour model which is faster than [32]. The Split-Bregman
algorithm which is equivalent to the augmented Lagrangian
method [37, 38] is superior over Graph Cut method in
accuracy and efficiency. In this paper, we also use the Split-
Bregman algorithm for accelerating the minimization of our
proposed method.

All the methods mentioned above for texture segmenta-
tion mainly use statistical or filter theory. In this paper, we
propose a new method for texture segmentation which does
not need additional filter or statistical steps. This is the main
difference between ourmodel andmany othermodels for tex-
ture segmentation. In our model, we only use the structural
and oscillating components’ information of the image which

can be estimated via variational image decomposition model
[39]. The texture is considered as oscillating component and
the structure part is considered as piecewise constant/smooth
image component; these two features are used to distinguish
features of different regions in the textural segmentation.
The active contour model proposed in this paper does not
use the gradient to detect boundaries because the variational
decomposition model incorporates the edge information.

The main contribution of the paper is shown as follows.
First, we propose a new active contour model coupling image
decomposition. In other words, our textural segmentation
method uses the information of oscillating and structural
components. Because the active contour model and image
decomposition method are all on a basis of variational
methods, they can be combined together by nature. Second,
for the sake of implementation, the fast and easy Split-
Bregman method is applied for solving the model.

The outline of the paper is demonstrated as follows. The
next section introduces the VO model for image decompo-
sition. In Section 3, we will propose our new active contour
model coupling image decomposition. Then, we design the
Split-Bregman algorithms. Section 4 demonstrates the effec-
tiveness of the proposed newmodel for texture segmentation
on a variety of synthetic and real textured images. The last
section is conclusion.

2. Image Decomposition and VO Model

Many papers [39–44] are devoted to the variational models
of decomposing an image into the structural component and
textural component; that is, an image 𝑓 can be decomposed
into two components 𝑢 and V. 𝑢 is well-structured compo-
nent, which is the main part of the image and includes the
main information of geometric features. The component V
contains the oscillating patterns (both textures and noise).
Meyer [40] established the oscillation function modeling
theory of the textured image based on the ROF model [45],
using the space of oscillation functions (space 𝐺) as the
function space of textured image. AsMeyermentioned, space
𝐺 is essentially the dual space of the space of functions
of bounded variation (BV) [41]. BMO [42] is a bounded
mean oscillation space. But Meyer did not give the reliable
method in [40]. Le and Vese [42] proposed Besov space
𝐵𝑠
𝑝,𝑞
(−2 < 𝑠 < 0, 1 ≤ 𝑝, 𝑞 ≤ ∞) to describe the oscillation

part of the image by extending 𝐵∞
−1,∞

space. Aujol et al.
[43] defined the energy functional on BV(Ω) × 𝐺(Ω) by
improving the ROF model and Meyer’s theory. Vese and
Osher [39] proposed a VO model which approximates
Meyer’s theoretical model; they gave an 𝐿𝑝 approximation to
the norm ‖ ⋅ ‖

𝐺
, the corresponding Euler-Lagrange equations,

and numericalmethods, but the speed of computation is slow.
Osher et al. (OSV) [44] extended VO model and presented
a variational model for image decomposition which is based
on the total variation and the norm 𝐻−1. The authors show
that this new model was simpler than VO model; however,
a new fourth-order nonlinear PDE arose from the Euler-
Lagrange equations; its difference format was complex and
computational efficiency was not high. In this paper, we
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couple VOmodel with our active contour model because VO
model has the ability of large texture decomposition.

In [40], the Banach space 𝐺(𝑅2) proposed by Meyer is
defined as

𝐺 = {𝜏 | 𝜏 = 𝜕
𝑥
𝑔
1
(𝑥, 𝑦) + 𝜕

𝑦
𝑔
2
(𝑥, 𝑦) , 𝑔

1
, 𝑔
2
∈ 𝐿∞ (Ω)} ,

(1)

induced by the norm

‖𝜏‖
∗
= inf
𝑔=(𝑔
1
,𝑔
2
)

{

√𝑔2
1
+ 𝑔2
2

𝐿∞
| 𝜏 = 𝜕

𝑥
𝑔
1
+ 𝜕
𝑦
𝑔
2
} . (2)

Here, Ω is an open and bounded domain. Given an image
function 𝑓 defined on Ω, Meyer’s decomposition model is as
follows:

min
𝑢

{𝐸 (𝑢) = ∫
Ω

|∇𝑢| + 𝜆‖𝜏‖
∗
, 𝑓 = 𝑢 + 𝜏} . (3)

In this model, 𝑢 is structural component of the image
and 𝜏 is oscillating component constituted by texture or
noise information, but, in practice, model (3) is difficult to
implement due to the nature of the norm ‖‖

∗
. Osher et al.

[44] were the first to overcome this difficulty by proposing an
𝐿𝑝 approximation to the norm ‖‖

∗
in the following energy:

min
𝑢,𝑔
1
,𝑔
2

{𝐺
𝑝
(𝑢, 𝑔
1
, 𝑔
2
)

= ∫
Ω

|∇𝑢| 𝑑𝑥 𝑑𝑦

+ 𝜆∫
Ω

𝑓 − 𝑢 − ∇ ⋅ ⃗𝑔

2

𝑑𝑥 𝑑𝑦

+𝜇[∫
Ω

(√𝑔2
1
+ 𝑔2
2
)
𝑝

𝑑𝑥 𝑑𝑦]
1/𝑝

} ,

(4)

where ⃗𝑔 = (𝑔
1
, 𝑔
2
), | ⃗𝑔| = √𝑔2

1
+ 𝑔2
2
, 𝜏(𝑥, 𝑦) = 𝜕

𝑥
𝑔
1
(𝑥, 𝑦) +

𝜕
𝑦
𝑔
2
(𝑥, 𝑦), 𝑔

1
, 𝑔
2
∈ 𝐿∞(𝑅2). ⃗𝑔 is the oscillating component of

the image. In their paper, the authors use the value 𝑝 = 1 and
they claim that there is no any obvious difference for different
values of 𝑝, with 1 ≤ 𝑝 ≤ 10. In this paper, we also set 𝑝 = 1
for convenience.

3. Active Contour Model Coupling
Image Decomposition

The oscillating and structural components decomposed from
original textural image are important information for image
analysis. They are the main features between different tex-
tural parts. The VO model contains edge and oscillating
information, so we incorporated it into active contour model

for textural segmentation. The new model coupling image
decomposition with active contour model is

arg min
𝜙∈[0,1]

{𝐸 (𝜙, 𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
)

= ∫

Ω

∇𝜙
 𝑑𝑥 𝑑𝑦

+ ∫

Ω

((𝛼
1

𝑓 − 𝑢1 − ∇ ⋅ ⃗𝑔
1


2

+ 𝛽
1

∇𝑢1
+ 𝛾1

 ⃗𝑔1
) 𝜙

+(𝛼
2

𝑓 − 𝑢2 − ∇ ⋅ ⃗𝑔
2


2

+ 𝛽
2

∇𝑢2
+ 𝛾2

 ⃗𝑔2
)

× (1 − 𝜙)) 𝑑𝑥 𝑑𝑦
}
}
}

,

(5)

where Ω is the image domain, 𝛼
1
, 𝛽
1
, 𝛾
1
, 𝛼
2
, 𝛽
2
, 𝛾
2
are the

positive parameters,𝑓 is the original texture image, 𝑢
1
and 𝑢
2

are the structural parts, ⃗𝑔
1
, ⃗𝑔
2
are the oscillating components

of different classes, and 𝜙 is a standard level set function.
The oscillating components suffice to discriminate textures.
This is a global minimization problem due to convex set
𝜙 ∈ [0, 1]. Chan et al. [33] transformed the original active
contourmodel to a convexminimization problem by relaxing
𝜙 ∈ {0, 1} to 𝜙 ∈ [0, 1] and showed that the characteristic
function 1

Ω
𝑐
(𝜇)={𝑥:𝜙(𝑥)>th}(𝑥) is the global minimizer for every

th ∈ [0, 1]. We mainly use the form of (5) because the
texture in different areas is not always the same. This is a
natural extension of CV [10] andVC [46]model for piecewise
constant or smooth model.

Equation (5) can be divided into the following three
subproblems of minimization.

𝑢
2
, 𝜙 are fixed; for solving 𝑢

1
, the energy function about

𝑢
1
is

min
𝑢
1

{𝐸 (𝑢
1
) = ∫
Ω

(𝛼
1

𝑓 − 𝑢1 − ∇ ⋅ ⃗𝑔
1


2

+ 𝛽
1

∇𝑢1
 + 𝛾1

 ⃗𝑔1
) 𝜙𝑑𝑥 𝑑𝑦} ;

(6)

𝑢
1
, 𝜙 are fixed; for solving 𝑢

2
, the energy function about 𝑢

2
is

min
𝑢
2

{𝐸 (𝑢
2
) = ∫
Ω

(𝛼
2

𝑓 − 𝑢2 − ∇ ⋅ ⃗𝑔
2


2

+ 𝛽
2

∇𝑢2
 + 𝛾2

 ⃗𝑔2
)

× (1 − 𝜙) 𝑑𝑥 𝑑𝑦} ;

(7)

𝑢
1
, 𝑢
2
are fixed; for solving 𝜙, the energy function about 𝜙 is

arg min
𝜙∈[0,1]

{𝐸 (𝜙) = ∫
Ω

∇𝜙
 𝑑𝑥 𝑑𝑦

+∫
Ω

𝑅 (𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
) 𝜙𝑑𝑥 𝑑𝑦} .

(8)
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In (8), 𝑅 can be expressed by

𝑅 (𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
)

= (𝛼
1

𝑓 − 𝑢1 − ∇ ⋅ ⃗𝑔
1


2

+ 𝛽
1

∇𝑢1
 + 𝛾1

 ⃗𝑔1
)

− (𝛼
2

𝑓 − 𝑢2 − ∇ ⋅ ⃗𝑔
2


2

+ 𝛽
2

∇𝑢2
 + 𝛾2

 ⃗𝑔2
) .

(9)

In what follows, we will solve (6), (7), and (8) using the Split-
Bregman method.

The Split-Bregman method [37] is used to solve (6) by
introducing auxiliary vector variable �⃗�𝑘

1
and Bregman iter-

ative parameter �⃗�
1
and transforming (6) into the equivalent

minimization problem:

�⃗�𝑘+1
1

= �⃗�𝑘
1
+ ∇𝑢𝑘
1
− �⃗�𝑘
1
, (10)

(𝑢𝑘+1
1
, ⇀𝜔
𝑘+1

1
, ⃗𝑔𝑘+1
1
)

= arg min
⇀
𝜔
1
,𝑢
1
, ⃗𝑔
1

{∫
Ω

(𝛽
1


⇀𝜔
1

 𝑑𝑥 𝑑𝑦

+ 𝛼
1

𝑓 − 𝑢1 − ∇ ⋅ ⃗𝑔
1


2

+ 𝛾
1

 ⃗𝑔1
 +

𝜇
1

2

×(⇀𝜔
1
− ∇𝑢
1
−
⇀
𝑏
𝑘+1

1
)
2

)𝜙𝑑𝑥𝑑𝑦} .

(11)

In the above equation, ⃗𝑔
1
= (𝑔
11
𝑔
12
)𝑇.

Alternative optimization of (11) results in

𝑢𝑘+1
1

= 𝑢𝑘
1
− 𝜇
1
∇ ⋅ ((⇀𝜔

𝑘

1
− ∇𝑢𝑘
1
−
⇀
𝑏
𝑘+1

1
)𝜙𝑘)

+ 2𝛼
1
(𝑓 − 𝑢𝑘

1
− ∇ ⋅ ⃗𝑔𝑘

1
) 𝜙𝑘.

(12)

We can explicitly solve the minimization problem for ⇀𝜔
𝑘+1

1

using a generalized shrinkage formula [36]:

⇀𝜔
𝑘+1

1
= max(


∇𝑢𝑘+1
1

+
⇀
𝑏
𝑘+1

1


−
𝛽
1

𝜇
1

, 0)
∇𝑢𝑘+1
1

+
⇀
𝑏
𝑘+1

1
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+
⇀
𝑏
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1



;

(13)

𝑔
11
and 𝑔

12
are solved separately as follows:

𝛾
1

𝑔
11

√𝑔2
11
+ 𝑔2
12

= 2𝛼
1
[
𝜕 (𝑢𝑘
1
− 𝑓)

𝜕𝑥
+ 𝜕2
𝑥𝑥
𝑔𝑘
11
+ 𝜕2
𝑥𝑦
𝑔𝑘
12
] ,

𝛾
1

𝑔
12

√𝑔2
11
+ 𝑔2
12

= 2𝛼
1
[
𝜕 (𝑢𝑘
1
− 𝑓)

𝜕𝑦
+ 𝜕2
𝑦𝑥
𝑔𝑘
11
+ 𝜕2
𝑦𝑦
𝑔𝑘
12
] .

(14)

For solving 𝑢
2
, the procedure is the same as for solving 𝑢

1
.

Equation (8) has the same form as (6), so it can be solved
using the same algorithm (see (10)–(14)). In what follows, we

will solve (8) using Split-Bregman method. Equation (6) can
be cast to the following minimization problem:

⃗𝑑𝑘+1 = ⃗𝑑𝑘 + ∇𝜙𝑘 − V⃗𝑘, (15)

(𝜙𝑘+1, V⃗𝑘+1)

= arg min
V⃗,𝜙∈[0,1]

{∫
Ω

|V⃗| 𝑑𝑥 𝑑𝑦

+ ∫
Ω

(𝑅 (𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
) 𝜙𝑑𝑥 𝑑𝑦

+
𝜆

2
(V⃗ − ∇𝜙 − ⃗𝑑𝑘+1)

2

𝑑𝑥 𝑑𝑦)} .

(16)

Alternative optimization of (16) results in the following
procedures.

Fix V⃗ to solve 𝜙:

𝜙 = arg min
𝜙∈[0,1]

{∫
Ω

(𝑅 (𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
) 𝜙𝑑𝑥 𝑑𝑦

+
𝜆

2
(V⃗ − ∇𝜙 − ⃗𝑑𝑘+1)

2

𝑑𝑥 𝑑𝑦)} .

(17)

By variational method, the Euler-Lagrange equations of (17)
are

𝜆 (Δ𝜙 + ∇ ⋅ ⃗𝑑𝑘+1 − ∇ ⋅ V⃗) − 𝑅 (𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
) = 0. (18)

Using gradient descent method, we can get 𝜙:

𝜙𝑘+1 = (
1

1 + 4𝜆𝑡
) 𝑡

× (𝜆 (𝜙𝑘
𝑖,𝑗−1
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𝑖,𝑗+1

+ 𝜙𝑘
𝑖−1,𝑗

+ 𝜙𝑘
𝑖+1,𝑗

+ ∇ ⋅ ⃗𝑑𝑘+1

−∇ ⋅ V⃗𝑘) − 𝑅 (𝑢
1
, 𝑢
2
, ⃗𝑔
1
, ⃗𝑔
2
)) .

(19)

𝑡 is the time step and, in the whole paper, we set 𝑡 = 1. Then,
we construct 𝜙 by projecting it on [0, 1]; that is,

𝜙𝑘+1 = min (max (𝜙𝑘+1, 0) , 1) . (20)

Fix 𝜙 to solve V⃗:

V⃗ = arg min
V⃗

{∫
Ω

|V⃗| 𝑑𝑥 𝑑𝑦 +
𝜆

2
∫
Ω

(V⃗ − ∇𝜙 − ⃗𝑑𝑘+1)
2

𝑑𝑥 𝑑𝑦} .

(21)

The Euler-Lagrange equations of (21) are

V⃗𝑘+1 = ∇𝜙𝑘+1 +
⇀
𝑑
𝑘+1

−
1

𝜆

V⃗𝑘+1
V⃗
𝑘+1

; (22)

⇀V
𝑘+1 is also gotten using a generalized shrinkage formula

[36]:

V⃗𝑘+1 = max(

∇𝜙𝑘+1 +

⇀
𝑑
𝑘+1

−
1

𝜆
, 0)

∇𝜙𝑘+1 +
⇀
𝑑
𝑘+1

∇𝜙
𝑘+1 + ⃗𝑑𝑘+1



. (23)
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(a) (b)

(c) (d)

Figure 1: Image for segmentation: (a) original image, (b) the structure part of the image using VO model, (c) the texture part of the image,
and (d) the segmentation result.

(a) (b)

Figure 2: An image of a “chirp-like” brick-wall background and a Brodatz texture object. (a) Original image and (b) the segmentation result.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Image for segmentation: (a) original zebra image; (b) the intermediate result of step 20; (c) the intermediate result of step 40; (d)
the intermediate result of step 60; (e) the intermediate result of step 80; (f) the final segmentation result; (g) the textural part of the zebra; (h)
the structural part of zebra.

(a) (b)

(c) (d)

Figure 4: Image for segmentation: (a) original zebra image; (b) the segmentation result; (c) the textural part of the image; (d) the structural
part of image.

The initialization is also important; we set 𝑢
1
= 𝑓, 𝑢

1
= 0,

⇀𝜔
1
= ⇀𝜔
2
= 0, ⃗𝑔

1
= ⃗𝑔
2
= 0, �⃗�
1
= 0, �⃗�
2
= 0, V⃗ = 0,

⇀
𝑑 = 0, 𝜙 = 0.

In the end of calculation, we set

𝜙 (𝑥) = {
0 𝜙 (𝑥) ≥ th
1 𝜙 (𝑥) < th.

(24)

Thus, the texture and the background can be separated. Due
to 𝜙 ∈ [0, 1], our newmodel is also globally convex.That is to
say, the position of 𝜙 need not be initialized.

4. Numerical Experiments

To verify the effect of the proposed method, we test our
method on a variety of synthetic and real textured images.
Figure 1 is the simplest synthetic textured image, and the
texture in the whole image is the same. Figure 1(a) is the
origin texture image; Figures 1(b) and 1(c) are the structure
and texture parts got by VO model. Figure 1 demonstrates
that the initial textured image is easy to be segmented when
the texture is removed. Our model does not do segmentation
after decomposition; however, these two processes are cou-
pled together.
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(a) (b) (c) (d)

Figure 5: Comparison results between our method and state-of-the-art methods in [22, 34]: (a) shows the original natural textural images;
(b) shows the results using methods in [34]; (c) shows the results using methods in [22]; (d) shows the results of our method.

Figure 2 is an image of a “chirp-like” brick-wall back-
ground and a Brodatz texture object, and the textures in
different areas are different. The texture of background is
not uniform along the gradient; the object is another texture
mode. The algorithm gives the good result although in
the upright and in several parts there are concave down.
These two synthetic images demonstrate the goodness of
our proposed segmentation method. To further verify the
effectiveness of our method, we also use real-world images
for comparison of the segmentation performance.

The next two examples are of two zebra images often
used for texture segmentation test.The texture is very typical;
there are small or large textures in different places and the
direction is various. It is a powerful proof for evaluating
the segmentation algorithm. We use Figure 3 to demonstrate
how the contour evolved from start to end of the process.
Figure 3(a) is the original image, Figures 3(b), 3(c), 3(d), and
3(e) are the intermediate results of steps 20, 40, 60, and 80,
and Figure 3(f) is the final result. Figure 3(g) is the texture

part and Figure 3(h) is the structural part of zebra. From
Figure 3(g), we can see that the texture part is a natural
feature of the image. Figure 3(h) is the structural part of
zebra, which controls the contour move to the general place.
Figure 4 is another zebra image; the image is different from
Figure 3. In some places, the gap between the stripes is
very large. The algorithm is also successful for the result. In
order to further demonstrate the superiority of the proposed
technique, a number of comparison experiments are shown
in Figure 5 using the images from the well-known Berkeley
Segmentation Dataset (BSDS) [47]. In Figure 5, we compare
ourmethodwith the state-of-the-art methods in [22, 34].The
comparison results in Figure 5 demonstrate that our method
achieves the best accuracy for the examples.

In Figure 6, we also give the quantitative evaluations
and comparisons with the state-of-the-art methods on the
textural image. The methods contain JSEG algorithm [48],
a standard color-texture segmentation benchmark, NCut
[49], CTM algorithm [50], and the MAP-ML estimations
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JSEG (0.41, 2.61, 0.21) (0.86, 0.48, 0.64) (0.95, 1.13, 0.63) (0.73, 3.59, 0.28) (0.38, 3.62, 0.18)

(a)

(0.33, 3.57, 0.14) (0.32, 3.12, 0.41) (0.85, 1.49, 0.66) (0.72, 3.00, 0.26) (0.36, 3.45, 0.13)NCut

(b)

(0.87, 0.47, 0.76) (0.83, 1.41, 0.83) (0.78, 2.23, 0.49) (0.50, 2.27, 0.17)(0.59, 1.5, 0.3)MAP ML

(c)

(0.94, 0.42, 0.44) (0.87, 0.48, 0.41) (0.95, 1.16, 0.35) (0.75, 3.73, 0.31) (0.78, 1.41, 0.30)CTM

(d)

(0.95, 0.36, 0.51) (0.87, 0.47, 0.44) (0.96, 0.72, 0.83) (0.85, 1.17, 0.57) (0.84, 0.73, 0.45)Ours

(e)

Figure 6: Segmentation results of some texture images with PRI, VoI, and 𝐹-measure values presented in parenthesis: (a) is the results by
JSEG method, (b) is the results by NCut method, (c) is the results by MAP-ML method, (d) is the results by CTM method, and (e) is the
results by our proposed method.

Table 1: Time consumption comparison of the Split-Bregman method with traditional gradient descent method.

Methods CPU time of every step (s) Total CPU time (s) Iteration number
First Second Third Fourth Fifth First Second Third Fourth Fifth First Second Third Fourth Fifth

Traditional gradient
descent 3.107 2.954 3.077 3.094 3.102 372.86 147.73 153.80 495.12 465.28 120 50 50 160 150

Split-Bregman
method 2.446 2.181 2.223 2.289 2.314 122.38 43.64 45.81 137.32 138.85 50 20 20 60 60

algorithm [51]. The quantitative comparison contains three
segmentation performance measures, 𝐹-measure [52], prob-
abilistic rand index (PRI) [53], and variation of information
(VoI) [54]. These three measures are often used in perfor-
mance comparison of image segmentation. The values of 𝐹-
measure and PRI fall in [0, 1], and larger value corresponds
to better results. The value of VoI is in [0, 1), and smaller
value corresponds to better results. From the results we can
see that our method gets the best performance in most of the

cases. The methods we compared are all based on the color
and texture information; however, our method does not use
color information. We only use the oscillating and structural
information of the images.

To evaluate the enhancement obtained by adopting the
Split-Bregman algorithm, we give the time consumption
comparison result of Figure 6 in Table 1. All experiments are
performed using Matlab 2010b on a Windows 7 platform
with an Intel CPU at 3.2 GHz and 16G memory. In Table 1,
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(a) (b)

(c) (d)

Figure 7: Images with different noise level for segmentation: (a) original image, (b) the segmentation result, (c) original image, and (d) the
segmentation result.

first, second, third, fourth, and fifth corresponding the image
column number of Figure 6. In every step of iteration,
the Split-Bregman method can get higher efficiency than
traditional gradient descent method in energy minimization
by using simple soft threshold. The total time consumed by
using the Split-Bregman method is much less than using tra-
ditional gradient descent method because the Split-Bregman
method gets convergencemuchmore quickly than traditional
method.

Because the noise parts also belong to the oscillating
parts, so the image decomposition can separate them [39, 55].
Thus, our model can also deal with images corrupted by
noise with different level. Figure 7 is the example tested on
synthetic noisy images corrupted by Gaussian noises with
different levels. In Figure 7(a), there are two different areas
corrupted by different noise level. In Figure 7(c), there are
four parts with four different noise levels. The images cannot
be segmented by using CV model [10]. In [13], the author
uses covariance besides mean value of the gray value to
separate different part noised by different noise with the
samemean and different covariance. Our model can separate

them because noise can be deemed as oscillating parts. From
experiments, we can see that our model can also segment
different noisy areas into different classes.

5. Conclusion

In this paper, we propose a new segmentation method for
images consisting of texture. The new model does not use
other tools for texturemodeling. To ease the implementation,
we also give the Split-Bregman method for the new model.
Our method can also deal with images containing different
kinds of noises. Qualitative and quantitative results show
that the proposed method is good. Future research needs
to address the issue of the coupling active contour model
with the new proposed decomposition model for texture
segmentation.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



10 Journal of Applied Mathematics

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (nos. 61305045, 61303079, and
61170106), the National “Twelfth Five-Year” Development
Plan of Science and Technology (no. 2013BAI01B03), and the
Qingdao Science and Technology Development Project (no.
13-1-4-190-jch).

References
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