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Taking into account the difficulty of shape estimation for the extended targets, a novel algorithm is proposed by fitting the
B-spline curve. For the single extended target tracking, the multiple frame statistic technique is introduced to construct the
pseudomeasurement sets and the control points are selected to form the B-spline curve.Then the shapes of the extended targets are
extracted under the Bayes framework. Furthermore, the proposed shape estimation algorithm is modified suitably and combined
with the probability hypothesis density (PHD) filter for multiple extended target tracking. Simulations show that the proposed
algorithm has a good performance for shape estimate of any extended targets.

1. Introduction

In the traditional low resolution sensor system, each target
is tracked as a single point source; that is, its extension
is assumed to be neglectable in comparison with sensor
resolution. With the increase of the resolution of modern
radars and other detection equipment, the echo signal of a
target may be distributed in a different range resolution cell;
thus, the measurement is no longer equivalent to a point;
that is, a single target may generate multiple measurements.
Such target is referred to as an extended target in [1–4].
Recently, extended target tracking (ETT) is a hot topic in
the field including the short-range applications or maritime
surveillance, which has drawn a considerable attention [5–9].

In the conventional extended target tracking, the mea-
surements are modeled as a spatial distribution model in [1],
and two examples—a point target with more measurement
sources and an object with infinitely thin stick—are used
to prove the effectiveness of the approach. Poisson process
with a spatially dependent rate parameter is introduced in
[2], assuming that each target produces measurements with
Poisson distributed random number. It is considered that
in this measurement model, the target is sufficiently far
away from the sensor, and the measurements resemble a
point cluster rather than a geometric structure [7]. Random
matrix (RM) is proposed in [8], which has been used
to track elliptical target extension [9]. Another method is
random hypersurface model (RHM) [3] which is employed

for modeling the target extent. However, these methods can
only effectively achieve the shape estimate for the target with
similar ellipse shape. They cannot effectively estimate the
irregular shape of the extended target. In [4], star-convex
target extension estimation method is proposed based on
RHM under the condition that a measurement source is
assumed to be an element of a randomly scaled version of the
shape boundary. Moreover, the one-dimension probability
density needs to be specified in advance in star-convex shape
estimation and it is assumed to be independent of the shape.

To solve the aforementioned problem, a novel shape
estimation algorithm based on the B-spline curve fitting is
proposed in this paper, and then the proposed shape esti-
mation method is integrated into the framework of extended
target probability hypothesis density (ET-PHD) filter for
multiple extended target tracking [5, 6]. Simulations show
that the proposed algorithm has a good performance for
shape estimate of any extended targets.

2. Backgrounds

2.1. Kalman Filter. Assume the state equation and the mea-
surement equation of a single target in two-dimensional
plane are given by

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐺𝑤𝑘 (1)

𝑦𝑘 = 𝐻𝑥𝑘 + V𝑘, (2)
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where 𝑥𝑘 and 𝑦𝑘 are the state vector and the observation
vector at time 𝑘, respectively. 𝐹 and 𝐻 are the transition
matrix and the measurement matrix, respectively. 𝑤𝑘 and
V𝑘 are the process noise and the observation noise and are
uncorrelated Gaussian white noise vectors with covariance
matrixes 𝑄𝑘 and 𝑅𝑘, respectively.

Suppose that 𝑥𝑘|𝑘 and the covariance 𝑃𝑘|𝑘 are optimal
estimations at time 𝑘 in the fusion center; then, the recursive
steps of the Kalman Filter (KF) at time 𝑘 + 1 are as follows
[10].

(1) Prediction of state and covariance:

𝑥𝑘+1|𝑘 = 𝐹𝑥𝑘|𝑘, (3)

𝑃𝑘+1|𝑘 = 𝐹𝑃𝑘|𝑘𝐹
𝑇
+ 𝐺𝑄𝑘𝐺

𝑇
. (4)

(2) Calculating gain:

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻
𝑇
[𝑆𝑘+1|𝑘]

−1
,

𝑆𝑘+1|𝑘 = 𝐻𝑃𝑘+1|𝑘𝐻
𝑇
+ 𝑅𝑘+1.

(5)

(3) Update of state and covariance:

𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1 (𝑦𝑘+1 − 𝐻𝑥𝑘+1|𝑘) , (6)

𝑃𝑘+1|𝑘+1 = [𝐼 − 𝐾𝑘+1𝐻]𝑃𝑘+1|𝑘. (7)

2.2. The B-Spline Curve. Assume that readers are familiar
with the concepts of B-spline curves. A smooth subsection
curve can be obtained by fitting the control point set. The B-
spline curve of order 𝑙 can be described as [11]

𝑆 (𝑡) =

𝑛

∑

𝑖=1

𝜇𝑖 ⋅ 𝑁𝑖,𝑙 (𝑡) , (8)

where 𝜇𝑖 in𝑈𝑘 = [𝜇1, 𝜇2, . . . , 𝜇𝑛]
𝑇 is a control point and𝑁𝑖,𝑙(𝑡)

is the B-spline basis function, which is defined over a knot
vector𝑇 = {𝑡0, . . . , 𝑡𝑛+𝑙}.The basis function can be recursively
defined as [11, 12]

𝑁𝑖,𝑙 (𝑡) =

𝑡 − 𝑡𝑖

𝑡𝑖+𝑙−1 − 𝑡𝑖

𝑁𝑖,𝑙−1 (𝑡) +

𝑡𝑖+𝑙 − 𝑡

𝑡𝑖+𝑙 − 𝑡𝑖+1

𝑁𝑖+1,𝑙−1 (𝑡) ,

𝑁𝑖,1 (𝑡) = {

1, if 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1
0, otherwise.

(9)

When 𝑙 = 3, we can obtain that

𝑁𝑖,3 (𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

(𝑡 − 𝑡𝑖)
2

(𝑡𝑖+1 − 𝑡𝑖) (𝑡𝑖+2 − 𝑡𝑖)

, 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1)

(𝑡 − 𝑡𝑖) (𝑡𝑖+2 − 𝑡)

(𝑡𝑖+2 − 𝑡𝑖) (𝑡𝑖+2 − 𝑡𝑖+1)

+

(𝑡 − 𝑡𝑖+1) (𝑡𝑖+3 − 𝑡)

(𝑡𝑖+2 − 𝑡𝑖+1) (𝑡𝑖+3 − 𝑡𝑖+1)

, 𝑡 ∈ [𝑡𝑖+1, 𝑡𝑖+2)

(𝑡𝑖+3 − 𝑡)
2

(𝑡𝑖+3 − 𝑡𝑖+1) (𝑡𝑖+3 − 𝑡𝑖+2)

, 𝑡 ∈ [𝑡𝑖+2, 𝑡𝑖+3)

0, otherwise.
(10)

3. Single Extended Target Shape Estimation

In this section, the Bayesian filter framework is introduced for
single extended target state and shape estimates. Assume the
state equation and the measurement equation are the same as
(1) and (2). We define 𝑥𝑘 as the center of the extended target
and𝑋𝑘 as the controlmatrix including the shape information.
They are not related to each other.Thus we can estimate them
with two parallel KFs, which can modify them by recursion
update. And the detailed steps of the proposed algorithm are
described as follows.

Step 1. At time 𝑘 = 0, initialize parameters 𝑥0|0,𝑃0|0,𝑋0|0, and
Δ 0|0, where 𝑃0|0 and Δ 0|0 denote the state covariance and the
shape covariance, respectively.

Step 2. When 𝑘 ≥ 1, implement the KF for state estimate:

(2.1) prediction of the state and covariance according to (3)
and (4), respectively;

(2.2) update of the state by the latest measurement set𝑌𝑘+1:

𝑥𝑘+1|𝑘+𝑘 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1(

1

󵄨
󵄨
󵄨
󵄨
𝑌𝑘+1

󵄨
󵄨
󵄨
󵄨

|𝑌𝑘+1|

∑

𝑖=1

𝑦𝑘+1,𝑖 − 𝐻𝑥𝑘+1|𝑘) ,

(11)

where 𝑌𝑘+1 = {𝑦𝑘+1,𝑖}𝑖=1,...,𝑛 and |𝑌𝑘+1| denotes the number
of the measurements at time 𝑘 + 1. 𝑦𝑘+1,𝑖 denotes the 𝑖th
measurement in𝑌𝑘+1.The covariance 𝑃𝑘+1|𝑘+1 can be updated
by (7).

Step 3. Construct a new pseudomeasurement set 𝑍𝑘+1.

(3.1) Let 𝑌̃𝑘+1 = {𝑦𝑘+1,𝑖 − 𝐻𝑥𝑘+1|𝑘 | 𝑦𝑘+1,𝑖 ∈ 𝑌𝑘+1}
|𝑌𝑘+1|

𝑖=1
, and

then add 𝑌̃𝑘+1 to the pseudomeasurement set 𝑍𝑘, that
is, ̂𝑍𝑘+1 = 𝑍𝑘 ∪ 𝑌̃𝑘+1.

(3.2) Set𝑚 as the largest number of pseudomeasurements.
If |̂𝑍𝑘+1| ≤ 𝑚, then let the new pseudomeasurement
set 𝑍𝑘+1 =

̂
𝑍𝑘+1. Otherwise, delete the |̂𝑍𝑘+1| − 𝑚

foregoing measurements from ̂
𝑍𝑘+1, and then let

𝑍𝑘+1 =
̂
𝑍𝑘+1.

Step 4. Update the shape of the extended target by the
pseudomeasurement set 𝑍𝑘+1.

(4.1) Divide the interval [0, 2𝜋] into 𝑛 equal angles, and
generate a fixed angle set ℵ = {𝜃𝑖}

𝑛

𝑖=1
. Then partition the

pseudomeasurement set by the angles, and define 𝐷𝑘+1,𝑖 as
the measurement set in the area of the 𝑖th partition. That is,

𝐷𝑘+1,𝑖 = {𝑧𝑘+1,𝑗 | 𝑑𝐿 𝑖
(𝑧𝑘+1,𝑗) < 𝑑, 𝐶 (𝑧𝑘+1,𝑗) = ture} ,

𝑑𝐿 𝑖
(𝑧𝑘+1,𝑗) =

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐵1𝑧
(1)

𝑘+1,𝑗
+ 𝐵2𝑧

(2)

𝑘+1,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

√𝐵
2

1
+ 𝐵

2

2

,
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𝐶 (𝑧𝑘+1,𝑗) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

true, 𝐿𝑖 : 𝐴1𝑧
(1)

𝑘+1,𝑗
+ 𝐴2𝑧

(2)

𝑘+1,𝑗
> 0,

𝜃𝑖 ∈ (0, 𝜋]

or 𝐿𝑖 : 𝐴1𝑧
(1)

𝑘+1,𝑗
+ 𝐴2𝑧

(2)

𝑘+1,𝑗
< 0,

𝜃𝑖 ∈ [𝜋, 2𝜋)

false, otherwise,
(12)

where 𝑑 is the width of partition. 𝑧𝑘+1,𝑗 ∈ 𝑍𝑘+1, 𝑧𝑘+1,𝑗 =
[𝑧

(1)

𝑘+1,𝑗
, 𝑧

(2)

𝑘+1,𝑗
], 𝑧(1)

𝑘+1,𝑗
, and 𝑧(2)

𝑘+1,𝑗
denote the position of 𝑥- and

𝑦-coordinate at time 𝑘+1.𝐿 𝑖 denotes a line through the origin
of coordinate and along the 𝑖th partition angle direction.
𝑑𝐿 𝑖
(𝑧𝑘+1,𝑗) denotes the perpendicular distance between 𝑧𝑘+1,𝑗

and line 𝐿 𝑖. The parameters 𝐵1 and 𝐵2 of line 𝐿 𝑖 satisfy
𝐵1/𝐵2 = − tan(𝜃𝑖). 𝐿𝑖 denotes a line through the origin of
coordinate, and it is perpendicular to line 𝐿 𝑖. The parameters
𝐴1 and 𝐴2 of line 𝐿𝑖 satisfy 𝐴2/𝐴1 = tan(𝜃𝑖). Figure 1 shows
the 𝑖th angle partition and the measurements in the area
enclosed by points O1, O2, O3, and O4 which constitute the
measurement set𝐷𝑘+1,𝑖.

(4.2) Calculate 𝐸(‖𝐷𝑘,𝑖‖𝐿 𝑖
) which is the expectation of

the perpendicular distance between the elements of 𝐷𝑘+1,𝑖

and line 𝐿𝑖. Then the radial extension distance 𝜌𝑘+1,𝑖 can be
obtained by

𝜌𝑘+1,𝑖 = 2

1

󵄨
󵄨
󵄨
󵄨
𝐷𝑘+1,𝑖

󵄨
󵄨
󵄨
󵄨

|𝐷𝑘+1,𝑖|

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐴1𝑧
(1)

𝑘+1,𝑗
+ 𝐴2𝑧

(2)

𝑘+1,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

√𝐴
2

1
+ 𝐴

2

2

. (13)

In this paper, we set the 𝜌𝑘+1,𝑖 as the control point of
the extended target shape parameter and define 𝑋𝑘|𝑘 =

[{𝜌𝑘,𝑖}
𝑛

𝑖=1
]
𝑇 as the control matrix of the shape, which includes

the shape information.
(4.3) Shape estimation by implementing the one-

dimension (1-D) KF: assume the shape control matrix 𝑋𝑘|𝑘

and the shape covariance Δ 𝑘|𝑘 have been obtained. Then the
recursion steps of shape estimates are as follows.

Prediction:

𝑋𝑘+1|𝑘 = 𝑋𝑘|𝑘,

Δ 𝑘+1|𝑘 = Δ 𝑘|𝑘 + 𝐻
󵄩
󵄩
󵄩
󵄩
𝑅𝑘+1

󵄩
󵄩
󵄩
󵄩
,

(14)

where𝐻 = [1, 1, . . . , 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

𝑇 and 𝑅𝑘+1 denotes the measurement

noise covariance.
Update:

𝑋𝑘+1|𝑘+1 = 𝑋𝑘+1|𝑘 + (𝑋𝑘|𝑘 − 𝐾̂𝑘+1 ⋅ 2𝐸 (
󵄩
󵄩
󵄩
󵄩
𝐷𝑘+1,𝑖

󵄩
󵄩
󵄩
󵄩
)) ,

Δ 𝑘+1|𝑘+1 = (𝐼 − 𝐾̂𝑘+1𝐻

𝑇

)Δ 𝑘+1|𝑘,

𝐾̂𝑘+1 = diag({
𝛿𝑘+1|𝑘,𝑖

𝛿𝑘+1|𝑘,𝑖 + V𝑘+1
}

𝑛

𝑖=1

) ,

(15)

where the shape covariance Δ 𝑘+1|𝑘+1 = [𝛿𝑘+1,𝑖]𝑛×1
. V𝑘+1

denotes the measurement noise.

0

Measurement

O1

O4

O3

O2

B1x + B2y = 0

A1x + A2y = 0

𝜃i

y

x

d

Li:

Li:

Figure 1: Angle interval partition.

Step 5. Shape estimation according to 𝑋𝑘+1|𝑘+1 and the B-
spline curve fitting technique.

(5.1) Map the control points to the Cartesian coordinates
by

𝑈𝑘+1 = {𝜇𝑖}
𝑛

𝑖=1
= ℵ̂𝑋𝑘+1|𝑘+1,

ℵ̂ = [

cos (𝜃𝑖) , . . . , cos (𝜃𝑛)
sin (𝜃𝑖) , . . . , sin (𝜃𝑛)

]

2×𝑛

.

(16)

(5.2) Produce a closed control point set by adding the
element 𝜇1, 𝜇2, 𝜇3 to the end of the𝑈𝑘+1, and describe
it as 𝑈

𝑘+1
= {𝜇

𝑖
}
𝑛+3

𝑖=1
. Then the closed cubic B-spline

curve can be obtained by

𝑆 (𝑡) =

𝑛+3

∑

𝑖=1

𝜇
𝑘+1
⋅ 𝑁𝑖,3 (𝑡) . (17)

4. Multiple Extended Target Shape Estimation

4.1. Multiple Extended Target PHD Filter. The standard
PHD filter for single measurement target tracking has been
described in [13–15]; however, it is not suitable for METT.
Recently, Mahler has derived a correct equation for extended
target PHD (ET-PHD) filter based on the Poissonmultitarget
measurement model [5].TheGaussianmixture implement of
themultiple extended target PHDfilter is presented in [6] and
referred to as ET-GM-PHD filter. The detailed filter process
of ET-GM-PHD can refer to [6, 16, 17].

4.2. Multiple Extended Target Tracking Algorithm. In this
section, we combine the proposed shape estimation algo-
rithm into the framework of ET-GM-PHD filter, which can
effectively achieve the multiple extended target tracking with
different shape estimation. We refer to this algorithm as
Shape-ET-GM-PHD, and its steps are as follows.
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(1) Prediction. Assume that the state vector 𝑥 and its shape
vector 𝑋 are independent, and the survival and detection
probabilities are independent of them; that is, 𝑝𝑆,𝑘(𝑥, 𝑋) =
𝑝𝑆 and 𝑝𝐷,𝑘(𝑥, 𝑋) = 𝑝𝐷. Assume that V𝑘−1(𝑥, 𝑋) denotes
the joint posterior PHD function at time 𝑘 − 1 and is
approximated by the Gaussian mixture distributions. Then
the predicted PHD function V𝑘|𝑘−1(𝑥, 𝑋) can be described as

V𝑘|𝑘−1 (𝑥, 𝑋)

= 𝑝𝑆∬𝑝𝑘|𝑘−1 (𝑥,𝑋 | 𝑥
󸀠
, 𝑋

󸀠
) V𝑘−1|𝑘−1 (𝑥, 𝑋) 𝑑𝑥

󸀠
𝑑𝑋

󸀠

= 𝑝𝑆∬𝑝𝑘|𝑘−1 (𝑥 | 𝑥
󸀠
, 𝑋

󸀠
) 𝑝𝑘|𝑘−1 (𝑋 | 𝑋

󸀠
)

× V𝑘−1|𝑘−1 (𝑥, 𝑋) 𝑑𝑥
󸀠
𝑑𝑋

󸀠

≈ 𝑝𝑆

𝐽𝑘|𝑘−1

∑

𝑗=1

𝑤𝑘−1|𝑘−1 ∫𝑁(𝑥𝑘−1|𝑘−1 | 𝑚
(𝑗)

𝑘−1|𝑘−1
, 𝑃

(𝑗)

𝑘−1|𝑘−1

+𝜎𝑘−1|𝑘−1𝐼) 𝑝𝑘|𝑘−1 (𝑥 | 𝑥
󸀠
, 𝑋

󸀠
) 𝑑𝑥

󸀠

⋅ ∫Ψ (𝑋𝑘−1|𝑘−1 | 𝑋𝑘−1|𝑘−1, Δ 𝑘−1|𝑘−1) 𝑝𝑘|𝑘−1(𝑋 | 𝑋
󸀠
)𝑑𝑋

󸀠
,

(18)

where

∫𝑁(𝑥𝑘−1|𝑘−1 | 𝑚
(𝑗)

𝑘−1|𝑘−1
, 𝑃

(𝑗)

𝑘−1|𝑘−1
+ 𝜎𝑘−1|𝑘−1𝐼)

× 𝑝𝑘|𝑘−1 (𝑥 | 𝑥
󸀠
, 𝑋

󸀠
) 𝑑𝑥

󸀠

= 𝑁(𝑥𝑘|𝑘−1 | 𝑚
(𝑗)

𝑘|𝑘−1
, 𝑃

(𝑗)

𝑘|𝑘−1
+ 𝜎𝑘|𝑘−1𝐼) ,

∫Ψ (𝑋𝑘−1|𝑘−1 | 𝑋𝑘−1|𝑘−1, Δ 𝑘−1|𝑘−1) 𝑝𝑘|𝑘−1 (𝑋 | 𝑋
󸀠
) 𝑑𝑋

󸀠

=

Num
∏

𝑖=1

𝑁(𝑋
(𝑖)

𝑘|𝑘−1
| 𝑋

(𝑗,𝑖)

𝑘|𝑘−1
, Δ

(𝑗,𝑖)

𝑘|𝑘−1
) ,

(19)

𝐼 = diag[1, 1, 0, 0], and𝜎𝑘−1|𝑘−1 denotes themean of the shape
standard variance, One has 𝑚(𝑗)

𝑘|𝑘−1
= 𝐹𝑘|𝑘−1𝑚

(𝑗)

𝑘−1|𝑘−1
, 𝑃(𝑗)

𝑘|𝑘−1
=

𝐹𝑘|𝑘−1𝑃
(𝑗)

𝑘−1|𝑘−1
𝐹
𝑇

𝑘|𝑘−1
+𝑄𝑘|𝑘−1. Numdenotes the dividednumber

of the shape area according to the degree of angle. 𝑋(𝑗,𝑖)

𝑘|𝑘−1
=

𝑋
(𝑗,𝑖)

𝑘−1|𝑘−1
and Δ(𝑗,𝑖)

𝑘|𝑘−1
= Δ

(𝑗,𝑖)

𝑘−1|𝑘−1
+ Q𝑘 denote the control

matrix of shape and its predicted covariance, andQ𝑘 denotes
the shape process noise covariance. 𝑋(𝑗,𝑖)

𝑘|𝑘−1
and Δ(𝑗,𝑖)

𝑘|𝑘−1
can

also be described as 𝑋(𝑗,𝑖)

𝑘|𝑘−1
= [{𝜌

(𝑗,𝑖)

𝑘|𝑘−1
}

Num

𝑖=1
]

𝑇

and Δ(𝑗,𝑖)

𝑘|𝑘−1
=

[{𝜎
(𝑗,𝑖)

𝑘|𝑘−1
}

Num

𝑖=1
]

𝑇

, where the definition of 𝜌(𝑗,𝑖)
𝑘|𝑘−1

is the same as
that of (13).𝜎(𝑗,𝑖)

𝑘|𝑘−1
denotes the predicted variance of the shape.

(2) Update.The updated formula of the intensity function can
be described as

V𝑘|𝑘 (𝑥, 𝑋) = 𝐿𝑍𝑘
(𝑥, 𝑋) V𝑘|𝑘−1 (𝑥, 𝑋) , (20)

where V𝑘|𝑘(𝑥, 𝑋) denotes an intensity function of the state
𝑥 with shape information 𝑋 and 𝐿𝑍𝑘

(𝑥, 𝑋) denotes the
pseudolikelihood function. 𝑍𝑘 denotes the measurement set
at time 𝑘. When 𝑍𝑘 = 0,

𝐿𝑍𝑘
(𝑥, 𝑋) ≜ 1 − 𝑝𝐷 (𝑥, 𝑋) + 𝑒

−𝑟(𝑥,𝑋)
𝑝𝐷 (𝑥, 𝑋) ;

(21)

otherwise,

𝐿𝑍𝑘
(𝑥, 𝑋) ≜ 1 − (1 − 𝑒

−𝑟(𝑥,𝑋)
) 𝑝𝐷 (𝑥, 𝑋) + 𝑒

−𝑟(𝑥,𝑋)
𝑝𝐷 (𝑥, 𝑋)

× ∑

𝑃∠𝑍𝑘

𝜔𝑃 ∑

𝑊∈𝑃

𝑟(𝑥,𝑋)
|𝑊|

𝑑𝑊

∏

𝑧∈𝑊

𝜙𝑧 (𝑥, 𝑋)

𝜆𝑘𝑐𝑘

,

(22)

where 𝑃∠𝑍𝑘 denotes a partition subset 𝑃 of the measurement
set 𝑍𝑘, 𝑊 denotes a subset of a partition 𝑃, and ∪𝑊∈𝑃𝑊 =

𝑍𝑘. 𝜙𝑧(𝑥, 𝑋) denotes the measurement likelihood function
of one measurement originating from an extended target 𝑥,
𝑟(𝑥,𝑋) is the measurement expectation, and 𝑝𝐷(𝑥, 𝑋) = 𝑝𝐷
denotes the detection probability of the sensor. Clutter has
a Poisson distribution, and its density can be described as
𝛽𝐹𝐴,𝑘 = 𝜆𝑘𝑐𝑘(𝑧𝑘), 𝜆𝑘 denotes the mean number of clutter
measurements, and 𝑐𝑘(𝑧𝑘) is the space distribution of the
clutter. Consider

𝜔𝑃 =

∏
𝑊∈𝑃
𝑑𝑊

∑
𝑃󸀠∠𝑍𝑘

∏
𝑊∈𝑃󸀠

𝑑𝑊󸀠

,

𝑑𝑊 = 𝛿|𝑊|,1 + V𝑘|𝑘−1 [𝑒
−𝑟
𝑟
|𝑊|
𝑝𝑑∏

𝑧∈𝑊

𝜙𝑧

𝛽𝐹𝐴,𝑘

],

(23)

where 𝛿𝑖,𝑗 denotes the Kronecker delta function and 𝑟 =
𝑟(𝑥,𝑋). 𝛽𝐹𝐴,𝑘 denotes the clutter distribution of the measure-
ment space.

In the following subsections, assume that the current
estimated PHD V𝑘|𝑘(𝑥, 𝑋) can be approximated as a Gaussian
mixture distribution.The corrected PHD can be described as

V𝑘|𝑘 (𝑥, 𝑋) = V𝑁𝐷

𝑘|𝑘
(𝑥, 𝑋) + ∑

𝑝∈𝑍

∑

𝑊∈𝑝

V𝐷
𝑘|𝑘
(𝑥, 𝑋,𝑊) , (24)

where V𝑁𝐷

𝑘|𝑘
(𝑥, 𝑋) denotes the PHD of the targets without

detecting cases, and it can be described as

V𝑁𝐷

𝑘|𝑘
(𝑥, 𝑋) =

𝐽𝑘|𝑘−1

∑

𝑗=1

𝑤
(𝑗)

𝑁𝐷,𝑘|𝑘
𝑁(𝑥𝑘|𝑘 | 𝑚

(𝑗)

𝑘|𝑘
, 𝑃

(𝑗)

𝑘|𝑘
+ 𝜎

(𝑗)

𝑘|𝑘
𝐼)

×

Num
∏

𝑖=1

𝑁(𝑋
(𝑖)

𝑘|𝑘
| 𝑋

(𝑗,𝑖)

𝑘|𝑘
, Δ

(𝑗,𝑖)

𝑘|𝑘
) ,

(25)

where 𝑚(𝑗)

𝑘|𝑘
= 𝑚

(𝑗)

𝑘|𝑘−1
, 𝑃(𝑗)

𝑘|𝑘
= 𝑃

(𝑗)

𝑘|𝑘−1
, Δ(𝑗,𝑖)

𝑘|𝑘
= Δ

(𝑗,𝑖)

𝑘|𝑘−1
, and

𝑋
(𝑗,𝑖)

𝑘|𝑘
= 𝑋

(𝑗,𝑖)

𝑘|𝑘−1
.
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V𝐷
𝑘|𝑘
(𝑥, 𝑋,𝑊) denotes the PHDof the detected target cases

and can be described as

V𝐷
𝑘|𝑘
(𝑥, 𝑋,𝑊) =

𝐽𝑘|𝑘−1

∑

𝑗=1

𝑤
(𝑗)

𝑘|𝑘
𝑁(𝑥𝑘 | 𝑚

(𝑗)

𝑘|𝑘
, 𝑃

(𝑗)

𝑘|𝑘
+ 𝜎

(𝑗)

𝑘|𝑘
𝐼)

×

Num
∏

𝑖=1

𝑁(𝑋
(𝑖)

𝑘
| 𝑋

(𝑗,𝑖)

𝑘|𝑘
, Δ

(𝑗,𝑖)

𝑘|𝑘
) ,

(26)

where

𝑚
(𝑗)

𝑘|𝑘
= 𝑚

(𝑗)

𝑘|𝑘−1
+ 𝐾𝑘 (𝑧

𝑊

𝑘
− 𝐻𝑚

(𝑗)

𝑘|𝑘−1
) ,

𝑧
𝑊

𝑘
=

1

|𝑊|

∑

𝑧
(𝑙)

𝑘
∈𝑊

𝑧
(𝑙)

𝑘
,

𝑃
(𝑗)

𝑘|𝑘
= (𝐼 − 𝐾𝑘𝐻)𝑃

(𝑗)

𝑘|𝑘−1
,

𝑆𝑘 = 𝑃
(𝑗)

𝑘|𝑘−1
+ 𝜎

(𝑗)

𝑘|𝑘
[

1 0

0 0
] ⊗ 𝐼2,

𝐾𝑘 = 𝑃
(𝑗)

𝑘|𝑘−1
𝐻

𝑇
(𝑆𝑘)

−1
,

𝜎
(𝑗)

𝑘|𝑘
=

1

Num

Num
∑

𝑖=1

𝜎
(𝑗,𝑖)

𝑘|𝑘
,

𝑤
(𝑗)

𝑘
=

𝑤𝑝

𝑑𝑊

𝑒
−𝛾
(𝑗)

(

𝛾
(𝑗)

𝛽𝐹𝐴,𝑘

)

|𝑊|

𝑝𝐷𝐿
(𝑗,𝑊)

𝑘
𝑤

(𝑗)

𝑘|𝑘−1
,

𝑤𝑝 =

∏
𝑊∈𝑝
𝑑𝑊

∑
𝑝󸀠∠𝑍󸀠

∏
𝑊󸀠∈𝑝󸀠

𝑑𝑊󸀠

,

𝑑𝑊 = 𝛿|𝑊|,1 +

𝐽𝑘|𝑘−1

∑

ℓ=1

𝑒
−𝛾
(ℓ)

(

𝛾
(𝑗)

𝛽𝐹𝐴,𝑘

)

|𝑊|

𝑝𝐷𝐿
(ℓ,𝑊)

𝑘
𝑤

(ℓ)

𝑘|𝑘−1
,

𝐿
(𝑗,𝑊)

𝑘
=

Num
∏

𝑖=1

𝐿̂
(𝑗,𝑊,𝑖)

𝑘
,

𝐿̂
(𝑗,𝑊,𝑖)

𝑘
=

{

{

{

(𝐿̃
(𝑗,𝑊,𝑖)

𝑘
)

|𝑊
(𝑖)
|/Num

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊

(𝑖)󵄨󵄨
󵄨
󵄨
󵄨
̸= 0

𝛼 ⋅ (𝐿̃
(𝑗,𝑊,𝑖)

𝑘
)

1/Num
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊

(𝑖)󵄨󵄨
󵄨
󵄨
󵄨
= 0,

𝐿̃
(𝑗,𝑊,𝑖)

𝑘
=

1

√2𝜋𝜎
(𝑗,𝑖)

𝑘|𝑘−1

⋅ exp(− 1

2𝜎
2(𝑗,𝑖)

𝑘|𝑘−1

(𝜌
(𝑗,𝑖)

𝑘+1|𝑘
− 𝜌

(𝑊,𝑖)
)

2

) ,

(27)

where𝛼denotes the penalty coefficient.The shape parameters
can be obtained by

Δ
(𝑗,𝑖)

𝑘|𝑘
= (𝐼Num − 𝐾̃𝑘𝐻

𝑇

)Δ
(𝑗,𝑖)

𝑘|𝑘−1
,

𝑋
(𝑗,𝑖)

𝑘|𝑘
= 𝑋

(𝑗,𝑖)

𝑘|𝑘−1
+ 𝐾̃𝑘 (𝑋

(𝑊)

𝑘
− 𝑋

(𝑗,𝑖)

𝑘|𝑘−1
) ,

𝐾̃𝑘 = 𝐼NumΔ
(𝑗)

𝑘|𝑘−1
(𝐼Num𝑆𝑘)

−1

,

𝑆𝑘 = ΥNum (𝐻𝑃𝑘|𝑘−1𝐻
𝑇
+

𝑅𝑘

|𝑊|

) + Δ
(𝑗)

𝑘|𝑘−1
,

(28)

where 𝐼Num denotes the identity matrix with Num order.
𝑅𝑘 denotes the measurement noise of a measurement
source.ΥNum(𝑃) denotes the decomposed functionwhich can
decompose the matrix 𝑃 as a set with Num variances.𝑋(𝑊)

𝑘
=

[{𝜌
(𝑊,𝑖)
}

Num
𝑖=1
]

𝑇

denotes the pseudocontrol point matrix which
is used to update the control point matrix 𝑋(𝑗,𝑖)

𝑘|𝑘
, where 𝜌(𝑊,𝑖)

can be obtained by

𝜌
(𝑊,𝑖)

=

{
{

{
{

{

1

󵄨
󵄨
󵄨
󵄨
𝑊

(𝑖)󵄨󵄨
󵄨
󵄨

∑

𝑧∈𝑊(𝑖)

√(𝑧 − 𝑧
𝑊

𝑘
)

𝑇

(𝑧 − 𝑧
𝑊

𝑘
),

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊

(𝑖)󵄨󵄨
󵄨
󵄨
󵄨
̸= 0

0,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊

(𝑖)󵄨󵄨
󵄨
󵄨
󵄨
= 0,

(29)

where |𝑊(𝑖)
| denotes the measurement number of 𝑖th angle

direction in cell𝑊.
Notice that the D-distance partition method [17] is

implemented in the part of measurement partition. Set the
maximum distance as the mean size of the shape, and it can
be obtained by

𝜌𝑘,max =
∑

𝐽𝑘−1|𝑘−1

𝑗=1
𝑤

(𝑗)

𝑘−1|𝑘−1
∑

Num
𝑖=1

2𝜌
(𝑗,𝑖)

𝑘−1|𝑘−1

Num ⋅ ∑𝐽𝑘−1|𝑘−1

𝑗=1
𝑤

(𝑗)

𝑘−1|𝑘−1

. (30)

Finally, shapes of multiple extended targets are extracted
according to 𝑋𝑘+1 and the B-spline curve fitting technique
described in Section 2.2.

5. Simulations

Assume that there is an extended target making a uniform
motion in a two-dimensional simulation scenario, and the
state equation and the measurement equation are the same
as (1) and (2), respectively, where 𝑥𝑘 = [𝑥, V𝑥, 𝑦, V𝑦]

𝑇denotes
the target state, which contains position and velocity infor-

mation. The state transition matrix 𝐹 = [

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

] and

measurement matrix 𝐻 = [

1 0
0 0
0 1
0 0

]

𝑇

. The process noise

covariance 𝑄𝑘 = diag[𝜎2
𝑤1
, 𝜎

2

𝑤2
] with 𝜎𝑤1 = 𝜎𝑤2 = 1, and

the measurement noise covariance 𝑅𝑘 = diag[𝜎2V1, 𝜎
2

V2] with
𝜎V1 = 𝜎V2 = 1. The initial covariance 𝑃0|0 = diag[5, 1, 5, 1]
and the shape noise covariance is Δ 0|0 = [1, 1, . . . , 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

𝑇. The

other parameters ℵ = {(2𝜋/𝑛) ⋅ 𝑖}
𝑛

𝑖=0
, 𝑛 = 20, 𝑑 = 1.5,

and 𝑚 = 45. The way to generate measurements is the
same as that of the RM method. The real measurement is
assumed as the scattering center, that is, a measurement
source. The observation measurements are generated from
the scattering center with measurement noises. Notice that
the measurement noise is assumed to be small compared to
the target extent.

Example 1 (star-shaped extended target). Figure 2 shows
the shape estimation by the proposed algorithm and the
RM method [9], respectively. It is clear that the proposed
algorithm has a higher accuracy than that of the RMmethod.
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Figure 2: Shape estimation by the proposed algorithm and the RM
method.

The reason is that the RM method can only estimate the
elliptical shape of the target.

Figure 3 shows the measurements of the extended target
from the 1st frame to the 20th frame. As can be seen, the
measurement noise is big which makes the shape hard to
be estimated from the single frame. However, the proposed
algorithm can extract the accurate shape by multiple frame
statistic technique and the B-spline curve fitting. It is shown
that the proposed algorithm has a good capacity of resisting
disturbance of the noise.

Figure 4 shows the average shape estimate. It is clear
that the proposed algorithm can obtain the shape features
effectively.

Example 2 (Y-shaped extended target). Figure 5 shows the
shape estimation by the proposed algorithm and the RM
method, respectively. Figure 6 shows the measurements of
the extended target from the 1st to the 20th frames. Figure 7
shows the average shape estimate. As can be seen, the
proposed algorithm has a better performance for shape
estimate of irregular extended targets.

Example 3 (multiple extended target tracking). The scenario
of multiple extended target tracking is the same as that
of [17]. There are four targets and two of them cross at
time 𝑘 = 56, and one target is spawned at time 𝑘 =

66. Assume that the measurement noise covariance and
the process noise covariance are 𝑅𝑘 = diag[0.7, 0.7] and
𝑄𝑘 = diag[1, 1], respectively. Shape noise covariance is
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Figure 3: The real measurements of the extended target (1∼20
frames).

Q𝑘 = [0.05, 0.05, . . . , 0.05]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Num
, Num = 12, and 𝜔 = 0.01. The

probabilities of target survival and detection are 𝑝𝑆 = 0.99
and 𝑝𝐷 = 0.99, respectively. The birth process is modeled on
a Poisson RFS with Gaussian mixture intensity:

𝐷𝑏 (𝑥, 𝑋) =

2

∑

𝑗=1

𝜔
(𝑗)

𝑏
𝑁(𝑥 | 𝑚

(𝑗)

𝑏
, 𝑃

(𝑗)

𝑏
+ 𝜎𝑏𝐼)

×

Num
∏

𝑖=1

𝑁(𝑋
(𝑗)

𝑏
| 𝑋

(𝑗,𝑖)

𝑏
, Δ

(𝑗,𝑖)

𝑏
) ,

(31)

where 𝑚(1)

𝑏
= [250m, 250m, 0m/s, 0m/s]𝑇, 𝑚(2)

𝑏
= [−250m,

−250m, 0m/s, 0m/s]𝑇, 𝑃(1)
𝑏
= 𝑃

(2)

𝑏
= diag[100, 100, 15, 15],

and 𝜔(1)

𝑏
= 𝜔

(2)

𝑏
= 0.1, 𝑋(1,1)

𝑏
= ⋅ ⋅ ⋅ = 𝑋

(1,Num)

𝑏
= 𝑋

(2,1)

𝑏
= ⋅ ⋅ ⋅ =

𝑋
(2,Num)

𝑏
= 5, Δ(1,1)

𝑏
= ⋅ ⋅ ⋅ = Δ

(1,Num)

𝑏
= Δ

(2,1)

𝑏
= ⋅ ⋅ ⋅ =

Δ
(2,Num)

𝑏
= 1.

The intensity of the spawned targets is V𝛽(𝑥) =

0.05𝑁(𝑥 | 𝜉, 𝑄𝛽) × ∏
Num
𝑖=1
𝑁(𝑋 | 𝜉, Δ 𝛽), where 𝑄𝛽 =

diag[100, 100, 400, 400] and Δ 𝛽 = [1, 1, . . . , 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Num
.

Figure 8(a) shows the tracking results of the targets in the
whole tracking area, and Figures 8(b), 8(c), and 8(d) show the
shape estimates of different targets in special tracking area. As
can be seen from Figure 8(b), the shapes of Targets 1 and 2 are
assumed as ellipses; although they are not accurate, they can
be updated approximately to the real shapes of the targets at
several time points.The reason is that the shape parameters in
the proposed shape estimatemethod are updated at each time
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Figure 5: Shape estimation by the proposed algorithm and the RM
method.

when the latest measurements arrive.Moreover, the Gaussian
mixture technique is employed, which can approximately
fit the real shape distribution of the extended target. In
Figure 8(c), we can see that the shape estimates are not
accurate when the targets cross each other, but they can
also be updated approximately to the real target shapes.
Figure 8(d) shows the shape estimate of a spawned target;
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Figure 6: The real measurements of the extended target (1∼20
frames).
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Figure 7: Average shape estimate.

it is showed that the proposed algorithm also has a good
performance for shape estimate of the spawned target.

Figure 9 shows the number estimates and Figure 10 shows
the accuracy statistic by the OSPA distance [18]. Notice that
OSPA distance sharply increases at 56th and 66th seconds.
The reason is that the targets make a cross with each other at
56th second and a spawned target appears. Generally, we can
see that the proposed algorithm has a good performance for
multiple extended target tracking with shape estimates.
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Figure 8: Shape estimate results.
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6. Conclusions

In this paper, a novel shape estimation algorithm is pro-
posed based on the B-spline curve fitting. The multiple
frame statistic technique is introduced to construct the
pseudomeasurement sets. The selected control points are
used to form the B-spline curve, and then the curve yields the
shapes of the extended targets. Moreover, the proposed shape
estimation algorithm ismodified suitably and combined with
the probability hypothesis density (PHD) filter for multiple
extended target tracking. Simulations show that the proposed
algorithm has a good performance for shape estimates of
extended targets.
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