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How to select the most desirable pattern(s) is often a crucial step for decision making problem. By taking uncertainty as well as
dynamic of database into consideration, in this paper, we construct a dynamic multicriteria decision making procedure, where the
evaluation information of criteria is expressed by real number, intuitionistic fuzzy number, and interval-valued intuitionistic fuzzy
number. During the process of algorithm construction, the evaluation information at all time episodes is firstly aggregated into
one, and then it is transformed into the unified interval-valued intuitionistic fuzzy number representational form. Similar to most
multicriteria decisionmaking approaches, the TOPSISmethod is applied in the proposed decisionmaking algorithm. In particular,
the distance between possible patterns and the ideal solutions is defined in terms of cosine similarity by considering all aspects of
the unified evaluation information. Experimental results show that the proposed decision making approach can effectively select
desirable pattern(s).

1. Introduction

It is well-known that how to discover useful information from
mass data effectively has aroused lots of people’s interest in
many fields, especially in decision making analysis area. In
practical processes of information retrieval, decision makers
usually have to face complicated database, such as time series
database, hybrid database, incomplete database, and so forth.
Decision making is extremely intuitive when considering
single criterion problems, since we only need to choose the
alternative with the highest preference rating. To choose the
most desirable ones, multiple criteria are usually considered
by decision makers, which is the so-called multicriteria deci-
sion making problem. In view of the potential advantages of
multicriteria decision making during the process of decision
making, this trade-offmethod has been combined withmany
theories, such as rough sets [1, 2], fuzzy set and intuitionistic
fuzzy set [3, 4], grey theory [5], Choquet integral [6], soft
sets [7], and so forth. Moreover, it has been widely applied

to many areas such as layout [8–10], management [11, 12],
pattern recognition [13], and others [8, 14, 15].

In order to deal with multicriteria decision making
problems, Tzeng and Huang [16] proposed that the first step
is to figure out how many criteria exist in the problem and
then collect the appropriate information of the possible alter-
natives; the second step is to select an appropriate method
to evaluate and outrank the possible alternatives. For the
latter issue, Hwang and Yoon [17] proposed the well-known
“technique for order preference by similarity to an ideal solu-
tion” method (TOPSIS, in short). Because of the complexity
of practical problems, many researchers extended TOPSIS
method to fuzzy environment, which can be regarded as
a natural generalization of classical TOPSIS method. For
example, Shih et al. in [18], Wang and Lee in [19], and Park et
al. in [20] discussed extension of TOPSIS method for group
decision making problems. Jahanshahloo et al. in [21] con-
structed an algorithmic method to extend TOPSIS for deci-
sion making with interval data. In particular, literature [19]
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introduced an approach to find the ideal solution and [22]
proposed an extension of TOPSIS approach that integrates
subjective and objective weight. Abo-Sinna and Amer [23]
extended TOPSIS to solve multiobjective large-scale non-
linear programming problems. Moreover, some researchers
discussed the extension of TOPSIS to other aspects, such
as fuzzy data [21], interval-valued fuzzy data [24–26],
interval-valued intuitionistic fuzzy data [20, 27], and others
[6, 12, 28–32].

However, detailed investigation of the aforementioned
literatures shows us that the extended TOPSIS method for
multicriteria decision making under various fuzzy environ-
ment has its limitations. The reason is that on the one hand,
the context on which the problem is based is static. On the
other hand, the style of information expression under all
criteria has the same representation format. Yu et al. [33]
introduced a preference degree based method for handling
hybrid multiple attribute decision making problems but the
information is still static. Meanwhile, using score function
and accuracy function proposed by [34] to rank alternatives
is unreasonable to some extent, from which, in this paper,
we will focus on the problem of dynamic multicriteria
decision making with hybrid evaluation information. Before
using TOPSIS method to select the most desirable ones,
we presuppose that the values of criteria weights generally
are different at the same time episode, in which case the
evaluation information of each alternative under each cri-
terion is a time series. Then, by aggregating all the time
series into an overall information database, the extended
TOPSIS can be applied to deal with the MCDM problems.
In this context, the weights of criteria with respect to all
alternatives are determined by a mathematical model based
on which the weighted distance between alternative and
ideal solutions is calculated by means of cosine similarity
measure.

The remainder of this paper is organized as follows.
Section 2 presents some basic concepts such as intuitionistic
fuzzy sets, interval-valued intuitionistic fuzzy sets, multicri-
teria decision making, and TOPSIS method. In Section 3, we
make a detailed discussion on dynamicmulticriteria decision
making with hybrid evaluation information, in which case
the evaluation information of every alternative is regarded
as time series and the weights vary with criteria at each
time episode. The issue of how to make logical weights
of criteria is also investigated in this section. In Section 4,
an illustrative example is applied to show the validity of
the proposed approach. Finally, Section 5 concludes this
paper.

2. Preliminaries

Throughout this paper, let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} be a

fixed set, the universe of discourse, and let 𝐼([0, 1]) be the
collection of all closed intervals belonging to unit interval
[0, 1]; then the intuitionistic fuzzy sets as well as interval-
valued intuitionistic fuzzy sets proposed by Atanassov and
Gargov [35, 36] can be expressed as follows.

Definition 1. An intuitionistic fuzzy set 𝐴 based on 𝑋 can be
expressed as

𝐴 = {(𝑥
𝑖
, 𝜇
𝐴

(𝑥
𝑖
) , ]
𝐴

(𝑥
𝑖
)) | 𝑥
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(𝑥
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Definition 2. An interval-valued intuitionistic fuzzy set A
based on 𝑋 can be expressed as

A = {(𝑥
𝑖
[𝜇
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where [𝜇
A

(𝑥
𝑖
), 𝜇A(𝑥

𝑖
)] ⊆ 𝐼([0, 1]) and []A(𝑥

𝑖
), ]A(𝑥

𝑖
)] ⊆

𝐼([0, 1]) are, respectively, themembership degree interval and
nonmembership degree interval with the condition 𝜇A(𝑥

𝑖
) +

]A(𝑥
𝑖
) ⩽ 1 for all 𝑥

𝑖
∈ 𝑋.

For an intuitionistic fuzzy set 𝐴, the pair (𝜇
𝐴

(𝑥
𝑖
), ]
𝐴

(𝑥
𝑖
))

is called an intuitionistic fuzzy number and is denoted by 𝛼̃
𝑖
=

(𝑎
𝑖
, 𝑏
𝑖
) for convenience, the same as that of interval-valued

intuitionistic fuzzy number. In what follows we present a
brief review of the mathematical description of multicriteria
decision making and TOPSIS method [17, 37].

The procedure of multicriteria decision making can be
summarized in three steps, which are evaluating, prioritizing,
and selecting. For the first process, which is evaluating, deci-
sionmakers usually invite experts to provide some evaluation
information for some alternatives under certain criteria, and
prioritizing is a trade-off process in its nature; the selecting
phase is to rank all alternatives with corresponding values
obtained from second stage and select the most desirable
one(s).

Mathematically speaking, themulticriteria decisionmak-
ing problem of𝑚 alternatives with 𝑛 criteria can be expressed
as

𝑐
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⋅ ⋅ ⋅ 𝑐
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) ,
(3)

where 𝑟
𝑖𝑗
for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛 is the

evaluation information of alternative 𝑥
𝑖
under criterion 𝑐

𝑗

provided by experts, and what follows is to assign an overall
evaluation information to each alternative by trading off
techniques. Based on foregoing information, the decision
maker can obtain a linear order of all alternatives; take 𝑥

𝑖
1

≽

𝑥
𝑖
2

≽ ⋅ ⋅ ⋅ 𝑥
𝑖
𝑚

, for example, and then the alternative 𝑥
𝑖
1

is the
best choice under existing criteria.

Just like what [38] claimed, how to aggregate the evalua-
tion information of each alternative to a unique value plays a
crucial role in the final selection of the best alternative, which
in turn means that suitable techniques need to be selected
carefully. For this reason, in what follows we present a brief
review of the famous trade-off method, which is TOPSIS



Journal of Applied Mathematics 3

method. Its main idea came from the concept of compromise
solution in order to choose the best alternative nearest to the
positive ideal solution (PIS) and farthest from the negative
ideal solution (NIS). The general process of TOPSIS method
can be summarized as follows [37].

(1) Choose PIS and NIS as

PIS = {𝑟
+

1
, 𝑟
+

2
, . . . , 𝑟

+

𝑛
} , NIS = {𝑟

−

1
, 𝑟
−

2
, . . . , 𝑟

−

𝑛
} , (4)

where 𝑟
+

𝑗
represents the obtainable maximum value

under 𝑐
𝑗
if 𝑐
𝑗
is beneficial criterion (larger is better);

otherwise 𝑟
+

𝑗
is the minimum value; 𝑟

−

𝑗
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the obtainable minimum value under 𝑐
𝑗
if 𝑐
𝑗
is

costly criterion (smaller is better); otherwise 𝑟
−

𝑗
is the

maximum value.
(2) Calculate the separation from the PIS and NIS

between alternatives by
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for 𝑖 = 1, 2, . . . , 𝑚.
(3) Calculate the overall score of each alternative by

𝐷
𝑖
=

𝐷
−

𝑖

𝐷
+

𝑖
+ 𝐷
−

𝑖

(6)

and make a choice, where 𝑖 = 1, 2, . . . , 𝑚.

It deserves to be pointed out that, (1) in practical
application, the criteria are usually given weights by various
means; (2) many measuring distances are applied to measure

the distance between alternative and PIS as well as NIS, such
as [39–41]. For detailed description of this trade-off method,
the interested readers can refer to many literatures such as
[16, 37, 42].

3. Multicriteria Decision Making with
Hybrid Evaluation Information

In this section, our work can be divided into three compo-
nents, which are normalization of hybrid evaluation infor-
mation, determination of weighted vector of criteria as well
as time episodes, and construction of the detailed procedure
for dynamic multicriteria decision making.

3.1. Normalization of Hybrid Evaluation Information. Due
to the complexity of the real word, database with hybrid
types of information is unavoidable. For example, datum
𝑥 = ⟨2, (0.3, 0.5), ([0.7, 0.8], [0, 0.1])⟩ is a hybrid datum
with respect to criteria (𝑐

1
, 𝑐
2
, 𝑐
3
) because each component

of 𝑥 has different types. Hereinto, by taking uncertainty
of information into consideration, next we mainly discuss
three types of evaluation information, which are real number,
intuitionistic fuzzy number, and interval-valued intuitionistic
fuzzy number.

It is well-known that during the process of decision
making, the ultimate goal is to obtain the whole evaluation
of each alternative under many criteria. And if the evaluation
information of an alternative contains different types of
values, the first choice for many decision makers is to
transform them into single type. In this light, next we make a
detailed discussion on how an datum that components have
different types is changed into a datum that components have
same type.

Given that only three types of evaluation information
appeared in datum 𝑥

𝑖
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where (𝜇
𝑖𝑙
, ]
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], []
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, ]
𝑖𝑞

]) is an interval-valued intuitionistic fuzzy
number, then we have the following.

(1) If 𝑟
𝑖𝑗
is an intuitionistic fuzzy number for some 𝑗 ∈
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(2) If 𝑟
𝑖𝑗
is a real number belonging to unit interval [0, 1],

then replace it with ([𝑟
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Otherwise, at first we normalize 𝑟
𝑖𝑗
by

𝑟
󸀠

𝑖𝑗
=

𝑟
𝑖𝑗

max 𝑟
𝑙𝑗

, (10)

where 𝑙 ∈ {1, 2, . . . , 𝑚} and then do as (8) does.

(3) Do nothing if 𝑟
𝑖𝑗
is an interval-valued intuitionistic

fuzzy number.

Using above transformation, datum 𝑥
𝑖
then changes into

an interval-valued intuitionistic fuzzy vector as follows:
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𝑐
1

𝑐
2

⋅ ⋅ ⋅ 𝑐
𝑛

𝑥
𝑖
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𝑖1
𝜇
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, ]
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, ]
𝑖𝑛

])) .
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Example 1. Given that for a dynamic multicriteria decision
making with alternatives 𝑥

1
, 𝑥
2
, 𝑥
3
and criteria 𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
,

the evaluation information at some episode is

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑥
1

𝑥
2

𝑥
3

(

1

3

4

(0.8, 0.1)

(0.7, 0.1)

(0.3, 0.4)
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0.8

0.6

(0.3, 0.6)

(0.2, 0.1)

(0.5, 0.0)

([0.5, 0.7] , [0.1, 0.2])

([0.2, 0.4] , [0.3, 0.5])

([0.0, 1.0] , [0.6, 0.7])

)
. (12)

Obviously, the information with respect to criteria 𝑐
1
and 𝑐
3
is

real number, and the information with respect to criteria 𝑐
2

and 𝑐
4
is intuitionistic fuzzy number. By (11) the normaliza-

tion information of criteria 𝑐
1
and 𝑐
3
can be expressed as

𝑐
1

𝑐
3

𝑥
1

𝑥
2

𝑥
3

(

0.25

0.75

1.00
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)

=

𝑐
1

𝑐
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(

([0.25, 0.25] , [0.75, 0.75])

([0.75, 0.75] , [0.25, 0.25])

([1.00, 1.00] , [0.00, 0.00])

([0.50, 0.50] , [0.50, 0.50])

([1.00, 1.00] , [0.00, 0.00])

([0.75, 0.75] , [0.25, 0.25])

) .

(13)

For criteria 𝑐
2
and 𝑐
4
, we have that

𝑥
1

𝑥
2

𝑥
3

𝑐
2

𝑐
4

(
([0.8, 0.8] , [0.1, 0.1])
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Therefore, we have

𝑥
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𝑥
2

𝑥
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𝑐
1

𝑐
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𝑐
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𝑐
4

𝑐
5

(

([0.25, 0.25] , [0.75, 0.75])

([0.80, 0.80] , [0.10, 0.10])

([0.50, 0.50] , [0.50, 0.50])
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([0.50, 0.70] , [0.10, 0.20])
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([0.00, 0.10] , [0.60, 0.70])

) .
(15)

3.2. Determination of Weights. To make a reasonable deci-
sion for certain problem, how to determine the weights of
criteria has been discussed broadly, and many methods are

also being used to calculate the corresponding weights, such
as maximizing deviation method [43, 44], entropy method
[45, 46], and others [7, 47–49].
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Due to the increasing complexity of practical socioe-
conomic development, uncertainty and diversification have
become the normal situation for information obtained from
flow process line, especially for the information changing
with time, that is, time series database. In this paper, from the
view point of uncertainty of dynamic evaluation information,
at first we construct an approach to determine the weighted
vector of episodes, in which different criteria are assigned
different weights at the same episode. The reason for that is
that if we pay equal weights to each criterion at the same
time episode, it may be illogic. For example, a wise teacher
ought to know that, for the purpose of estimating a student’s
performance, different subjects should not be paid same
importance at the end of one semester.

Generally speaking, (3) can be regarded as one time
episode of the dynamic multicriteria decision making, and
the whole process of it can be depicted as
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𝑘
. Next, we make

a detailed description of how to calculate the weights of each
criterion at all time episodes. From above flow chart (i.e., (16))
we apply

𝑡
1

𝑡
2

⋅ ⋅ ⋅ 𝑡
𝑝

𝑥
1

𝑥
2

...
𝑥
𝑚

(

(

𝑟
(1)

1𝑗

𝑟
(1)

2𝑗

...
𝑟
(1)

𝑚𝑗

𝑟
(2)

1𝑗

𝑟
(2)

2𝑗

...
𝑟
(2)

𝑚𝑗

⋅ ⋅ ⋅

⋅ ⋅ ⋅

d
⋅ ⋅ ⋅

𝑟
(𝑝)

1𝑗

𝑟
(𝑝)

2𝑗

...
𝑟
(𝑝)

𝑚𝑗

)

)

(17)

to depict the evaluation information of criterion 𝑐
𝑗
for all

time episodes. Because the value style of 𝑟
(𝑘)

𝑖𝑗
varies with

criteria, in what followswe propose separately the approaches
to determining weighted vector of time episodes in detail.

(1) 𝑟
(𝑘)

𝑖𝑗
is a positive real number for 𝑖 = 1, 2, . . . , 𝑚, in

which case 𝜔
(𝑘)

𝑗
for 𝑘 = 1, 2, . . . , 𝑝 can be calculated

by

𝜔
(𝑘)

𝑗
=

𝑟
(𝑘)

∗𝑗

∑
𝑝

𝑘=1
𝑟
(𝑘)

∗𝑗

, (18)

where 𝑟
(𝑘)

∗𝑗
= ∑
𝑚

𝑖=1
𝜂
𝑖
𝑟
(𝑘)

𝑖𝑗
if 𝑐
𝑗
is a beneficial criterion;

otherwise 𝑟
(𝑘)

∗𝑗
= ∑
𝑚

𝑖=1
𝜂
𝑖
(1/𝑟
(𝑘)

𝑖𝑗
). Here, 𝜂

𝑖
represents

the alternatives’ weight for the 𝑖th pattern.

(2) 𝑟
(𝑘)

𝑖𝑗
is an intuitionistic fuzzy number for 𝑘 =

1, 2, . . . , 𝑝, 𝑖 = 1, 2, . . . , 𝑚; that is, 𝑟
(𝑘)

𝑖𝑗
= (𝜇
(𝑘)

𝑖𝑗
, ](𝑘)
𝑖𝑗

)

with condition 𝜇
(𝑘)

𝑖𝑗
+ ](𝑘)
𝑖𝑗

⩽ 1, in which case we first
aggregate 𝑟

(𝑘)

𝑖𝑗
, for 𝑖 = 1, 2, . . . , 𝑚, at time episode 𝑡

𝑘

into 𝑟
(𝑘)

∗𝑗
= (𝜇
(𝑘)

∗𝑗
, ](𝑘)
∗𝑗

) by IFWA
𝜂
operator or IFWG

𝜂

operator provided in [50, 51]. After that, compute the
weighted vector of time episodes by

𝜔
(𝑘)

𝑗
=

𝑆
(𝑘)

𝑗

∑
𝑝

𝑘=1
𝑆
(𝑘)

𝑗

, (19)

where 𝑆
(𝑘)

𝑗
= 𝜇
(𝑘)

∗𝑗
if 𝑐
𝑗
is a beneficial criterion;

otherwise 𝑆
(𝑘)

𝑗
= ](𝑘)
∗𝑗
.

(3) 𝑟
(𝑘)

𝑖𝑗
is an interval-valued intuitionistic fuzzy number

for 𝑡 = 1, 2, . . . , 𝑝 and 𝑖 = 1, 2, . . . , 𝑚; that is, 𝑟
(𝑘)

𝑖𝑗
=

([𝜇
(𝑘)

𝑖𝑗
, 𝜇
(𝑘)

𝑖𝑗
], [](𝑘)
𝑖𝑗

, ](𝑘)
𝑖𝑗

]) with condition 𝜇
(𝑘)

𝑖𝑗
+ ](𝑘)
𝑖𝑗

⩽ 1,

inwhich casewe first aggregate 𝑟
(𝑘)

𝑖𝑗
, for 𝑖 = 1, 2, . . . , 𝑚,

at time episode 𝑡
𝑘
into 𝑟

(𝑘)

∗𝑗
= ([𝜇

(𝑘)

∗𝑗
, 𝜇
(𝑘)

∗𝑗
], [](𝑘)
∗𝑗

, ](𝑘)
∗𝑗

])

by IIFWA
𝜂
operator or IIFWG

𝜂
operator provided in

[34]. After that, compute the weighted vector of time
episodes by

𝜔
(𝑘)

𝑗
=

𝐻
(𝑘)

𝑗

∑
𝑝

𝑘=1
𝐻
(𝑘)

𝑗

, (20)

where 𝐻
(𝑘)

𝑗
= (1/2)(𝜇

(𝑘)

∗𝑗
+ 𝜇
(𝑘)

∗𝑗
) if 𝑐
𝑗
is beneficial

criterion; otherwise 𝐻
(𝑘)

𝑗
= (1/2)(](𝑘)

∗𝑗
+ ](𝑘)
∗𝑗

).

Notice that if the decision makers treat all alternative
without distinction, then during the calculation of 𝑟

(𝑘)

∗𝑗
, the

weighted vector of alternatives is 𝜂 = {1/𝑚, 1/𝑚, . . . , 1/𝑚};
otherwise 𝜂 = {𝜂

1
, 𝜂
2
, . . . , 𝜂

𝑚
} with the condition 𝜂

1
+ 𝜂
2

+

⋅ ⋅ ⋅ + 𝜂
𝑚

= 1.
For the rest of this subsection, we present a discussion of

how to determine theweighted vector on criteria, at each time
episode, take time episode 𝑡

𝑘
for example. Given that there is

a dynamic multicriteria decision making problem with alter-
natives 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
and criteria 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
, the evaluation
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information 𝑟
(𝑘)

𝑖𝑗
for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛 can be

expressed as

𝑐
1

𝑐
2

⋅ ⋅ ⋅ 𝑐
𝑛

𝑥
1

𝑥
2

...
𝑥
𝑚

(

𝑟
(𝑘)

11

𝑟
(𝑘)

21

...
𝑟
(𝑘)

𝑚1

𝑟
(𝑘)

12

𝑟
(𝑘)

22

...
𝑟
(𝑘)

𝑚2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

d
⋅ ⋅ ⋅

𝑟
(𝑘)

1𝑛

𝑟
(𝑘)

2𝑛

...
𝑟
(𝑘)

𝑚𝑛

)
. (21)

Generally, the starting point of assigning weights to
criteria is to make the alternative have the best performance
with respect to other alternatives as much as possible under
provided criteria. Therefore, the mathematical model can be
constructed as follows.

Model-1:

Max: 𝑥
𝑖
(𝜔) =

𝑛

∑

𝑗=1

(𝐿 (𝑟
(𝑘)

𝑖𝑗
) 𝜔
(𝑘)

𝑖𝑗
)
2

, 𝑖 = 1, 2, . . . , 𝑚

s.t. 𝜔
(𝑘)

∈ H,

𝑛

∑

𝑗=1

𝜔
(𝑘)

𝑖𝑗
= 1, 𝜔

(𝑘)

𝑖𝑗
⩾ 0, 𝑗 = 1, 2, . . . , 𝑛,

(22)

where

𝐿 (𝑟
(𝑘)

𝑖𝑗
) =

𝜇
(𝑘)

𝑖𝑗
+ 𝜇
(𝑘)

𝑖𝑗
− ](𝑘)
𝑖𝑗

(1 − 𝜇
(𝑘)

𝑖𝑗
) − ](𝑘)
𝑖𝑗

(1 − 𝜇
(𝑘)

𝑖𝑗
)

2
,

(23)

is the score of interval-valued intuitionistic fuzzy number 𝑟
(𝑘)

𝑖𝑗

given by [52]. Solve mathematical model (Model-1) by means
of Lagrange multiplier method.

Let 𝜆 be Lagrange multiplier and construct Lagrange
function as

𝐹 (𝑥
𝑖
, 𝜆) = 𝑥

𝑖
(𝜔) + 𝜆 (

𝑛

∑

𝑗=1

𝜔
(𝑘)

𝑖𝑗
− 1)

=

𝑛

∑

𝑗=1

(𝐿 (𝑟
(𝑘)

𝑖𝑗
) 𝜔
(𝑘)

𝑖𝑗
)
2

+ 𝜆 (

𝑛

∑

𝑗=1

𝜔
(𝑘)

𝑖𝑗
− 1) .

(24)

Differentiating (24) we have that

𝜕𝐹 (𝑥
𝑖
, 𝜆)

𝜕𝜔
(𝑘)

𝑖𝑗

= 2(𝐿 (𝑟
(𝑘)

𝑖𝑗
))
2

𝜔
(𝑘)

𝑖𝑗
+ 𝜆 = 0. (25)

With constraint condition ∑
𝑛

𝑗=1
𝜔
(𝑘)

𝑖𝑗
= 1, we have

𝜆 = −
1

∑
𝑛

𝑗=1
(1/2(𝐿 (𝑟

(𝑘)

𝑖𝑗
))
2

)

. (26)

Taking (26) into (25), we can get that

𝜔
(𝑘)

𝑖𝑗
=

1

(𝐿 (𝑟
(𝑘)

𝑖𝑗
))
2

1

∑
𝑛

𝑗=1
(1/(𝐿 (𝑟

(𝑘)

𝑖𝑗
))
2

)
(27)

for 𝑖 = 1, 2, . . . , 𝑚. From above, we obtain the weighted
vector of criteria at each time episode with respect to every
alternative.

3.3. Procedures for Multicriteria Decision Making. Based
on aforementioned analysis, in what follows we propose
an approach to dynamic multicriteria decision making for
hybrid evaluation information. Given that the dynamic
multicriteria decision making problem about 𝑚 alternatives
with 𝑛 criteria at 𝑝 time episodes is depicted as flow chart
(i.e., (16)), then the procedure for decision making can be
constructed as follows.

Step 1. Utilize (18)–(20) to compute𝜔
(𝑘)

𝑗
, where 𝑘 = 1, 2, . . . , 𝑝

and 𝑗 = 1, 2, . . . , 𝑛.

Step 2. Aggregate 𝑟
(𝑘)

𝑖𝑗
into 𝑟

𝑖𝑗
for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 =

1, 2, . . . , 𝑛, where

𝑟
𝑖𝑗

=

𝑝

∑

𝑘=1

𝜔
(𝑘)

𝑗
𝑟
(𝑘)

𝑖𝑗
, (28)

if 𝑟
(𝑘)

𝑖𝑗
is a real number; and

𝑟
𝑖𝑗

= IFWA
𝜔
𝑗

(𝑟
(1)

𝑖𝑗
, 𝑟
(2)

𝑖𝑗
, . . . , 𝑟

(𝑝)

𝑖𝑗
)

= (1 −

𝑝

∏

𝑘=1

(1 − 𝜇
(𝑘)

𝑖𝑗
)
𝜔
(𝑘)

𝑗

,

𝑝

∏

𝑘=1

(](𝑘)
𝑖𝑗

)
𝜔
(𝑘)

𝑗

)

(29)

or

𝑟
𝑖𝑗

= IFWG
𝜔
𝑗

(𝑟
(1)

𝑖𝑗
, 𝑟
(2)

𝑖𝑗
, . . . , 𝑟

(𝑝)

𝑖𝑗
)

= (

𝑝

∏

𝑘=1

(𝜇
(𝑘)

𝑖𝑗
)
𝜔
(𝑘)

𝑗

, 1 −

𝑝

∏

𝑘=1

(1 − ](𝑘)
𝑖𝑗

)
𝜔
(𝑘)

𝑗

)

(30)

if 𝑟
(𝑘)

𝑖𝑗
is an intuitionistic fuzzy number; and

𝑟
𝑖𝑗

= IIFWA
𝜔
𝑗

(𝑟
(1)

𝑖𝑗
, 𝑟
(2)

𝑖𝑗
, . . . , 𝑟

(𝑝)

𝑖𝑗
)

= ([1 −

𝑝

∏

𝑘=1

(1 − 𝜇
(𝑘)

𝑖𝑗
)

𝜔
(𝑘)

𝑗

, 1 −

𝑝

∏

𝑘=1

(1 − 𝜇
(𝑘)

𝑖𝑗
)
𝜔
(𝑘)

𝑗

] ,

[

𝑝

∏

𝑘=1

(](𝑘)
𝑖𝑗

)
𝜔
(𝑘)

𝑗

,

𝑝

∏

𝑘=1

(](𝑘)
𝑖𝑗

)
𝜔
(𝑘)

𝑗

])

(31)

or

𝑟
𝑖𝑗

= IIFWG
𝜔
𝑗

(𝑟
(1)

𝑖𝑗
, 𝑟
(2)

𝑖𝑗
, . . . , 𝑟

(𝑝)

𝑖𝑗
)

= ([

𝑝

∏

𝑘=1

(𝜇
(𝑘)

𝑖𝑗
)

𝜔
(𝑘)

𝑗

,

𝑝

∏

𝑘=1

(𝜇
(𝑘)

𝑖𝑗
)
𝜔
(𝑘)

𝑗

] ,

[1 −

𝑝

∏

𝑘=1

(1 − ](𝑘)
𝑖𝑗

)
𝜔
(𝑘)

𝑗

, 1 −

𝑝

∏

𝑘=1

(1 − ](𝑘)
𝑖𝑗

)
𝜔
(𝑘)

𝑗

])

(32)

if 𝑟
(𝑘)

𝑖𝑗
is an interval-valued intuitionistic fuzzy number. And

denote the final evaluation information by 𝑅 = (𝑟
𝑖𝑗
)
𝑚×𝑛

.
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Table 1: Evaluation information at 𝑡
1
time episode.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

([0.5, 0.7], [0.2, 0.3]) 0.7 (0.8, 0.1) (0.4, 0.4)
𝑥
2

([0.6, 0.8], [0.1, 0.2]) 0.6 (0.7, 0.0) (0.5, 0.2)
𝑥
3

([0.3, 0.5], [0.1, 0.2]) 0.6 (0.6, 0.4) (0.4, 0.5)
𝑥
4

([0.5, 0.6], [0.1, 0.2]) 0.5 (0.3, 0.5) (0.7, 0.1)
𝑥
5

([0.4, 0.5], [0.0, 0.1]) 0.8 (0.5, 0.2) (0.8, 0.1)

Table 2: Evaluation information at 𝑡
2
time episode.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

([0.6, 0.7], [0.1, 0.2]) 0.8 (0.6, 0.0) (0.5, 0.4)
𝑥
2

([0.6, 0.7], [0.2, 0.3]) 0.5 (0.8, 0.1) (0.5, 0.3)
𝑥
3

([0.4, 0.5], [0.2, 0.3]) 0.6 (0.5, 0.4) (0.4, 0.6)
𝑥
4

([0.5, 0.5], [0.0, 0.2]) 0.6 (0.4, 0.6) (0.8, 0.1)
𝑥
5

([0.4, 0.6], [0.2, 0.3]) 0.7 (0.6, 0.4) (0.7, 0.2)

Step 3. Transform 𝑟
𝑖𝑗
for 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛

obtained from (28)–(32) into interval-valued intuitionistic
fuzzy matrix 𝑅̃ = (𝑟

𝑖𝑗
)
𝑚×𝑛

, where 𝑟
𝑖𝑗
is the interval-valued

information fuzzy number of 𝑟
𝑖𝑗
as (8)–(10) depicted.

Step 4. Calculate the score matrix of 𝑅̃ by (23) and it is
denoted by 𝑆(𝑅̃).

Step 5. Calculate weights of criteria for each alternative by
(27), with respect to the final evaluation information matrix
𝑅̃ and it is denoted by Λ = (𝜆

𝑖𝑗
)
𝑚×𝑛

.

Step 6. Calculate PIS and NIS of 𝑅̃ according to (4) and it is
denoted by

PIS = (𝑟
+

1
, 𝑟
+

2
, . . . , 𝑟

+

𝑛
) , NIS = (𝑟

−

1
, 𝑟
−

2
, . . . , 𝑟

−

𝑛
) , (33)

where 𝑟
+

𝑗
= ([𝑎
+

𝑗
, 𝑏
+

𝑗
], [𝑐
+

𝑗
, 𝑑
+

𝑗
]) and 𝑟

−

𝑗
=([𝑎
−

𝑗
, 𝑏
−

𝑗
], [𝑐
−

𝑗
, 𝑑
−

𝑗
]) for

𝑗 = 1, 2, . . . , 𝑛.

Step 7. Calculate weighted evaluation information 𝑅̃
Λ

=

(𝑟
∗

𝑖𝑗
)
𝑚×𝑛

, where

𝑟
∗

𝑖𝑗
= 𝜆
𝑖𝑗
𝑟
𝑖𝑗

= 𝜆
𝑖𝑗

([𝜇
𝑖𝑗
, 𝜇
𝑖𝑗
] , []
𝑖𝑗
, ]
𝑖𝑗
])

= ([1 − (1 − 𝜇
𝑖𝑗
)

𝜆
𝑖𝑗

, 1 − (1 − 𝜇
𝑖𝑗
)
𝜆
𝑖𝑗

] , []
𝜆
𝑖𝑗

𝑖𝑗
, ]
𝜆
𝑖𝑗

𝑖𝑗
])

= ([𝜇
∗

𝑖𝑗
, 𝜇
∗

𝑖𝑗
] , []∗
𝑖𝑗
, ]∗
𝑖𝑗
]) .

(34)

Step 8. Calculate the distances 𝐷
+

𝑖
and 𝐷

−

𝑖
for 𝑖 = 1, 2, . . . , 𝑚

by

𝐷
+

𝑖
=

𝐶
𝑖
(𝑥
𝑖
,PIS)

√𝑇
𝑖
(𝑥
𝑖
) 𝑇
𝑖
(PIS)

,

Table 3: Evaluation information at 𝑡
3
time episode.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

([0.5, 0.7], [0.2, 0.3]) 0.7 (0.7, 0.1) (0.4, 0.4)
𝑥
2

([0.6, 0.7], [0.1, 0.2]) 0.6 (0.9, 0.1) (0.5, 0.4)
𝑥
3

([0.5, 0.6], [0.2, 0.3]) 0.7 (0.4, 0.5) (0.4, 0.5)
𝑥
4

([0.5, 0.6], [0.1, 0.2]) 0.8 (0.5, 0.4) (0.6, 0.2)
𝑥
5

([0.5, 0.6], [0.1, 0.3]) 0.6 (0.5, 0.3) (0.8, 0.1)

Table 4: Evaluation information at 𝑡
4
time episode.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

([0.7, 0.7], [0.2, 0.3]) 0.6 (0.8, 0.1) (0.5, 0.4)
𝑥
2

([0.6, 0.8], [0.1, 0.2]) 0.7 (0.8, 0.0) (0.5, 0.3)
𝑥
3

([0.4, 0.6], [0.1, 0.3]) 0.8 (0.6, 0.3) (0.5, 0.4)
𝑥
4

([0.4, 0.7], [0.1, 0.3]) 0.5 (0.6, 0.2) (0.7, 0.1)
𝑥
5

([0.4, 0.5], [0.1, 0.2]) 0.7 (0.6, 0.3) (0.7, 0.2)

Table 5: Evaluation information at 𝑡
5
time episode.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

([0.6, 0.7], [0.1, 0.3]) 0.8 (0.7, 0.0) (0.6, 0.3)
𝑥
2

([0.6, 0.7], [0.2, 0.2]) 0.9 (0.7, 0.1) (0.6, 0.2)
𝑥
3

([0.5, 0.5], [0.4, 0.5]) 0.7 (0.6, 0.4) (0.5, 0.5)
𝑥
4

([0.6, 0.8], [0.1, 0.2]) 0.7 (0.5, 0.3) (0.7, 0.2)
𝑥
5

([0.6, 0.7], [0.1, 0.2]) 0.6 (0.5, 0.3) (0.8, 0.1)

Table 6: Weights of criteria at each time episode.

𝜔
(𝑘)

𝑗
𝑡
1

𝑡
2

𝑡
3

𝑡
4

𝑐
5

𝑐
1

0.2026 0.1834 0.1967 0.2017 0.2156
𝑐
2

0.1905 0.1905 0.2024 0.1964 0.2202
𝑐
3

0.1847 0.1847 0.2166 0.2166 0.1974
𝑐
4

0.1806 0.2222 0.2222 0.1944 0.1806

𝐷
−

𝑖
=

𝐶
𝑖
(𝑥
𝑖
,NIS)

√𝑇
𝑖
(𝑥
𝑖
) 𝑇
𝑖
(NIS)

,

(35)

where

𝐶
𝑖
(𝑥
𝑖
,PIS) =

𝑛

∑

𝑗=1

{𝜇
∗

𝑖𝑗
𝑎
+

𝑗
+ 𝜇
∗

𝑖𝑗
𝑏
+

𝑗
+ ]∗
𝑖𝑗
𝑐
+

𝑗
+ ]∗
𝑖𝑗
𝑑
+

𝑗

+ (1 − 𝜇
∗

𝑖𝑗
− ]∗
𝑖𝑗
) (1 − 𝑎

+

𝑗
− 𝑐
+

𝑗
)

+ (1 − 𝜇
∗

𝑖𝑗
− ]∗
𝑖𝑗
) (1 − 𝑏

+

𝑗
− 𝑑
+

𝑗
) } ,

𝐶
𝑖
(𝑥
𝑖
,NIS) =

𝑛

∑

𝑗=1

{𝜇
∗

𝑖𝑗
𝑎
−

𝑗
+ 𝜇
∗

𝑖𝑗
𝑏
−

𝑗
+ ]∗
𝑖𝑗
𝑐
−

𝑗
+ ]∗
𝑖𝑗
𝑑
−

𝑗

+ (1 − 𝜇
∗

𝑖𝑗
− ]∗
𝑖𝑗
) (1 − 𝑎

−

𝑗
− 𝑐
−

𝑗
)

+ (1 − 𝜇
∗

𝑖𝑗
− ]∗
𝑖𝑗
) (1 − 𝑏

−

𝑗
− 𝑑
−

𝑗
) }

(36)
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Table 7: Final evaluation information 𝑅.

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

([0.5918, 0.7047], [0.1479, 0.2720]) 0.7214 (0.7014, 0.0000) (0.4514, 0.4150)
𝑥
2

([0.5684, 0.7143], [0.1516, 0.2462]) 0.6666 (0.7688, 0.0000) (0.5594, 0.2337)
𝑥
3

([0.4195, 0.5368], [0.1792, 0.3124]) 0.6815 (0.5752, 0.3656) (0.4772, 0.4588)
𝑥
4

([0.5070, 0.6594], [0.0000, 0.2141]) 0.6238 (0.4967, 0.3435) (0.6967, 0.1396)
𝑥
5

([0.4921, 0.6164], [0.0000, 0.1809]) 0.6768 (0.5380, 0.2977) (0.7203, 0.1606)

Table 8: Interval-valued intuitionistic fuzzy evaluation information 𝑅̃.

𝑐
1

𝑐
2

𝑥
1

([0.5918, 0.7047], [0.1479, 0.2720]) ([0.7214, 0.7214], [0.2786, 0.2786])
𝑥
2

([0.5684, 0.7143], [0.1516, 0.2462]) ([0.6666, 0.6666], [0.3334, 0.3334])
𝑥
3

([0.4195, 0.5368], [0.1792, 0.3124]) ([0.6815, 0.6815], [0.3185, 0.3185])
𝑥
4

([0.5070, 0.6594], [0.0000, 0.2141]) ([0.6238, 0.6238], [0.3762, 0.3762])
𝑥
5

([0.4921, 0.6164], [0.0000, 0.1809]) ([0.6768, 0.6768], [0.3232, 0.3232])
𝑐
3

𝑐
4

𝑥
1

([0.5918, 0.7047], [0.1479, 0.2720]) ([0.7214, 0.7214], [0.2786, 0.2786])
𝑥
2

([0.5684, 0.7143], [0.1516, 0.2462]) ([0.6666, 0.6666], [0.3334, 0.3334])
𝑥
3

([0.4195, 0.5368], [0.1792, 0.3124]) ([0.6815, 0.6815], [0.3185, 0.3185])
𝑥
4

([0.5070, 0.6594], [0.0000, 0.2141]) ([0.6238, 0.6238], [0.3762, 0.3762])
𝑥
5

([0.4921, 0.6164], [0.0000, 0.1809]) ([0.6768, 0.6768], [0.3232, 0.3232])

Table 9: 𝑆(𝑅̃): score of 𝑅̃.

𝐿(𝑟
𝑖𝑗
) 𝑐

1
𝑐
2

𝑐
3

𝑐
4

𝑥
1

0.5779 0.6438 0.7014 0.2237
𝑥
2

0.5735 0.5554 0.7688 0.4564
𝑥
3

0.3538 0.5801 0.4199 0.2373
𝑥
4

0.5467 0.4823 0.3238 0.6544
𝑥
5

0.5196 0.5723 0.4005 0.6754

and 𝑇
𝑖
(𝑥
𝑖
) = 𝐶
𝑖
(𝑥
𝑖
, 𝑥
𝑖
), 𝑇
𝑖
(PIS) = 𝐶

𝑖
(PIS,PIS), and 𝑇

𝑖
(NIS) =

𝐶
𝑖
(NIS,NIS).

Step 9. Utilize (6) to calculate the trade-off performance of
each alternative 𝑥

𝑖
for 𝑖 = 1, 2, . . . , 𝑚.

Step 10. Rank 𝐷
𝑖
and select the best alternative.

4. Illustrative Example

In this section, we use a synthetic dynamic database with
hybrid evaluation information to illustrate the proposed
multicriteria decision making method.

Given that a university wants to select the most desirable
candidate from candidates 𝑥

1
, 𝑥
2
, . . . , 𝑥

5
to attend a special

meeting, one of the problems facing the president of the
university is to determine how to make a reasonable decision
making analysis. The candidates are evaluated by experts
from four aspects: level of their scientific research (𝑐

1
),

social resource (𝑐
2
), teaching performance (𝑐

3
), and level of

subhealth (𝑐
4
), where 𝑐

1
, 𝑐
2
, and 𝑐

3
are beneficial criteria and 𝑐

4

is the cost criterion,where (1) the evaluation information of 𝑐
1

Table 10: 𝑆(𝑅̃): score of 𝑅̃.

𝜆
𝑖𝑗

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑥
1

0.1092 0.0880 0.0741 0.7287
𝑥
2

0.2380 0.2538 0.1324 0.3758
𝑥
3

0.2323 0.0864 0.1649 0.5164
𝑥
4

0.1714 0.2203 0.4887 0.1196
𝑥
5

0.2439 0.2011 0.4106 0.1444

is expressed as interval-valued intuitionistic fuzzy numbers;
(2) the evaluation information of 𝑐

2
is expressed as real

numbers; and (3) the evaluation information of 𝑐
3
and 𝑐
4

is expressed as intuitionistic fuzzy numbers. All of these
evaluation information for each candidate are gathered up
separately from five periods and shown in Tables 1, 2, 3, 4,
and 5.

In what follows we make a detailed description of the
dynamic multicriteria decision making with above database.

Step 1. Compute 𝜔
(𝑘)

𝑗
for 𝑘 = 1, 2, . . . , 5 and 𝑗 = 1, 2, 3, 4 by

the aggregation operators IFWA
𝜂
and IIFWA

𝜂
. Here we treat

all alternatives without distinction, and the corresponding
computing results can be found in Table 6.

Step 2. Aggregate 𝑟
(𝑘)

𝑖𝑗
into 𝑟

𝑖𝑗
, and Table 7 illustrates the

corresponding aggregation results.

Step 3. Change 𝑅 into interval-valued intuitionistic fuzzy
matrix and show it in Table 8.
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Table 11: Weighted evaluation information of 𝑅̃.

𝑐
1

𝑐
2

𝑥
1

([0.0932, 0.1247], [0.8116, 0.8675]) ([0.1064, 0.1064], [0.8936, 0.8936])
𝑥
2

([0.1813, 0.2578], [0.6383, 0.7164]) ([0.2433, 0.2433], [0.7567, 0.7567])
𝑥
3

([0.1187, 0.1637], [0.6707, 0.7632]) ([0.0941, 0.0941], [0.9059, 0.9059])
𝑥
4

([0.1142, 0.1686], [0.0000, 0.7678]) ([0.1938, 0.1938], [0.8062, 0.8062])
𝑥
5

([0.1523, 0.2084], [0.0000, 0.6590]) ([0.2032, 0.2032], [0.7968, 0.7968])
𝑐
3

𝑐
4

𝑥
1

([0.0857, 0.0857], [0.0000, 0.0000]) ([0.3544, 0.3544], [0.5268, 0.5268])
𝑥
2

([0.1763, 0.1763], [0.0000, 0.0000]) ([0.2651, 0.2651], [0.5791, 0.5791])
𝑥
3

([0.1317, 0.1317], [0.8471, 0.8471]) ([0.2846, 0.2846], [0.6687, 0.6687])
𝑥
4

([0.2850, 0.2850], [0.5932, 0.5932]) ([0.1330, 0.1330], [0.7902, 0.7902])
𝑥
5

([0.2717, 0.2717], [0.6080, 0.6080]) ([0.1680, 0.1680], [0.7679, 0.7679])

Step 4. Calculate the score matrix of 𝑅̃ which is illustrated in
Table 9.

Step 5. Calculate Λ = (𝜆
𝑖𝑗
)
𝑚×𝑛

by (27) and Table 10 shows the
corresponding results.

Step 6. Calculate PIS and NIS of 𝑅̃:

PIS = (𝑟
+

1
, 𝑟
+

2
, 𝑟
+

3
, 𝑟
+

4
)

= (([1, 1] , [0, 0]) , ([1, 1] , [0, 0]) ,

([1, 1] , [0, 0]) , ([0, 0] , [1, 1])) ,

NIS = (𝑟
−

1
, 𝑟
−

2
, 𝑟
−

3
, 𝑟
−

4
)

= (([0, 0] , [1, 1]) , ([0, 0] , [1, 1]) ,

([0, 0] , [1, 1]) , ([1, 1] , [0, 0])) .

(37)

Step 7. Calculate weighted evaluation information 𝑅̃
Λ
which

is illustrated in Table 11.

Step 8. Calculate the distances from each alternative to PIS as
well as NIS:

𝐷
+

= (𝐷
+

1
, 𝐷
+

2
, 𝐷
+

3
, 𝐷
+

4
, 𝐷
+

5
)

= (0.2973, 0.4848, 0.3194, 0.4892, 0.5047) ,

𝐷
−

= (𝐷
−

1
, 𝐷
−

2
, 𝐷
−

3
, 𝐷
−

4
, 𝐷
−

5
)

= (0.7497, 0.6762, 0.8494, 0.6646, 0.6746) .

(38)

Step 9. Calculate 𝐷
𝑖
for each alternative:

(𝐷
1
, 𝐷
2
, 𝐷
3
, 𝐷
2
, 𝐷
4
, 𝐷
5
)

= (0.7160, 0.5824, 0.7267, 0.5761, 0.5721) .

(39)

Step 10. Rank the performance order of alternative as 𝐷
5

≺

𝐷
4

≺ 𝐷
2

≺ 𝐷
1

≺ 𝐷
3
and we have that the most desirable

alternative is 𝑥
3
.

5. Conclusions

In this paper, a multicriteria decision making algorithm with
respect to hybrid evaluation information has been proposed.
This decision making approach aims at selecting the most
desirable patterns(s) from a group of evaluation information,
where the evaluation information are gathered from different
time episodes and different criteria usually have different
representations, such as real number, intuitionistic fuzzy
number, interval-valued intuitionistic fuzzy number, and
so forth. The experimental results show that the proposed
decision making approach is feasible and effective. Since, for
decision making problem, the concrete data representation
of evaluation information, to some extent, can directly deter-
mine the decision approach selection, our proposed approach
can enrich the study in the area of diversifying patterns’
data representation. However, our proposed algorithm is
incapable of handling the decision making problems with
missing evaluation information, especially for the case that
patterns in different time episode are depicted by different
amount of criteria. Bearing these facts in mind, it deserves
further investigation for the dynamic multicriteria decision
making problem with hybrid evaluation information.
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