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Some generalized forms of the hyperideals of a hyperring in the paper of Zhan et al. (2008) will be given. As a generalization of
the interval valued (𝛼, 𝛽)-fuzzy hyperideals of a hyperring with 𝛼, 𝛽 ∈ {∈, 𝑞, ∈ ∧𝑞, ∈ ∨𝑞} and 𝛼 ̸= ∈ ∧𝑞, the notion of generalized
interval valued (𝛼, 𝛽)-fuzzy hyperideals of a hyperring is also introduced. Special attention is concentrated on the interval valued
(∈
𝛾

, ∈
𝛾

∨𝑞
̃

𝛿

)-fuzzy hyperideals. As a consequence, some characterizations theorems of interval valued (∈
𝛾

, ∈
𝛾

∨𝑞
̃

𝛿

)-fuzzy hyperideals
will be provided.

1. Introduction

The concept of hyperstructure was first introduced by Marty
[1] in 1934. People later observed that hyperstructures have
many applications in pure and applied sciences. A compre-
hensive review of hyperstructures can be found in [2, 3].
In a recent monograph of Corsini and Leoreanu [4], the
authors have collected numerous applications of algebraic
hyperstructures, especially those from the last decade to the
following subjects: geometry, hypergraphs, binary relations,
lattices, fuzzy sets and rough sets, automata, cryptography,
codes, median algebras, relation algebras, artificial intelli-
gence, and probabilities.

After introducing the concept of fuzzy sets of Zadeh
in 1965 (see [5]), there are many papers devoted to fuzzify
the classical mathematics into fuzzy mathematics. The rela-
tionships between the fuzzy sets and algebraic hyperstruc-
tures (structures) have been considered by Corsini, Davvaz,
Kehagias, Leoreanu, Yin, Zahedi, Zhan, and others. The
reader is referred to the papers [6–24]. By using the notion
“belongingness (∈)” and “quasicoincidence (𝑞)” of a fuzzy
point with a fuzzy set introduced by Pu and Liu [25], the
concept of (𝛼, 𝛽)-fuzzy subgroups, where 𝛼, 𝛽 are any two

in {∈, 𝑞, ∈ ∨ 𝑞, ∈ ∧ 𝑞} with 𝛼 ̸= ∈ ∧ 𝑞, was introduced by
Bhakat and Das [26] in 1992, in which they first generalized
Rosenfeld’s fuzzy subgroup [27]. The detailed study of (∈

, ∈ ∨ 𝑞)-fuzzy subgroups has been considered by Bhakat
and Das in [28] and Bhakat in [29, 30]. The concept of the
(∈, ∈ ∨ 𝑞)-fuzzy subhyperquasigroups of hyperquasigroups
was introduced by Davvaz and Corsini [12]. By using the idea
of “quasicoincidence” of a fuzzy interval valuewith an interval
valued fuzzy set, Zhan et al. [21] introduced and investigated
the notion of interval valued (𝛼, 𝛽)-fuzzy hyperideals of a
hyperring.

As a generalization of the concepts of “belongingness
(∈)” and “quasicoincidence (𝑞)” of a fuzzy point with a
fuzzy set introduced by Pu and Liu [25], Yin and Zhan [31]
introduced the concept of “𝛾-belongingness (∈

𝛾

)” and “𝛿-
quasicoincidence (𝑞

𝛿

)” of a fuzzy point with a fuzzy set.
Using these new concepts, Yin and Zhan [31] introduced
the concepts of (𝛼, 𝛽)-fuzzy (implicative, positive implicative,
and fantastic) filters and (𝛽, 𝛼)-fuzzy (implicative, positive
implicative, and fantastic) filters of BL-algebras, where 𝛼, 𝛽 ∈

{∈
𝛾

, 𝑞
𝛿

, ∈
𝛾

∧ 𝑞
𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

}, 𝛼, 𝛽 ∈ {∈
𝛾

, 𝑞
𝛿

, ∈
𝛾

∧ 𝑞
𝛿

, ∈
𝛾

∨ 𝑞
𝛿

},
𝛼 ̸= ∈
𝛾

∧ 𝑞
𝛿

, and 𝛽 ̸= ∈
𝛾

∧ 𝑞
𝛿

, and some related properties
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were investigated. This idea is continued and studied by Ma
et al. [32], Ma and Zhan [33], Yin and Zhan [34], and so
on. Following this idea, in this paper, we will give some of
the generalized forms of the interval fuzzy hyperideals given
by Zhan et al. in [21]. The notion of generalized interval
valued (𝛼, 𝛽)-fuzzy hyperideals is introduced which is the
generalization of the notion of interval valued (𝛼, 𝛽)-fuzzy
hyperideals. Special attention will be paid to the interval
valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideals. It is noteworthy that
the notion of an interval valued (𝛼, 𝛽)-fuzzy hyperideal is
a special generalized interval valued (𝛼, 𝛽)-fuzzy hyperideal
and hence many results in [21] will become easy corollaries
of our results given in this paper.

2. Hyperrings

We first recall that a hyperstructure is a nonempty set 𝐻

together with a mapping “∘”: 𝐻 × 𝐻 → P∗(𝐻), where
P∗(𝐻) is the set of all nonempty subsets of 𝐻, written as
(𝑥, 𝑦) → 𝑥 ∘ 𝑦. We note that if 𝑥 ∈ 𝐻 and 𝐴, 𝐵 are nonempty
subsets of 𝐻, then by 𝐴 ∘ 𝐵 𝐴 ∘ 𝑥 and 𝑥 ∘ 𝐵, we mean that
𝐴 ∘ 𝐵 = ⋃

𝑎∈𝐴,𝑏∈𝐵

𝑎 ∘ 𝑏, 𝐴 ∘ 𝑥 = 𝐴 ∘ {𝑥} and 𝑥 ∘ 𝐵 = {𝑥} ∘ 𝐵,
respectively.

Now, we call a hyperstructure (𝐻, ∘) a canonical hyper-
group [35] if the following axioms are satisfied:

(1) for every 𝑥, 𝑦, 𝑧 ∈ 𝐻, (𝑥 ∘ 𝑦) ∘ 𝑧 = 𝑥 ∘ (𝑦 ∘ 𝑧);
(2) for every 𝑥, 𝑦 ∈ 𝐻, 𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥;
(3) there is a unique 0 ∈ 𝐻 such that 0 ∘ 𝑥 = 𝑥, for all

𝑥 ∈ 𝐻;
(4) for every 𝑥 ∈ 𝐻, there exists a unique element 𝑥 ∈ 𝐻

such that 0 ∈ 𝑥∘𝑥 (we call the element𝑥 the opposite
of 𝑥).

Definition 1 (see [36]). A hyperring is an algebraic structure
(𝑅, +, ⋅) which satisfies the following axioms.

(1) (𝑅, +) is a canonical hypergroup (we will write −𝑥 for
𝑥).

(2) (𝑅, ⋅) is a semigroup having zero as a bilaterally
absorbing element.

(3) The multiplication is distributive with respect to the
hyperoperation “+.”

Let (𝑅, +, ⋅) be a hyperring and let𝐴 be a nonempty subset
of 𝑅. Then 𝐴 is called a subhyperring of 𝑅 if (𝐴, +, ⋅) itself
is a hyperring. In what follows, let 𝑅 denote a hyperring
unless otherwise stated.𝐴 subhyperring𝐴 of 𝑅 is a left (right)
hyperideal of 𝑅 if 𝑟𝑎 ∈ 𝐴 (𝑎𝑟 ∈ 𝐴), for all 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴.
𝐴 subhyperring 𝐴 is called a hyperideal if 𝐴 is both left and
right hyperideal.

3. Interval Valued Fuzzy Sets

By an interval number 𝑎 [37], we mean an interval [𝑎−, 𝑎+],
where 0 ≤ 𝑎− ≤ 𝑎+ ≤ 1. The set of all interval numbers is
denoted by𝐷[0, 1].The interval [𝑎, 𝑎] can be simply identified

by the number 𝑎. For the interval numbers 𝑎
𝑖

= [𝑎−
𝑖

, 𝑎+
𝑖

], �̃�
𝑖

=

[𝑏−
𝑖

, 𝑏+
𝑖

] ∈ 𝐷[0, 1], 𝑖 ∈ 𝐼, where 𝐼 is an index set, we define

rmax {𝑎
𝑖

, �̃�
𝑖

} = [max (𝑎−
𝑖

, 𝑏
−

𝑖

) ,max (𝑎+
𝑖

, 𝑏
+

𝑖

)] ,

rmin {𝑎
𝑖

, �̃�
𝑖

} = [min (𝑎
−

𝑖

, 𝑏
−

𝑖

) ,min (𝑎
+

𝑖

, 𝑏
+

𝑖

)] ,

⋁
𝑖∈𝐼

𝑎
𝑖

= [⋁
𝑖∈𝐼

𝑎
−

𝑖

,⋁
𝑖∈𝐼

𝑎
+

𝑖

] ,

⋀
𝑖∈𝐼

𝑎
𝑖

= [⋀
𝑖∈𝐼

𝑎
−

𝑖

,⋀
𝑖∈𝐼

𝑎
+

𝑖

] .

(1)

For any intervals 𝑎 = [𝑎−, 𝑎+] and �̃� = [𝑏−, 𝑏+], where
0 ≤ 𝑎− ≤ 𝑎+ and 0 ≤ 𝑏− ≤ 𝑏+, we define

𝑎 + �̃� = [𝑎
−

+ 𝑏
−

, 𝑎
+

+ 𝑏
+

] ,

𝑎 − �̃� = [𝑎
−

− 𝑏
−

, 𝑎
+

− 𝑏
+

] , whenever 𝑎
−

≤ 𝑏
−

, 𝑎
+

≤ 𝑏
+

,

𝑘𝑎 = [𝑘𝑎
−

, 𝑘𝑎
+

] , whenever 𝑘 ≥ 0,

(2)

and we put

(i) 𝑎 ≤ �̃� ⇔ 𝑎− ≤ 𝑏− and 𝑎+ ≤ 𝑏+,
(ii) 𝑎 = �̃� ⇔ 𝑎− = 𝑏− and 𝑎+ = 𝑏+,
(iii) 𝑎 < �̃� ⇔ 𝑎 ≤ �̃� and 𝑎 ̸= �̃�.

Denote by 𝐷[0, 1] the set all of interval numbers such that
any two elements of 𝐷[0, 1] are comparable. Then, it is
clear that both (𝐷[0, 1], ≤, ∧ , ∨) and (𝐷[0, 1]



, ≤, ∧ , ∨) form
a complete lattice with 0 = [0, 0] as their least element and
1 = [1, 1] as their greatest element.

Recall that an interval valued fuzzy subset 𝐹 on 𝑋 is the
set

𝐹 = {(𝑥, [𝜇
−

𝐹

(𝑥) , 𝜇
+

𝐹

(𝑥)]) | 𝑥 ∈ 𝑋} , (3)

where 𝜇−
𝐹

and 𝜇+
𝐹

are two fuzzy subsets of𝑋 such that 𝜇−
𝐹

(𝑥) ≤

𝜇+
𝐹

(𝑥) for all 𝑥 ∈ 𝑋. Putting 𝜇
𝐹

(𝑥) = [𝜇−
𝐹

(𝑥), 𝜇+
𝐹

(𝑥)], we see
that 𝐹 = {(𝑥, 𝜇

𝐹

(𝑥)) | 𝑥 ∈ 𝑋}, where 𝜇
𝐹

: 𝑋 → 𝐷[0, 1].
Denote by IF(𝑋) the set of all interval valued fuzzy subsets of
𝑋 such that, for any 𝐹 ∈ IF(𝑋), Im𝐹 = {[𝜇

−

𝐹

(𝑥), 𝜇+
𝐹

(𝑥)] | 𝑥 ∈

𝑋} ⊆ 𝐷[0, 1].
If𝐹 and𝐺 are two interval valued fuzzy subsets of𝑋, then

we define
𝐹 ⊆ 𝐺 if and only if, for all 𝑥 ∈ 𝑋, 𝜇−

𝐹

(𝑥) ≤ 𝜇−
𝐺

(𝑥) and
𝜇+
𝐹

(𝑥) ≤ 𝜇+
𝐺

(𝑥),
𝐹 = 𝐺 if and only if, for all 𝑥 ∈ 𝑋, 𝜇−

𝐹

(𝑥) = 𝜇−
𝐺

(𝑥) and
𝜇+
𝐹

(𝑥) = 𝜇+
𝐺

(𝑥).
Also, the union and intersection are defined as follows:

𝐹 ∪ 𝐺 = {(𝑥, [max {𝜇−
𝐹

(𝑥) , 𝜇
−

𝐺

(𝑥)} ,

max {𝜇+
𝐹

(𝑥) , 𝜇
+

𝐺

(𝑥)}]) | 𝑥 ∈ 𝑋} ,

𝐹 ∩ 𝐺 = {(𝑥, [min {𝜇
−

𝐹

(𝑥) , 𝜇
−

𝐺

(𝑥)} ,

min {𝜇
+

𝐹

(𝑥) , 𝜇
+

𝐺

(𝑥)}]) | 𝑥 ∈ 𝑋} .

(4)
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An interval valued fuzzy subset 𝐹 of𝑋 of the form

𝜇
𝐹

(𝑦) = {
𝑟 ( ̸= [0, 0]) if 𝑦 = 𝑥,

[0, 0] otherwise,
(5)

is said to be a fuzzy interval value with support 𝑥 and interval
value 𝑟 and is denoted by 𝑈(𝑥; 𝑟).

Let 𝛾, 𝛿 ∈ 𝐷[0, 1] be such that 𝛾 < 𝛿. For a fuzzy interval
value 𝑈(𝑥; �̃�) and an interval valued fuzzy set 𝐹, we say that

(1) 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 if 𝜇
𝐹

(𝑥) ≥ 𝑟 > 𝛾;

(2) 𝑈(𝑥; 𝑟)𝑞
̃

𝛿

𝐹 if 𝜇
𝐹

(𝑥) + 𝑟 > 2𝛿;
(3) 𝑈(𝑥; 𝑟)∈

𝛾

∨ 𝑞
̃

𝛿

𝐹 if 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 or 𝑈(𝑥; 𝑟) 𝑞
̃

𝛿

𝐹;
(4) 𝑈(𝑥; 𝑟)∈

𝛾

∧ 𝑞
̃

𝛿

𝐹 if 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 and 𝑈(𝑥; 𝑟) 𝑞
̃

𝛿

𝐹;
(5) 𝑈(𝑥; 𝑟)𝛼 𝐹 if 𝑈(𝑥; 𝑟) 𝛼 𝐹 does not hold for 𝛼 ∈

{∈
𝛾

, 𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

, ∈
𝛾

∧ 𝑞
̃

𝛿

}.

Next we define a new ordering relation “⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

” on
IF(𝑋), which is called the interval valued fuzzy inclusion or
quasicoincidence relation, as follows.

For any 𝐹, 𝐺 ∈ IF(𝑋) and 𝛾, 𝛿 ∈ [0, 1] such that 𝛾 < 𝛿,
by 𝐹 ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

𝐺 we mean that 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 ⇒ 𝑈(𝑥; 𝑟)∈
𝛾

∨

𝑞
̃

𝛿

𝐺 for all 𝑥 ∈ 𝑋 and 𝛾 < 𝑟 ≤ [1, 1].
And we define a relation “≈” on IF(𝑋) as follows.
For any 𝐹, 𝐺 ∈ IF(𝑋), by 𝐹 ≈ 𝐺 we mean that 𝐹 ⊆

∨ 𝑞
(𝛾,

̃

𝛿)

𝐺 and 𝐺 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹.
In the sequel, unless otherwise stated, we let 𝑅 be a

hyperring, 𝛾, 𝛿 ∈ 𝐷[0, 1], such that 𝛾 < 𝛿 and denote by
⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

that ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

is not true. We also emphasize
that any interval valued fuzzy subset 𝐹 of 𝑋 must satisfy the
following conditions:

𝜇
𝐹

(𝑥) ≤ 𝛾 or 𝛾 < 𝜇
𝐹

(𝑥) and 𝜇
𝐹

(𝑥) ≤ 𝛿 or 𝛿 < 𝜇
𝐹

(𝑥) for
all 𝑥 ∈ 𝑋.

Lemma 2. Let 𝑋 be a nonempty set and 𝐹, 𝐺 ∈ IF(𝑋).
Then 𝐹 ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

𝐺 if and only if rmax {𝜇
𝐺

(𝑥), 𝛾} ≥

rmin {𝜇
𝐹

(𝑥), 𝛿} for all 𝑥 ∈ 𝑋.

Proof. Assume that 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐺. Let 𝑥 ∈ 𝑋. If
rmax{𝜇

𝐺

(𝑥), 𝛾} < rmin{𝜇
𝐹

(𝑥), 𝛿}, then there exists 𝑟 such
that rmax{𝜇

𝐺

(𝑥), 𝛾} < 𝑟 < rmin{𝜇
𝐹

(𝑥), 𝛿}; that is,
𝑈(𝑥; 𝑟)∈

𝛾

𝐹 but 𝑈(𝑥; 𝑟) ∈
𝛾

∨ 𝑞
̃

𝛿

𝐺, a contradiction. Hence
rmax{𝜇

𝐺

(𝑥), 𝛾} ≥ rmin{𝜇
𝐹

(𝑥), 𝛿}.
Conversely, assume that rmax{𝜇

𝐺

(𝑥), 𝛾} ≥ rmin{𝜇
𝐹

(𝑥), 𝛿}

for all 𝑥 ∈ 𝑋. If 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐺, then there exist 𝑥 ∈ 𝑋 and
𝑟 > 𝛾 such that 𝑈(𝑥; 𝑟)∈

𝛾

𝐹 but 𝑈(𝑥; 𝑟) ∈
𝛾

∨ 𝑞
̃

𝛿

𝐺, and so
𝜇
𝐹

(𝑥) ≥ 𝑟, 𝜇
𝐺

(𝑥) < 𝑟, and 𝜇
𝐺

(𝑥) + 𝑟 < 2𝛿. This gives that
rmax{𝜇

𝐺

(𝑥), 𝛾} < rmin{𝜇
𝐹

(𝑥), 𝛿}, a contradiction. Hence𝐹 ⊆

∨ 𝑞
(𝛾,

̃

𝛿)

𝐺.

Lemma 3. Let𝑋 be a nonempty set and 𝐹, 𝐺,𝐻 ∈ IF(𝑋) such
that 𝐹 ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

𝐺 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐻. Then 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐻.

Proof. It is straightforward by Lemma 2.

Note that Lemma 2 gives that 𝐹 ≈ 𝐺 if and only if
rmax{rmin{𝜇

𝐹

(𝑥), 𝛿}, 𝛾} = rmax{rmin{𝜇
𝐺

(𝑥), 𝛿}, 𝛾} for all
𝑥 ∈ 𝑋 and 𝐹, 𝐺 ∈ IF(𝑋), and it follows from Lemmas 2 and 3
that “≈” is an equivalence relation on IF(𝑋).

We now define some operations of interval valued fuzzy
subsets of 𝑅.

Definition 4. Let 𝐹, 𝐺 ∈ IF(𝑅). Define the sum and product
of 𝐹 and 𝐺, denoted by 𝐹 ⊕ 𝐺 and 𝐹 ⊗ 𝐺, by

𝜇
𝐹⊕𝐺

(𝑥) = ⋁
𝑥∈𝑦+𝑧

rmin {𝜇
𝐹

(𝑦) , 𝜇
𝐺

(𝑧)} ,

𝜇
𝐹⊗𝐺

(𝑥) =

{{{{{{

{{{{{{

{

⋁
𝑥=𝑦𝑧

rmin {𝜇
𝐹

(𝑦) , 𝜇
𝐺

(𝑧)}

if there exist 𝑦, 𝑧 ∈ 𝑅 such that 𝑥 = 𝑦𝑧

[0, 0]

otherwise,
(6)

for all 𝑥 ∈ 𝑅.

By Lemma 2 and Definition 4, we can easily deduce the
following results.

Lemma 5. Let 𝐹
1

, 𝐹
2

, 𝐺
1

, 𝐺
2

∈ IF(𝑅) be such that 𝐹
1

⊆

∨ 𝑞
(𝛾,

̃

𝛿)

𝐹
2

and 𝐺
1

⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐺
2

. Then

(1) 𝐹
1

⊕𝐺
1

⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹
2

⊕𝐺
2

, 𝐹
1

⊗𝐺
1

⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹
2

⊗𝐺
2

;

(2) 𝐹
1

∩ 𝐺
1

⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹
2

∩ 𝐺
2

.

Lemma 6. Let 𝐹, 𝐺,𝐻 ∈ IF(𝑅). Consider

(1) 𝐹 ⊕ 𝐺 = 𝐺 ⊕ 𝐹;
(2) 𝐹⊕(𝐺⊕𝐻) = (𝐹⊕𝐺)⊕𝐻, 𝐹⊗ (𝐺⊗𝐻) = (𝐹⊗𝐺)⊗𝐻;
(3) 𝐹⊕(𝐺∪𝐻) = 𝐹⊕𝐺∪𝐹⊕𝐻, 𝐹⊗(𝐺∪𝐻) = 𝐹⊗𝐺∪𝐹⊗𝐻;
(4) 𝐹⊕(𝐺∩𝐻) ⊆ 𝐹⊕𝐺∩𝐹⊕𝐻, 𝐹⊗(𝐺∩𝐻) ⊆ 𝐹⊗𝐺∩𝐹⊗𝐻.

Lemma 5 indicates that the equivalence relation “≈” is a
congruence relation on (IF(𝑅), ⊕).

4. Generalized Interval Valued
(𝛼,𝛽)-Fuzzy Hyperideals

In this section, we define and investigate generalized interval
valued (𝛼, 𝛽)-fuzzy hyperideals of a hyperring, where 𝛼 ∈

{∈
𝛾

, 𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

} and 𝛽 ∈ {∈
𝛾

, 𝑞
̃

𝛿

, ∈
𝛾

∧ 𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

}.

Definition 7. An interval valued fuzzy subset 𝐹 of 𝑅 is called
an interval valued (𝛼, 𝛽)-fuzzy hyperideal of 𝑅 if, for all 𝛾 <

𝑟 ≤ [1, 1], 𝛾 < �̃� ≤ [1, 1], and 𝑥, 𝑦 ∈ 𝑅:

(F1a) 𝑈(𝑥; 𝑟) 𝛼 𝐹 and𝑈(𝑦; �̃�) 𝛼 𝐹 ⇒ 𝑈(𝑧; rmin {𝑟, �̃�}) 𝛽 𝐹

for all 𝑧 ∈ 𝑥 + 𝑦;
(F2a) 𝑈(𝑥; 𝑟) 𝛼 𝐹 ⇒ 𝑈(−𝑥; 𝑟) 𝛽 𝐹 for all 𝑥 ∈ 𝑅;
(F3a) 𝑈(𝑥; 𝑟) 𝛼 𝐹 and 𝑈(𝑦; �̃�) 𝛼 𝐹 ⇒ 𝑈(𝑥𝑦; rmin {𝑟, �̃�})

𝛽 𝐹 for all 𝑥, 𝑦 ∈ 𝑅.
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An interval valued (𝛼, 𝛽)-fuzzy hyperideal with 𝛾 = [0, 0]

and 𝛿 = [0.5, 0.5] is called an interval valued (𝛼, 𝛽)-fuzzy
hyperideal studied in [21].

The case 𝛼 = ∈
𝛾

∧ 𝑞
𝛿

must be omitted since for an
interval valued fuzzy subset 𝐹 of 𝑅 such that 𝜇

𝐹

(𝑥) ≤ 𝛿 for
any 𝑥 ∈ 𝑅 in the case 𝑈(𝑥; 𝑟) ∈ ∧ 𝑞 𝐹 we have 𝜇

𝐹

(𝑥) ≥ 𝑟

and 𝜇
𝐹

(𝑥) + 𝑟 > 2𝛿. Thus 𝜇
𝐹

(𝑥) + 𝜇
𝐹

(𝑥) > 𝜇
𝐹

(𝑥) + 𝑟 > 2𝛿,
which implies 𝜇

𝐹

(𝑥) > 𝛿. This means that {𝑈(𝑥; 𝑟) : 𝑈(𝑥; 𝑟) ∈

∧ 𝑞 𝐹} = 0.
As it is not difficult to see, each interval valued (𝛼, 𝛽)-

fuzzy hyperideal of 𝑅 is an interval valued (𝛼, ∈
𝛾

∨ 𝑞
̃

𝛿

)-
fuzzy hyperideal of 𝑅. So, in the theory of interval valued
(𝛼, 𝛽)-fuzzy hyperideals the central role is played by interval
valued (𝛼, ∈

𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideals and we only need to
investigate the properties of interval valued (𝛼, ∈

𝛾

∨ 𝑞
̃

𝛿

)-
fuzzy hyperideals. In what follows, let 𝛼 ∈ {∈

𝛾

, 𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

}

unless otherwise specified.

Example 8. Let 𝑅 = {𝑎, 𝑏, 𝑐, 𝑑} be a set with a hyperoperation
“+” and a binary operation “⋅” as follows:

+ 𝑎 𝑏 𝑐 𝑑

𝑎 {𝑎} {𝑏} {𝑐} {𝑑}

𝑏 {𝑏} {𝑎, 𝑏} {𝑑} {𝑐}

𝑐 {𝑐} {𝑑} {𝑎, 𝑐} {𝑏}

𝑑 {𝑑} {𝑐} {𝑏} {𝑎, 𝑑} ,

(7)

⋅ 𝑎 𝑏 𝑐 𝑑

𝑎 {𝑎} {𝑎} {𝑎} {𝑎}

𝑏 {𝑎} {𝑏} {𝑏} {𝑏}

𝑐 {𝑎} {𝑐} {𝑐} {𝑐}

𝑑 {𝑎} {𝑑} {𝑑} {𝑑} .

(8)

Then (𝑅, +, ⋅) is a hyperring ([21]). Define an interval valued
fuzzy subset 𝐹 of 𝑅 by

𝜇
𝐹

(𝑎) = [0.6, 0.7] , 𝜇
𝐹

(𝑏) = [0.2, 0.4] ,

𝜇
𝐹

(𝑐) = [0.2, 0.4] , 𝜇
𝐹

(𝑑) = [0.2, 0.4] .
(9)

Then 𝐹 is an interval valued (𝛼, ∈
[0.2,0.4]

∨ 𝑞
[0.6,0.7]

)-fuzzy
hyperideal of 𝑅.

Proposition 9. An interval valued (∈
𝛾

∨ 𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal 𝐹 of 𝑅 is an interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal of 𝑅.

Proof. This is straightforward since 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 implies
𝑈(𝑥; 𝑟)∈

𝛾

∨ 𝑞
̃

𝛿

𝐹 for all 𝑥 ∈ 𝑅 and 𝛾 < 𝑟 ≤ [1, 1].

Proposition 10. Any interval valued (∈
𝛾

, ∈
𝛾

)-fuzzy hyperideal
𝐹 of 𝑅 is an interval valued (𝑞

̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of
𝑅.

Proof. This part is straightforward.

The following example shows that the converse of Propo-
sitions 9 and 10 may not be true in general.

Example 11. Consider Example 8. Define an interval valued
fuzzy subset 𝐹 of 𝑅 by

𝜇
𝐹

(𝑎) = [0.6, 0.7] , 𝜇
𝐹

(𝑏) = [0.7, 0.8] ,

𝜇
𝐹

(𝑐) = [0.3, 0.5] , 𝜇
𝐹

(𝑑) = [0.2, 0.4] .
(10)

Then

(1) it is routine to verify that 𝐹 is an (∈
[0.3,0.5]

; ∈
[0.3,0.5]

∨

𝑞
[0.6,0.7]

)-fuzzy hyperideal of 𝑅;

(2) 𝐹 is not an (∈
[0.3,0.5]

; ∈
[0.3,0.5]

)-fuzzy hyperideal of 𝑅
since 𝑈(𝑏; [0.7, 0.8])∈

[0.3,0.5]

𝐹 but 𝑎 ∈ 𝑏 + 𝑏 and
𝑈(𝑎; [0.7, 0.8]) ∈

[0.7,0.8]

𝐹;

(3) 𝐹 is not an (∈
[0.3,0.5]

∨ 𝑞
[0.6,0.7]

; ∈
[0.3,0.5]

∨ 𝑞
[0.6,0.7]

)-
fuzzy hyperideal of 𝑅 since 𝑈(𝑏; [1, 1]) ∈

[0.3,0.5]

∨

𝑞
[0.6,0.7]

𝐹 and 𝑈(𝑐; [1, 1])∈
[0.3,0.5]

∨ 𝑞
[0.6,0.7]

𝐹 but
𝑈(𝑏 + 𝑐; [1, 1]) = 𝑈(𝑑; [1, 1]) ∈

[0.3,0.5]

∨ 𝑞
[0.6,0.7]

𝐹.

Theorem 12. Let 2𝛿 = [1, 1] + 𝛾 and 𝐹 be an interval valued
(𝛼, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅. Then the set 𝐹
̂

�̃�

is a
hyperideal of 𝑅, where 𝐹

̂

�̃�

= {𝑥 ∈ 𝑅|𝜇
𝐹

(𝑥) > 𝛾}.

Proof. Assume that𝐹 is an interval valued (𝛼, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal of 𝑅. Let 𝑥, 𝑦 ∈ 𝐹

̂

�̃�

.Then 𝜇
𝐹

(𝑥) > 𝛾, 𝜇
𝐹

(𝑦) > 𝛾. We
consider the following two cases.

Case 1. If 𝛼 ∈ {∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

}, then 𝑈(𝑥; 𝜇
𝐹

(𝑥)) 𝛼 𝐹 and
𝑈(𝑦; 𝜇

𝐹

(𝑦)) 𝛼 𝐹. By (F1a), 𝑈(𝑧; rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)})∈
𝛾

∨

𝑞
̃

𝛿

𝐹 for all 𝑧 ∈ 𝑥 + 𝑦, that is, 𝑈(𝑧; rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)})∈
𝛾

𝐹

or 𝑈(𝑧; rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)}) 𝑞
̃

𝛿

𝐹. It follows that 𝐹(𝑧) ≥

rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} > 𝛾 or 𝜇
𝐹

(𝑧) + rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} > 2𝛿,
and so 𝜇

𝐹

(𝑧) ≥ rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} > 𝛾 or 𝜇
𝐹

(𝑧) > 2𝛿 −

rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} ≥ 2𝛿 − [1, 1] = 𝛾. Hence 𝜇
𝐹

(𝑧) > 𝛾 and
so 𝑧 ∈ 𝐹

̂

�̃�

. Therefore, 𝑥 + 𝑦 ⊆ 𝐹
𝛾

.
By (F2a) and (F3a), 𝑈(−𝑥; 𝜇

𝐹

(𝑥))∈
𝛾

∨ 𝑞
̃

𝛿

𝐹 and
𝑈(𝑥𝑦; rmin{𝜇

𝐹

(𝑥), 𝜇
𝐹

(𝑦)})∈
𝛾

∨ 𝑞
̃

𝛿

𝐹. Analogous to the
above proof, we have 𝜇

𝐹

(𝑥) > 𝛾 and 𝜇
𝐹

(𝑥𝑦) > 𝛾; that is,
−𝑥 ∈ 𝐹

𝛾

and 𝑥𝑦 ∈ 𝐹
𝛾

. Therefore, 𝐹
̂

�̃�

is a hyperideal of 𝑅.

Case 2. If 𝛼 = 𝑞
̃

𝛿

, then 𝑈(𝑥; [1, 1]) 𝛼 𝐹 and 𝑈(𝑦; [1, 1]) 𝛼 𝐹

since 2𝛿 = [1, 1]+𝛾. Analogous to the proof of Case 1, wemay
prove that 𝐹

̂

�̃�

is a hyperideal of 𝑅.

If we take 𝛾 = [0, 0] and 𝛿 = [0.5, 0.5] inTheorem 12, then
we have the following corollary.

Corollary 13. Let 𝐹 be an interval valued (𝛼, ∈ ∨ 𝑞)-fuzzy
hyperideal of 𝑅. Then the set 𝐹

̂

[0,0]

is a hyperideal of 𝑅, where
𝛼 ∈ {∈, 𝑞, ∈ ∨ 𝑞}.

Theorem 14. Let 2𝛿 = [1, 1]+𝛾 and𝐴 be a nonempty subset of
𝑅. Then 𝐴 is a hyperideal of 𝑅 if and only if the interval valued
fuzzy subset 𝐹 of 𝑅 such that 𝜇

𝐹

(𝑥) ≥ 𝛿 for all 𝑥 ∈ 𝐴 and
𝜇
𝐹

(𝑥) ≤ 𝛾 otherwise is an interval valued (𝛼, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal of 𝑅.
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Proof. Assume that 𝐴 is a hyperideal of 𝑅. Let 𝑥, 𝑦 ∈ 𝑅 and
𝛾 < 𝑟 ≤ [1, 1], 𝛾 < �̃� ≤ [1, 1] be such that 𝑈(𝑥; 𝑟) 𝛼 𝐹 and
𝑈(𝑦; �̃�) 𝛼 𝐹. Then we have the following four cases.

Case 1. If 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 and 𝑈(𝑦; �̃�)∈
𝛾

𝐹, then 𝜇
𝐹

(𝑥) ≥ 𝑟 > 𝛾

and 𝜇
𝐹

(𝑦) ≥ �̃� > 𝛾. Thus, 𝜇
𝐹

(𝑥) ≥ 𝛿 and 𝜇
𝐹

(𝑦) ≥ 𝛿; that is,
𝑥, 𝑦 ∈ 𝐴.

Case 2. If 𝑈(𝑥; 𝑟) 𝑞
̃

𝛿

𝐹 and 𝑈(𝑦; �̃�) 𝑞
̃

𝛿

𝐹, then 𝜇
𝐹

(𝑥) + 𝑟 > 2𝛿

and 𝜇
𝐹

(𝑦) + �̃� > 2𝛿, and so 𝜇
𝐹

(𝑥) > 2𝛿 − 𝑟 ≥ 2𝛿 − [1, 1] = 𝛾

and 𝜇
𝐹

(𝑦) > 2𝛿− �̃� ≥ 2𝛿− [1, 1] = 𝛾. It follows that 𝜇
𝐹

(𝑥) ≥ 𝛿

and 𝜇
𝐹

(𝑦) ≥ 𝛿; that is, 𝑥, 𝑦 ∈ 𝐴.

Case 3. If 𝑈(𝑥; 𝑟)∈
𝛾

𝐹 and 𝑈(𝑦; �̃�) 𝑞
̃

𝛿

𝐹, then 𝜇
𝐹

(𝑥) ≥ 𝑟 > 𝛾

and 𝜇
𝐹

(𝑦) + �̃� > 2𝛿. Analogous to the proof of Cases 1 and 2,
𝜇
𝐹

(𝑥) ≥ 𝛿 and 𝜇
𝐹

(𝑦) ≥ 𝛿; that is, 𝑥, 𝑦 ∈ 𝐴.

Case 4. If 𝑈(𝑥; 𝑟) 𝑞
̃

𝛿

𝐹 and 𝑈(𝑦; �̃�)∈
𝛾

𝐹, then 𝜇
𝐹

(𝑥) + 𝑟 > 2𝛿

and 𝜇
𝐹

(𝑦) ≥ �̃� > 𝛾. Analogous to the proof of Cases 1 and 2,
𝜇
𝐹

(𝑥) ≥ 𝛿 and 𝜇
𝐹

(𝑦) ≥ 𝛿; that is, 𝑥, 𝑦 ∈ 𝐴.
Thus, in any case, 𝑥, 𝑦 ∈ 𝐴. Hence 𝑧 ∈ 𝐴 for all 𝑧 ∈ 𝑥 + 𝑦,

which implies that 𝜇
𝐹

(𝑧) ≥ 𝛿. If rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} ≤ 𝛿,
then 𝜇

𝐹

(𝑧) ≥ 𝛿 ≥ rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} > 𝛾; it follows
that 𝑈(𝑧; rmin{𝜇

𝐹

(𝑥), 𝜇
𝐹

(𝑦)})∈
𝛾

𝐹. If rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} >

𝛿, then 𝜇
𝐹

(𝑧) + rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)} > 𝛿 + 𝛿 =

2𝛿; it follows that 𝑈(𝑧; rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)}) 𝑞
̃

𝛿

𝑓. There-
fore, 𝑈(𝑧; rmin{𝜇

𝐹

(𝑥), 𝜇
𝐹

(𝑦)})∈
𝛾

∨ 𝑞
̃

𝛿

𝑓. In a similar
way, we may prove that 𝑈(−𝑥; 𝜇

𝐹

(𝑥))∈
𝛾

∨ 𝑞
̃

𝛿

𝐹 and
𝑈(𝑥𝑦; rmin{𝜇

𝐹

(𝑥), 𝜇
𝐹

(𝑦)})∈
𝛾

∨ 𝑞
̃

𝛿

𝐹. Therefore, 𝐹 is an
interval valued (𝛼, ∈

𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅.
Conversely, assume that 𝐹 is an interval valued (𝛼, ∈

𝛾

∨

𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅. It is easy to see that 𝐴 = 𝐹
̂

�̃�

. It
follows fromTheorem 12 that 𝐴 is a hyperideal of 𝑅.

If we take 𝛾 = [0, 0] and 𝛿 = [0.5, 0.5] inTheorem 14, then
we have the following corollary.

Corollary 15. Let 𝐴 be a nonempty subset of 𝑅. Then 𝐴 is a
hyperideal of 𝑅 if and only if the interval valued fuzzy subset
𝐹 of 𝑅 such that 𝜇

𝐹

(𝑥) ≥ [0.5, 0.5] for all 𝑥 ∈ 𝐴 and 𝜇
𝐹

(𝑥) =

[0, 0] otherwise is an (𝛼, ∈ ∨ 𝑞)-fuzzy hyperideal of 𝑅, where
𝛼 ∈ {∈, 𝑞, ∈ ∨ 𝑞}.

Theorem 16. Let 𝐹 be an (𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅.
Then the following conditions hold:

(F1b) rmax {⋀
𝑧∈𝑥+𝑦

𝜇
𝐹

(𝑧), 𝛾} ≥ rmin {𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿} for
all 𝑥, 𝑦 ∈ 𝑅;

(F2b) rmax {𝜇
𝐹

(−𝑥), 𝛾} ≥ rmin {𝜇
𝐹

(𝑥), 𝛿} for all 𝑥 ∈ 𝑅;

(F3b) rmax {𝜇
𝐹

(𝑥𝑦), 𝛾} ≥ rmin {𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿} for all 𝑥 ∈

𝑅.

Proof. Let 𝐹 be an (𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅. We
only show (F1b).Theother properties can be similarly proved.
Assume that there exist 𝑥, 𝑦, 𝑧 ∈ 𝑅 such that 𝑧 ∈ 𝑥 + 𝑦

and rmax{𝜇
𝐹

(𝑧), 𝛾} < rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿}. Then, for all

𝑟 ∈ 𝐷[0, 1] such that 2𝛿 − rmax{𝜇
𝐹

(𝑧), 𝛾} > 𝑟 > 2𝛿 −

rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿}, we have

2𝛿 − 𝜇
𝐹

(𝑧) ≥ 2𝛿 − rmax {𝜇
𝐹

(𝑧) , 𝛾} > 𝑟

> rmax {2𝛿 − 𝜇
𝐹

(𝑥) , 2𝛿 − 𝜇
𝐹

(𝑦) , 𝛿} ,

(11)

and so 𝜇
𝐹

(𝑥) + 𝑟 > 2𝛿, 𝜇
𝐹

(𝑦) + 𝑟 > 2𝛿, 𝜇
𝐹

(𝑧) + 𝑟 <

2𝛿, and 𝜇
𝐹

(𝑧) < 𝛿 < 𝑟. Hence 𝑈(𝑥; 𝑟)𝑞
̃

𝛿

𝐹, 𝑈(𝑦; 𝑟)𝑞
̃

𝛿

𝐹

but 𝑈(𝑧; 𝑟) ∈
𝛾

∨ 𝑞
̃

𝛿

𝐹, a contradiction. Hence (F1b) is
valid.

5. Interval Valued (∈
𝛾

,∈
𝛾

∨ 𝑞
̃

𝛿

)-Fuzzy
Hyperideals

In this section, using a new ordering relation on IF(𝑅), we
investigate the interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyper-
ideals of a hyperring. In what follows, we take 𝛼 = ∈

𝛾

and
𝛽 = ∈

𝛾

∨ 𝑞
̃

𝛿

in Definition 7. Before proceeding, we present
some characterizations of interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideals.

Lemma 17. Let 𝐹 ∈ IF(𝐻). Then (F1a) holds if and only if one
of the following conditions holds:

(F1b) rmax {⋀
𝑧∈𝑥+𝑦

𝜇
𝐹

(𝑧), 𝛾} ≥ rmin {𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿} for
all 𝑥, 𝑦 ∈ 𝑅;

(F1c) 𝐹 ⊕ 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹.

Proof. (F1a)⇒(F1b) Let 𝑥, 𝑦 ∈ 𝑅. Let, if possible, 𝑧 ∈

𝑅 be such that 𝑧 ∈ 𝑥 + 𝑦 and rmax{𝜇
𝐹

(𝑧), 𝛾} <

𝑟 = rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿}. Then 𝑈(𝑥; 𝑟)∈
𝛾

𝐹, 𝑈(𝑦; 𝑟)∈
𝛾

𝐹,
𝑈(𝑧; 𝑟) ∈

𝛾

𝐹, and 𝜇
𝐹

(𝑧) + 𝑟 < 𝑟 + 𝑟 ≤ 2𝛿; that is,
𝑈(𝑧; 𝑟) ∈

𝛾

∨ 𝑞
̃

𝛿

𝐹, a contradiction. Hence (F1b) is valid.
(F1b)⇒(F1c) For 𝑈(𝑥; 𝑟) ∈

𝛾

𝐹 ⊕ 𝐹, suppose, if possible,
𝑈(𝑥; 𝑟) ∈

𝛾

∨ 𝑞
̃

𝛿

𝐹. Then 𝑈(𝑥; 𝑟) ∈
𝛾

𝐹 and 𝑈(𝑥; 𝑟) 𝑞
̃

𝛿

𝐹;
that is, 𝜇

𝐹

(𝑥) < 𝑟 and 𝜇
𝐹

(𝑥) + 𝑟 ≤ 2𝛿 which implies that
𝜇
𝐹

(𝑥) < 𝛿. If 𝑥 ∈ 𝑦 + 𝑧 for some 𝑦, 𝑧 ∈ 𝑅, by (F1b), we have
𝛿 > rmax{𝜇

𝐹

(𝑥), 𝛾} ≥ rmin{𝜇
𝐹

(𝑦), 𝜇
𝐹

(𝑧), 𝛿}, it follows that
rmax{𝜇

𝐹

(𝑥), 𝛾} ≥ rmin{𝜇
𝐹

(𝑦), 𝜇
𝐹

(𝑧)}. Hence we have

𝑟 ≤ (𝐹 ⊕ 𝐹) (𝑥) = ⋁
𝑥∈𝑎+𝑏

rmin {𝜇
𝐹

(𝑦) , 𝜇
𝐹

(𝑧)}

≤ ⋁
𝑥∈𝑎+𝑏

rmax {𝜇
𝐹

(𝑥) , 𝛾} = rmax {𝜇
𝐹

(𝑥) , 𝛾} ;

(12)

which contradicts 𝛾 < 𝑟 and 𝜇
𝐹

(𝑥) < 𝑟. Hence (F1c) is
satisfied.

(F1c)⇒(F1a) Let 𝑥, 𝑦 ∈ 𝑅 and 𝛾 < 𝑟 ≤ [1, 1], 𝛾 < �̃� ≤ [1, 1]

be such that 𝑈(𝑥; 𝑟) ∈
𝛾

𝐹 and 𝑈(𝑦; �̃�) ∈
𝛾

𝐹. Then for any 𝑧 ∈

𝑥 + 𝑦, we have

(𝐹 ⊕ 𝐹) (𝑧) = ⋁
𝑧∈𝑎+𝑏

rmin {𝜇
𝐹

(𝑎) , 𝜇
𝐹

(𝑏)}

≥ rmin {𝜇
𝐹

(𝑥) , 𝜇
𝐹

(𝑦)} ≥ rmin {𝑟, �̃�} > 𝛾.

(13)

Hence𝑈(𝑧; rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦)}) ∈
𝛾

𝐹⊕𝐹 and so (F1a) holds.
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Lemma 18. Let 𝐹 ∈ IF(𝑅). Then (F2a) holds if and only if one
of the following conditions holds:

(F2b) rmax {𝜇
𝐹

(−𝑥), 𝛾} ≥ rmin {𝜇
𝐹

(𝑥), 𝛿} for all 𝑥 ∈ 𝑅;

(F2c) 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

− 𝐹, where −𝐹 is defined by 𝜇
−𝐹

(𝑥) =

𝜇
𝐹

(−𝑥) for all 𝑥 ∈ 𝑅.

Proof. The proof is analogous to the proof of Lemma 17.

Lemma 19. Let 𝐹 ∈ IF(𝑅). Then (F3a) holds if and only if one
of the following conditions holds:

(F3b) rmax {𝜇
𝐹

(𝑥𝑦), 𝛾} ≥ rmin {𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿} for all 𝑥 ∈

𝑅;

(F3c) 𝐹 ⊗ 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹.

Proof. The proof is analogous to Lemma 17.

From Lemmas 17–19, we obtain the following results.

Theorem 20. Let 𝐹 ∈ IF(𝑅).Then 𝐹 is an (∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal of 𝑅 if and only if it satisfies conditions (F1b)–(F3b)
or conditions (F1c)–(F3c).

Remark 21. For any interval valued (∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal 𝐹 of 𝑅, we can conclude that

(1) 𝐹 is an interval valued fuzzy hyperideal of𝑅when 𝛾 =

[0, 0] and 𝛿 = [1, 1] ([21], Definition 4.1);

(2) 𝐹 is an interval valued (∈, ∈ ∨ 𝑞)-fuzzy hyperideal of
𝑅 when 𝛾 = [0, 0] and 𝛿 = [0.5, 0.5] ([21], Definition
4.3);

(3) 𝐹 is an interval valued fuzzy hyperideal of 𝑅 with
thresholds (𝛾, 𝛿) ([21], Definition 4.9).

Combining Theorems 16 and 20, we have the following
result.

Proposition 22. Any interval valued (𝑞
̃

𝛿

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal of 𝑅 is an interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy
hyperideal of 𝑅.

The following example shows that the converse of
Proposition 22 is not true in general.

Example 23. Let 𝑅 and 𝐹 be as in Example 11. Then 𝐹 is an
(∈
[0.3,0.5]

; ∈
[0.3,0.5]

∨ 𝑞
[0.6,0.7]

)-fuzzy hyperideal of 𝑅, but it is
not an (𝑞

[0.6,0.7]

; ∈
[0.3,0.5]

∨ 𝑞
[0.6,0.7]

)-fuzzy hyperideal of 𝑅
since 𝑈(𝑎; [0.7, 0.8])𝑞

[0.6,0.7]

𝐹 and 𝑈(𝑐; [1, 1])∈
[0.3,0.5]

∨

𝑞
[0.6,0.7]

𝐹 but 𝑈(𝑎 + 𝑐; rmin {[0.7, 0.8], [1, 1]}) =

𝑈(𝑐; [0.7, 0.8]) ∈
[0.3,0.5]

∨ 𝑞
[0.6,0.7]

𝐹.

If we take 𝛾 = [0, 0] and 𝛿 = [0.5, 0.5] in Propositions 9,
10, and 22, then we have the following corollary.

Corollary 24. Let 𝐹 ∈ IF(𝑅). Then

(1) any interval valued (∈ ∨ 𝑞, ∈ ∨ 𝑞)-fuzzy hyperideal
of 𝑅 is an interval valued (∈, ∈ ∨ 𝑞)-fuzzy hyperideal
of 𝑅 [21];

(2) any interval valued (𝑞, ∈ ∨ 𝑞)-fuzzy hyperideal of 𝑅 is
an interval valued (∈, ∈ ∨ 𝑞)-fuzzy hyperideal of 𝑅;

(3) any interval valued (∈, ∈)-fuzzy hyperideal of 𝑅 is an
interval valued (∈ ∨ 𝑞, ∈ ∨ 𝑞)-fuzzy hyperideal of 𝑅
[21].

For any 𝐹 ∈ IF(𝑅), we define 𝐹
𝑟

= {𝑥 ∈ 𝑅 | 𝑈(𝑥; 𝑟)∈
𝛾

𝐹},
𝐹
̃

𝛿

𝑟

= {𝑥 ∈ 𝑅 | 𝑈(𝑥; 𝑟) 𝑞
̃

𝛿

𝐹}, and [𝐹]
̃

𝛿

𝑟

= {𝑥 ∈ 𝑅 | 𝑈(𝑥; 𝑟)∈
𝛾

∨

𝑞
̃

𝛿

𝐹} for all 𝑟 ∈ 𝐷[0, 1]. It is clear that [𝐹]̃𝛿
𝑟

= 𝐹
𝑟

∪ 𝐹
̃

𝛿

𝑟

.
The next theorem provides the relationship between the

interval valued (∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideals of 𝑅 and the
crisp hyperideals of 𝑅.

Theorem 25. Let 𝐹 ∈ IF(𝑅).

(1) 𝐹 is an interval valued (∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal
of 𝑅 if and only if 𝐹

𝑟

(𝐹
𝑟

̸= 0) is an hyperideal of 𝑅 for
all 𝛾 < 𝑟 ≤ 𝛿.

(2) If 2𝛿 = 1 + 𝛾, then 𝐹 is an interval valued (∈
𝛾

, ∈
𝛾

∨

𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅 if and only if 𝐹̃𝛿
𝑟

(𝐹
̃

𝛿

𝑟

̸= 0) is a
hyperideal of 𝑅 for all 𝛿 < 𝑟 ≤ [1, 1].

(3) If 2𝛿 = 1+𝛾, then𝐹 is an interval valued (∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-
fuzzy hyperideal of 𝑅 if and only if [𝐹]̃𝛿

𝑟

([𝐹]
̃

𝛿

𝑟

̸= 0) is a
hyperideal of 𝑅 for all 𝛾 < 𝑟 ≤ [1, 1].

Proof. Weonly show (3). Let𝐹 be an interval valued (∈
𝛾

, ∈
𝛾

∨

𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅 and 𝑥, 𝑦 ∈ [𝐹]
̃

𝛿

𝑟

for some 𝛾 < 𝑟 ≤

[1, 1]. Then 𝑈(𝑥; 𝑟)∈
𝛾

∨ 𝑞
̃

𝛿

𝐹 and 𝑈(𝑦; 𝑟)∈
𝛾

∨ 𝑞
̃

𝛿

𝐹; that
is, 𝜇
𝐹

(𝑥) ≥ 𝑟 or 𝜇
𝐹

(𝑥) > 2𝛿 − 𝑟 > 2𝛿 − [1, 1] = 𝛾, and
𝜇
𝐹

(𝑦) ≥ 𝑟 or 𝜇
𝐹

(𝑦) > 2𝛿 − 𝑟 > 2𝛿 − [1, 1] = 𝛾. Since 𝐹 is
an interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅, we
have 𝜇

𝐹

(𝑧) ≥ rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿} for all 𝑧 ∈ 𝑥 + 𝑦 since
𝛾 < rmin{𝜇

𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿}. We consider the following cases.

Case 1. Consider 𝛾 < 𝑟 ≤ 𝛿. Since 𝛾 < 𝑟 ≤ 𝛿, we have 2𝛿 − 𝑟 ≥

𝛿 ≥ 𝑟 and so 𝜇
𝐹

(𝑧) ≥ rmin{𝑟, 𝑟, 𝛿} = 𝑟 or 𝜇
𝐹

(𝑧) ≥ rmin{𝑟, 2𝛿−
𝑟, 𝛿} = 𝑟, or 𝜇

𝐹

(𝑧) ≥ rmin{2𝛿−𝑟, 2𝛿−𝑟, 𝛿} = 𝑟 = 𝛿 ≥ 𝑟. Hence
𝑈(𝑧; 𝑟) ∈

𝛾

𝐹.

Case 2. Consider 𝛿 < 𝑟 ≤ [1, 1]. Since 𝛿 < 𝑟 ≤ [1, 1], we have
2𝛿 − 𝑟 < 𝛿 < 𝑟 and so 𝜇

𝐹

(𝑧) ≥ rmin{𝑟, 𝑟, 𝛿} = 𝛿 > 2𝛿 − 𝑟 or
𝜇
𝐹

(𝑧) > rmin{𝑟, 2𝛿 − 𝑟, 𝛿} = 2𝛿 − 𝑟, or 𝜇
𝐹

(𝑧) > rmin{2𝛿 −

𝑟, 2𝛿 − 𝑟, 𝛿} = 2𝛿 − 𝑟. Hence 𝑈(𝑧; 𝑟) 𝑞
̃

𝛿

𝐹.
Thus, in any case, 𝑈(𝑧; 𝑟)∈

𝛾

∨ 𝑞
̃

𝛿

𝐹; that is, 𝑧 ∈ [𝐹]
̃

𝛿

𝑟

for
all 𝑧 ∈ 𝑥 + 𝑦. Similarly we can show that −𝑥 ∈ [𝐹]

̃

𝛿

𝑟

and
𝑥𝑦 ∈ [𝐹]

̃

𝛿

𝑟

. Therefore, [𝐹]̃𝛿
𝑟

is a hyperideal of 𝑅.
Conversely, assume that the given condition holds. Let

𝑥, 𝑦 ∈ 𝑅. If there exists 𝑧 ∈ 𝑅 such that 𝑧 ∈ 𝑥 + 𝑦 and
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rmax{𝜇
𝐹

(𝑧), 𝛾} < 𝑟 = rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿}, then 𝑥, 𝑦 ∈ [𝐹]
̃

𝛿

𝑟

but 𝑧 ∉ [𝐹]
̃

𝛿

𝑟

, a contradiction. Therefore, rmax{𝜇
𝐹

(𝑧), 𝛾} ≥

rmin{𝜇
𝐹

(𝑥), 𝜇
𝐹

(𝑦), 𝛿} for all 𝑧 ∈ 𝑥 + 𝑦. Similarly we can
show that conditions (F2b) and (F3b) are valid. Therefore, 𝐹
is an interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅 by
Theorem 20.

As a direct consequence of Theorem 25, we have the
following result.

Corollary 26. Let 𝛾, 𝛾, 𝛿, 𝛿 ∈ 𝐷[0, 1] be such that 𝛾 < 𝛿, 𝛾 <
𝛿, 𝛾 < 𝛾, and 𝛿 < 𝛿. Then every interval valued (∈

𝛾

, ∈
𝛾

∨

𝑞
̃

𝛿

)-fuzzy hyperideal of𝑅 is an interval valued (∈
𝛾

 , ∈
𝛾

 ∨ 𝑞
̃

𝛿

)-
fuzzy hyperideal of 𝑅.

The following example shows that the converse of
Corollary 26 is not true in general.

Example 27. Consider Example 8. Define interval valued
fuzzy subset 𝐹 of 𝑅 by

𝜇
𝐹

(𝑎) = [0.6, 0.7] , 𝜇
𝐹

(𝑏) = [0.2, 0.3] ,

𝜇
𝐹

(𝑐) = [0.3, 0.4] , 𝜇
𝐹

(𝑑) = [0.3, 0.4] .
(14)

Then 𝐹 is an interval valued (∈
[0.3,0.4]

, ∈
[0.3,0.4]

∨ 𝑞
[0.6,0.7]

)-
fuzzy hyperideal of 𝑅 but is not an interval valued
(∈
[0.2,0.3]

, ∈
[0.2,0.3]

∨ 𝑞
[0.6,0.7]

)-fuzzy hyperideal of 𝑅.

If we take 𝛾 = [0, 0] and 𝛿 = [0.5, 0.5] in Theorem 25,
then we have the following corollary.

Corollary 28. Let 𝐹 ∈ IF(𝑅).

(1) 𝐹 is an interval valued (∈, ∈ ∨ 𝑞)-fuzzy hyperideal of
𝑅 if and only if 𝐹

𝑟

(𝐹
𝑟

̸= 0) is a hyperideal of 𝑅 for all
[0, 0] < 𝑟 ≤ [0.5, 0.5].

(2) 𝐹 is an interval valued (∈, ∈ ∨ 𝑞)-fuzzy hyperideal of
𝑅 if and only if 𝐹[0.5,0.5]

𝑟

(𝐹
[0.5,0.5]

𝑟

̸= 0) is a hyperideal of
𝑅 for all [0.5, 0.5] < 𝑟 ≤ [1, 1].

(3) 𝐹 is an interval valued (∈, ∈ ∨ 𝑞)-fuzzy hyperideal
of 𝑅 if and only if [𝐹]

[0.5,0.5]

𝑟

([𝐹]
[0.5,0.5]

𝑟

̸= 0) is a
hyperideal of 𝑅 for all [0, 0] < 𝑟 ≤ [1, 1].

Theorem 29. Let 𝐹 and 𝐺 be two interval valued (∈
𝛾

, ∈
𝛾

∨

𝑞
̃

𝛿

)-fuzzy hyperideals of 𝑅. Then so are 𝐹 ⊕ 𝐺 and 𝐹 ∩ 𝐺.

Proof. We only show that𝐹⊕𝐺 is an interval valued (∈
𝛾

, ∈
𝛾

∨

𝑞
̃

𝛿

)-fuzzy hyperideal of 𝑅. The verification is as follows.

(1) By Lemmas 5, 6, and 17, (𝐹 ⊕𝐺) ⊕ (𝐹 ⊕𝐺) = (𝐹 ⊕𝐹) ⊕

(𝐺 ⊕ 𝐺) ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹 ⊕ 𝐺.

(2) Let 𝑥 ∈ 𝑅. Then

rmax {𝜇
𝐹⊕𝐺

(−𝑥) , 𝛾}

= rmax{ ⋁
−𝑥∈𝑦+𝑧

rmin {𝜇
𝐹

(𝑦) , 𝜇
𝐺

(𝑧)} , 𝛾}

= ⋁
−𝑥∈𝑦+𝑧

rmin {rmax {𝜇
𝐹

(𝑦) , 𝛾} , rmax {𝜇
𝐺

(𝑧) , 𝛾}}

= ⋁
𝑥∈−𝑦−𝑧

rmin {rmax {𝜇
𝐹

(𝑦) , 𝛾} , rmax {𝜇
𝐺

(𝑧) , 𝛾}}

≥ ⋁
𝑥∈−𝑦−𝑧

rmin {rmin {𝜇
𝐹

(−𝑦) , 𝛿} , rmin {𝜇
𝐺

(−𝑧) , 𝛿}}

= rmin{ ⋁
𝑥∈−𝑦−𝑧

rmin {𝜇
𝐹

(−𝑦) , 𝜇
𝐺

(−𝑧)} , 𝛿}

= rmin {𝜇
𝐹⊕𝐺

(𝑥) , 𝛿} .

(15)

(3) Let 𝑥, 𝑦 ∈ 𝑅. We have

rmin {𝜇
𝐹⊕𝐺

(𝑥) , 𝛿}

= rmin{ ⋁
𝑥∈𝑎+𝑏

rmin {𝜇
𝐹

(𝑎) , 𝜇
𝐺

(𝑏)} , 𝛿}

= ⋁
𝑥∈𝑎+𝑏

rmin {rmin {𝜇
𝐹

(𝑎) , 𝛿} , rmin {𝜇
𝐺

(𝑏) , 𝛿}}

≤ ⋁
𝑥∈𝑎+𝑏

rmin {rmax {𝜇
𝐹

(𝑎𝑦) , 𝛾} , rmax {𝜇
𝐺

(𝑏𝑦) , 𝛾}}

= rmax{ ⋁
𝑥∈𝑎+𝑏

rmin {𝜇
𝐹

(𝑎𝑦) , 𝜇
𝐺

(𝑏𝑦)} , 𝛾}

≤ rmax {𝜇
𝐹⊕𝐺

(𝑥𝑦) , 𝛾} .

(16)

In a similar way, we have rmax{𝜇
𝐹⊕𝐺

(𝑥𝑦), 𝛾} ≥ rmin
{𝜇
𝐹⊕𝐺

(𝑦), 𝛿}. Hence, rmax{𝜇
𝐹⊕𝐺

(𝑥𝑦), 𝛾} ≥ rmin{𝜇
𝐹⊕𝐺

(𝑥),

𝜇
𝐹⊕𝐺

(𝑦), 𝛿}.

Theorem 30. Let IFI(𝑅) be the set of all interval valued
(∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideals of 𝑅 with the same tip “𝑡”
(i.e., 𝜇

𝐹

(0) = 𝜇
𝐺

(0) for all 𝐹, 𝐺 ∈ IFI(𝑅)). Then (IFI(𝑅), ∩, ⊕, ⊆

∨ 𝑞
(𝛾,

̃

𝛿)

) is a modular lattice.

Proof. Let 𝐹, 𝐺 ∈ IFI(𝑅). Clearly, 𝐹 ∩ 𝐺 is the greatest lower
bound of 𝐹 and 𝐺. By Theorem 29, we have 𝐹 ⊕ 𝐺 ∈ IFI(𝑅).
Now, we prove that 𝐹⊕𝐺 = 𝐹 ∨ 𝐺. Let 𝑥 ∈ 𝑅. Since 𝑥 = 0+𝑥
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and rmax{𝜇
𝐹

(0), 𝛾} = rmax{𝜇
𝐺

(0), 𝛾} ≥ rmin{𝜇
𝐺

(𝑦), 𝛿} for
all 𝑦 ∈ 𝑅, we have

rmax {𝜇
𝐹⊕𝐺

(𝑥) , 𝛾}

= rmax{ ⋁
𝑥∈𝑦+𝑧

rmin {𝜇
𝐹

(𝑦) , 𝜇
𝐺

(𝑧)} , 𝛾}

≥ rmax {rmin {𝜇
𝐹

(0) , 𝜇
𝐺

(𝑥)} , 𝛾}

= rmin {rmax {𝜇
𝐹

(0) , 𝛾} , rmax {𝜇
𝐺

(𝑥) , 𝛾}}

≥ rmin {rmin {𝜇
𝐺

(𝑥) , 𝛿} , rmin {𝜇
𝐺

(𝑥) , 𝛿}}

= rmin {𝜇
𝐺

(𝑥) , 𝛿} ;

(17)

it follows that𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹⊕ 𝐺. Similarly,𝐺 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐹⊕𝐺

and so 𝐹 ⊕ 𝐺 is an upper bound of 𝐹 and 𝐺. Now, let 𝐻 ∈

IFI(𝑅) be such that 𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐻 and 𝐺 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐻. It is
easy to see 𝐹⊕𝐺 ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

𝐻. So, 𝐹⊕𝐺 = 𝐹 ∨ 𝐺. Therefore,
(IFI(𝑅), ∩, ⊕, ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

) is a lattice.
For modularity, we first let 𝐹, 𝐺,𝐻 ∈ IFI(𝑅) be such that

𝐹 ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

𝐻.Weneed to show that𝐹∩(𝐺⊕𝐻) ≈ (𝐹∩𝐺)⊕𝐻.
But, the relation (𝐹 ∩ 𝐺) ⊕ 𝐻 ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

𝐹 ∩ (𝐺 ⊕ 𝐻) is clear.
It remains to show that 𝐹 ∩ (𝐺 ⊕ 𝐻) ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

(𝐹 ∩ 𝐺) ⊕ 𝐻.
Now let 𝑥 ∈ 𝑅. Then we have

rmax { ̃𝜇
(𝐹∩𝐺)⊕𝐻

(𝑥) , 𝛾}

= rmax{ ⋁
𝑥∈𝑦+𝑧

rmin {𝜇
𝐹∩𝐺

(𝑦) , 𝜇
𝐻

(𝑧)} , 𝛾}

= rmax{ ⋁
𝑥∈𝑦+𝑧

rmin {𝜇
𝐹

(𝑦) , 𝜇
𝐺

(𝑦) , 𝜇
𝐻

(𝑧)} , 𝛾}

= ⋁
𝑥∈𝑦+𝑧

rmin {rmax {𝜇
𝐹

(𝑦) , 𝛾} , rmax {𝜇
𝐺

(𝑦) , 𝛾} ,

rmax {𝜇
𝐻

(𝑧) , 𝛾}}

≥ ⋁
𝑥∈𝑦+𝑧

rmin {rmin {𝜇
𝐹

(𝑥) , 𝜇
𝐹

(−𝑧) , 𝛿} ,

rmax {𝜇
𝐺

(𝑦) , 𝛾} , rmax {𝜇
𝐻

(𝑧) , 𝛾}}

= ⋁
𝑥∈𝑦+𝑧

rmin {rmin {𝜇
𝐹

(𝑥) , 𝛿} , rmin {𝜇
𝐹

(−𝑧) , 𝛿} ,

rmax {𝜇
𝐺

(𝑦) , 𝛾} , rmax {𝜇
𝐻

(𝑧) , 𝛾}}

= ⋁
𝑥∈𝑦+𝑧

rmin {rmin {𝜇
𝐹

(𝑥) , 𝛿} , rmax {𝜇
𝐺

(𝑦) , 𝛾} ,

rmax {𝜇
𝐻

(𝑧) , 𝛾}}

(it follows from 𝐹 ⊆ ∨𝑞
(𝛾,

̃

𝛿)

𝐻 that

rmin {𝜇
𝐹

(−𝑧) , 𝛿} ≤ rmax {𝜇
𝐻

(𝑧) , 𝛾})

≥ ⋁
𝑥∈𝑦+𝑧

rmin {rmin {𝜇
𝐹

(𝑥) , 𝛿} , rmin {𝜇
𝐺

(𝑦) , 𝛿} ,

rmin {𝜇
𝐻

(𝑧) , 𝛿}}

= rmin{rmin{𝜇
𝐹

(𝑥) , ⋁
𝑥∈𝑦+𝑧

rmin {𝜇
𝐺

(𝑦) , 𝜇
𝐻

(𝑧)}} , 𝛿}

= rmin {rmin {𝜇
𝐹

(𝑥) , 𝜇
𝐺⊕𝐻

(𝑥)} , 𝛿}

= rmin { ̃𝜇
𝐹∩(𝐺⊕𝐻)

(𝑥) , 𝛿} .

(18)

It follows that 𝐹 ∩ (𝐺 ⊕ 𝐻) ⊆ ∨ 𝑞
(𝛾,

̃

𝛿)

(𝐹 ∩ 𝐺) ⊕ 𝐻. Thus
𝐹 ∩ (𝐺 ⊕𝐻) ≈ (𝐹 ∩ 𝐺) ⊕𝐻 and so (IFI(𝑅), ∩, ⊕, ⊆ ∨ 𝑞

(𝛾,

̃

𝛿)

) is
a modular lattice.

6. Conclusions

In this paper, we introduced and studied the generalized
interval valued (𝛼, 𝛽)-fuzzy hyperideals of a hyperring, with
𝛼, 𝛽 ∈ {∈, 𝑞, ∈ ∧ 𝑞, ∈ ∨ 𝑞} and 𝛼 ̸= ∈ ∧ 𝑞, in which
special attention was concentrated on the interval valued
(∈
𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-fuzzy hyperideals. As a consequence, some
characterizations theorems of interval valued (∈

𝛾

, ∈
𝛾

∨ 𝑞
̃

𝛿

)-
fuzzy hyperideals which generalize many results obtained
in [21] were provided. Our future work on this topic will
focus on studying some other classes of fuzzy interval valued
hyperstructure.
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