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The steady-state problem of a magnetic fluid filling a porous annulus between two cylindrical walls under the influence of a
nonuniform radially outward magnetic field has been investigated. The cylindrical walls are either electrically perfectly insulated
or electrically perfectly conducting.The permeability of the porous annulus increases with its radial location.The governing partial
differential equations were derived carefully and closed form solutions for the profiles of the velocity component and the induced
magnetic component were obtained. The effect of the strength of the externally applied magnetic field, the permeability of the
porous annulus, and the conductivity of the cylindrical walls were examined through the angular velocity components, as well as
the induced magnetic field.

1. Introduction

The effects of magnetic field on an electrically conducting
fluid have great importance because of their recent applica-
tions related to MHD generators [1, 2], geothermal energy
excitations [3, 4], plasma controls [5–7], MHD boundary
layer controls [8–10], and so forth. The governing partial
differential equations involved in MHD studies are well
known for their nonlinearity; exact solutions are difficult to
obtain unless the problem is very fundamental in conjunction
with highly simplified conditions. Perhaps, MHD Couette
flow is one of best examples. It deals with a conducting fluid
filled between two infinite planes where an external magnetic
field is applied across these planes. It has been confirmed that
the presence of the external magnetic field induces a Lorentz
force which either accelerates or decelerates the flow elements
between the planes. Furthermore, the flow behaviors also
depend strongly on the electrical properties of the planes [11].
The performances of the MHD flow in ducts and pipes have
also been studied quite thoroughly [12–16].

On the other hand, Heiser and Shercliff [17] have devel-
oped the theory for themotion of a viscous conducting liquid
in a pair of rotating long concentric cylinders subjected to a
radial magnetic field. Later, Molokov and Allen [18] extended

the aforementioned theory andmore importantly they found
a mean to decouple the equations. Tsai et al. [19] and Kuo
and Leong [20] have extended the study for thin annulus.
The effects of external magnetic or electric fields of various
orientations have also been investigated extensively [21, 22].

Since 2005, Stokes’ first problem in a porous space under
the influence of an applied magnetic field has been attempted
[23–25]. As an extension to Stokes’ problems, Khan et al.
[26, 27] solved the modified Darcy’s law for a transient MHD
flow in a similar setting. In additional to Stokes’ problems
in porous media, MHD Couette flow associated with porous
media has also gained a lot of attention. Hayat et al. [28]
employed HAM, a mathematical approach, to investigate the
influence of a transverse magnetic field on the MHDCouette
flow in a porous channel. Seth et al. [29] then considered the
MHD flow within a porous channel whose motion was also
induced by either an impulsive or a uniform acceleration of
the channel bottomwall. Bég et al. [30] obtained a theoretical
solution for the MHD Couette flow in a rotating horizontal
parallel-plate channel filled with a highly permeable porous
medium subjected to an inclined uniform magnetic field. At
the same time, Ramana Murthy et al. [31] investigated the
response of an unsteady MHD fluid through a circular pipe
with porous walls in the presence of a transverse magnetic
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Figure 1: Schematics of present study.

field. Also, Khan et al. [32] theoretically obtained the velocity
field for a fully developed MHD flow within a porous space
in a circular pipe based on the modified Darcy’s law. Srinivas
and Muthuraj [33] studied the MHD flow in a vertical wavy
porous medium in the presence of a temperature-dependent
heat source.

This work aims to analyze the MHD flow of a gener-
alized magnetic fluid in an annulus. The inner and outer
cylinders enclosing the annular space are either electrically
perfectly insulated or electrically perfectly conducting. The
momentum of the rotating magnetic fluid originates from
the shear effect by the rotating outer cylinder. In the begin-
ning, the governing equations were carefully simplified and
derived from the relevant Maxwell’s equations as well as the
Brinkman’s extension of Darcy’s law. The analytical solutions
were then obtained for various boundary conditions to give
the profiles of tangential velocity component and the induced
magnetic field.

2. Formulation

The annular space that the present study considers is shown
in Figure 1. The space considered here is confined between
a pair of long concentric cylinders whose inner and outer
radii are denoted by 𝑟

𝑖
and 𝑟
𝑜
but extends to infinity in the

axial direction. The inner and outer cylinder surfaces are
both adiabatic and therefore the problem is isothermal. At
the same time, a radially outward magnetic field is applied
externally over the annular space [34].This externally applied
magnetic field across the annulus is given as 𝐵⃗ = 𝐵

0
/𝑟𝑒
𝑟
.

Therefore, the flow andmagnetic fields within the annular are
axis-symmetric. The conducting fluid considered is assumed
incompressible, Newtonian, and so highly electrically con-
ductive that no electric charge will accumulate within the
fluid. In additional to the above conditions, it is also assumed
that the flow is steady, one-dimensional, and laminar, while
the gravitational force is negligible. The homogenous and
isotropic porous annulus has no effect on the electric current,
the magnetic field strength, and their distributions. Also, the
wall effect and non-Darcian effects are ignored. Furthermore,
the permeability of the porous annulus is assumed 𝐾

𝑝
=

Da 𝑟2, where Da is the Darcy number whose definition will

be discussed later. For a constant Da, it is clear that𝐾
𝑝
varies

with 𝑟. In other words, the porous annulus is more permeable
far away from the center. The above assumptions simplifies
the continuity and Navier-Stokes equations that appear to be

∇ ⋅ 𝑉⃗ = 0, (1)

𝜌]∇2𝑉⃗ −
𝜌]
𝐾
𝑝

𝑉⃗ + ⃗𝑗 × 𝐵⃗ = 0, (2)

where the last term in (2) is the Lorentz force. The magnetic
field derived based on Maxwell’s relations under a steady-
state assumption can be simplified to yield the following
magnetic field equation [35]:

∇ × (𝑉⃗ × 𝐵⃗) +

1

𝜎𝜇

∇
2
𝐵⃗ = 0. (3)

With the introduction of the following dimensionless
parameters

𝑟 =

𝑟

𝑎

, 𝑢
𝜃
=

𝑢
𝜃

𝑢
𝑜

,

𝑏
𝜃
=

𝑏
𝜃

𝑢
𝑜
𝜇√𝜎]𝜌

, Ha = 𝐵
0
𝑎√

𝜎

𝜌]
.

(4)

Equations (2) to (3) reduce to the following dimensionless
magnetic induced equation and dimensionless magnetic
momentum equation:

Ha 𝑑
𝑑𝑟

(

𝑢
𝜃

𝑟

) +

𝑑

𝑑𝑟

[

1

𝑟

𝑑

𝑑𝑟

(𝑟𝑏
𝜃
)] = 0,

Ha
𝑟
2

𝑑

𝑑𝑟

(𝑟𝑏
𝜃
) +

𝑑
2
𝑢
𝜃

𝑑𝑟
2
+

1

𝑟

𝑑𝑢
𝜃

𝑑𝑟

− (

1

Da
+ 1)

𝑢
𝜃

𝑟
2
= 0,

(5)

where the bar indicates that the parameter beneath it is
dimensionless, 𝑎 is the gap between the inner and outer
cylinders (i.e., 𝑎 = 𝑟

𝑜
− 𝑟
𝑖
), and 𝑢

0
is the linear velocity

on the outer cylinder. Two of the additional dimensionless
parameters that appeared in the above governing equations
are the Darcy number (Da) and the Hartmann number (Ha).
The former is an indication of the permeability of the porous
media, while the latter signifies the relative importance
between the magnetic and viscous forces.

The cylindrical walls considered in this work are assumed
made of materials either perfectly insulated or perfectly
conducting. The different combinations investigated include
(a) both inner and outer cylinders are perfectly insulated
and (b) only one of the cylinders is perfectly insulated,
while the other is perfectly conducting. Also, the outer
cylinder is assumed to rotate at a rotational speed which
yields a linear velocity of 𝑢

𝑜
, whereas the inner cylinder

rotates at an arbitrary rotational speed corresponding to a
linear velocity of 𝑢

𝑖
. These conditions, for different cases,
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are mathematically described by the following dimensionless
boundary conditions.

(a) Both the inner and outer cylinders are perfectly
insulated:

𝑟 =

𝑟
𝑖

𝑎

= 𝑟
𝑖
, 𝑢

𝜃
=

𝑢
𝑖

𝑢
𝑜

= 𝑢
𝑖
, 𝑏

𝜃
= 0, (6a)

𝑟 =

𝑟
𝑜

𝑎

= 𝑟
𝑜
, 𝑢

𝜃
=

𝑢
𝑜

𝑢
𝑜

= 1, 𝑏
𝜃
= 0. (6b)

(b) The inner cylinder is perfectly insulated but the outer
cylinder is perfectly conducting:

𝑟 =

𝑟
𝑖

𝑎

= 𝑟
𝑖
, 𝑢

𝜃
=

𝑢
𝑖

𝑢
𝑜

= 𝑢
𝑖
, 𝑏

𝜃
= 0, (7a)

𝑟 =

𝑟
𝑜

𝑎

= 𝑟
𝑜
, 𝑢

𝜃
=

𝑢
𝑜

𝑢
𝑜

= 1,

𝜕𝑏
𝜃

𝜕𝑟

= 0. (7b)

(c) The outer cylinder is perfectly insulated but the inner
cylinder is perfectly conducting:

𝑟 =

𝑟
𝑖

𝑎

= 𝑟
𝑖
, 𝑢

𝜃
=

𝑢
𝑖

𝑢
𝑜

= 𝑢
𝑖
,

𝜕𝑏
𝜃

𝜕𝑟

= 0, (8a)

𝑟 =

𝑟
𝑜

𝑎

= 𝑟
𝑜
, 𝑢

𝜃
=

𝑢
𝑜

𝑢
𝑜

= 1, 𝑏
𝜃
= 0. (8b)

3. Solutions

The solutions to the set of governing partial differential equa-
tions are strongly dependent on the appropriate boundary
conditions associated with the problem being considered.
Solving equation (5) simultaneously subjected to the bound-
ary conditions ((6a) and (6b)), ((7a) and (7b)), or ((8a) and
(8b)), one can obtain the expressions for the profiles for
the dimensionless velocity and the dimensionless induced
magnetic field.

(a) If both the inner and outer cylinders are perfectly
insulated, the expressions for the velocity (𝑢) and
inducedmagnetic field (𝑏) profiles, after dropping the
bar for brevity, can be obtained by solving (5) simul-
taneously subjected to boundary conditions ((6a) and
(6b)). These profiles read

𝑢 = 𝐶
1
𝑟
𝑚
+ 𝐶
2
𝑟
−𝑚
+ 𝐶
3

Ha
𝑚
2
− 1

𝑟, (9a)

𝑏 = −𝐶
1

Ha
𝑚 + 1

𝑟
𝑚
+ 𝐶
2

Ha
𝑚 − 1

𝑟
−𝑚

−

𝐶
3

2

(

Ha
𝑚
2
− 1

− 1) 𝑟 + 𝐶
4
𝑟
−1
,

(9b)

where

𝑚 = √Ha2 + 1

Da
+ 1, (10a)

𝜛 =

𝑢
𝑖

𝑢
𝑜

, (10b)

𝜙 =

𝑟
𝑖

𝑟
𝑜

, (10c)

𝐶
1
=

(𝜛 − 𝜙)𝑓
1
− (𝜙
−𝑚
− 𝜙) (1 − 𝜙

2
) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

1
− (𝜙
−𝑚
− 𝜙)𝑓

2

, (10d)

𝐶
2
=

− (𝜛 − 𝜙)𝑓
2
+ (𝜙
𝑚
− 𝜙) (1 − 𝜙

2
) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

1
− (𝜙
−𝑚
− 𝜙)𝑓

2

, (10e)

𝐶
3
=

𝑚
2
− 1

Ha

×

(𝜙
𝑚
−𝜛)𝑓

1
+ (𝜛 − 𝜙

−𝑚
) 𝑓
2
+ (𝜙
−𝑚
− 𝜙
𝑚
) (1 − 𝜙

2
) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

1
− (𝜙
−𝑚
− 𝜙)𝑓

2

,

(10f)

𝐶
4
=
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𝑚 + 1

𝐶
1
𝜙
𝑚+1

−

Ha
𝑚 − 1

𝐶
2
𝜙
−𝑚+1

+ (1 − 𝐶
1
− 𝐶
2
) 𝜙
2
𝑔,

(10g)

𝑓
1
=

Ha
𝑚 − 1

(1 − 𝜙
−𝑚+1

) + (1 − 𝜙
2
) 𝑔, (10h)

𝑓
2
= −

Ha
𝑚 + 1

(1 − 𝜙
𝑚+1
) + (1 − 𝜙

2
) 𝑔, (10i)

𝑔 =

Ha2 − 𝑚2 + 1
2Ha

. (10j)

(b) If the inner cylinder is perfectly insulated but the
outer cylinder is perfectly conducting, the velocity
and induced magnetic field profiles associated with
boundary conditions ((7a) and (7b)) are also given by
((9a) and (9b)), but the coefficients𝐶

1
through𝐶

4
are

redefined as below:

𝐶
1
=

(𝜛 − 𝜙)𝑓
3
− (𝜙
−𝑚
− 𝜙) (𝜙

2
+ 1) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

3
+ (𝜙
−𝑚
− 𝜙)𝑓

4

, (11a)

𝐶
2
=

(𝜛 − 𝜙)𝑓
4
+ (𝜙
𝑚
− 𝜙) (𝜙

2
+ 1) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

3
+ (𝜙
−𝑚
− 𝜙)𝑓

4

, (11b)

𝐶
3
=

𝑚
2
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𝑚
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3
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2
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,

(11c)
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𝐶
4
=
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𝑚 + 1

𝐶
1
𝜙
𝑚+1

−

Ha
𝑚 − 1

𝐶
2
𝜙
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1
− 𝐶
2
) 𝜙
2
𝑔,

(11d)

𝑓
3
=

Ha
𝑚 − 1

(−𝑚 + 𝜙
−𝑚+1
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2
) 𝑔, (11e)

𝑓
4
=

Ha
𝑚 + 1

(𝑚 + 𝜙
𝑚+1
) − (1 + 𝜙

2
) 𝑔, (11f)

where 𝑔 is exactly the same as defined in (10j).
(c) If the outer cylinder is perfectly insulated but the

inner cylinder is perfectly conducting, the velocity
and induced magnetic field profiles associated with
boundary conditions ((8a) and (8b)) are also given by
((9a) and (9b)) whose coefficients 𝐶

1
through 𝐶

4
are

once again redefined as below:

𝐶
1
=

(𝜛 − 𝜙)𝑓
5
− (𝜙
−𝑚
− 𝜙) (𝜙

2
+ 1) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

5
+ (𝜙
−𝑚
− 𝜙)𝑓

6

, (12a)

𝐶
2
=

(𝜛 − 𝜙)𝑓
6
+ (𝜙
𝑚
− 𝜙) (𝜙

2
+ 1) 𝑔

(𝜙
𝑚
− 𝜙)𝑓

5
+ (𝜙
−𝑚
− 𝜙)𝑓

6

, (12b)

𝐶
3
= −

1 − 𝑚
2

Ha

×

(𝜙
𝑚
−𝜛)𝑓

5
− (𝜛 − 𝜙

−𝑚
) 𝑓
6
− (𝜙
𝑚
− 𝜙
−𝑚
) (𝜙
2
+ 1) 𝑔
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𝑚
− 𝜙)𝑓

5
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−𝑚
− 𝜙)𝑓

6

,

(12c)

𝐶
4
= −
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𝐶
1
𝑚𝜙
𝑚+1

−

Ha
𝑚 − 1

𝐶
2
𝑚𝜙
−𝑚+1

− (1 − 𝐶
1
− 𝐶
2
) 𝜙
2
𝑔,

(12d)

𝑓
5
=

Ha
𝑚 − 1

(1 − 𝑚𝜙
−𝑚+1

) + (1 + 𝜙
2
) 𝑔, (12e)

𝑓
6
=

Ha
𝑚 + 1

(1 + 𝑚𝜙
𝑚+1
) − (1 + 𝜙

2
) 𝑔, (12f)

where 𝑔 is also identical to the one defined (10j).

4. Results and Discussion

To validate the solutions presented in the previous section,
these solutions have been compared to the analytical solution
for a flow between a set of rotating cylinders [36]. It is
remarkable to point out that there appeared a singularity
point associated with Ha = 0 for all the solutions obtained
here. To avoid the singularity, Ha was assigned 10−3 which
physically indicates the presence of an extremely weak exter-
nal magnetic field. Also, Da was assigned 103 to suppress the
tortuous effect associated with the porous annulus. Figure 2
shows the three solutions obtained in this work. Solutions
(a), (b), and (c) correspond to the cases where both the
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Figure 2: Validation of present solution with Ha = 10−3 and Da =
103. —Currie [36], ◻ Solution (a),󳵻 Solution (b), and l Solution (c).

inner and outer cylinders are perfectly insulated, the case
where the inner cylinder is perfectly insulated but the outer
cylinder is perfectly conducting, and the case where the
outer cylinder is perfectly insulated but the inner cylinder
is perfectly conducting. All these solutions are identical as
evidently shown in the figure.

For demonstration, present study is limited to the settings
of 𝑟
𝑖
= 1, 𝑟

𝑜
= 2, 𝑢

𝑖
= 0, and 𝑢

𝑜
= 1 although arbitrary

values are acceptable as long as 𝑢
𝑜
̸= 0. Therefore, in the

figures that follow, 𝑅 = 1 represents the locations of the
inner cylinder while 𝑅 = 2 the outer cylinder. Figure 3 shows
the velocity and induced magnetic field profiles between
the perfectly insulated inner and outer cylinders for Da =
10−2 corresponding to different values of Ha. As shown in
Figure 3(a), the effect of porous media is so significant that
the flow drag that the porous matrix imposes causes the
velocity to collapse in the vicinity of the stationary inner
cylinder. As Ha increases, the Lorentz force induced within
the fluid provides additionalmomentum to the fluid elements
close to the inner cylinder and thus accelerates the fluid
elements there. At the same time, the fluid elements closer to
the rotating outer cylinder tends to slightly slow down due
to the presence of a stronger Lorentz force in conjunction
with a greater value of permeability (i.e., a weaker flow
resistance). The profiles of the induced magnetic field shown
in Figure 3(b) prove that its amplitude increases with Ha
which is an indication for the strength of the externally
applied magnetic field. A maximum amount of magnetic
field induced is found within the region 1.6 < 𝑅 < 1.8. This
phenomenon is closely related to the regionwhere the change
in velocity gradient is the most significant. Since both the
inner and outer cylinders are perfectly insulated, no electric
current is allowed to flow within these solid cylinders. The
induced magnetic field close to these two cylindrical walls is
thus very small in accordance with Ampere’s Law.
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Figure 3: Various profiles for Da = 10−2 and different values of Ha when both cylinders are insulated: (a) velocity and (b) induced magnetic
field.
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Figure 4: Various profiles for Ha = 10 and different values of Da when both cylinders are insulated: (a) velocity and (b) induced magnetic
field.

The effects of Da are investigated in Figure 4. When Ha =
10, it is apparent that the motion of the fluid is significantly
influenced by the permeability of the porous annulus. As
Da gradually reduces, the additional flow resistance that the
porous structure offers increases. This leads to a reduction in
flow rate across the gap, as apparently shown in Figure 4(a). It
is remarkable to emphasize that the velocity profiles at Da =
10−4 reduce to zero except in the vicinity of the rotating inner
cylinder, that is, the Hartmann layer. When Da ≤ 10−3, the
induced Lorentz force even for an external magnetic field of

Ha = 10 is still relatively too weak to assist magnetic fluid to
overcome the flow resistance due to the presence of porous
structure. Hence, no more than 25% of the gap contributes
to the overall mass transfer if Da < 10−3 because the fluid
elements outside the Hartmann layer are literally motionless.
A further reduction in Da would eventually retard the flow
resulting in a much narrower Hartmann layer right next to
the rotating outer cylinder.The corresponding distribution of
induce magnetic field is shown in Figure 4(b).Themaximum
induced magnetic field strength for different Da does not
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Figure 5: Various profiles forDa = 10−2 and different values ofHawhen the inner cylinder is perfectly insulatedwhile the outer one is perfectly
conducting: (a) velocity and (b) induced magnetic field.

seem to follow any specific pattern. When Da reduces from
100 to 10−2, it increases. However, a further reduction in Da
leads to its dramatic reduction. In fact, there is a reason
behind the aforementioned phenomenon. The increase in
magnetic induction for Da > 10−2 is attributed to the increase
in velocity gradient in the outer region of the magnetic fluid
flow. IfDa < 10−2, the conducting fluid ismostlymotionless as
shown in Figure 4(a), it is this lack of momentum that causes
the decrease in induced magnetic field strength. Despite the
presence of this motionless fluid region, the velocity gradient
across the fluid layer next to the outer cylinder contributes to
the maximummagnetic field strength induced at 𝑅 ≈ 1.85.

At Da = 10−2, the magnitude of the velocity associ-
ated with a perfectly conducting outer cylinder that allows
electric currents to flow through is apparently greater than
those between a pair of insulated cylinders, through the
comparison made between Figures 3(a) and 5(a). Although
these velocity profiles have some resemblances at relatively
low Ha, the velocity profiles are quite distinctive at high
values of Ha. Unlike those profiles shown in Figure 3(a),
the velocity gradient on the rotating perfectly conducting
outer cylindrical wall decreases with Ha.This implies that the
torque requirement for the outer cylinder actually lessens if
moremagnetic energy is applied to the annulus. Even though
the velocity profiles for Ha = 1 and Ha = 2 are very similar to
each other, the profile for inducedmagnetic field for Ha = 2 is
obviously greater than that forHa= 1, as shown in Figure 5(b).
In this figure, it is observed that the strength of the induced
magnetic field increases with Ha. Not only so, the maximum
magnetic strength occurs at the perfectly conducting outer
cylinder. This finite value of induced magnetic field on the
outer cylindrical wall has no doubt suggested that there exists
an induced electric current within the solid outer cylinder.

Because the outer cylinder is perfectly conductive, part of
the electric current induced by the MHD flow will be able to
bypass through the outer cylinder. Because of this additional
flow of electrons within the outer cylinder, it indirectly helps
the induction of additional magnetic field in the flow region
next to the outer cylinder.

Figure 6 demonstrates the effect of permeability on the
velocity and induced magnetic field of the magnetic fluid. At
a Ha of 10, the Lorentz force induced is strong enough to
accelerate the magnetic fluid and thus the velocity profiles
are very similar when Da ≥ 0.1. However, if Da is further
decreased, the effect of flow resistance due to porous media
begins to dominate the effect of Lorentz force. For this
reason, the overall velocity between the cylinders reduces.
However, it is observed that even when Da = 10−3, there is
a finite velocity component throughout the gap between the
inner and outer cylinders. Apparently, the conductivity of the
outer cylinder has significantly improved the Lorentz force
and thus maintained a minimum flow rate across the gap.
However, it is remarkable to point out that this minimum
flow rate will eventually reduce to nearly zero if Da = 10−5
with a very thin Hartmann layer. As shown in Figure 6(b),
the induced magnetic field is the weakest when Da = 1. In
this case, there exists a maximum magnetic strength at 𝑅 ≈
1.2. As Da decreases, the amount of magnetic field induced
increases significantly. For instance, when Da = 10−3, the
strength of the magnetic field induced can be as high as 4.8.
This clearly implies that the conductivity of the cylinder plays
an important role in magnetic field induction.

Figure 7 shows the profiles of velocity and induced
magnetic field at fixed value of Da = 10−2. Since the fluid
elements in the outer half of the annulus next to the outer
cylinder experience a stronger Lorentz force than those in the
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Figure 6: Various profiles for Ha = 10 and different values of Da when the inner cylinder is perfectly insulated while the outer one is perfectly
conducting: (a) velocity and (b) induced magnetic field.
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Figure 7: Various profiles forDa = 10−2 and different values ofHawhen the outer cylinder is perfectly insulatedwhile the inner one is perfectly
conducting: (a) velocity and (b) induced magnetic field.

other half of the annulus, the velocity gradients at both the
inner and outer cylinders increase with Ha. It is also found
that there exists an invariant point associatedwith the velocity
component at 𝑅 ≈ 1.55. Furthermore, the flow rate across the
gap decreaseswithHa because the drop in velocitymagnitude
between the velocity invariant point and the outer cylinder
is always greater than that between the invariant point and
the inner cylinder. Accordingly, the average velocity within
the gap between a perfectly conducting nonmoving inner
cylinder and a perfectly insulating rotating outer cylinder is

always greater than other conditions discussed before. When
Ha ≤ 5, the induced magnetic field away from the inner
cylinder remains almost unchanged in the radial direction
until it is closed to the outer cylinderwhere its strength begins
to decay sharply. Therefore, the maximum induced magnetic
field generally takes place on the inner cylindrical wall.

Figure 8 demonstrates the profiles of velocity and induced
magnetic field when Ha = 10. The boundary conditions are
identical to the cases investigated in Figure 7. If Da decreases
from 100 to 10−1, it means the permeability of the porous
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Figure 8: Various profiles for Ha = 10 and different values of Da when the outer cylinder is perfectly insulated while the inner one is perfectly
conducting: (a) velocity and (b) induced magnetic field.

annulus decreases. When this happens, the fluid elements
are required to overcome a greater flow resistance before
it can penetrate the porous annulus. Thus, their velocity
everywhere within the gap lowers. When Da reduces to 10−2,
the transfer of the momentum from the outer cylinder has
been apparently suppressed by the additional flow resistance
caused by the less porous annulus. The effect of flow sup-
pression at Da = 10−3 is so significant that most of the flow
within the gap is nearly motionless. This supports the fact
that the flow resistance effect has become the primary factor
influencing the flow nature. Because of the reduction in
velocity, the magnitude of magnetic field induced decreases
accordingly, as clearly displayed in Figure 8(b). When Da
decreases gradually, the strength of magnetic field induced in
the vicinity of the inner cylinder is the greatest unless Da is
small enough. Not only so, the induced magnetic field on the
inner cylinder drops tremendously as Da decreases.

5. Conclusions

A set of simplified governing equations for a steady cylin-
drical magnetic Couette flow in a porous annulus between
two cylinders under the influence of a radial magnetic field
has been established and their analytical solutions have been
obtained. The main purpose of this paper is to study how
the strength of the externally applied magnetic field; the
permeability of the porous annulus; and the conductivity
of the inner and outer cylinders affect the flow behaviors
and magnetic field induction within the magnetic fluid. The
following conclusions were obtained.

(a) A closed form solution is available if the permeability
of the porous annulus increases with its radial coor-
dinates; that is, 𝐾

𝑝
= 𝛼𝑟
2, where 𝛼 is a constant.

(b) Both the Lorentz force and flow resistance due to the
porous structure tend to unify the flowwithin the gap.
The former accelerates or decelerates the magnetic
fluid depending on its location, whereas the latter
always decelerates the flow.

(c) The strength of the induced magnetic field increases
with Ha because of the increase in induced electric
current. However, this strength decreases with Da
because of the reduction of flow momentum that
transfers within the porous annulus.

(d) The conductivity of the cylinders is highly influential
on the velocity and induced magnetic field profiles.

Nomenclature

𝑎: Gap between inner and outer cylinder, m
󳨀⇀

𝐵 : Magnetic flux density, Tesla
𝐵
0
: External magnetic field density, Tesla

𝑏
0
: An arbitrary magnetic scale used in

normalization, Tesla
𝑏
𝜃
: Angular component of induced magnetic

field density, Tesla
Da: Darcy number, —
𝑓: Lorentz force, N
Ha: Hartmann number, —
𝑗: Induced current density, A/m2
𝐾
𝑝
: Permeability of porous media, m2

𝑟: Radial coordinate, m
󳨀⇀

𝑉: Fluid velocity, m/s
𝑢
0
: An arbitrary velocity scale used in
normalization, m/s

𝑢
𝜃
: Fluid angular velocity component, m/s.
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Greek

𝜀: Magnetic permittivity of material, F/m
𝜇: Magnetic permeability of material, H/m
]: Fluid kinematic viscosity, m2/s
𝜃: Angular coordinate, —
𝜌: Fluid density, kg/m3
𝜎: Electric conductivity, 1/Ω⋅m.

Subscripts

𝑖: Inner cylinder
𝑜: Outer cylinder
𝑧: Axial direction
𝜃: Angular direction.
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