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A new class of spectral methods for solving two-point boundary value problems for linear ordinary differential equations is
presented in the paper. Although these methods are based on trigonometric functions, they can be used for solving periodic as
well as nonperiodic problems. Instead of using basis functions periodic on a given interval [−1, 1], we use functions periodic on a
wider interval.The numerical solution of the given problem is sought in terms of the half-range Chebyshev-Fourier (HCF) series, a
reorganization of the classical Fourier series using half-range Chebyshev polynomials of the first and second kind which were first
introduced by Huybrechs (2010) and further analyzed by Orel and Perne (2012). The numerical solution is constructed as a HCF
series via differentiation andmultiplicationmatrices.Moreover, the construction of themethod, error analysis, convergence results,
and some numerical examples are presented in the paper. The decay of the maximal absolute error according to the truncation
number𝑁 for the new class of Chebyshev-Fourier-collocation (CFC)methods is compared to the decay of the error for the standard
class of Chebyshev-collocation (CC) methods.

1. Introduction and Formulation

A standard problem in approximation theory is to compute
the coefficients of a Fourier series to approximate smooth and
periodic functions. This can be efficiently done by using the
FFT,which is a stable andwell-understoodmethod that yields
spectral convergence. Things look very different when deal-
ing with nonperiodic or nonsmooth functions. This is due to
the so called Gibbs phenomenon which causes oscillations
near the points of discontinuity and/or near the boundary as
well as slow decay of Fourier coefficients. There are several
possibilities to overcome these difficulties and successfully
deal with such functions. Some of them were analyzed by
Gottlieb and Shu in [1] and by Tadmor in [2]. One possibility
is to use some periodizing transformation and compute the
Fourier series of the transformed function. There is a widely
used transformation which yields Chebyshev polynomials of
the first kind. Much about this can be found in the literature
by Boyd in [3], by Fornberg and Sloan in [4], or by Trefethen
in [5].These polynomials are arranged as a Chebyshev series.

Another approach was recently presented by Huybrechs
in [6] where he analyzed the problem which was stated by
Boyd in [7] and by Bruno et al. in [8].

Problem 1. For 𝑇 > 1, let 𝐺
𝑛
be the space of 2𝑇-periodic

functions of the form

𝑔 ∈ 𝐺
𝑛
: 𝑔 (𝑥) =

𝑎
0

2
+

𝑛

∑
𝑘=1

(𝑎
𝑘
cos 𝜋𝑘𝑥

𝑇
+ 𝑏
𝑘
sin 𝜋𝑘𝑥

𝑇
) . (1)

The Fourier extension of 𝑓 ∈ 𝐿
2

(−1, 1), defined on the
interval [−1, 1] to the interval [−𝑇, 𝑇], is the solution to the
optimization problem

𝑔
𝑛
:= argmin

𝑔∈𝐺
𝑛

󵄩󵄩󵄩󵄩𝑓 − 𝑔
󵄩󵄩󵄩󵄩𝐿2 . (2)

In his paper, Huybrechs considered a square-integrable
function 𝑓 ∈ 𝐿

2

(−1, 1) that is not necessarily smooth or
periodic. The idea to obtain a spectrally accurate Fourier
series is to extend the given function 𝑓 to a function 𝑔 that
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is periodic on a wider interval [−𝑇, 𝑇], 𝑇 > 1. The Fourier
series of the constructed function is obviously point-wise
convergent to 𝑓 on the interval [−1, 1].

Huybrechs analyzed this problem for the choice 𝑇 =

2 and developed three numerical methods for solving it.
Besides proving the existence and uniqueness of the solution,
he characterized the solution with two nonclassical families
of orthogonal polynomials related to Chebyshev polynomials
of the first and second kind: the half-range Chebyshev
polynomials of the first and second kind. The second and
third methods are based on projection and collocation.
The convergence is in most cases exponential rather than
superalgebraic.

The half-range Chebyshev polynomials of the first and
second kind and the corresponding half-range Chebyshev-
Fourier (HCF) series were further explored by Orel and
Perne in [9]. The authors presented an efficient method for
the construction of these polynomials using the modified
Chebyshev algorithm for the computation of the recursion
coefficients via the three-term recurrence relation formula.
Moreover, the authors developed some necessary tools for the
construction of spectral methods using these polynomials.

In this paper, instead of approximation problems, like
Problem 1, which was successfully solved by Huybrechs in
[6], we are interested in solving BVPs in ODEs via spectral
methods, that is, solving problems as defined below.

Problem 2. Find the numerical solution of a linear two-point
boundary value problem of the form

L𝑦 (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ [−1, 1] , (3)

with boundary conditions

B𝑦 (𝑥) = 0, 𝑥 ∈ {−1, 1} , (4)

whereL is a linear differential operator:

L = 𝛼 (𝑥)
𝑑
2

𝑑𝑥2
+ 𝛽 (𝑥)

𝑑

𝑑𝑥
+ 𝛾 (𝑥) 𝐼, (5)

𝐼 is the identity operator, and B is a set of linear boundary
differential operators.

There are several different classes of numerical methods
to solve boundary value problems. In the company of such
methods as finite differences (FDM) and finite elements
(FEM) we are interested in spectral methods (SM). It is well
known that spectral methods approximate the solution in
a finite dimensional subspace of a Hilbert space. The basis
functions used are defined globally (on the whole interval).
On the contrary, the basis functions for finite element
methods are defined locally (only on a small interval).

Different approaches are used if the underlying problem
is periodic or nonperiodic. In the case of periodic problems,
the natural basis functions are trigonometric functions. In
other words, the solution is approximated with a truncated
Fourier series. Equidistant mesh points are used to discretize
the interval on which the problem is defined. In the case
of nonperiodic problems, orthogonal polynomials are used,

especially the Chebyshev polynomials of the first kind. In
this case, the solution is approximated with a truncated
Chebyshev series. There are two types of Chebyshev mesh
points. Chebyshev points of the second kind, where the
Chebyshev polynomials of the first kind reach their extreme
values, are generally used in spectral methods to discretize
the underlying interval. Chebyshev points of the first kind
are the zeros of the Chebyshev polynomials of the first
kind. Usually, Chebyshev points in nonperiodic problems
outweigh equidistant points because they are denser near
the boundary of the interval. Besides, such a distribution of
points overwhelms problems caused by Gibbs and/or Runge
phenomenon. There are different types of spectral methods
depending on the method used for computing the expansion
coefficients, for example, Galerkin method, Tau method,
or collocation. Spectral methods based on collocation are
usually called pseudospectral methods. Classical references
on spectral methods include textbooks by Boyd, [3], Canuto
et al. [10], Fornberg [11], Gottlieb and Orszag [12], and
Trefethen [5], and more recent ones are Canuto et al. [13] and
Shen et al. [14].

There were several attempts to solve nonperiodic prob-
lems using a trigonometric basis. Adcock in [15, 16]
solved the problem with modified Fourier series, using
Galerkin method to compute expansion coefficients. Huy-
brechs in [6] proposed a new set of trigonometric functions,
which includes sines and cosines as well as half-sines and
half-cosines.

Our intention is to provide a new class of spectral
methods using approaches described in [6, 9], combined
with collocation to compute expansion coefficients. This
approach yields pseudospectral method for solving nonperi-
odic problems with tools used for solving periodic problems.
We focus on Dirichlet boundary conditions, although it is
not difficult to extend this approach to Neumann or mixed
boundary conditions. The generalization to higher order
linear boundary problems is also possible. The restriction to
the interval [−1, 1] is only a matter of simplification, since it
is well known how to map an arbitrary interval [𝑎, 𝑏] to the
unit interval.

The paper is organized as follows. In Section 2 we define
the form of the exact solution to the discrete problem by
introducing the set of basis functions proposed byHuybrechs
in [6] and two nonclassical families of orthogonal polyno-
mials. In Section 3 follows the developement of a spectral
method for the solution of the boundary value problem,
based on a pseudospectral (collocation) approach. Error
analysis and convergence results based on error analysis
approach in [13, 14] are addressed in Section 4. Finally, we
present some numerical examples in Section 5. Section 6
concludes the paper.

2. Approximation with Half-Range
Chebyshev Polynomials

Let us first review the exact solution of the discrete Problem 1
using the half-range Chebyshev polynomials. The idea is
to extend a nonperiodic function on the interval [−1, 1] to
an interval [−𝑇, 𝑇] on which the given function is periodic
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and to use the set of trigonometric functions, proposed by
Huybrechs in [6]. He analyzed the extension for 𝑇 = 2 and
proposed to use the set of basis functions

𝐷
𝑛
:= 𝐶
𝑛
∪ 𝑆
𝑛
, (6)

where

𝐶
𝑛
= {

1

√2
} ∪ {cos 𝜋𝑘𝑥

2
}

𝑛

𝑘=1

, 𝑆
𝑛
= {sin 𝜋𝑘𝑥

2
}

𝑛

𝑘=1

.

(7)

Note that the set 𝐶
𝑛
consists of even and the set 𝑆

𝑛
of odd

functions. The function space is the span of𝐷
𝑛
.

Huybrechs showed that 𝐷
∞

is not a basis of 𝐿2(−1, 1)
but a tight frame with frame bound 2, that is, the frame
obeys a generalized Parseval’s identity, and that the set 𝐷

∞

consists of all eigenfunctions of the Laplace operator on
[−1, 1] subject to either homogeneous Dirichlet or Neumann
boundary conditions.That is due to the fact that the functions
in 𝐷
∞

are linearly dependent. On the contrary, the set 𝐷
𝑛
is

a basis for a finite dimensional subspace of 𝐿2(−1, 1), for any
finite 𝑛. All the functions in𝐷

𝑛
are linearly independent.

It makes perfect sense to look for an orthonormal basis
on the interval [−1, 1]. Since the even functions in 𝐶

𝑛

and the odd functions in 𝑆
𝑛
are mutually orthogonal, the

orthonormalization problem divides into two problems. Let
us define two spaces, denoted by

C
𝑛
:= span 𝐶

𝑛
, S

𝑛
:= span 𝑆

𝑛
. (8)

The following two theorems are stated and proved by Huy-
brechs in [6].

Theorem 3. Let 𝑇ℎ
𝑘
(𝑦) be the unique normalized sequence of

orthogonal polynomials satisfying

4

𝜋
∫
1

0

𝑇
ℎ

𝑘
(𝑦) 𝑦
ℓ

√1 − 𝑦2
𝑑𝑦 = 𝛿

𝑘,ℓ
, ℓ = 0, . . . , 𝑘 − 1. (9)

Then the set {𝑇ℎ
𝑘
(cos(𝜋𝑥/2))}𝑛

𝑘=0
is an orthonormal basis forC

𝑛

on [−1, 1].

Theorem 4. Let 𝑈ℎ
𝑘
(𝑦) be the unique normalized sequence of

orthogonal polynomials satisfying

4

𝜋
∫
1

0

𝑈
ℎ

𝑘
(𝑦) 𝑦
ℓ√1 − 𝑦2𝑑𝑦 = 𝛿

𝑘,ℓ
, ℓ = 0, . . . , 𝑘 − 1. (10)

Then the set {𝑈ℎ
𝑘
(cos(𝜋𝑥/2)) sin(𝜋𝑥/2)}𝑛−1

𝑘=0
is an orthonormal

basis for S
𝑛
on [−1, 1].

The polynomials 𝑇ℎ
𝑛
(𝑥) and 𝑈ℎ

𝑛
(𝑥) are called half-range

Chebyshev polynomials of the first and second kind, respec-
tively.They have the same weight functions as the Chebyshev
polynomials of the first and second kind but are orthogonal
on the interval [0, 1] rather than on the interval [−1, 1]. The
orthogonal polynomials are guaranteed to exist, because the
weight functions are positive and integrable. The construc-
tion and additional properties of these polynomials were

studied by Orel and Perne in [9]. An arbitrary function 𝑓 ∈

𝐿
2

(−1, 1) can be then expanded as a half-range Chebyshev-
Fourier series:

𝑓 (𝑥) =

∞

∑
𝑘=0

𝑎
𝑘
𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
) +

∞

∑
𝑘=0

𝑏
𝑘
𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
.

(11)

Huybrechs in [6] proved the existence and uniqueness
of the exact solution to Problem 1 as a truncated half-range
Chebyshev-Fourier (HCF) series.

Theorem5. For a given𝑓 ∈ 𝐿2(−1, 1), the solution to Problem
1 is

𝑔
𝑛
(𝑥) =

𝑛

∑
𝑘=0

𝑎
𝑘
𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
) +

𝑛−1

∑
𝑘=0

𝑏
𝑘
𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
,

(12)

where

𝑎
𝑘
= ∫
1

−1

𝑓 (𝑥) 𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
) 𝑑𝑥,

𝑏
𝑘
= ∫
1

−1

𝑓 (𝑥)𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
𝑑𝑥.

(13)

Convergence of the HCF series (11) was extensively
studied by Huybrechs in [6], where the following theorem
and its corollary were stated and proved.

Theorem 6. Let 𝑓(𝑦) = 𝑓(𝑥), where 𝑥 = (2/𝜋) cos−1𝑦,
be analytic in the region bounded by an ellipse with major
semiaxis length 𝑅 and with foci 0 and 1. The corresponding
domain of analyticity of 𝑓 is denoted by 𝐷(𝑅). If 𝑓 is analytic
in the domain 𝐷(𝑅), with 𝑅 > 1/2, then the solution 𝑔

𝑛
to the

Problem 1 satisfies
󵄩󵄩󵄩󵄩𝑓 − 𝑔𝑛

󵄩󵄩󵄩󵄩 ∼ 𝜌
−𝑛

, (14)

with

𝜌 = min (3 + 2√2, 2𝑅 + √4𝑅2 − 1) , (15)

unless 𝑓 is analytic and periodic on [−2, 2].

Corollary 7. Under the conditions of Theorem 6, the coeffi-
cients 𝑎

𝑘
and 𝑏

𝑘
of 𝑔
𝑛
in the form of (12) and (13) satisfy

𝑎
𝑘
, 𝑏
𝑘
∼ 𝜌
−𝑛.

3. Construction of Chebyshev-Fourier-
Collocation Methods

In this section we construct and analyze a new class of
spectral methods for the solution of Problem 2, which we will
then call Chebyshev-Fourier-collocation (CFC) methods.
The numerical solution is sought as a half-range Chebyshev-
Fourier series defined in (12). The series is expanded in
terms of trigonometric functions and rearranged in terms
of half-range Chebyshev polynomials defined in Theorems 3
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and 4. Collocation is used for the computation of expansion
coefficients defined in (13). Let us turn back to Problem 2 and
rewrite it as a two-point boundary value problem (3) with
Dirichlet boundary conditions (4):

𝛼 (𝑥)
𝑑
2

𝑦

𝑑𝑥2
+ 𝛽 (𝑥)

𝑑𝑦

𝑑𝑥
+ 𝛾 (𝑥) 𝑦 = 𝑓 (𝑥) , 𝑥 ∈ [−1, 1] ,

𝑦 (−1) = 𝐴, 𝑦 (1) = 𝐵.

(16)

The numerical solution of the above problem is sought as a
truncated HCF series, introduced inTheorem 5:

𝑦 (𝑥) ≈ 𝑦
𝑁
(𝑥) =

𝑁

∑
𝑘=0

𝑎
𝑘
𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
)

+

𝑁−1

∑
𝑘=0

𝑏
𝑘
𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
.

(17)

In other words, we seek for coefficients 𝑎
𝑘
and 𝑏
𝑘
, so that the

numerical solution (17) is as good as possible. Here,𝑁 is the
truncation number and for a given value of𝑁 we use 2𝑁 + 1

orthogonal polynomials: 𝑁 + 1 half-range Chebyshev poly-
nomials of the first and𝑁 half-range Chebyshev polynomials
of the second kind.

We commence, by dividing the interval [−1, 1]with 2𝑁+1
collocation points, the Chebyshev points of the second kind
into 2𝑁 subintervals:

−1 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

2𝑁
= 1, (18)

where

𝑥
𝑖
= − cos( 𝜋𝑖

2𝑁
) , 𝑖 = 0, 1, . . . , 2𝑁. (19)

Besides, we compute the first derivative of the truncated
series (17), where 𝑎󸀠

𝑘
and 𝑏󸀠
𝑘
denote the coefficients of the first

derivative of the truncated HCF series:

𝑑𝑦
𝑁

𝑑𝑥
(𝑥) =

𝑁

∑
𝑘=0

𝑎
󸀠

𝑘
𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
)

+

𝑁−1

∑
𝑘=0

𝑏
󸀠

𝑘
𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
.

(20)

We obtain a similar form (20) for the first derivative as for
the approximation of the solution (17).The coefficients 𝑎󸀠

𝑘
and

𝑏
󸀠

𝑘
are linearly dependent on the coefficients 𝑎

𝑘
and 𝑏
𝑘
and are

computed via the differentiation matrix𝐷:

u󸀠 = 𝐷u, (21)

where u = (𝑎
0
, . . . , 𝑎

𝑁
, 𝑏
0
, . . . , 𝑏

𝑁−1
)
𝑇 and u󸀠 = (𝑎

󸀠

0
, . . . , 𝑎

󸀠

𝑁
,

𝑏
󸀠

0
, . . . , 𝑏

󸀠

𝑁−1
)
𝑇. Since the coefficients 𝑎󸀠

𝑗
depend only on 𝑏

𝑘
and

𝑏
󸀠

𝑗
only on 𝑎

𝑘
, the differentiation matrix𝐷 ∈ R(2𝑁+1)×(2𝑁+1) is

block-antidiagonal:

𝐷 =
𝜋

2
[
0 𝐻
1

𝐻
2
0
] , (22)

where 𝐻
1
∈ R(𝑁+1)×𝑁 and 𝐻

2
∈ R𝑁×(𝑁+1). This matrix was

constructed and studied in detail by Orel and Perne in [9].
Furthermore, we proceed by computing the second derivative
to obtain a similar representation:

𝑑
2

𝑦
𝑁

𝑑𝑥2
(𝑥) =

𝑁

∑
𝑘=0

𝑎
󸀠󸀠

𝑘
𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
)

+

𝑁−1

∑
𝑘=0

𝑏
󸀠󸀠

𝑘
𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
,

(23)

where the coefficients of the second derivative of the trun-
cated series are denoted by 𝑎󸀠󸀠

𝑘
and 𝑏󸀠󸀠
𝑘
. Again, we compute

these coefficients using differentiation matrix𝐷:

u󸀠󸀠 = 𝐷2u, (24)

where u󸀠󸀠 = (𝑎󸀠󸀠
0
, . . . , 𝑎

󸀠󸀠

𝑁
, 𝑏
󸀠󸀠

0
, . . . , 𝑏

󸀠󸀠

𝑁−1
)
𝑇.

Solving BVPs via collocation assumes that the numerical
solution of the BVP exactly solves the BVP in the interior
collocation points (19) 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 2𝑁−1. After inserting

the truncated series (17), (20), and (23) into the differential
equation (3) we obtain a system of linear equations:

𝛼 (𝑥
𝑖
)
𝑑
2

𝑦
𝑁

𝑑𝑥2
(𝑥
𝑖
) + 𝛽 (𝑥

𝑖
)
𝑑𝑦
𝑁

𝑑𝑥
(𝑥
𝑖
) + 𝛾 (𝑥

𝑖
) 𝑦
𝑁
(𝑥
𝑖
)

= 𝑓 (𝑥
𝑖
) , 𝑖 = 1, 2, . . . , 2𝑁 − 1.

(25)

Besides, we have two additional equations, originating in
boundary value conditions:

𝑁

∑
𝑘=0

𝑎
𝑘
𝑇
ℎ

𝑘
(0) −

𝑁−1

∑
𝑘=0

𝑏
𝑘
𝑈
ℎ

𝑘
(0) = 𝐴,

𝑁

∑
𝑘=0

𝑎
𝑘
𝑇
ℎ

𝑘
(0) +

𝑁−1

∑
𝑘=0

𝑏
𝑘
𝑈
ℎ

𝑘
(0) = 𝐵.

(26)

Let us denote by 𝐶 ∈ R(2𝑁+1)×(2𝑁+1) the collocation
matrix. The entries of this matrix are the values of the basis
functions computed in the collocation points (19). If the set
of all basis functions is denoted by {𝜙

𝑗
}
2𝑁

𝑗=0
, then the entries of

the matrix 𝐶 = [𝑐
𝑖𝑗
] are

𝑐
𝑖𝑗
= 𝜙
𝑗
(𝑥
𝑖
) . (27)

In our case the set of basis function is composed by
two sets, (half-)sines and (half-)cosines, rearranged as half-
range Chebyshev polynomials of the first and second kind:
𝑇
ℎ

𝑘
(cos(𝜋𝑥/2)) and 𝑈ℎ

𝑘
(cos(𝜋𝑥/2)) sin(𝜋𝑥/2), respectively.

We have already denoted by u the set of sought expansion
coefficients 𝑎

𝑘
and 𝑏
𝑘
, arranged as a vector. Besides, we denote

by k = (𝐴, 𝑓(𝑥
1
), . . . , 𝑓(𝑥

2𝑁−1
), 𝐵)
𝑇 the vector of values of

the right-hand side function 𝑓 at interior Chebyshev collo-
cation points 𝑥

1
, 𝑥
2
, . . . , 𝑥

2𝑁−1
. The first and last elements of

vector k are Dirichlet boundary conditions at the endpoints
of the interval [−1, 1].
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Since the coefficients of the differential equation are not
necessarily constant, but functions of the independent vari-
able 𝑥, it is in general necessary to expand these coefficient
functions into truncated HCF series; for example, for 𝜂 ∈

{𝛼, 𝛽, 𝛾}, we have

𝜂 (𝑥) ≈ 𝜂
𝑁
(𝑥) =

𝑁

∑
𝑘=0

𝜇
𝑘
𝑇
ℎ

𝑘
(cos 𝜋𝑥

2
)

+

𝑁−1

∑
𝑘=0

]
𝑘
𝑈
ℎ

𝑘
(cos 𝜋𝑥

2
) sin 𝜋𝑥

2
.

(28)

Now we need to multiply the truncated HCF series 𝛼
𝑁
,

𝛽
𝑁
, and 𝛾

𝑁
with the truncated HCF series 𝑦

𝑁
(17) of the

numerical solution and its derivatives 𝑦󸀠
𝑁
(20) and 𝑦󸀠󸀠

𝑁
(23).

In order to perform these operations, we introduce the mul-
tiplication matrices 𝐹

𝛼
, 𝐹
𝛽
, and 𝐹

𝛾
, which were constructed

and studied in detail by Orel and Perne in [9]. As before, for
𝜂 ∈ {𝛼, 𝛽, 𝛾}, the multiplication matrix 𝐹

𝜂
∈ R(2𝑁+1)×(2𝑁+1) is

a transformation matrix between the coefficients 𝑎
𝑘
and 𝑏
𝑘
of

the truncated HCF series (17) and the coefficients 𝑎
𝑗
and 𝑏̃
𝑗
of

the truncated multiplication of the truncated HCF series (28)
and (17) using the coefficients 𝜇

𝑘
and ]
𝑘
of the truncatedHCF

series (28):

ũ = 𝐹
𝜂
u, (29)

where ũ = (𝑎
0
, . . . , 𝑎

𝑁
, 𝑏̃
0
, . . . , 𝑏̃

𝑁−1
)
𝑇

denotes the vector of
the expansion coefficients of the truncated HCF series of the
multiplication 𝜂

𝑁
(𝑥) ⋅ 𝑦

𝑁
(𝑥). The multiplication matrix 𝐹

𝜂
∈

R(2𝑁+1)×(2𝑁+1) is a block matrix:

𝐹
𝜂
= [

𝐺
1
𝐺
2

𝐺
3
𝐺
4

] , (30)

where 𝐺
1
∈ R(𝑁+1)×(𝑁+1), 𝐺

2
∈ R(𝑁+1)×𝑁, 𝐺

3
∈ R𝑁×(𝑁+1),

and 𝐺
4
∈ R𝑁×𝑁. In the case of a differential equation with

constant coefficients, the matrix 𝐹
𝜂
is scalar; otherwise the

matrix is dense.
Let us now denote by 𝐿 ∈ R(2𝑁+1)×(2𝑁+1) the differential

operator matrix

𝐿 = 𝐹
𝛼
𝐷
2

+ 𝐹
𝛽
𝐷 + 𝐹

𝛾
, (31)

where 𝐷 is the differentiation matrix (21) and 𝐹
𝛼
, 𝐹
𝛽
, and 𝐹

𝛾

are multiplication matrices (29). We are now ready to rewrite
the linear system of (25) and (26) into a matrix form

𝑈u = k, (32)

where the matrix𝑈 ∈ R(2𝑁+1)×(2𝑁+1) is obtained by replacing
the first and the last row of the matrix 𝐶𝐿 with the first
and the last row of the collocation matrix 𝐶 to satisfy the
boundary conditions (26). The solution of the system (32)
gives the spectral coefficients of the truncated HCF series
for the numerical solution of the two-point boundary value
problem (16). Multiplication with collocation matrix 𝐶 yields
the solution values at collocation (Chebyshev) points (19).

4. Error Analysis

In this section we focus on error analysis and the rate of con-
vergence of the new class of Chebyshev-Fourier-collocation
spectral methods introduced in Section 3. In order to prove
convergence of the method and to estimate the error of the
numerical solution, we follow error estimation techniques
presented by Canuto et al. in [13] and by Shen et al. in [14].
Since the HCF series is a generalized trigonometric series
reorganized in terms of half-range Chebyshev polynomials of
the first and second kind, it is convenient to follow the steps
for error estimating of Fourier spectral methods.

Let us restrict to the problem of solving linear BVPs
of second order with homogeneous Dirichlet boundary
conditions on the interval [−1, 1]:

L𝑢 = 𝑓, (33)

𝑢 (−1) = 𝑢 (1) = 0, (34)

where L is a linear differential operator defined in (5). Let
us assume that the coefficient function 𝛼(𝑥) ≡ −1 on the
interval [−1, 1] and let us further assume that the coefficient
function 𝛽 is differentiable and both functions 𝛽 and 𝛾 are
bounded and strictly positive on the interval [−1, 1]. Finally,
let us assume that the condition 𝛾(𝑥) − 𝛽󸀠(𝑥)/2 > 0 holds for
every 𝑥 ∈ [−1, 1].

The required Hilbert space is 𝐿2(−1, 1), the space of all
square integrable functions on the interval [−1, 1]. In this
space the operatorL is unbounded. We denote by

(𝑢, V) = ∫
1

−1

𝑢 (𝑥) V (𝑥) 𝑑𝑥 (35)

the appropriate inner product in 𝐿
2

(−1, 1) and by ‖𝑢‖ =

(𝑢, 𝑢)
1/2 the associated norm. Moreover, let 𝑇

𝑁
⊂ 𝐿
2

(−1, 1)

denote the space of all trigonometric polynomials of degree ≤
𝑁 that satisfy the boundary conditions (34) and let us further
denote by (𝑢, V)

𝑁
the appropriate discrete inner product

with the associated norm ‖𝑢‖
𝑁
= (𝑢, 𝑢)

1/2

𝑁
. The collocation

solution 𝑢𝑁 ∈ 𝑇
𝑁
of (33) and (34) satisfies the equations

L
𝑁
𝑢
𝑁

(𝑥
𝑘
) = 𝑓 (𝑥

𝑘
) ,

𝑢
𝑁

(𝑥
0
) = 𝑢
𝑁

(𝑥
2𝑁
) = 0.

(36)

Here, the nodes 𝑥
𝑘
, 𝑘 = 1, 2, . . . , 2𝑁 − 1, are the interior

collocation points defined in (19) and the operator L
𝑁

is
an approximation to the operator L, obtained by replacing
exact derivatives by interpolation derivatives (21) and (24)
and expanding coefficient functions in HCF series.

Equations (33) and (34) can be equivalently written in a
weak form as a bilinear form:

(L𝑢, V) = (𝑓, V) , ∀V ∈ 𝐿2 (−1, 1) , (37)

where 𝑢 satisfies the boundary conditions (34). The colloca-
tion method (36) can be then rewritten as

(L
𝑁
𝑢
𝑁

, V)
𝑁

= (𝑓, V)
𝑁
, V ∈ 𝑇

𝑁
, (38)
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where 𝑢𝑁 ∈ 𝑇
𝑁
. Analysis of convergence properties requires

the existence of a dense Hilbert subspace of 𝐿2(−1, 1). An
appropriate choice in our analysis is the Sobolev space

𝐻
1

(−1, 1) = {V ∈ 𝐿2 (−1, 1) ;
𝑑V
𝑑𝑥

∈ 𝐿
2

(−1, 1)} , (39)

where the derivative 𝑑V/𝑑𝑥 in the sense of distributions
belongs to 𝐿2(−1, 1). In the following we denote the first
derivative by V󸀠 ≡ 𝑑V/𝑑𝑥 and the second derivative by V󸀠󸀠 ≡
𝑑
2V/𝑑𝑥2. This Sobolev space is equipped with the Sobolev

norm

‖V‖
𝐻
1 = (‖V‖2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
V󸀠
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)
1/2

, (40)

such that ‖𝑢‖
𝐿
2 ≤ ‖𝑢‖

𝐻
1 for all 𝑢 ∈ 𝐻

1

(−1, 1). Note that
for every 𝑁 > 0, the space 𝑇

𝑁
is contained in 𝐻1(−1, 1).

Moreover, our analysis requires that the operator L, or
more exactly the bilinear form (L𝑢, V), satisfies the coercivity
condition

∃𝛼
∗

> 0 : (L𝑢, 𝑢) ≥ 𝛼
∗

‖𝑢‖
2

𝐻
1 , 𝑢 ∈ 𝑇

𝑁
, (41)

and the continuity condition

∃𝐴 > 0 : |(L𝑢, V)| ≤ 𝐴‖𝑢‖
𝐻
1‖V‖
𝐻
1 , 𝑢, V ∈ 𝑇

𝑁
. (42)

Since

(L𝑢, 𝑢) = ∫
1

−1

(−𝑢
󸀠󸀠

+ 𝛽 (𝑥) 𝑢
󸀠

+ 𝛾 (𝑥) 𝑢) 𝑢 𝑑𝑥

= ∫
1

−1

(𝑢
󸀠

)
2

𝑑𝑥 + ∫
1

−1

(𝛾 (𝑥) −
𝛽
󸀠

(𝑥)

2
) 𝑢
2

𝑑𝑥

≥ ∫
1

−1

(𝑢
󸀠

)
2

𝑑𝑥 + 𝜆∫
1

−1

𝑢
2

𝑑𝑥 ≥ 𝛼
∗

‖𝑢‖
2

𝐻
1 ,

(43)

where we use integration by parts in the second row, the
coercivity condition (41) for the bilinear form (37) is satisfied
with

𝛼
∗

= min {1, 𝜆} , where 𝜆 = inf
𝑥∈[−1,1]

(𝛾 (𝑥) −
𝛽
󸀠

(𝑥)

2
) > 0.

(44)

Similarly, since

|(L𝑢, V)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

(−𝑢
󸀠󸀠

+ 𝛽 (𝑥) 𝑢
󸀠

+ 𝛾 (𝑥) 𝑢) V𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
𝑥∈[−1,1]

{1, 𝛽 (𝑥) , 𝛾 (𝑥)} (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

𝑢
󸀠󸀠V𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

𝑢
󸀠V𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

𝑢V𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

= max
𝑥∈[−1,1]

{1, 𝛽 (𝑥) , 𝛾 (𝑥)} (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

𝑢
󸀠V󸀠𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

𝑢V󸀠𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
1

−1

𝑢V𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

≤ max
𝑥∈[−1,1]

{1, 𝛽 (𝑥) , 𝛾 (𝑥)} (
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠
󵄩󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩󵄩
V󸀠
󵄩󵄩󵄩󵄩󵄩𝐿2

+‖𝑢‖
𝐿
2

󵄩󵄩󵄩󵄩󵄩
V󸀠
󵄩󵄩󵄩󵄩󵄩𝐿2

+ ‖𝑢‖
𝐿
2‖V‖
𝐿
2)

≤ 𝐴‖𝑢‖
𝐻
1‖V‖
𝐻
1 ,

(45)
where we use integration by parts in the second row, the
Cauchy-Schwartz inequality in the third row, and inequalities
‖𝑢‖
𝐿
2 ≤ ‖𝑢‖

𝐻
1 and ‖𝑢󸀠‖

𝐿
2 ≤ ‖𝑢‖

𝐻
1 in the fourth row, the

continuity condition (42) is satisfied with

𝐴 = 3 max
𝑥∈[−1,1]

{1, 𝛽 (𝑥) , 𝛾 (𝑥)} . (46)

Both constants 𝛼∗ and 𝐴 are independent of 𝑁. Let us note
that the coercivity and continuity conditions are sufficient but
not necessary as is shown in the forthcoming examples.

Let us further denote 𝑒 = 𝑢𝑁−𝑅
𝑁
𝑢, where 𝑢 ∈ 𝐿2(−1, 1) is

the exact, 𝑢𝑁 ∈ 𝑇
𝑁
is the numerical solution of (33) and (34),

and 𝑅
𝑁
is a projection operator from 𝐿

2

(−1, 1) to 𝑇
𝑁
. Under

the assumptions of the first Strang lemma (see Theorem 1.3,
page 14, [14]), that is, the coercivity (41) and the continuity
(42) condition are satisfied with constants 𝛼∗ and 𝐴 defined
in (44) and (46), the problem (38) admits a unique numerical
solution 𝑢𝑁 ∈ 𝑇

𝑁
, satisfying

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑁
󵄩󵄩󵄩󵄩󵄩𝐿2

≤
1

𝛼∗
sup
0 ̸= V∈𝑇

𝑁

󵄨󵄨󵄨󵄨(𝑓, V)𝑁
󵄨󵄨󵄨󵄨

‖V‖
𝐿
2

. (47)

Moreover, the first Strang lemma states that if the coercivity
and continuity conditions are fulfilled, the error estimate of
the numerical solution 𝑢𝑁 reads as follows:
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑁
󵄩󵄩󵄩󵄩󵄩𝐻1

≤
󵄩󵄩󵄩󵄩𝑢 − 𝑅𝑁𝑢

󵄩󵄩󵄩󵄩𝐻1 + ‖𝑒‖𝐻1

≤ (1 +
𝐴

𝛼∗
)
󵄩󵄩󵄩󵄩𝑢 − 𝑅𝑁𝑢

󵄩󵄩󵄩󵄩𝐻1 +
1

𝛼∗

󵄨󵄨󵄨󵄨(𝑄𝑁𝑓, 𝑒)𝑁 − (𝑓, 𝑒)
󵄨󵄨󵄨󵄨

‖𝑒‖
𝐻
1

+
1

𝛼∗

󵄨󵄨󵄨󵄨(L𝑅𝑁𝑢, 𝑒) − (𝑄𝑁L𝑁𝑅𝑁𝑢, 𝑒)𝑁
󵄨󵄨󵄨󵄨

‖𝑒‖
𝐻
1

.

(48)

Here, 𝑄
𝑁
is a projection operator from 𝐿

2

(−1, 1) to 𝑇
𝑁

according to the discrete inner product and 𝑄
𝑁
V is then a

trigonometric polynomial of degree 𝑁, matching V at the
interior collocation points (19) and vanishing at the boundary
points. The method is convergent, if all three parts of the
inequality (48) converge to 0 with 𝑁 → ∞. Since (see
(5.5.15), page 294, [13])

󵄩󵄩󵄩󵄩𝑢 − 𝑅𝑁𝑢
󵄩󵄩󵄩󵄩𝐻1 ≤ 𝐶1𝑁

1−𝑚
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2
, (49)

where 𝑚 is the order of smoothness of the right-hand side
function 𝑓 and the solution 𝑢, and

󵄨󵄨󵄨󵄨(𝑄𝑁𝑓, 𝑒)𝑁 − (𝑓, 𝑒)
󵄨󵄨󵄨󵄨

‖𝑒‖
𝐻
1

≤

󵄩󵄩󵄩󵄩𝑄𝑁𝑓 − 𝑓
󵄩󵄩󵄩󵄩𝐻1‖𝑒‖𝐻1

‖𝑒‖
𝐻
1

≤
𝐷

2
𝑁
1−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2

(50)
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the above is true for the first two parts of inequality (48). For
the third part of that inequality we use the fact that ‖V‖

𝐻
1 ≤

‖V‖
𝐻
2 for every V ∈ 𝐻2(−1, 1), where

𝐻
2

(−1, 1) = {V ∈ 𝐿2 (−1, 1) ; V󸀠, V󸀠󸀠 ∈ 𝐿2 (−1, 1)} , (51)

is the Sobolev space equipped with the norm

‖V‖
𝐻
2 = (‖V‖2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
V󸀠
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+
󵄩󵄩󵄩󵄩󵄩
V󸀠󸀠
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)
1/2

. (52)

Moreover, we observe that the differential operator L is
bounded in this space; see Leoni [17] or Ziemer [18]. Finally,
we obtain the estimate

󵄨󵄨󵄨󵄨(L𝑅𝑁𝑢, 𝑒) − (𝑄𝑁L𝑁𝑅𝑁𝑢, 𝑒)𝑁
󵄨󵄨󵄨󵄨

‖𝑒‖
𝐻
1

≤

󵄩󵄩󵄩󵄩L𝑅𝑁𝑢 − 𝑄𝑁L𝑁𝑅𝑁𝑢
󵄩󵄩󵄩󵄩𝐻1‖𝑒‖𝐻1

‖𝑒‖
𝐻
1

≤
󵄩󵄩󵄩󵄩L𝑅𝑁𝑢 −L𝑢

󵄩󵄩󵄩󵄩𝐻1 +
󵄩󵄩󵄩󵄩L𝑢 − 𝑄𝑁L𝑁𝑢

󵄩󵄩󵄩󵄩𝐻1

+
󵄩󵄩󵄩󵄩𝑄𝑁L𝑁𝑢 + 𝑄𝑁L𝑁𝑅𝑁𝑢

󵄩󵄩󵄩󵄩𝐻1

≤ ‖L‖
𝐻
2

󵄩󵄩󵄩󵄩𝑅𝑁𝑢 − 𝑢
󵄩󵄩󵄩󵄩𝐻2 +

󵄩󵄩󵄩󵄩𝑓 − 𝑄𝑁𝑓
󵄩󵄩󵄩󵄩𝐻1

+
󵄩󵄩󵄩󵄩𝑄𝑁L𝑁

󵄩󵄩󵄩󵄩𝐻2
󵄩󵄩󵄩󵄩𝑢 − 𝑅𝑁𝑢

󵄩󵄩󵄩󵄩𝐻2

≤ 𝐶
2
𝑁
2−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2

+
𝐷

2
𝑁
1−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2
.

(53)

All constants 𝐶
1
, 𝐶
2
, and 𝐷 are independent of 𝑁 and 𝑚.

We have proved the following theorem which states the error
estimate and the rate of convergence for solutions and right-
hand side functions that are continuously differentiable to a
certain order𝑚.

Theorem 8. Let 𝑢 ∈ 𝐿
2

(−1, 1) be the exact solution of the
problem (33) with boundary conditions (34) and let 𝑢𝑁 ∈ 𝑇

𝑁

be the numerical solution obtained by the class of Chebyshev-
Fourier-collocation (CFC) methods, constructed in Section 3.
Let one assume that the solution and the right-hand side
function are 𝑚-times continuously differentiable. Then the
estimated error of the approximation of the solution for the
constructed class of CFC methods is

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑁
󵄩󵄩󵄩󵄩󵄩𝐻1

≤ (1 +
𝐴

𝛼∗
)𝐶
1
𝑁
1−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2

+ 𝐶
2
𝑁
2−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2

+ 𝐷𝑁
1−𝑚

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑚)
󵄩󵄩󵄩󵄩󵄩𝐿2
,

(54)

where the constants 𝛼∗ and 𝐴 are defined in (44) and (46).

If the solution 𝑢 and the right-hand side function 𝑓 are
smooth or analytic functions in some domain, containing the
interval [−1, 1], then under the conditions of Theorem 6, the
Chebyshev-Fourier-collocation method has a spectral rate of
convergence.

Theorem 9. Let 𝑢 ∈ 𝐿
2

(−1, 1) be the exact solution of the
problem (33) with boundary conditions (34) and let 𝑢𝑁 ∈ 𝑇

𝑁

be the numerical solution obtained by the class of Chebyshev-
Fourier-collocation (CFC) methods, constructed in Section 3.
Let one assume that the solution and the right-hand side
function are analytic functions in the domain 𝐷(𝑅), defined
in Theorem 6. Then the estimated error of the approximation
of the solution for the constructed class of CFC methods is

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑁
󵄩󵄩󵄩󵄩󵄩
∼ 𝜌
−𝑁

, (55)

where 𝜌 is defined in (15).

5. Numerical Examples

In the following examples we compare numerical solutions
obtained with two different classes of collocation spectral
methods. One is a standardChebyshev-collocation approach,
where we approximate the solution using Chebyshev series;
the other one is the new class of methods constructed in
Section 3, where approximation of the solution with half-
range Chebyshev-Fourier series is used. Much about classical
Chebyshev polynomials can be found, for example, in [19].
Bothmethodswere implemented inMATLABby the authors.

We observe that the performance of the Chebyshev-
Fourier-collocation (CFC) method is comparable with the
standard Chebyshev-collocation (CC) method. However,
since the absence of a fast technique for the computation
of the expansion coefficients, comparable with the FFT, the
performance in terms of computational costs is worse for the
new class of methods. Throughout this section we use the
abbreviations 𝑦󸀠 ≡ 𝑑𝑦/𝑑𝑥 and 𝑦󸀠󸀠 ≡ 𝑑2𝑦/𝑑𝑥2.

Example 1. As a first example we consider a second order
linear differential equation with nonconstant coefficients:

𝑦
󸀠󸀠

+ 𝑥𝑦
󸀠

= (2 + 𝑥
2

) cos𝑥,

𝑦 (−1) = sin (1) , 𝑦 (1) = sin (1) .
(56)

The exact solution is

𝑦 (𝑥) = 𝑥 sin𝑥. (57)

In Figure 1(a), the comparison of the decay of the maxi-
mal absolute error of the two numerical solutions, obtained
with CC and CFC methods with respect to the truncation
number 𝑁 of terms in the Chebyshev and Chebyshev-
Fourier expansions, is depicted. For both methods we have
to compute 𝑁 + 1 coefficients. The exact solution of this
problem is a smooth and analytic function and bothmethods
reach machine accuracy. However, as seen from the figure,
the CC numerical solution converges more rapidly, since the
maximal absolute error reaches machine accuracy at𝑁 = 14,
instead of 𝑁 = 34 for the CFC numerical solution. Note
the exponential decay of the maximal absolute error for both
methods. In this casewe obtain spectral accuracy as predicted
byTheorem 9 in (55).
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Figure 1: Plots of the maximal absolute error of the numerical solution with respect to the truncation number 𝑁. Error of the Chebyshev-
Fourier-collocation (CFC) method is shown with a plus (+) mark; error of the Chebyshev-collocation (CC) method is shown with a circle (∘)
mark. (a) Error for Example 1. (b) Error for Example 2. (c) Error for Example 3. (d) Error for Example 4.

Example 2. As a second example we consider the Airy
differential equation

𝑦
󸀠󸀠

− (𝑥 − 1000) 𝑦 = 0,

𝑦 (−1) = 1, 𝑦 (1) = 1.
(58)

The exact solution is a highly oscillatory function

𝑦 (𝑥) = (𝐴𝑖 (𝑥 − 1000) (𝐵𝑖 (−1001) − 𝐵𝑖 (−999))

−𝐵𝑖 (𝑥 − 1000) (𝐴𝑖 (−999) − 𝐴𝑖 (−1001)))

× (𝐴𝑖(−999)𝐵𝑖(−1001) − 𝐴𝑖(−1001)𝐵𝑖(−999))
−1

,

(59)

where 𝐴𝑖 and 𝐵𝑖 are Airy functions; see, for example,
[19].

Figure 1(b) shows the comparison of the decay of themax-
imal absolute error of the two numerical solutions obtained
with CC and CFC methods with respect to the truncation
number 𝑁. The exact solution is a smooth but oscillatory
function. For this reason the maximal absolute error begins
to decay not until𝑁 is big enough to overcome problemswith
the resolution. However, both methods again yield exponen-
tial decay of the maximal absolute error with respect to 𝑁,
which gives spectral accuracy. We note that the convergence
of the Chebyshev-Fourier-collocation method is faster in
comparison with the Chebyshev-collocation method.
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Example 3. As a third example we consider a second order
linear differential equationwith nonconstant and nonsmooth
coefficients:

𝑦
󸀠󸀠

− |𝑥| 𝑦
󸀠

+ 2𝑦 = 30𝑥
3

|𝑥| + 2𝑥
5

|𝑥| − 6𝑥
6

,

𝑦 (−1) = −1, 𝑦 (1) = 1.
(60)

The exact solution is

𝑦 (𝑥) = 𝑥
5

|𝑥| . (61)

Figure 1(c) shows the comparison of the decay of the
maximal absolute error for the two numerical solutions
with CC and CFC methods with respect to the truncation
number𝑁. In this example, the exact solution is nonsmooth,
actually it is only six-times continuously differentiable. For
this reason the decay of the maximal absolute error is slow
for both methods; however, it is faster for the CFC method.
The error decays as O(1/𝑁5). This is in accordance with
the result (54) of Theorem 8. We note that in this case
the Chebyshev-Fourier-collocation method outweighs the
Chebyshev-collocation method.

Example 4. As a last example we again consider a second
order linear differential equation with nonconstant and non-
smooth coefficients:

𝑦
󸀠󸀠

+ 2 |𝑥| 𝑦
󸀠

+ 3𝑦 = 56𝑥
5

|𝑥| + 3𝑥
7

|𝑥| + 16𝑥
8

,

𝑦 (−1) = −1, 𝑦 (1) = 1.
(62)

The exact solution is

𝑦 (𝑥) = 𝑥
7

|𝑥| . (63)

Figure 1(d) shows the comparison of the decay of the
maximal absolute error for the two numerical solutions with
CC and CFCmethods with respect to the truncation number
𝑁. In this example, the exact solution is again nonsmooth;
actually it is only eight times continuously differentiable. For
this reason the decay of the maximal absolute error is slow
for both methods; however, it is faster than in the previous
example; actually the error decays as O(1/𝑁7). This is again
in accordance with the result (54) ofTheorem 8.We note that
in this case the Chebyshev-Fourier-collocationmethod again
outweighs the Chebyshev-collocation method.

6. Conclusions

Based on the papers by Huybrechs [6] and by Orel and
Perne [9], we first discussed two nonclassical families of
orthogonal polynomials: the half-range Chebyshev polyno-
mials of the first and second kind and the associated half-
range Chebyshev-Fourier series. We have briefly recalled the
solution of the approximation problem stated in Problem
1, using the HCF series, and analyzed by Huybrechs in
[6]. The main focus of the paper is on analyzing Problem
2 via collocation spectral methods using truncated HCF
series. These series are generalized Fourier series, where
the basic trigonometric functions are rearranged in terms

of the half-range Chebyshev polynomials of the first and
second kind. The usage of such reorganization which yields
orthogonality of the expansion basis functions allows solving
nonperiodic problems with tools, otherwise reserved for
periodic problems.

In the paper we have constructed a new class of spec-
tral methods, based on collocation, the Chebyshev-Fourier-
collocation methods. The idea is similar to the widely used
Chebyshev spectral methods, where instead of using classical
Chebyshev series for the approximation of the solution, we
expand the numerical solution as a half-range Chebyshev-
Fourier series. We deal with linear two-point boundary value
problems of the second order. Generalization to higher order
and/or different intervals is also possible. Error analysis
and convergence theory, presented in Section 4, show that
for problems that are smooth enough, that is, analytic
functions, we obtain spectral accuracy, that is, the maximal
absolute error depending on the truncation number𝑁 decays
exponentially. Otherwise, we obtain algebraic convergence.
These results are comparable with the ones for the stan-
dard Chebyshev-collocation methods. Examples shown at
the end of the paper demonstrate exponential convergence
for smooth and analytic functions and comparability with
standard classes of spectral methods. Furthermore, for some
problems the CFC method outweighs the CC method.

As far as we are interested in convergence theory, things
are more or less comparable with standard classes of spectral
methods. This is regrettably not the case if we are concerned
with the computational costs. For computing spectral coeffi-
cients for the HCF series we do not yet have such amarvelous
tool as it is the FFT for Fourier or Chebyshev series. This is
an open problem that needs further investigation. Moreover,
as a part of future work with HCF series, we are interested
in evolutive time-dependent partial differential equations, for
example, heat or wave equations. More of this theme will be
discussed in a subsequent paper.
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