
Research Article
On the Generalized Hyers-Ulam Stability of an 𝑛-Dimensional
Quadratic and Additive Type Functional Equation

Yang-Hi Lee

Department of Mathematics Education, Gongju National University of Education, Gongju 314-711, Republic of Korea

Correspondence should be addressed to Yang-Hi Lee; yanghi2@hanmail.net

Received 13 February 2014; Accepted 28 April 2014; Published 26 May 2014

Academic Editor: Sabri Arik

Copyright © 2014 Yang-Hi Lee. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the generalizedHyers-Ulam stability of a functional equation𝑓 (∑
𝑛

𝑗=1
𝑥
𝑗
)+(𝑛−2) ∑

𝑛

𝑗=1
𝑓(𝑥
𝑗
)−∑
1≤𝑖<𝑗≤𝑛

𝑓(𝑥
𝑖
+𝑥
𝑗
) = 0.

1. Introduction

Throughout this paper, let 𝑋 be a normed space and 𝑌 a
Banach space. For a given mapping 𝑓 : 𝑋 → 𝑌, we define

𝐴𝑓 (𝑥, 𝑦) := 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦) ,

𝑄𝑓 (𝑥, 𝑦) := 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦) ,

(1)

for all 𝑥, 𝑦 ∈ 𝑋. A mapping 𝑓 : 𝑋 → 𝑌 is called an
additive mapping (a quadratic mapping, resp.) if 𝑓 satisfies
the functional equation 𝐴𝑓 = 0 (𝑄𝑓 = 0, resp.). If a mapping
is represented by sum of an additive mapping and a quadratic
mapping, we call the mapping a quadratic-additive mapping.
For a functional equation 𝐸𝑓 = 0 if all of the solutions of
𝐸𝑓 = 0 are quadratic-additive mappings and all of quadratic-
additive mappings are the solutions of 𝐸𝑓 = 0, then we call
the functional equation 𝐸𝑓 = 0 a quadratic-additive type
functional equation.

In 1940, Ulam [1] raised a question concerning the
stability of homomorphisms. Hyers [2], Aoki [3], Rassias
[4], and Găvruţa [5] made important role to study the
stability of the functional equation. During the last decades,
the stability problems of functional equations have been

extensively investigated by a number of mathematicians (see
also [6–9]).

In 2006, Jun and Kim [10] obtained the stability of the
functional equation

𝑓 (
𝑛

∑
𝑗=1

𝑥
𝑗
) + (𝑛 − 2)

𝑛

∑
𝑗=1

𝑓 (𝑥
𝑗
)

− ∑
1≤𝑖<𝑗≤𝑛

𝑓 (𝑥
𝑖

+ 𝑥
𝑗
) = 0,

(2)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 (𝑛 > 2) (see also [11–15]).

The functional equation (2) is a quadratic-additive type
functional equation (see Theorem 2.6 in [16]). For the case
𝑛 = 3, Jung [17] proved the stability of the functional equation
(2) (see also [18–20]) and, for the case 𝑛 = 4, Chang et al. [21]
proved the stability of the functional equation (2) (see also
[22–25]).

In this paper, we will generalize the previous results
of the stability problem of the functional equation (2) on
the punctured domain. In particular, we will show the
superstability (if 𝑝 < 0) of the functional equation (2) in the
sense of Rassias.
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2. Stability of the Functional Equation (2)
(𝑛 Is Even)

Let (𝑠, 𝑡) be a fixed element in {(1, 1), (1, −1), (−1, −1)} and
let 𝜑 : (𝑋 \ {0})𝑛 → [0, ∞) be a function satisfying the
conditions:

∞

∑
𝑗=0

4−𝑠𝑗𝜑 (2𝑠𝑗𝑥
1
, 2𝑠𝑗𝑥
2
, . . . , 2𝑠𝑗𝑥

𝑛
) < ∞, (3)

∞

∑
𝑗=0

2−𝑡𝑗𝜑 (2𝑡𝑗𝑥
1
, 2𝑡𝑗𝑥
2
, . . . , 2𝑡𝑗𝑥

𝑛
) < ∞, (4)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}, where 𝑛 is a fixed even integer

greater than 2 in this section. For convenience, we use the
following abbreviations in this section for a given mapping
𝑓 : 𝑋 → 𝑌:

𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

:= 𝑓 (
𝑛

∑
𝑗=1

𝑥
𝑗
) + (𝑛 − 2)

𝑛

∑
𝑗=1

𝑓 (𝑥
𝑗
) − ∑
1≤𝑖<𝑗≤𝑛

𝑓 (𝑥
𝑖

+ 𝑥
𝑗
) ,

𝐽
𝑚

𝑓 (𝑥)

=
1

2
(4−𝑠𝑚 (𝑓 (2𝑠𝑚𝑥) + 𝑓 (−2𝑠𝑚𝑥) −

2 (𝑛 + 2)

3𝑛
𝑓 (0))

+2−𝑡𝑚 (𝑓 (2𝑡𝑚𝑥) − 𝑓 (−2𝑡𝑚𝑥)) ) ,

𝑥 := (
𝑛/2+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑥, . . . , 𝑥,
𝑛/2−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞−𝑥, . . . , −𝑥) ,

(5)

for all 𝑥, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. From these, we get the equality

𝐽
𝑚

𝑓 (𝑥) − 𝐽
𝑚+1

𝑓 (𝑥)

=
2 ⋅ 4𝜏−𝑠,𝑚

𝑛 (𝑛 − 2)
(𝐷𝑓 (2𝜏𝑠,𝑚𝑥) + 𝐷𝑓 (−2𝜏𝑠,𝑚𝑥)) 𝑠

+
2𝜏−𝑡,𝑚−1

𝑛 − 2
(𝐷𝑓 (2𝜏𝑡,𝑚𝑥) − 𝐷𝑓 (−2𝜏𝑡,𝑚𝑥)) 𝑡

(6)

for all 𝑥 ∈ 𝑋 \ {0} and all nonnegative integers 𝑚, where 𝜏
𝑘,𝑚

are the integers defined by

𝜏
𝑘,𝑚

= 𝑘 (𝑚 +
1

2
) −

1

2
(7)

for 𝑘 ∈ {−1, 1}.

Lemma 1. If 𝑓 : 𝑋 → 𝑌 is a mapping such that

𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 0, (8)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}, then

𝐽
𝑚

𝑓 (𝑥) = 𝑓 (𝑥) −
𝑛 + 2

3𝑛
𝑓 (0) (9)

for all 𝑥 ∈ 𝑋 \ {0} and all nonnegative integers 𝑚.

Proof. We can easily get

𝑓 (𝑥) −
𝑛 + 2

3𝑛
𝑓 (0) − 𝐽

𝑚
𝑓 (𝑥)

=
𝑚−1

∑
𝑗=0

(
2 ⋅ 4𝜏−𝑠,𝑗

𝑛 (𝑛 − 2)
(𝐷𝑓 (2𝜏𝑠,𝑗𝑥) + 𝐷𝑓 (−2𝜏𝑠,𝑗𝑥)) 𝑠

+
2𝜏−𝑡,𝑗−1

𝑛 − 2
(𝐷𝑓 (2𝜏𝑡,𝑗𝑥) − 𝐷𝑓 (−2𝜏𝑡,𝑗𝑥)) 𝑡)

= 0

(10)

for all 𝑥 ∈ 𝑋 \ {0} and all nonnegative integers 𝑚.

Theorem 2. Suppose that 𝑓 : 𝑋 → 𝑌 is a mapping such that
󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 ≤ 𝜑 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) (11)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} with lim

𝑚→∞
𝐽
𝑚

𝑓(0) = 0.Then,
there exists a unique mapping 𝐹 : 𝑋 → 𝑌 satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑛 + 2

3𝑛
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
∞

∑
𝑗=0

Φ
𝑗

(𝑥) (12)

for all 𝑥 ∈ 𝑋 \ {0} with 𝐹(0) = 0, where Φ
𝑗
are the mappings

defined by

Φ
𝑗

(𝑥) :=
2 ⋅ 4𝜏−𝑠,𝑗

𝑛 (𝑛 − 2)
(𝜑 (2𝜏𝑠,𝑗𝑥) + 𝜑 (−2𝜏𝑠,𝑗𝑥))

+
2𝜏−𝑡,𝑗−1

𝑛 − 2
(𝜑 (2𝜏𝑡,𝑗𝑥) + 𝜑 (−2𝜏𝑡,𝑗𝑥))

(13)

for all 𝑥 ∈ 𝑋 \ {0}.

Proof. It follows from (6) and (11) that
󵄩󵄩󵄩󵄩𝐽
𝑚

𝑓 (𝑥) − 𝐽
𝑚+𝑚
󸀠𝑓 (𝑥)

󵄩󵄩󵄩󵄩

=
𝑚+𝑚
󸀠

−1

∑
𝑗=𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2 ⋅ 4𝜏−𝑠,𝑗

𝑛 (𝑛 − 2)
(𝐷𝑓 (2𝜏𝑠,𝑗𝑥) + 𝐷𝑓 (−2𝜏𝑠,𝑗𝑥)) 𝑠

+
2𝜏−𝑡,𝑗−1

𝑛 − 2
(𝐷𝑓 (2𝜏𝑡,𝑗𝑥) − 𝐷𝑓 (−2𝜏𝑡,𝑗𝑥)) 𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑚+𝑚
󸀠

−1

∑
𝑗=𝑚

Φ
𝑗

(𝑥)

(14)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and all nonnegative integers

𝑚, 𝑚󸀠 with 𝑚󸀠 > 0. From (3), (4), and (14), it follows that
the sequence {𝐽

𝑚
𝑓(𝑥)} is Cauchy for all 𝑥 ∈ 𝑋 \ {0}. Since 𝑌

is complete, the sequence {𝐽
𝑚

𝑓(𝑥)} converges. From this and
lim
𝑚→∞

𝐽
𝑚

𝑓(0) = 0, we can define the mapping 𝐹 : 𝑋 → 𝑌
by

𝐹 (𝑥) := lim
𝑚→∞

𝐽
𝑚

𝑓 (𝑥) (15)

for all 𝑥 ∈ 𝑋. Moreover, letting 𝑚 = 0 and taking the limit
as 𝑚󸀠 → ∞ in (14), we get the inequality (12). Notice that
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lim
𝑚→∞

𝐽
𝑚

𝑓(0) = 0, lim
𝑚→∞

4−𝑠𝑚𝜑(2𝑠𝑚𝑥
1
, . . . , 2𝑠𝑚𝑥

𝑛
) =

0, and lim
𝑚→∞

2−𝑡𝑚𝜑(2𝑡𝑚𝑥
1
, . . . , 2𝑡𝑚𝑥

𝑛
) = 0 for all

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}. Hence, it follows from (11) and the

definition of 𝐹 that

𝐷𝐹 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

= lim
𝑚→∞

1

2
(4−𝑠𝑚 (𝐷𝑓 (2𝑠𝑚𝑥

1
, . . . , 2𝑠𝑚𝑥

𝑛
)

+𝐷𝑓 (−2𝑠𝑚𝑥
1
, . . . , −2𝑠𝑚𝑥

𝑛
))

+ 2−𝑡𝑚 (𝐷𝑓 (2𝑡𝑚𝑥
1
, . . . , 2𝑡𝑚𝑥

𝑛
)

−𝐷𝑓 (−2𝑡𝑚𝑥
1
, . . . , −2𝑡𝑚𝑥

𝑛
))) = 0

(16)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}.

Now, let 𝐹󸀠 : 𝑋 → 𝑌 be another mapping satisfying (8)
for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and (12) with 𝐹󸀠(0) = 0. Using

Lemma 1, (12), and 𝐹󸀠(0) = 0 = 𝐹(0), we obtain

󵄩󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹󸀠 (𝑥)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝐽
𝑚

𝐹 (𝑥) − 𝐽
𝑚

𝐹󸀠 (𝑥)
󵄩󵄩󵄩󵄩󵄩

≤
4−𝑠𝑚

2
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓 − 𝐹) (2𝑠𝑚𝑥) −

𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑓 − 𝐹󸀠) (2𝑠𝑚𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑓 − 𝐹) (−2𝑠𝑚𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑓 − 𝐹󸀠) (−2𝑠𝑚𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

+
2−𝑡𝑚

2
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓 − 𝐹) (2𝑡𝑚𝑥) −

𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑓 − 𝐹󸀠) (2𝑡𝑚𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑓 − 𝐹) (−2𝑡𝑚𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑓 − 𝐹󸀠) (−2𝑡𝑚𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
)

(17)

for all 𝑥 ∈ 𝑋 \ {0} and all positive integers 𝑚. It follows from
(12) and (17) that

󵄩󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹󸀠 (𝑥)
󵄩󵄩󵄩󵄩󵄩

≤
∞

∑
𝑗=0

2 (4−𝑠𝑚Φ
𝑗

(2𝑠𝑚𝑥) + 2−𝑡𝑚Φ
𝑗

(2𝑡𝑚𝑥))
(18)

for all 𝑥 ∈ 𝑋 \ {0} and all positive integers 𝑚. We can easily
show that the terms on the right-hand side of the inequality

(18) tend to 0 as 𝑚 → ∞ for the cases (𝑠, 𝑡) = (1, 1) and
(𝑠, 𝑡) = (−1, −1). For the case (𝑠, 𝑡) = (1, −1), we have

𝑛 (𝑛 − 2)
∞

∑
𝑗=0

(4−𝑚Φ
𝑗

(2𝑚𝑥) + 2𝑚Φ
𝑗

(2−𝑚𝑥))

=
∞

∑
𝑗=0

2𝜑 (2𝑗+𝑚𝑥) + 2𝜑 (−2𝑗+𝑚𝑥)

4𝑗+𝑚+1

+
2𝑗𝑛

22𝑚+1
(
𝑚/2−1

∑
𝑗=0

+
𝑚−1

∑
𝑗=𝑚/2

+
∞

∑
𝑗=𝑚

)

× (𝜑 (
2𝑚𝑥

2𝑗+1
) + 𝜑 (

−2𝑚𝑥

2𝑗+1
))

+
2𝑚

22𝑗+1
(
𝑚/2−1

∑
𝑗=0

+
𝑚−1

∑
𝑗=𝑚/2

+
∞

∑
𝑗=𝑚

)

× (𝜑 (
2𝑗𝑥

2𝑚
) + 𝜑 (

−2𝑗𝑥

2𝑚
))

+
∞

∑
𝑗=0

2𝑗+𝑚𝑛

2
(𝜑 (2−𝑗−𝑚−1𝑥) + 𝜑 (−2−𝑗−𝑚−1𝑥))

≤ (
1

2

∞

∑
𝑗=𝑚

+ 𝑛
𝑚−1

∑
𝑗=𝑚/2

+
𝑛

2𝑚/2

𝑚/2−1

∑
𝑗=0

)

× (
𝜑 (2𝑗𝑥) + 𝜑 (−2𝑗𝑥)

4𝑗
)

+ (
𝑛

2𝑚

∞

∑
𝑗=1

+
𝑚

∑
𝑗=𝑚/2+1

+
1

2𝑚/2

𝑚/2

∑
𝑗=1

)

× (2𝑗 (𝜑 (
𝑥

2𝑗
) + 𝜑 (

−𝑥

2𝑗
)))

+
1

2𝑚

∞

∑
𝑗=0

𝜑 (2𝑗𝑥) + 𝜑 (−2𝑗𝑥)

4𝑗

+
𝑛

4

∞

∑
𝑗=𝑚+1

2𝑗 (𝜑 (
𝑥

2𝑗
) + 𝜑 (

−𝑥

2𝑗
))

(19)

for all 𝑥 ∈ 𝑋 \ {0} and all positive even integers 𝑚. So, we also
show that the terms on the right-hand side of the inequality
(18) tend to 0 as 𝑚 → ∞ for the cases (𝑠, 𝑡) = (1, −1). Using
the equality 𝐹(0) = 0 = 𝐹󸀠(0), we can conclude that 𝐹(𝑥) =
𝐹󸀠(𝑥) for all 𝑥 ∈ 𝑋. This proves the uniqueness of 𝐹.

Corollary 3. Let 𝑝 ̸= 1, 2 be a real number. Suppose that 𝑓 :
𝑋 → 𝑌 is a mapping such that

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
1

󵄩󵄩󵄩󵄩
𝑝

+
󵄩󵄩󵄩󵄩𝑥
2

󵄩󵄩󵄩󵄩
𝑝

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩
𝑝 (20)
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for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} (with 𝑓(0) = 0 if 𝑝 > 2).

Then, there exists a unique mapping 𝐹 satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩

≤ (
4

|2𝑝 − 4|
+

𝑛

|2𝑝 − 2|
)

‖𝑥‖𝑝

𝑛 − 2
, if 𝑝 > 0,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑛 + 2

3𝑛
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (
4

|2𝑝 − 4|
+

𝑛

|2𝑝 − 2|
)

1

𝑛 − 2
, if 𝑝 = 0,

(21)

𝑓 (𝑥) = 𝐹 (𝑥) , if 𝑝 < 0 (22)

for all 𝑥 ∈ 𝑋 \ {0} with 𝐹(0) = 0.

Proof. Put𝜑(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = ‖𝑥

1
‖𝑝+‖𝑥

2
‖𝑝+⋅ ⋅ ⋅+‖𝑥

𝑛
‖𝑝 for all

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}. By Theorem 2, there exists a unique

mapping 𝐹 satisfying (8) for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑛 + 2

3𝑛
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (
4

|2𝑝 − 4|
+

𝑛

|2𝑝 − 2|
)

‖𝑥‖𝑝

𝑛 − 2

(23)

for all 𝑥 ∈ 𝑋 \ {0} with 𝐹(0) = 0. From these, we get the
inequalities

(𝑛 − 1) (𝑛2 − 4)

6𝑛

󵄩󵄩󵄩󵄩𝑓 (0)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐷𝑓 − 𝐷𝐹) (𝑘𝑥, 𝑘𝑥, . . . , 𝑘𝑥)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐹 − 𝑓) (𝑛𝑘𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝑛 (𝑛 − 2)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐹 − 𝑓) (𝑘𝑥) −
𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑛 (𝑛 − 1)

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓 − 𝐹) (2𝑘𝑥) −

𝑛 + 2

3𝑛
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (𝑛 + (𝑛𝑝 + 𝑛 (𝑛 − 2) +
𝑛 (𝑛 − 1) 2𝑝

2
)

× (
4

|2𝑝 − 4|
+

𝑛

|2𝑝 − 2|
)) 𝑘𝑝‖𝑥‖

𝑝

(24)

for all 𝑥 ∈ 𝑋 \ {0} and all positive real numbers 𝑘. Taking the
limit as 𝑘 → ∞ or 𝑘 → 0 in the above inequality, we have
𝑓(0) = 0 if 𝑝 ̸= 0. Hence, if 𝑝 ̸= 0, 1, 2, then the inequality

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩 ≤ (

4

|2𝑝 − 4|
+

𝑛

|2𝑝 − 2|
)

‖𝑥‖𝑝

𝑛 − 2
(25)

for all 𝑥 ∈ 𝑋 \ {0} follows from (23). If 𝑝 < 0, then we get the
inequalities

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩

≤
1

𝑛 − 1
(

󵄩󵄩󵄩󵄩(𝐷𝑓 − 𝐷𝐹) ((−𝑘 + 1) 𝑥, 𝑘𝑥, . . . , 𝑘𝑥)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) (((𝑛 − 2) 𝑘 + 1) 𝑥)

󵄩󵄩󵄩󵄩

+ (𝑛 − 1) (𝑛 − 2)
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) (𝑘𝑥)

󵄩󵄩󵄩󵄩

+ (𝑛 − 2)
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) ((−𝑘 + 1) 𝑥)

󵄩󵄩󵄩󵄩

+
(𝑛 − 1) (𝑛 − 2)

2

󵄩󵄩󵄩󵄩(𝑓 − 𝐹) (2𝑘𝑥)
󵄩󵄩󵄩󵄩)

≤ (𝑘𝑝 +
(2𝑘)𝑝

2
+

(−𝑘 + 1)𝑝

𝑛 − 1
+

((𝑛 − 2) 𝑘 + 1)𝑝

(𝑛 − 1) (𝑛 − 2)
)

× (
4

|2𝑝 − 4|
+

𝑛

|2𝑝 − 2|
) ‖𝑥‖
𝑝

+ (
(−𝑘 + 1)𝑝

𝑛 − 1
+ 𝑘𝑝) ‖𝑥‖

𝑝

(26)

for all 𝑥 ∈ 𝑋 \ {0} and all positive integers 𝑘. Taking the limit
as 𝑘 → ∞ in the above inequality, we get 𝐹(𝑥) = 𝑓(𝑥) for all
𝑥 ∈ 𝑋 \ {0}. Since 𝑓(0) = 0 = 𝐹(0), the equality 𝑓(𝑥) = 𝐹(𝑥)
holds for all 𝑥 ∈ 𝑋. The result follows from this, (23), and
(25).

Lemma 4. If 𝑓 : 𝑋 → 𝑌 is a mapping satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} with 𝑓(0) = 0 and 𝑓(𝑡𝑥) is continuous

in 𝑡 for each fixed 𝑥, then 𝑓 is represented by

𝑓 (𝑟𝑥) = (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 𝑟2 + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 𝑟

(27)

for all 𝑥 ∈ 𝑋 and all 𝑟 ∈ R.

Proof. We will prove the equality

𝑓 (𝑚𝑥) = (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 𝑚2 + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 𝑚

(28)

for all integers 𝑚. First, we will use the induction on 𝑚 to
prove the equality (28) for all nonnegative integers 𝑚. Note
that 𝑓(0) = 0. We can easily prove it for the cases 𝑚 = 0, 1.
For the case 𝑚 = 2, we can show that

𝑓 (2𝑥) = −
2

𝑛 (𝑛 − 2)
(𝐷𝑓 (𝑥) + 𝐷𝑓 (−𝑥))

−
1

2 (𝑛 − 2)
(𝐷𝑓 (𝑥) − 𝐷𝑓 (−𝑥)) + 3𝑓 (𝑥) + 𝑓 (−𝑥)

= (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 22 + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 2

(29)
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for all 𝑥 ∈ 𝑋. Assume that (28) holds for all 𝑥 ∈ 𝑋 and all
nonnegative integers 𝑘 (≤ 𝑚). Then, we obtain

𝑓 ((𝑚 + 1) 𝑥)

= −𝐷𝑓 (𝑚𝑥,
𝑛/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑥, . . . , 𝑥,
𝑛/2−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞−𝑥, . . . , −𝑥) + 2𝑓 (𝑚𝑥)

− 𝑓 ((𝑚 − 1) 𝑥) −
𝑛 − 4

4
𝑓 (−2𝑥) −

𝑛

4
𝑓 (2𝑥)

+ 𝑛𝑓 (𝑥) + (𝑛 − 2) 𝑓 (−𝑥)

= (2𝑚2 − (𝑚 − 1)
2 −

𝑛 − 4

4
⋅ (−2)
2 −

𝑛

4
⋅ 22

+ 𝑛 ⋅ 12 + (𝑛 − 2) ⋅ (−1)
2)

× (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
)

× (2𝑚 − (𝑚 − 1) −
𝑛 − 4

4
⋅ (−2)

−
𝑛

4
⋅ 2 + 𝑛 ⋅ 1 + (𝑛 − 2) (−1))

= (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) (𝑚 + 1)

2

+ (
𝑓 (𝑥) − 𝑓 (−𝑥)

2
) (𝑚 + 1)

(30)

which completes (28) for all nonnegative integers 𝑚. Using
the similar method, we also can prove the equality (28) for all
negative integers 𝑚. By (28), we get the equalities

𝑓 (𝑚𝑥) + 𝑓 (−𝑚𝑥)

2
= (

𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 𝑚2,

𝑓 (𝑚𝑥) − 𝑓 (−𝑚𝑥)

2
= (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 𝑚,

𝑓 (𝑥/𝑚) + 𝑓 (−𝑥/𝑚)

2
= (

𝑓 (𝑥) + 𝑓 (−𝑥)

2
)

1

𝑚2
,

𝑓 (𝑥/𝑚) − 𝑓 (−𝑥/𝑚)

2
=

𝑓 (𝑥) − 𝑓 (−𝑥)

2𝑚

(31)

for all 𝑥 ∈ 𝑋 and all integers 𝑚 ̸= 0. Hence,

𝑓 (
𝑝

𝑞
𝑥)

=
𝑓 ((𝑝/𝑞) 𝑥) + 𝑓 (− (𝑝/𝑞) 𝑥)

2

+
𝑓 ((𝑝/𝑞) 𝑥) − 𝑓 (− (𝑝/𝑞) 𝑥)

2

= (
𝑓 (𝑥/𝑞) + 𝑓 (−𝑥/𝑞)

2
) 𝑝2

+ (
𝑓 (𝑥/𝑞) − 𝑓 (−𝑥/𝑞)

2
) 𝑝

= (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
)

𝑝2

𝑞2
+ (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
)

𝑝

𝑞

(32)

for all 𝑥 ∈ 𝑋 and all integers 𝑝, 𝑞( ̸= 0). If 𝑟 ∈ R, then there
exists a rational sequence {𝑟

𝑚
} satisfying lim

𝑚→∞
𝑟
𝑚

= 𝑟.
Since 𝑓(𝑡𝑥) is continuous in 𝑡 for each fixed 𝑥, we have

𝑓 (𝑟𝑥) = lim
𝑚→∞

𝑓 (𝑟
𝑚

𝑥)

= lim
𝑚→∞

(
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 𝑟2
𝑚

+ (
𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 𝑟
𝑚

= (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 𝑟2 + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 𝑟

(33)

for all 𝑥 ∈ 𝑋.

3. Stability of the Functional Equation (2)
(𝑛 Is Odd)

Let (𝑠, 𝑡), 𝜑, 𝐷𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), and 𝜏

𝑘,𝑚
be as in Section 2.

In this section, let 𝑛 be an odd integer greater than 2.
For convenience, we use the following abbreviations in this
section for a given mapping 𝑓 : 𝑋 → 𝑌:

𝐽
𝑚

𝑓 (𝑥) =
1

2
(4−𝑠𝑚 (𝑓 (2𝑠𝑚𝑥) + 𝑓 (−2𝑠𝑚𝑥)

−
2 (𝑛 + 1)

3 (𝑛 − 1)
𝑓 (0))

+2−𝑡𝑚 (𝑓 (2𝑡𝑚𝑥) − 𝑓 (−2𝑡𝑚𝑥)) ) ,

𝑥 = (
(𝑛+1)/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑥, . . . , 𝑥,
(𝑛−1)/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞−𝑥, . . . , −𝑥) ,

(34)

for 𝑥 ∈ 𝑋. From these, we get

𝐽
𝑚

𝑓 (𝑥) − 𝐽
𝑚+1

𝑓 (𝑥)

=
4𝜏−𝑠,𝑚+1

2 (𝑛 − 1) (𝑛 − 1)
(𝐷𝑓 (2𝜏𝑠,𝑚𝑥) + 𝐷𝑓 (−2𝜏𝑠,𝑚𝑥)) 𝑠

+
2𝜏−𝑡,𝑚

𝑛 − 1
(𝐷𝑓 (2𝜏𝑡,𝑚𝑥) − 𝐷𝑓 (−2𝜏𝑡,𝑚𝑥)) 𝑡

(35)

for all 𝑥 ∈ 𝑋.
Using (35) and a similar method in the proof of Lemma 1,

we get the following lemma.
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Lemma 5. If 𝑓 : 𝑋 → 𝑌 is a mapping satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}, then

𝐽
𝑚

𝑓 (𝑥) = 𝑓 (𝑥) −
𝑛 + 1

3 (𝑛 − 1)
𝑓 (0) (36)

for all 𝑥 ∈ 𝑋 \ {0}.

From (35), Lemma 5, and similar methods used in
Theorem 2, we get the following theorem.

Theorem 6. If 𝑓 : 𝑋 → 𝑌 is a unique mapping satisfying (11)
for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} with lim

𝑚→∞
𝐽
𝑚

𝑓(0) = 0, then
there exists a unique mapping 𝐹 : 𝑋 → 𝑌 satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑛 + 1

3 (𝑛 − 1)
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
∞

∑
𝑗=0

Φ
𝑗

(𝑥) (37)

for all 𝑥 ∈ 𝑋 \ {0} with 𝐹(0) = 0, where Φ
𝑗
are the mappings

defined by

Φ
𝑗

(𝑥) :=
4𝜏−𝑠,𝑚+1

2 (𝑛 − 1) (𝑛 − 1)
(𝜑 (2𝜏𝑠,𝑚𝑥) + 𝜑 (−2𝜏𝑠,𝑚𝑥))

+
2𝜏−𝑡,𝑚

𝑛 − 1
(𝜑 (2𝜏𝑡,𝑚𝑥) + 𝜑 (−2𝜏𝑡,𝑚𝑥))

(38)

for all 𝑥 ∈ 𝑋 \ {0}.

From Theorem 6 and similar methods used in
Corollary 3, we get the following corollary.

Corollary 7. Let 𝑝 ̸= 1, 2 be a real number. Suppose that 𝑓 :
𝑋 → 𝑌 is a mapping satisfying (20) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈

𝑋 \ {0} (with 𝑓(0) = 0 if 𝑝 > 2). Then, there exists a unique
mapping 𝐹 satisfying (8) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩

≤ (
4

(𝑛 − 1) |2𝑝 − 4|
+

2

|2𝑝 − 2|
)

𝑛 ‖ 𝑥‖𝑝

𝑛 − 1
,

if 𝑝 > 0,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑛 + 1

3 (𝑛 − 1)
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (
4

(𝑛 − 1) |2𝑝 − 4|
+

2

|2𝑝 − 2|
)

𝑛

𝑛 − 1
,

if 𝑝 = 0,

𝑓 (𝑥) = 𝐹 (𝑥) , if 𝑝 < 0,

(39)

for all 𝑥 ∈ 𝑋 \ {0} with 𝐹(0) = 0.

Proof. Put𝜑(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = ‖𝑥

1
‖𝑝+‖𝑥

2
‖𝑝+⋅ ⋅ ⋅+‖𝑥

𝑛
‖𝑝 for all

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}. By Theorem 6, there exists a unique

mapping 𝐹 satisfying (8) for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) −

𝑛 + 1

3 (𝑛 − 1)
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (
4

(𝑛 − 1) |2𝑝 − 4|
+

2

|2𝑝 − 2|
)

𝑛‖𝑥‖𝑝

𝑛 − 1

(40)

for all 𝑥 ∈ 𝑋 \ {0} with 𝐹(0) = 0. From these, we get the
inequalities

(𝑛 + 1) (𝑛 − 2)

6

󵄩󵄩󵄩󵄩𝑓 (0)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐹 − 𝑓) (𝑛𝑘𝑥) −
𝑛 + 1

3 (𝑛 − 1)
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝑛 (𝑛 − 2)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐹 − 𝑓) (𝑘𝑥) −
𝑛 + 1

3 (𝑛 − 1)
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑛 (𝑛 − 1)

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓 − 𝐹) (2𝑘𝑥) −

𝑛 + 1

3 (𝑛 − 1)
𝑓 (0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐷𝑓 − 𝐷𝐹) (𝑘𝑥, 𝑘𝑥, . . . , 𝑘𝑥)

󵄩󵄩󵄩󵄩

≤ ((𝑛𝑝 + 𝑛 (𝑛 − 2) +
𝑛 (𝑛 − 1) 2𝑝

2
)

× (
4

(𝑛 − 1) |2𝑝 − 4|
+

2

|2𝑝 − 2|
)

𝑛

𝑛 − 1
+ 𝑛) 𝑘𝑝‖𝑥‖

𝑝

(41)

for all 𝑥 ∈ 𝑋 \ {0} and all positive real numbers 𝑘. Taking the
limit as 𝑘 → ∞ or 𝑘 → 0 in the above inequality, we have
𝑓(0) = 0 if 𝑝 ̸= 0. Hence, if 𝑝 ̸= 0, 1, 2, then the inequality

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩 ≤ (

4

(𝑛 − 1) |2𝑝 − 4|
+

2

|2𝑝 − 2|
)

𝑛‖𝑥‖𝑝

𝑛 − 1
(42)

for all 𝑥 ∈ 𝑋 \ {0} follows from (40). If 𝑝 < 0, then we get the
inequalities

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩

≤
1

𝑛 − 1
(

󵄩󵄩󵄩󵄩(𝐷𝑓 − 𝐷𝐹) ((−𝑘 + 1) 𝑥, 𝑘𝑥, . . . , 𝑘𝑥)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) (((𝑛 − 2) 𝑘 + 1) 𝑥)

󵄩󵄩󵄩󵄩

+ (𝑛 − 1) (𝑛 − 2)
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) (𝑘𝑥)

󵄩󵄩󵄩󵄩

+ (𝑛 − 2)
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) ((−𝑘 + 1) 𝑥)

󵄩󵄩󵄩󵄩

+
(𝑛 − 1) (𝑛 − 2)

2

󵄩󵄩󵄩󵄩(𝑓 − 𝐹) (2𝑘𝑥)
󵄩󵄩󵄩󵄩)
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≤ (𝑛 − 2) (𝑘𝑝 +
(2𝑘)𝑝

2
+

(−𝑘 + 1)𝑝

𝑛 − 1

+
((𝑛 − 2) 𝑘 + 1)𝑝

(𝑛 − 1) (𝑛 − 2)
)

× (
4

|2𝑝 − 4| (𝑛 − 1)
+

2

|2𝑝 − 2|
)

𝑛‖𝑥‖𝑝

𝑛 − 1

+ (
(−𝑘 + 1)𝑝

𝑛 − 1
+ 𝑘𝑝) ‖𝑥‖

𝑝

(43)

for all 𝑥 ∈ 𝑋 \ {0} and all positive integers 𝑘. Taking the limit
as 𝑘 → ∞ in the above inequality, we get 𝐹(𝑥) = 𝑓(𝑥) for all
𝑥 ∈ 𝑋 \ {0}. Since 𝑓(0) = 0 = 𝐹(0), the equality 𝑓(𝑥) = 𝐹(𝑥)
holds for all 𝑥 ∈ 𝑋. The result follows from this, (40), and
(42).

From similar methods used in Lemma 4, we get the
following lemma.

Lemma 8. If 𝑓 : 𝑋 → 𝑌 is a mapping satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0} with 𝑓(0) = 0 and 𝑓(𝑡𝑥) is continuous

in 𝑡 for each fixed 𝑥, then 𝑓 is represented by

𝑓 (𝑟𝑥) = (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 𝑟2 + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 𝑟

(44)

for all 𝑥 ∈ 𝑋 and all 𝑟 ∈ R.

Proof. We will use the induction on 𝑚 to prove (44) for all
nonnegative integers 𝑚. Note that 𝑓(0) = 0. We can easily
prove it for the cases 𝑚 = 0, 1. For the case 𝑚 = 2, we can
show that

𝑓 (2𝑥) = −
2

(𝑛 − 1)2
(𝐷𝑓 (𝑥) + 𝐷𝑓 (−𝑥))

−
1

𝑛 − 1
(𝐷𝑓 (𝑥) − 𝐷𝑓 (−𝑥)) + 3𝑓 (𝑥) + 𝑓 (−𝑥)

= (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) 22 + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
) 2

(45)

for all 𝑥 ∈ 𝑋. Assume that (44) holds for all 𝑥 ∈ 𝑋 and all
nonnegative integers 𝑘 (≤ 𝑚). Then, we obtain

𝑓 ((𝑚 + 1) 𝑥)

= −
2

𝑛 − 1
𝐷𝑓 (𝑚𝑥,

(𝑛−1)/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑥, . . . , 𝑥,
(𝑛−1)/2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞−𝑥, . . . , −𝑥) + 2𝑓 (𝑚𝑥)

− 𝑓 ((𝑚 − 1) 𝑥) −
𝑛 − 3

4
𝑓 (−2𝑥) −

𝑛 − 3

4
𝑓 (2𝑥)

+ (𝑛 − 2) 𝑓 (𝑥) + (𝑛 − 2) 𝑓 (−𝑥)

= (2𝑚2 − (𝑚 − 1)
2 −

𝑛 − 3

4
⋅ ((−2)

2 + 22)

+ (𝑛 − 2) (1 + (−1)
2) )

× (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) + (

𝑓 (𝑥) − 𝑓 (−𝑥)

2
)

× (2𝑚 − (𝑚 − 1) −
𝑛 − 3

4

× ((−2) + 2) + (𝑛 − 2) (1 + (−1)) )

= (
𝑓 (𝑥) + 𝑓 (−𝑥)

2
) (𝑚 + 1)

2 + (
𝑓 (𝑥) − 𝑓 (−𝑥)

2
) (𝑚 + 1)

(46)

which completes the proof of (44). The remainder of the
proof is the same in the proof of Lemma 4.

Corollary 9. If 𝑓 : 𝑋 → 𝑌 is a mapping satisfying (8) for all
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}, then 𝑓(0) = 0.

Proof. Put 𝑝 = −1. Then, we have

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 = 0 ≤

󵄩󵄩󵄩󵄩𝑥
1

󵄩󵄩󵄩󵄩
𝑝

+
󵄩󵄩󵄩󵄩𝑥
2

󵄩󵄩󵄩󵄩
𝑝

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩
𝑝

(47)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋 \ {0}. By Corollaries 3 and 7, 𝑓(𝑥) =

𝐹(𝑥) for all 𝑥 ∈ 𝑋 with 𝐹(0) = 0. So, we get the desired result.

Corollary 10. Let𝑝 < 0 be a real number and 𝑛 > 2 an integer.
Suppose that 𝑓 : R → R is a mapping satisfying

󵄨󵄨󵄨󵄨𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨
𝑝

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨
𝑝 (48)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ R \ {0} and 𝑓 is continuous. Then, 𝑓 is

represented by

𝑓 (𝑥) = (
𝑓 (1) + 𝑓 (−1)

2
) 𝑥2 +

𝑓 (1) − 𝑓 (−1)

2
𝑥 (49)

for all 𝑥 ∈ R and𝐷𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 0 for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈

R.

Proof. If 𝑛 is even, then the equality (49) follows from
Corollary 3 and Lemma 4. If 𝑛 is odd, then the equality (49)
follows from Corollary 7 and Lemma 8. And we can easily
show that the function defined by (49) satisfies the functional
equation 𝐷𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 0 for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈

R.

4. Another Proof for the Stability of
the Functional Equation (2)

Let (𝑠, 𝑡), 𝐷𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝜏
𝑘,𝑚

be as in Section 2. In this
section, Let 𝑛 be a fixed integer greater than 2 and let 𝜑 :
𝑋𝑛 → [0, ∞) be a function satisfying the conditions (3)
and (4) for all 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. For convenience, we use
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the following abbreviations in this section for a given map-
ping 𝑓 : 𝑋 → 𝑌:

𝐽
𝑚

𝑓 (𝑥) =
1

2
(4−𝑠𝑚 (𝑓 (2𝑠𝑚𝑥) + 𝑓 (−2𝑠𝑚𝑥)

+
(𝑛 − 4) (𝑛 + 1)

3
𝑓 (0))

+2−𝑡𝑚 (𝑓 (2𝑡𝑚𝑥) − 𝑓 (−2𝑡𝑚𝑥)) ) ,

𝑥 = (𝑥, −𝑥, 𝑥, 0, . . . , 0) ,

(50)

for all 𝑥 ∈ 𝑋. From these, we get

𝐽
𝑚

𝑓 (𝑥) − 𝐽
𝑚+1

𝑓 (𝑥)

=
4𝜏−𝑠,𝑚

2
(𝐷𝑓 (2𝜏𝑠,𝑚𝑥) + 𝐷𝑓 (−2𝜏𝑠,𝑚𝑥)) 𝑠

+
2𝜏−𝑡,𝑚

2
(𝐷𝑓 (2𝜏𝑡,𝑚𝑥) − 𝐷𝑓 (−2𝜏𝑡,𝑚𝑥)) 𝑡

(51)

for all 𝑥 ∈ 𝑋. Using (51) and a similar method in the proof of
Lemma 1, we get the following lemma.

Lemma 11. If 𝑓 : 𝑋 → 𝑌 is a quadratic-additive mapping,
then

𝐽
𝑚

𝑓 (𝑥) = 𝑓 (𝑥) (52)

for all 𝑥 ∈ 𝑋.

Theorem12 (comparewithTheorem3.1 in [15]). Suppose that
𝑓 : 𝑋 → 𝑌 is a mapping such that

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 ≤ 𝜑 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) (53)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. Then, there exists a unique

quadratic-additive mapping 𝐹 : 𝑋 → 𝑌 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) +

(𝑛 − 4) (𝑛 + 1)

6
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
∞

∑
𝑗=0

Φ
𝑗

(𝑥) (54)

for all 𝑥 ∈ 𝑋, where Φ
𝑗
are the mappings defined by

Φ
𝑗

(𝑥) :=
4𝜏−𝑠,𝑗

2
(𝜑 (2𝜏𝑠,𝑗𝑥) + 𝜑 (−2𝜏𝑠,𝑗𝑥))

+
2𝜏−𝑡,𝑗

2
(𝜑 (2𝜏𝑡,𝑗𝑥) + 𝜑 (−2𝜏𝑡,𝑗𝑥))

(55)

for all 𝑥 ∈ 𝑋.

Proof. Note that

󵄩󵄩󵄩󵄩𝐽
𝑚

𝑓 (0)
󵄩󵄩󵄩󵄩 =

4−𝑠𝑚 (𝑛 − 1) (𝑛 − 2)

6

󵄩󵄩󵄩󵄩𝑓 (0)
󵄩󵄩󵄩󵄩

=
4−𝑠𝑚

3

󵄩󵄩󵄩󵄩𝐷𝑓 (0, 0, . . . , 0)
󵄩󵄩󵄩󵄩

≤
4−𝑠𝑚

3
𝜑 (0, 0, . . . , 0)

(56)

for all positive integers 𝑚. It follows from (3) that
lim
𝑚→∞

𝐽
𝑚

𝑓(0) = 0. From this, (51), Lemma 11, and similar
methods used inTheorem 2, we obtain this theorem.

Corollary 13 (compare with Corollary 3.3 in [15]). Let
𝑝 ̸= 1, 2 be a positive real number. Suppose that 𝑓 : 𝑋 → 𝑌
is a mapping such that

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
1

󵄩󵄩󵄩󵄩
𝑝

+
󵄩󵄩󵄩󵄩𝑥
2

󵄩󵄩󵄩󵄩
𝑝

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩
𝑝

(57)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. Then, there exists a unique

quadratic-additive mapping 𝐹 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩 ≤ (

3

|2𝑝 − 4|
+

3

|2𝑝 − 2|
) ‖𝑥‖
𝑝 (58)

for all 𝑥 ∈ 𝑋.

Proof. Since ‖𝑓(0)‖ = (2/(𝑛 − 1)(𝑛 − 2))‖𝐷𝑓(0, 0, . . . , 0)‖ ≤ 0,
we get 𝑓(0) = 0. FromTheorem 12 and similar methods used
in Corollary 3, we obtain this corollary.

From Theorem 12 and similar methods used in
Corollary 3, we get the following corollary.

Corollary 14 (compare with Corollary 3.2 in [15]). Suppose
that 𝑓 : 𝑋 → 𝑌 is a mapping such that

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
󵄩󵄩󵄩󵄩 ≤ 𝜀 (59)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝑋. Then, there exists a unique

quadratic-additive mapping 𝐹 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑥) +
(𝑛 − 4) (𝑛 + 1)

6
𝑓 (0) − 𝐹 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

4𝜀

3
(60)

for all 𝑥 ∈ 𝑋.
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