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We study an analogue of Riordan representation of Pascal matrices via Fibonomial coefficients. In particular, we establish a
relationship between the Riordan array and Fibonomial coefficients, and we show that such Pascal matrices can be represented
by an 𝐹-Riordan pair.

1. Introduction

Pascalmatrices are infinitematrices whose entries are formed
by binomial coefficients. Fibonomial coefficients are a certain
class of generalized binomial coefficients, and its theory is
nowwell understood.The Fibonomial coefficients are used to
define Pascal matrices, called Pascal matrices via Fibonomial
coefficients.

The Riordan group is quite easily developed but unifies
many themes in enumeration. In the recent literature, special
attention has been given to the concept of Riordan arrays,
which is a generalization of the well-known Pascal triangle.
Riordan arrays are infinite lower-triangular matrices defined
by the generating function of their columns. They form
a group, called the Riordan group (see [1]). Some of the
main results on the Riordan group and its application to
combinatorial sums and identities can be found in Sprugnoli
(see [2, 3]).

Setting infinite dimensional Pascalmatrix via Fibonomial
coefficients requires very long applications and operations,
whereas it was seen that these long applications and opera-
tions can be culminated more short and in a practical way
through the aid of Riordan representation.Therefore, one can

obtain Pascal matrix via Fibonomial coefficients through the
aid of Riordan representation.

The aim of this study is to establish the Riordan repre-
sentation of Pascal matrices via Fibonomial coefficients. It is
confronted by a problem while obtaining Riordan represen-
tation. Using the usual operation can not be a solution for this
problem. For overcoming this problem, a new binary opera-
tion is required to define. By using this operation,𝐹-analogue
of Riordan representation is obtained. In particular, we show
that Pascal matrices via Fibonomial coefficients of the first
and the second kinds can be represented with an 𝐹-analogue
of Riordan pair.

2. Preliminaries

The Fibonacci sequence is the starting point of our dis-
cussion. Thus, we briefly review some basic concepts and
properties of Fibonomial coefficients.TheFibonacci numbers
𝐹
𝑛
are defined by the initial conditions 𝐹

0
= 0, 𝐹

1
= 1 and the

recurrence

𝐹
𝑛
= 𝐹
𝑛−1

+ 𝐹
𝑛−2

(1)
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for 𝑛 ≥ 2. Let 𝑛 and 𝑘 be integers with 𝑛 ≥ 𝑘 ≥ 0. Then, the
Fibonomial coefficients are defined by

(
𝑛

𝑘
)

𝐹

=
[𝑛]
𝐹
!

[𝑘]
𝐹
![𝑛 − 𝑘]

𝐹
!
, (2)

where [𝑛]
𝐹
! = 𝐹
𝑛
𝐹
𝑛−1

⋅ ⋅ ⋅ 𝐹
1
and [0]

𝐹
! = 1. It can be shown

that Fibonomial coefficients satisfy the following recursion
relation:

(
𝑛

𝑘
)

𝐹

= 𝐹
𝑘+1

(
𝑛 − 1

𝑘
)

𝐹

+ 𝐹
𝑛−𝑘−1

(
𝑛 − 1

𝑘 − 1
)

𝐹

(3)

(see [4–6]). Let 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1. The 𝑛 × 𝑛 Pascal matrix,
𝑃
𝑛
= (𝑝
𝑖𝑗
), is defined by

𝑝
𝑖𝑗
=

{{

{{

{

(
𝑖

𝑗
) if 𝑖 ≥ 𝑗,

0 otherwise.
(4)

The Pascal matrix via Fibonomial coefficients is denoted by
P(𝑘,𝑚) = (𝑝

𝑖𝑗
) and is defined by

𝑝
𝑖𝑗
=

{{

{{

{

(
𝑘 + 𝑗𝑚 − 1 + 𝑖 − 𝑗

𝑘 + 𝑗𝑚 − 1
)

𝐹

if 𝑖 ≥ 𝑗,

0 otherwise,
(5)

where 𝑘, 𝑚 ∈ N and (
𝑘+𝑗𝑚−1+𝑖−𝑗

𝑘+𝑗𝑚−1
)
𝐹

is the Fibonomial
coefficient. Specially,P(1, 1) = P = (𝑝

𝑖𝑗
) is defined by

𝑝
𝑖𝑗
=

{{

{{

{

(
𝑖

𝑗
)

𝐹

if 𝑖 ≥ 𝑗,

0 otherwise.
(6)

Similarly, the generalized Pascal matrix via Fibonomial coef-
ficients of the first kind, 𝑈

𝑛
[𝑥] = (𝑈

𝑛
(𝑥, 𝑖, 𝑗)), is defined by

𝑈
𝑛
(𝑥, 𝑖, 𝑗) =

{{

{{

{

𝑥
𝑖−𝑗

(
𝑖

𝑗
)

𝐹

if 𝑖 ≥ 𝑗,

0 otherwise,
(7)

and the generalized Pascal matrix via Fibonomial coefficients
of the second kind,𝑀

𝑛
[𝑥] = (𝑀

𝑛
(𝑥, 𝑖, 𝑗)), is defined by

𝑀
𝑛
(𝑥, 𝑖, 𝑗) =

{{

{{

{

𝑥
𝑖+𝑗−2

(
𝑖

𝑗
)

𝐹

if 𝑖 ≥ 𝑗,

0 otherwise.
(8)

Moreover, the extended generalized Pascal matrix via
Fibonomial coefficients, Φ

𝑛
[𝑥, 𝑦]
𝐹

= (𝜑
𝑛
(𝑥, 𝑦; 𝑖, 𝑗)

𝐹
), is

defined by

𝜑
𝑛
(𝑥, 𝑦; 𝑖, 𝑗)

𝐹
=

{{

{{

{

𝑥
𝑖−𝑗

𝑦
𝑖+𝑗−2

(
𝑖

𝑗
)

𝐹

if 𝑖 ≥ 𝑗,

0 otherwise.
(9)

See [7–11] for details. Note that all of P, 𝑈
𝑛
,𝑀
𝑛
, and Φ

𝑛
are

𝑛 × 𝑛matrices.
The Riordan group is a set of infinite lower-triangular

matrices each of which is defined by two generating func-
tions, called a Riordan pair. Any infinite matrix of this
group is called a Riordan array, and Riordan arrays are
generalizations of Pascal’s triangle. In fact, Pascal matrices
via Fibonomial coefficients are Riordan arrays, and we will
show that they can be represented by a Riordan pair. To this
purpose we briefly review the Riordan group and we refer to
[1–3, 12, 13] for a detailed treatment of the subject.

Definition 1 (see [1]). Let 𝑔 and𝑓 be two functions defined by

𝑔 (𝑥) = 𝑔
0
+ 𝑔
1
𝑥 + 𝑔
2
𝑥
2

+ ⋅ ⋅ ⋅ ,

𝑓 (𝑥) = 𝑓
1
𝑥 + 𝑓
2
𝑥
2

+ 𝑓
3
𝑥
3

+ ⋅ ⋅ ⋅

(10)

with 𝑔
0

̸= 0. Let us denote by (𝑔, 𝑓) the infinite lower-
triangular matrix whose 𝑗th column is formed by the coef-
ficients of the power series

𝑔 (𝑥) 𝑓(𝑥)
𝑗

, 𝑗 = 0, 1, 2, . . . . (11)

Thefirst column of thismatrix is called the 0th column. LetR
be the set of all infinite lower-triangular matrices defined by
(11), and let (𝑔, 𝑓) and (𝑢, V) ∈ R. ThenR becomes a group
under the operation

(𝑔, 𝑓) ∗ (𝑢, V) := (𝑔 (𝑢 ∘ 𝑓) , V ∘ 𝑓) . (12)

In particular,R is called the Riordan group and any element
(𝑔, 𝑓) of R is called a Riordan pair. The identity element of
R is

𝐼 = (1, 𝑥) . (13)

And the inverse of any (𝑔, 𝑓) is

(𝑔, 𝑓)
−1

= (
1

𝑔 ∘ 𝑓

, 𝑓) . (14)

Here, 𝑓 is the compositional inverse of 𝑓; that is, 𝑓(𝑓(𝑥)) =
𝑓(𝑓(𝑥)) = 𝑥.

3. 𝐹-Analogue of FTRA

In this section, firstly ∗
𝐹
operation is defined and then using

this operation a new theorem which is called 𝐹-analogue of
FTRA is obtained.
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The generating functions of the Fibonomial coefficients
[14–18] are

𝑛

∏

𝑖=1

(1 − 𝛼
(𝑛−𝑖)

𝛽
(𝑖−1)

𝑥) = ∑

𝑘≥0

(−1)
𝑘(𝑘+1)/2

(
𝑛

𝑘
)

𝐹

𝑥
𝑘

,

𝑛

∏

𝑖=1

1

(1 − 𝛼(𝑖−1)𝛽(𝑛−𝑖)𝑥)
= ∑

𝑘≥0

(
𝑛 + 𝑘 − 1

𝑘
)

𝐹

𝑥
𝑘

,

(15)

where 𝛼 = (1 + √5)/2 and 𝛽 = (1 − √5)/2. For simplicity
of notation, we denote these two generating functions as
follows.

Definition 2. Let 𝑛 ≥ 0; then

(1 − 𝑥)
𝑛

𝐹

def:=
𝑛

∏

𝑖=1

(1 − 𝛼
(𝑛−𝑖)

𝛽
(𝑖−1)

𝑥) ,

1

(1 − 𝑥)
𝑛

𝐹

def:=
𝑛

∏

𝑖=1

1

(1 − 𝛼𝑖−1𝛽𝑛−𝑖𝑥)
.

(16)

Definition 3. LetF denote the set of elements

𝑡𝑥
𝑚

(1 − 𝑥)
𝑛

𝐹

def
= 𝑡𝑥
𝑚

𝑛

∏

𝑖=1

1

(1 − 𝛼𝑖−1𝛽𝑛−𝑖𝑥)

= 𝑡∑

𝑘≥0

(
𝑛 + 𝑘 − 𝑚 − 1

𝑛 − 1
)

𝐹

𝑥
𝑘

(17)

for all integers𝑚, 𝑛 ≥ 0 and 𝑡 ∈ R. Let ∗
𝐹
: F ×F → F be

a binary operation defined as follows:

𝑡𝑥
𝑎

(1 − 𝑥)
𝐴

𝐹

∗
𝐹

𝑢𝑥
𝑏

(1 − 𝑥)
𝐵

𝐹

def
=

𝑡𝑥
𝑎

(1 − (𝛼𝐵𝑥))
𝐴

𝐹

⋅
𝑢𝑥
𝑏

(1 − (𝛽𝐴𝑥))
𝐵

𝐹

=
𝑡𝑢𝑥
𝑎+𝑏

(1 − 𝑥)
𝐴+𝐵

𝐹

.

(18)

Lemma 4. The pair (F, ∗
𝐹
) is a monoid.

Proof. (1) Closure. Indeed, for any two elements from F we
obtain an element fromF. That is,

𝑡𝑥
𝑎

(1 − 𝑥)
𝐴

𝐹

∗
𝐹

𝑢𝑥
𝑏

(1 − 𝑥)
𝐵

𝐹

=
𝑡𝑢𝑥
𝑎+𝑏

(1 − 𝑥)
𝐴+𝐵

𝐹

∈ F. (19)

(2) Associativity is satisfied straightforwardly.
(3) An identity element is

𝑡
0

𝑥
0

(1 − 𝑥)
0

𝐹

. (20)

Let 𝑔 and 𝑓 belong toF with 𝑔(0) ̸= 0 and 𝑓(0) = 0. The
infinite lower-triangular matrix whose 𝑗th column is formed
by the coefficients of the power series is

𝑔 (𝑥) ∗
𝐹
𝑓(𝑥)
[𝑗]

, 𝑗 = 0, 1, 2, . . . , (21)

where 𝑓(𝑥)[𝑗] := 𝑓(𝑥)∗
𝐹
𝑓(𝑥)∗

𝐹
⋅ ⋅ ⋅ ∗
𝐹
𝑓(𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗 times

. By using new

∗
𝐹
binary operation and (21), we obtain a representation

which is the analogue of the Riordan representation. We call
the representation 𝐹-analogue of Riordan representation and
denote it by (𝑔, 𝑓)

𝐹
.

Therefore, we can write

(
𝑡

(1 − 𝑥)
𝑛

𝐹

)

𝐹

∗
𝐹
(

𝑢𝑥

(1 − 𝑥)
𝑚

𝐹

)

[𝑗]

=
𝑡𝑢
𝑗

𝑥
𝑗

(1 − 𝑥)
𝑛+𝑚𝑗

𝐹

(22)

for any 𝑗 ≥ 0.
The following theorem is analogous to the fundamental

theorem of Riordan arrays.

Theorem 5 (𝐹-analogue of FTRA). Let 𝑔(𝑥), 𝑓(𝑥) ∈ F with
𝑔(0) ̸= 0 and 𝑓(0) = 0. The 𝐹-analogue of the fundamental
theorem of Riordan arrays is

(𝑔 (𝑥) , 𝑓 (𝑥))
𝐹

[
[
[
[
[
[
[
[

[

𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

...

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

𝑏
0

𝑏
1

𝑏
2

𝑏
3

𝑏
4

...

]
]
]
]
]
]
]
]

]

, (23)

where the generating functions of the column vectors are given,
respectively, by𝐴(𝑥) and 𝐵(𝑥). Then, equation of (23) is true if
and only if the following equation holds:

𝑔 (𝑥) ∗
𝐹
𝐴 (𝑓 (𝑥)) = 𝐵 (𝑥) . (24)

Proof. Let 𝑔(𝑥), 𝑓(𝑥) ∈ F with 𝑔(0) ̸= 0 and 𝑓(0) = 0. Then,
it can be written as

𝑔 (𝑥) =
𝑡

(1 − 𝑥)
𝑛

𝐹

, 𝑓 (𝑥) =
𝑢𝑥

(1 − 𝑥)
𝑚

𝐹

, (25)

where𝑚, 𝑛 ≥ 0 and 𝑡, 𝑢 ∈ R. In this case, the matrix turns to

[
[
[
[
[
[
[
[

[

| ⋅ ⋅ ⋅

| |

𝑔 𝑔∗
𝐹
𝑓
[1]

𝑔∗
𝐹
𝑓
[2]

| | | |

| | | | |

... d

]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

...

]
]
]
]
]
]
]
]

]

(26)

and then
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑡(
𝑛 − 1

𝑛 − 1
)

𝐹

0 0 0 ⋅ ⋅ ⋅

𝑡(
𝑛

𝑛 − 1
)

𝐹

𝑡𝑢(
𝑛 + 𝑚 − 2

𝑛 − 1
)

𝐹

0 0

𝑡(
𝑛 + 1

𝑛 − 1
)

𝐹

𝑡𝑢(
𝑛 + 𝑚 − 1

𝑛 − 1
)

𝐹

𝑡𝑢
2

(
𝑛 + 2𝑚 − 3

𝑛 − 1
)

𝐹

0

𝑡(
𝑛 + 2

𝑛 − 1
)

𝐹

𝑡𝑢(
𝑛 + 𝑚

𝑛 − 1
)

𝐹

𝑡𝑢
2

(
𝑛 + 2𝑚 − 2

𝑛 − 1
)

𝐹

𝑡𝑢
3

(
𝑛 + 3𝑚 − 4

𝑛 − 1
)

𝐹

...
...

... d

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

...

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
0
𝑡(
𝑛 − 1

𝑛 − 1
)

𝐹

𝑎
0
𝑡(

𝑛

𝑛 − 1
)

𝐹

+ 𝑎
1
𝑡𝑢(

𝑛 + 𝑚 − 2

𝑛 − 1
)

𝐹

𝑎
0
𝑡(
𝑛 + 1

𝑛 − 1
)

𝐹

+ 𝑎
1
𝑡𝑢(

𝑛 + 𝑚 − 1

𝑛 − 1
)

𝐹

+ 𝑎
2
𝑡𝑢
2

(
𝑛 + 2𝑚 − 3

𝑛 − 1
)

𝐹

𝑎
0
𝑡(
𝑛 + 2

𝑛 − 1
)

𝐹

+ 𝑎
1
𝑡𝑢(

𝑛 + 𝑚

𝑛 − 1
)

𝐹

+ 𝑎
2
𝑡𝑢
2

(
𝑛 + 2𝑚 − 2

𝑛 − 1
)

𝐹

+ 𝑎
3
𝑡𝑢
3

(
𝑛 + 3𝑚 − 4

𝑛 − 1
)

𝐹

...

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(27)

and this yields

𝑎
0
𝑡(
𝑛 − 1

𝑛 − 1
)

𝐹

+ [𝑎
0
𝑡(

𝑛

𝑛 − 1
)

𝐹

+ 𝑎
1
𝑡𝑢(

𝑛 + 𝑚 − 2

𝑛 − 1
)

𝐹

] 𝑥

+ [𝑎
0
𝑡(
𝑛 + 1

𝑛 − 1
)

𝐹

+ 𝑎
1
𝑡𝑢(

𝑛 + 𝑚 − 1

𝑛 − 1
)

𝐹

+𝑎
2
𝑡𝑢
2

(
𝑛 + 2𝑚 − 3

𝑛 − 1
)

𝐹

] 𝑥
2

+ ⋅ ⋅ ⋅

= 𝑎
0
[𝑡(

𝑛 − 1

𝑛 − 1
)

𝐹

+ 𝑡(
𝑛

𝑛 − 1
)

𝐹

𝑥

+ 𝑡(
𝑛 + 1

𝑛 − 1
)

𝐹

𝑥
2

+ ⋅ ⋅ ⋅ ]

+ 𝑎
1
[𝑡𝑢(

𝑛 + 𝑚 − 2

𝑛 − 1
)

𝐹

𝑥

+ 𝑡𝑢(
𝑛 + 𝑚 − 1

𝑛 − 1
)

𝐹

𝑥
2

+ ⋅ ⋅ ⋅ ]

+ 𝑎
2
[𝑡𝑢
2

(
𝑛 + 2𝑚 − 3

𝑛 − 1
)

𝐹

𝑥
2

+ 𝑡𝑢
2

(
𝑛 + 2𝑚 − 2

𝑛 − 1
)

𝐹

𝑥
3

+ ⋅ ⋅ ⋅ ] + ⋅ ⋅ ⋅

= 𝑎
0
𝑔 (𝑥) + 𝑎

1
[𝑔 (𝑥) ∗

𝐹
𝑓 (𝑥)]

+ 𝑎
2
[𝑔 (𝑥) ∗

𝐹
𝑓(𝑥)
[2]

] + 𝑎
3
[𝑔 (𝑥) ∗

𝐹
𝑓(𝑥)
[3]

] + ⋅ ⋅ ⋅

= 𝑔 (𝑥) ∗
𝐹
[𝑎
0
+ 𝑎
1
𝑓 (𝑥)

+ 𝑎
2
𝑓(𝑥)
[2]

+ 𝑎
3
𝑓(𝑥)
[3]

+ ⋅ ⋅ ⋅ ]

= 𝑔 (𝑥) ∗
𝐹
𝐴 (𝑓 (𝑥)) = 𝐵 (𝑥)

(28)

and we have our result.

4. The 𝐹-Analogue of Riordan
Representation of Pascal Matrices via
Fibonomial Coefficients

Obtaining the entries of infinite dimensional Pascal matrix
via Fibonomial coefficients requires cumbersome calcula-
tions. However, there is an alternative method using the
Riordan group which appears to be more convenient. To this
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purpose, we start with the following theorem in which we
obtain the 𝐹-analogue of Riordan representation ofP.

Theorem 6. Let P(𝑛, 𝑚) be the infinite Pascal matrix via
Fibonomial coefficients as in (5). Then, the 𝐹-analogue of
Riordan representation ofP(𝑛, 𝑚) is given by

P (𝑛,𝑚) = (
𝑡

(1 − 𝑥)
𝑛

𝐹

,
𝑢𝑥

(1 − 𝑥)
𝑚

𝐹

)

𝐹

. (29)

Proof. We consider the infinite Pascal matrix via Fibonomial
coefficientsP(𝑛,𝑚). The entries of the 𝑗th column are given
by

𝑝
𝑖𝑗
= [𝑥
𝑖

] 𝑡𝑢
𝑗

(
𝑛 + 𝑗𝑚 − 1 + 𝑖 − 𝑗

𝑛 + 𝑗𝑚 − 1
)

𝐹

𝑖 = 0, 1, 2, . . . . (30)

Let

𝑔 (𝑥) =
𝑡

(1 − 𝑥)
𝑛

𝐹

, 𝑓 (𝑥) =
𝑢𝑥

(1 − 𝑥)
𝑚

𝐹

; (31)

then

𝑔 (𝑥) ∗
𝐹
(𝑓 (𝑥))

[𝑗]

=
𝑡

(1 − 𝑥)
𝑛

𝐹

∗
𝐹
(

𝑢𝑥

(1 − 𝑥)
𝑚

𝐹

)

[𝑗]

. (32)

Using (22), we obtain

𝑔 (𝑥) ∗
𝐹
(𝑓 (𝑥))

[𝑗]

=
𝑡𝑢
𝑗

𝑥
𝑗

(1 − 𝑥)
𝑛+𝑚𝑗

𝐹

. (33)

Taking (17) into account, we have

𝑔 (𝑥) ∗
𝐹
(𝑓 (𝑥))

[𝑗]

=
𝑡𝑢
𝑗

𝑥
𝑗

(1 − 𝑥)
𝑛+𝑚𝑗

𝐹

= ∑

𝑖≥0

𝑡𝑢
𝑗

(
𝑛 + 𝑗𝑚 − 1 + 𝑖 − 𝑗

𝑛 + 𝑗𝑚 − 1
)

𝐹

𝑥
𝑖

.

(34)

This proves that the generating function of the 𝑗th column of
P(𝑛,𝑚) is

𝑡𝑢
𝑗

𝑥
𝑗

(1 − 𝑥)
𝑛+𝑚𝑗

𝐹

. (35)

In conclusion, the 𝐹-analogue of Riordan representation of
P(𝑛,𝑚) is

(
𝑡

(1 − 𝑥)
𝑛

𝐹

,
𝑢𝑥

(1 − 𝑥)
𝑚

𝐹

)

𝐹

. (36)

Corollary 7. LetP be in (6).Then, the𝐹-analogue of Riordan
representation ofP is given by

P = (
1

(1 − 𝑥)
𝐹

,
𝑥

(1 − 𝑥)
𝐹

)

𝐹

. (37)

Corollary 8. Let 𝑈 be the Pascal matrix via Fibonomial
coefficients of the first kind. Then, the 𝐹-analogue of Riordan
representation of 𝑈 is given by

(
1

(1 − 𝑥𝑡)
𝐹

,
𝑡

(1 − 𝑥𝑡)
𝐹

)

𝐹

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 0 . . .

𝑥 1 0 0 0 0 0 . . .

𝑥
2

𝑥 1 0 0 0 0 . . .

𝑥
3

2𝑥
2

2𝑥 1 0 0 0 . . .

𝑥
4

3𝑥
3

6𝑥
2

3𝑥 1 0 0 . . .

𝑥
5

5𝑥
4

15𝑥
3

15𝑥
2

5𝑥 1 0 . . .

𝑥
6

8𝑥
5

40𝑥
4

60𝑥
3

40𝑥
2

8𝑥 1 . . .

...
...

...
...

...
...

... d

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(38)

Corollary 9. Let 𝑀 be the Pascal matrix via Fibonomial
coefficients of the second kind.Then, the𝐹-analogue of Riordan
representation of𝑀 is given by

(
1

(1 − 𝑥𝑡)
𝐹

,
𝑥
2

𝑡

(1 − 𝑥𝑡)
𝐹

)

𝐹

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 . . .

𝑥 𝑥
2

0 0 0 0 . . .

𝑥
2

𝑥
3

𝑥
4

0 0 0 . . .

𝑥
3

2𝑥
4

2𝑥
5

𝑥
6

0 0 . . .

𝑥
4

3𝑥
5

6𝑥
6

3𝑥
7

𝑥
8

0 . . .

𝑥
5

5𝑥
6

15𝑥
7

15𝑥
8

5𝑥
9

𝑥
10

. . .

...
...

...
...

...
... d

]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(39)

Corollary 10. LetΦ be the extended generalized Pascalmatrix
via Fibonomial coefficients. Then, 𝐹-analogue of the Riordan
representation of Φ is

(
1

(1 − 𝑥𝑦𝑡)
𝐹

,
𝑦
2

𝑡

(1 − 𝑥𝑦𝑡)
𝐹

)

𝐹

=

[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 . . .

𝑥𝑦 𝑦
2

0 0 0 . . .

𝑥
2

𝑦
2

𝑥𝑦
3

𝑦
4

0 0 . . .

𝑥
3

𝑦
3

2𝑥
2

𝑦
4

2𝑥𝑦
5

𝑦
6

0 . . .

𝑥
4

𝑦
4

3𝑥
3

𝑦
5

6𝑥
2

𝑦
6

3𝑥𝑦
7

𝑦
8

. . .

...
...

...
...

... d

]
]
]
]
]
]
]
]
]
]

]

.

(40)
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