Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 381361, 12 pages
http://dx.doi.org/10.1155/2014/381361

Research Article

Sharing Privacy Protected and Statistically Sound
Clinical Research Data Using Outsourced Data Storage

Geontae Noh, Ji Young Chun, and Ik Rae Jeong

Center for Information Security Technologies (CIST), Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
Correspondence should be addressed to Ik Rae Jeong; irjeong@korea.ac.kr

Received 14 November 2013; Accepted 28 April 2014; Published 18 May 2014

Academic Editor: Jongsung Kim

Copyright © 2014 Geontae Noh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is critical to scientific progress to share clinical research data stored in outsourced generally available cloud computing services.
Researchers are able to obtain valuable information that they would not otherwise be able to access; however, privacy concerns
arise when sharing clinical data in these outsourced publicly available data storage services. HIPAA requires researchers to
deidentify private information when disclosing clinical data for research purposes and describes two available methods for doing
so. Unfortunately, both techniques degrade statistical accuracy. Therefore, the need to protect privacy presents a significant problem
for data sharing between hospitals and researchers. In this paper, we propose a controlled secure aggregation protocol to secure both
privacy and accuracy when researchers outsource their clinical research data for sharing. Since clinical data must remain private
beyond a patient’s lifetime, we take advantage of lattice-based homomorphic encryption to guarantee long-term security against
quantum computing attacks. Using lattice-based homomorphic encryption, we design an aggregation protocol that aggregates
outsourced ciphertexts under distinct public keys. It enables researchers to get aggregated results from outsourced ciphertexts of
distinct researchers. To the best of our knowledge, our protocol is the first aggregation protocol which can aggregate ciphertexts

which are encrypted with distinct public keys.

1. Introduction

Researchers can accelerate their learning curve if they are
able to freely access clinical data from other studies. Such
clinical data sharing in outsourced publicly available services
is crucial to scientific progress in clinical research. The
benefits of clinical data sharing using these services have been
widely reported, including reduced research costs, reduced
management costs, improvement of quality control, and
reduced time in discovering diseases and dealing with them
effectively. Through shared data, researchers access valuable
information that they would not ordinarily obtain. In its pol-
icy statement on grants, the U.S. National Institute of Health
(NIH) supports data sharing by requiring investigators to
include a plan for data sharing or explain why data sharing
is not possible.

The problem with clinical data sharing in outsourced
publicly available services for research is that researchers
can inadvertently violate patient privacy. HIPAA (Health

Insurance Portability and Accountability Act) offers pro-
tection of patients’ personal health information, but it is
difficult not to invade patient privacy while sharing clinical
data in outsourced publicly available data storage services
[1]. Therefore, researchers would rather not make their data
publicly available than run the risk of violating HIPAA.

To mitigate privacy concerns, the HIPAA describes two
ways to use and disclose clinical data for research purposes.
Under the HIPAA Safe Harbor policy, clinical data should be
deidentified so that patients are not individually identifiable.
The HIPA A Safe Harbor policy stipulates that the data sharer
should deidentify data by removing 18 specific data attributes,
such as name, address, and all dates related to the individual
patient, which may include birth date and date of death. (In
addition, some researchers continue to assert that combina-
tions of other data that are excluded from the HIPAA Safe
Harbor policy could individually identify a specific person
with nonnegligible probability, so they insist that there are
more than 18 specific data attributes that should be included

http://dx.doi.org/10.1155/2014/381361

2 Journal of Applied Mathematics
Cloud server Cloud server
Data
-— -— Request
ﬁ ﬁ . Researcher
Approximate data
- - [
: . Request
’ Aggre- ’ Aggre- N Researcher
gator gator | Accurate statistical data
=

()

FIGURE 1: System environment ((a) store phase and (b) search phase).

in the Safe Harbor policy [2-4].) Once identitying informa-
tion has been removed, the deidentified data are no longer
subject to the Institutional Review Board (IRB) overview.
Alternatively, researchers may use anonymity techniques to
deidentify patient information instead of removing all of the
18 or more data attributes that are required to be deidentified.
To date, anonymity techniques have been proposed, such as
k-anonymity [5-7], €-diversity [8], and t-closeness [9].

It is useful to protect patient privacy with deidentification
formats when sharing clinical data in outsourced publicly
available data storage services, but doing so degrades the
statistical accuracy since it makes it difficult to get precise
statistical results. However, in some cases where accurate sta-
tistical data on patients are critical, the anonymity techniques
for deidentification are not sufficient. Due to poorly deiden-
tified data, researchers can make bad decisions. Therefore,
there needs to be a privacy-preserving method for accurate
statistical data.

In this work, we propose how to outsource clinical res-
earch data securely and how to control the outsourced data
against potential breaches of privacy, while not compromis-
ing the accuracy of statistical results. For example, a malicious
researcher could circumvent any encryption by asking for one
piece of data on one patient; in this way, the researcher could
ultimately obtain each patient’s private information. In this
case, we propose a method that will foil such a malicious
attempt.

The system environment we propose for hospitals, aggre-
gator, and researchers is illustrated in Figure 1. In our system,
each hospital outsources its own clinical data to cloud storage
servers. The clinical data must be deidentified or encrypted
to be stored publicly. We use a hybrid method to store the
clinical data; that is, we deidentify the clinical data for
approximate statistical data requests and encrypt numerical
clinical data for accurate statistical data requests. Therefore,
researchers can request both approximate and accurate sta-
tistical data. Researchers would obtain approximate statistical
data directly from the cloud storage servers but cannot
obtain accurate statistical data directly. When researchers
would like to get accurate statistical data, they can get the
data through the aggregator. The aggregator aggregates the
requested data from the encrypted database stored in the
cloud storage servers, and then asks each hospital to decrypt

the aggregated data by consent. Hospitals can refuse the
request of the aggregator, unless initial consents that have
been obtained from patients allow the secondary research.
Since there are ethical and practical issues associated with
aggregating databases [10], hospitals should ensure that they
are following “best practices” for their outsourced data,
such as determining whether initial consents that have been
obtained allow secondary research.

Since clinical data should remain private beyond a
patient’s lifetime, cryptographic long-term security is abso-
lutely needed [11] in the area of managing clinical data.
Therefore, we take advantage of a lattice-based homomor-
phic encryption in order to encrypt clinical data. Lattice-
based cryptography is believed to be secure against quantum
computing attacks and guarantees long-term security. RSA,
ECC, and DLP cryptosystems, which have gained attention
so far, could be attacked with quantum computers [12].
Quantum computing is not yet possible, but may become
so in our lifetime. Furthermore, lattice-based cryptographic
algorithms are more efficient than others in computational
overhead because they require only linear operations on
matrices such as addition, multiplication, and inverse.

In 2009, Gentry proposed the first fully homomorphic
encryption scheme using ideal lattices [13]. In 2010, Gentry et
al. have proposed a novel homomorphic encryption scheme
(referred to as GHV homomorphic encryption scheme here-
after) that supports one multiplicative and polynomially
many additive operations on encrypted data [14]. As a
building block, we use a variant of the GHV homomorphic
encryption scheme, which supports only additive operations.
This can make it possible to aggregate ciphertexts which are
encrypted under distinct public keys. Due to this property,
the aggregator can aggregate the outsourced encrypted data
from hospitals. Therefore, once hospitals outsource their
clinical data, they do not need to encrypt the clinical data
again for individual researchers. Each hospital only has to
encrypt the clinical data, and then it outsources the encrypted
data.

Contributions. In this paper, we propose a controlled secure
aggregation protocol in sharing clinical research data to
balance the interests between hospitals and researchers. The
main contributions of this paper are as follows.

Journal of Applied Mathematics

(i) Researchers can get approximate statistical data from
deidentified clinical data directly. Researchers can
also obtain accurate and aggregated clinical data from
the encrypted database through the aggregator by
obtaining each hospital’s consent.

(ii) We take advantage of a lattice-based homomorphic
encryption which is secure against quantum comput-
ing attacks. Therefore, our protocol resists quantum
attacks and could remain secure in the long term.

(iii) The aggregator can aggregate encrypted clinical data
which are encrypted with distinct public keys. There-
fore, hospitals do not have to encrypt the clinical data
again whenever researchers send requests.

To the best of our knowledge, our protocol is the first
protocol which takes advantage of the lattice-based homo-
morphic encryption in order to share outsourced clinical
research data.

Organization. The remainder of this paper is organized as
follows. Section 2 provides related works and background.
Section 3 presents our controlled secure aggregation proto-
col. We present our secure clinical data aggregation system
in Section 4 and analyze it in Section 5. We provide our
conclusions in Section 6.

2. Related Works and Background

In this section, we present related works and background.

2.1. Data Aggregation Based on Homomorphic Encryption. In
2004, Hacigiimiis et al. proposed an aggregation protocol
over encrypted relational databases [15]. They designed the
aggregation protocol using the PH (Privacy Homomor-
phism) which supports additive and multiplicative opera-
tions. In the aggregation protocol, permitted users can get
the accurate and aggregated data. However, Mykletun and
Tsudik showed that the aggregation protocol using the PH
is not secure against ciphertext-only attacks [16]. Since then,
various aggregation protocols over encrypted data have been
proposed in the literatures [17-23]. Among those protocols,
few literatures have focused on the health-care environment.
In addition, most protocols considered the aggregation for a
single provider’s data.

Molina et al. [22] designed the aggregation protoc-
ol, HICCUPS, usinghomomorphic encryption in the health-
care environment. In HICCUPS, clinical data of multiple
providers can be aggregated as follows: caregivers who store
clinical data on their own database are randomly chosen as
the aggregator. When a researcher requests the aggregated
result, the aggregator aggregates the encrypted clinical data
from each caregiver and sends the aggregated result to the
researcher.

Since HICCUPS is not based on the outsourcing system,
caregivers have to provide clinical data whenever a researcher
requests a certain data. In addition, HICCUPS requires each
caregiver to aggregate and encrypt clinical data with the
researcher’s public key so that the aggregator can aggregate

the encrypted clinical data. However, a malicious aggregator
may want to have a researcher get a misleading result by
intentionally excluding the encrypted clinical data from
certain caregivers. Even though the malicious aggregator
fabricates the aggregated result on purpose, there is no way
for a researcher to detect the malicious behavior of the
aggregator in HICCUPS.

To resolve the above issues, we design the controlled
secure aggregation protocol which can aggregate outsourced
ciphertexts under distinct public keys. Therefore, data
providers (or hospitals) do not have to encrypt clinical
data again, once they have outsourced their clinical data.
Our protocol also enables a researcher to detect the mali-
cious behavior of the aggregator. If the malicious aggrega-
tor excludes the encrypted clinical data from certain data
providers on purpose, a researcher can detect that. Since
each data provider (or hospital) collaboratively makes the
aggregated data decryptable by a researcher, if the aggregated
data is generated maliciously then the researcher cannot get
a plausible result. The researcher gets the random result that
cannot seem to be a meaningful result. Therefore, in our
protocol, the researcher can be sure that the requested data
are aggregated correctly.

2.2. Anonymity Techniques for Deidentification. Samarati and
Sweeney introduced an anonymity technique called k-
anonymity [5-7]. They considered a relational database that
consists of unique identifiers, quasi-identifiers, and sensitive
attributes. A unique identifier is any attribute that is able to
identify only one private individual, such as a personal ID,
an e-mail address, or a cell phone number. A quasi-identifier
is any set of attributes that can be joined with additional
information to identify only one private individual, such
as a zip code and a birthday. A sensitive attribute is any
attribute that a data owner does not want to publish, such
as health-care data. In order to preserve privacy, all unique
identifiers must be removed and all quasi-identifiers must
be anonymized. In k-anonymity, each quasi-identifier is
indistinguishable from at least k — 1 other quasi-identifiers.
Tables 1 and 2 are good examples of the original health-care
data and the 4-anonymous pieces of health-care data.

However, k-anonymity is not secure against homogeneity
attacks and background knowledge attacks [8]. For example,
suppose that Alice knows that Bob is in his twenties and his
zip code is 13032; then, Alice can identify that Bob must have
a gastric ulcer from Table 2.

To mitigate these attacks, Machanavajjhala et al. intro-
duced a new anonymity technique, called ¢-diversity [8]. In £-
diversity, all the equivalence classes that have the same quasi-
identifiers must have € or more different sensitive attributes.
Table 3 shows the 3-diverse kinds of health-care data.

Since this result of £-diversity, Li et al. showed that ¢-
diversity is insufficient for anonymity [9]. In £-diversity,
any information can be released if there exists a significant
distribution difference between sensitive attributes of any
equivalence class and all sensitive attributes. For example, if
Alice knows Bob’s personal information such as his age and
zip code, she will be able to identify from Table 3 that Bob

4
TaBLE 1: Original health-care data.
Number Nonsensitive Sensitive
Zip code Age Condition
1 13033 22 Gastric ulcer
2 13062 25 Gastric ulcer
3 13032 27 Gastric ulcer
4 13067 28 Gastric ulcer
5 13065 31 Flu
6 13038 33 Stomach cancer
7 13035 35 Gastritis
8 13060 36 Gastritis
9 14856 43 Flu
10 14850 45 Gastritis
11 14852 50 Stomach cancer
12 14855 52 Gastric ulcer
TABLE 2: 4-anonymous health-care data.
Number Nonsensitive Sensitive
Zip code Age Condition
1 1303 % <30 Gastric ulcer
2 1303 % <30 Gastric ulcer
3 1303 % <30 Gastric ulcer
4 130 <30 Gastric ulcer
5 1303 % 3% Flu
6 1303 % 3 Stomach cancer
7 130 % = 3 Gastritis
8 130 % = 3 Gastritis
9 148+ >40 Flu
10 148+ = >40 Gastritis
11 148+ >40 Stomach cancer
12 148 >40 Gastric ulcer

has stomach-related disease (e.g., gastric ulcer, gastritis, and
stomach cancer.)

To mitigate such potential problem, Li et al. introduced
another new anonymity technique, called ¢-closeness [9]. t-
closeness requires the distribution of sensitive attributes of
any equivalence class to be similar to that of all sensitive
attributes.

2.3. GHV Homomorphic Encryption Scheme. GHV homo-
morphic encryption scheme supports one multiplicative and
polynomially many additive operations on encrypted data
[14]. The security of the GHV homomorphic encryption
scheme is based on the learning with errors (LWE) problem
[24] which is one of the hardest assumptions so far.

Let n be the security parameter, then other parameters are
as follows:

(i) ¢ = c(n) > 0,

(ii) p is a positive integer by setting a prime number g =
w(p2n3”1log5n),

(iii) m = [8nlogq], and

Journal of Applied Mathematics

TABLE 3: 3-diverse health-care data.

Number Nonsensitive Sensitive
Zip code Age Condition

3 1303 <40 Gastric ulcer

1 1303+ <40 Gastric ulcer

7 1303 <40 Gastritis

6 1303 <40 Stomach cancer

8 1306 <40 Gastritis

2 1306 <40 Gastric ulcer

5 1306 <40 Flu

4 1306 <40 Gastric ulcer

10 1485+ >40 Gastritis

11 1485 >40 Stomach cancer

12 1485 >40 Gastric ulcer

9 1485 >40 Flu

(iv) B = 1/(27n'*%? log nlog q/q7m) is a Gaussian para-

meter.

Then the IND-CPA secure [25] GHV homomorphic
encryption scheme GHV = {GHV.Key, GHV.Enc, GHV.
Dec, GHV.Add, GHV.Mul} is as follows.

(i) GHV.Key(1", 1™, q): given 1, m, and g, output a public
key pk = A € Z;"" and a secret key sk = T €

7™ such that TA = 0(modg), T is invertible, and
the elements of T are bounded by O(nlogqg). (To
generate two matrices A and T, the trapdoor sampling
algorithm in [26] can be used. For further details,
please refer to [14].)

(i) GHV.Enc(pk, B): given pk and a plaintext B € Z;”X"',
choose a uniformly random matrix § € Z7*" and

a Gaussian error matrix X € Z””. Then output a
ciphertext C = AS + pX + B(modg).

(iii) GHV.Dec(sk, C): given sk and a ciphertext C € Z;"X'”,

compute E = TCT*(modg). Then output a plaintext
B= T_lE(Tt)fl(modp).

In this algorithm,
E = TCT' (modgq)
= TAST' + TpXT' + TBT' (modq)
= TpXT' + TBT' (modq)
= TpXT' + TBT', ¢y
B =T E(T")
- TUTpXT () + T TBT (1)

= pX+B =B (modp).

Journal of Applied Mathematics

(iv) GHV.Add(C,,...,C,): givenn ciphertexts, C, =
AS, + pX, + Bymodyg), ..., C, = AS, + pX, +
B, (modgq), output

n

Ci+---+C,=AS, +pX, +B; +---
+AS, + pX, + B, (modq)

=A(S; +--+8,)

2)
Fp(X e X,)

+(B; +---+B,) (modgq)
= AS' + pX' + B' (modq).

That is, the output of GHV.Dec(sk,C, +:--+C,)
isB' =B, +---+B,.

(v) GHV.Mul(C,, C,): given two ciphertexts, C, = AS, +
pX, + B,(modg) and C, = AS, + pX, + B,(modg),
output

C,-C. = (AS, + pX, +B,) - (AS, + pX, +B,)" (modq)

=A- (SICtZ) tp (Xl (pX, +B,) + letz)
+B,B, + (pX, + B;) S, - A’ (modq)

= AS" + pX" +B" + 8" A" (modg).
(3)

That is, the output of GHV.Dec(sk,C, - C}) is B" =
B, - B..

In this paper, we use, as a building block, a variant ver-
sion of the GHV homomorphic encryption scheme which
supports only additive operations. We call this variant ver-
sion of the GHV homomorphic encryption scheme a GHV*
homomorphic encryption scheme hereafter. We can replace
Se ngm, X ¢ Z;"X'”, B¢ ZZ‘X"‘, and C ¢ Z;"X'" of the GHV
homomorphic encryption scheme with s ¢ ZZ, x € 7™,
b e Zg’, and ¢ € Z;” of the GHV* homomorphic encryption
scheme without any loss of security. Then the IND-CPA
secure [25] GHV* homomorphic encryption scheme GHV*
={GHV" .Key, GHV*.Enc, GHV*.Dec, GHV*.Add} is as fol-
lows.

(i) GHV™ .Key(1",1™,9): given n, m, and g, output a
public key pk = A € Z™" and a secret key sk =
T € Z™"™ such that TA = 0(modg), T is invertible,
and the elements of T are bounded by O(nlog q).

(ii) GHV™.Enc(pk, b): given pk and a plaintext b € Z7,
choose a uniformly random vector s € Zg and a Gaus-
sian error vector x € ZI'. Then output a ciphertext
¢ = As + px + b(modg).

(iii) GHV™".Dec(sk, c): given sk and a ciphertext ¢ € Z;”,
compute e = Tc(modg). Then output a plaintext b =
T 'e(mod p).

2.4. Ajtai’s One-Way Function. Ajtai constructed a one-way
function whose security is based on some well known
approximation problems in lattices [27, 28].

Let n be the security parameter, m a positive integer,
and g a positive integer. For a uniformly random matrix
M ¢ ngm and r € {0,1}", the Ajtai’s one-way func-

tionhy : {0, 1} — Z;‘ is as follows:
hy (r) = Mr (modgq) . (4)

Note that the Ajtai’s one-way function hy is regular [29];
that is, every output of hy is uniformly distributed over Z;’
[30].

3. Controlled Secure Aggregation Protocol

In this section, we propose our controlled secure aggregation
protocol (CSA protocol hereafter). Let n be the security
parameter. Then we choose other parameters which are used
in our CSA protocol as follows:

(i) ¢ =c(n) >0,

(ii) p is a positive integer by setting a prime number g =
w(p2n35+110g5n))

(iii) m = [8nlogq], and

(iv) B = 1/@7n"" lognlogq+/gm) is a Gaussian
parameter.

Suppose that there are n users,%;(1 <i<n), a rece-
iver % 4, and an aggregator /&E. Each user %;(1 <i <n)
outsources its own numerical data b; with encrypted form.
We assume that the receiver % 5 wants to know an aggregated

valueb = Zj.:lljl b, where . = {i},...,i 5} € {I,...,n}and
|-7| is the number of elements in .#. We also assume that
the receiver % 5 has a public key pk, = Ag and a secret
key skg, = Ty by performing GHV* .Key(1",1",). Then the
receiver % 4 can get b by performing our CSA protocol.
Our CSA protocol consists of the following phases which
are illustrated in Box 1: Key Generation, Encryption, Aggrega-
tion, re-Aggregation, and dec-Aggregation. In the Key Genera-
tion phase, each user generates a public key pair and a secret
key. In the Encryption phase, each user encrypts its numerical
data with his/her public key pair. In the Aggregation phase,
ciphertexts generated under distinct public key pairs are
aggregated. That is, to get an aggregated value, the receiver
U g allows the aggregator ZEE to know J = {i},...,i 5}
Then an aggregator o/ &€& aggregates each ciphertext on
b (1 < j < |[7])in this phase. In the re-Aggregation
phase, the user %, eliminates A s, from a ciphertext ¢’ and
addsGHV*.Enc(A4,0) = Ags;' + px; (modg) which is a
ciphertext on 0 under the receiver’s public key Ag,. In this
phase, a ciphertext under the public key A; is converted into
a ciphertext under the public key A, maintaining the same

Journal of Applied Mathematics

Key Generation. Each user %; (1 < i < n) runs the following CSA.Key(1", 1™, g) algorithm to get a public key pair
pk; = (A;,M;) and a secret key sk; = T;.

CSA.Key(1",1™, q): Given n, m, and g, output a public key pair pk; = (A;, M,) and a secret key sk; = T; by
performing following steps:

(1) perform GHV *.Key(1",1™, g) to get A; and T,

(2) choose a uniformly random matrix M; € Z"".

Encryption. Each user %; (1 < i < n) runs the following CSA.Enc(pk;, b;) algorithm to get a ciphertext pair (c;, c;).

CSA.Enc(pk;,b;): Given a public key pair pk; = (A;,M;) and a plaintext b; € Z7, output a ciphertext pair (c;, <)
by performing following steps:

(1) choose r; € {0, 1} at random,

(2) compute s; = hy, (r;) € Z’q’,

(3) choose a uniformly random vector s, € z,,

(4) choose Gaussian error vectors x; € Z;' and X € zy,

(5) compute ¢; = A;s; + px; + b; (mod g),

(6) compute ¢, = A;s; + px; +r; (mod q).

Aggregation. 9/€E aggregates ciphertext pairs {(c;, ¢;)};c.» generated under distinct public key pairs {pk;};. , by
performing the following CSA.Agg({(c;, ¢))}ic.r»).

CSA.Agg({(c;, €} 7> 7): Given ciphertext pairs (c;, ¢;) where i € .7, output ¢, {c};. , and .7 by performing following
steps:

(1) Let 5 = {i}, ..., i 5} where | 7] is the number of elements in .7,

(2)e=¢, FodG
re-Aggregation. Each user %; (1 < i < n) can run the following CSA.reAgg(c’, ¢/, pk;, sk;, A5) algorithm to get a
re-aggregated ciphertext.

CSA.reAgg(c’, ¢}, pk;, sk;, Ay): Given an aggregated ciphertext ¢, a ciphertext c;, a public key pair pk; = (A;, M),
a secret key sk; = T;, and a public key A, of %, output ¢ by performing following steps:

(1) perform GHV *.Dec(sk;, ;) to get r;,

(2) compute s; = hy, (r;),

(3) choose a uniformly random vector s:' € Z;,
(4) choose a Gaussian error vector x:' € Z’;,

(5) compute € = ¢' — A;s; + Ags;’ + px;' (mod g).

by performing following steps:
(1) Each user %ij(l <j<|F]-1)inturn,
(a) computes c; = CSA.reAgg(c;

dec-Aggregation. 4 GE gives an aggregated ciphertextc=c¢; +---+¢;
A, of % 4 to each user ‘Zlij(l < j < |71), respectively. Let €, = c, then the receiver %, obtainsb =b; +---+b;

!
o Py sk, s A,

-
(b) sends c; to the next user %ijﬂ .
(2) %;,,, computes €, ;) = CSA.reAgg(c J|_1,c:|]|, Pk,

71’

(3) % performs GHV *.Dec(skg, €, 7)) to getb =b; +---+b,

i,y t0 %; , and a ciphertext c!j and a public key

71

Ag) and sends €| 4 to % 5.

54N

Box 1: CSA Protocol.

plaintext. For example, suppose that ¢’ = ¢; = A;s; + px; +
b;(modq) and ¢, = A;s; + px; + r;(modq), then

CSA.reAgg (c', <), pk;, sk;, A@)
=c —Ass;+Ags, + px; (modq)
= Ass;+px; + b, — Ajs; + Ags, + px, (modq) (5)
=Ags, +p (x1 + x;') +b; (modgq)

= GHV".Enc(Ag,b;).

As a result, a ciphertext which is decryptable by a user %; is
converted into a ciphertext which is decryptable by the
receiver % 5, maintaining the same plaintext b;. This phase is
needed in the dec-Aggregation phase to make an aggregated
ciphertext ¢’ decryptable by the receiver %,. In the dec-
Aggregation phase, each user #; (1< j<|J])inturn makes
an aggregated ciphertext ¢ decryptable by the receiver % .
Through these phases, the receiver % 5 can get an aggregated

_ yiEld
valueb =)i) b; .
For example, we assume thatn = 5 users participating in

our controlled secure aggregation protocol CSA and each

Journal of Applied Mathematics

user %; (1 < i < 5) has its numerical data b,. Each user %;
(I < i < 5) outsources its numerical data with encrypted
form (c;, cl{) = (A;s;+ px;+b,(mod q), A;s; +px£ +r;(mod q))
using CSA.Enc(pk;, b;) algorithm. Suppose that the receiver
% 5z wants to know an aggregated value b = b, + b;. The
receiver % 4 lets the aggregator o & know ¥ = {2, 5}. Then
AEE runs the CSA.Agg((c,, c;), (s c;), {2, 5}) algorithm to
getc = ¢, + ¢ = Ays, + px, + b, + Agss + pXs + bs(mod
q). 4G gives ¢, ¢, and Ay, to %,, and ¢, and A, to .
Then %, runs GHV*.reAgg(c, = c, ¢}, pk,, sk,, Ag) to get

T, =Gy~ Ays, +Ags) + px, (modq)
= A8, + px, + by + Agss + px; + by
~A,8, + Ags, + px) (modq) (6)
= p(x2 +x;') +b, + Ass; + px; + by
+Ags, (modg).

U, sends ¢, to Us; then Us
GHV*.reAgg(c,, c., pks, sks, Ag) to get

runs

S, =€ —Asss + Ags, + px. (modq)
:p(x2 +x;')+b2 + Agss + pXs + b
+Ags) — Asss + Agst + px. (modq))
=Ag, (s;' + s;') + p(x2 + x;' +Xs +xg)
+b, +bs (modq).

% sends ¢, to % 4; then % 5 runs GHV ™ .Dec(skg, €,) to get
b = b, + b,. That is,

e =Tyc, (modq)
=TgzA, (s;’ + 5’5’) +Tgp (x2 + x;' + X5 + x;')
+Tgyb, + Tybs (modq)
=Tg,p (x2 + x;’ + X5 + x;') +Tyb,
+ Tgbs (modg)
=Tgup (x2 + x;' + X5 + x;') +Tgb,
(8)
+Ty4bs,
b=T,e
= T_Q}T@p (x2 + x;’ + X5 + x;') + T;;T@bz
+T,, Tgbs
= p(x2+x;' + X +xé’)+b2+b5

=b, + by (modp).

Top(X, + X, + X5+ X,) + Tgb, + Tyybs(modgq) is the same
as Ty p(x, + X, + X5 + xg) + Tg4b, + T4bs, since Ty, p(x, +
x) + X5 +X.) + Tgb, + Tybs is a sufficiently short value [14].

In the dec-Aggregation phase, any user can refuse to
perform the CSA.reAgg algorithm, unless initial consents
that have been obtained from patients allow the secondary
research. Then the receiver cannot get the result. The receiver
can get the result only if all users perform the CSA.reAgg
algorithm. That means the receiver can get an aggregated
value that he/she is seeking only by the unanimous consent
of all fusers who have the data aggregated. That is the reason
why we use the term “controlled” in the CSA protocol.

3.1 Security. We now analyze the security of our controlled
secure aggregation protocol.

First, we show that our encryption CSA.Enc(pk;,b;) is
IND-CPA secure. Intuitively, the only difference between
our encryption schemeCSA.Enc(pk;,b;) and the GHV*
homomorphic encryption scheme is how to generate a
vector s; € Z;. In the GHV™ homomorphic encryption sch-
eme; the vector s; is chosen uniformly, but in our
encryption scheme CSA.Enc(pk;,b;), it is generated by
computings; = hy (r;) using a randomly chosen vector
r; € {0,1}". Since every output of the Ajtai’s one-way
function hy : {0,1}" — Z; is uniformly distributed over
Z’;, a vectors; = hy (r;) from our encryption scheme is
uniformly distributed over Z;’. Therefore, the security of

our encryption scheme CSA.Enc(pk;,b;) is the same as
the GHV* homomorphic encryption scheme.

Theorem 1. Our encryption scheme CSA.Enc(pk;,b;) pro-
vides IND-CPA if the GHV* homomorphic encryption scheme
provides IND-CPA and every output of the Ajtais one-way
functionhy, : {0, 1" — Z is uniformly distributed over Z.

Proof of Theorem 1. Formally, we show that if there exists an
adversary o/ breaking the IND-CPA security of our encryp-
tion scheme CSA.Enc(pk;,b;), there exists a challenger €
breaking the IND-CPA security of the GHV* homomorphic
encryption scheme.

Let {pk = A,GHV".params} be an instance given to €.
€ chooses a uniformly random matrix M; € Z7" and
sends {pk; = A; = A, params = (GHV".params, M)} to o/.of
chooses {by,b,} and sends {by,b,} to €. € outputs {by,b,}
and returns c;, where j € {0,1}. € sends c; to &/, and &
outputs d € {0, 1}. Then & outputs d € {0, 1}. O]

In our controlled secure aggregation protocol CSA, cip-
hertexts generated under distinct public key pairs can be
aggregated. To decrypt the aggregated ciphertext ¢ which
is generated by ciphertexts of users CZZ,-J_ (1 <j < |7

each user u; (I £ j < |F]) needs to eliminate Ais;
from ¢ and addGHV*.Enc(Ag4,0) = Ags; + px, (modq)
using the CSA.reAgg algorithm. Therefore, we should show
that CSA.reAgg(c;_;, cl{j, pkij, skij, Ag) is secure.

Theorem 2. CSA.reAgg(Ej,l,cﬁj,pkij,skij,AgZ) is an aggre-
gation of secure ciphertexts if ¢;_, is an aggregation of secure

ciphertexts including the ciphertext < which is one of a pair of

the ciphertexts (cij, c).
]

Proof of Theorem 2. Let ¢; = CSA.reAgg(c;_;, c, pk,.j, skij,
]

Ag)andc; , = 4 cj = d+ A;s; + px; +b, , then
E] = CSAreAgg (Ej—l’ C;j’Pki}-’Skij’A@)
— 1 "
=T~ A+ Agzsl.j + px; (modq)

!
=c +A;s; +px; +b;, —A:s;
l]- lj p lj l]- lj lj

)

+ Agzsl{; + px; (modq)
J
=c + A@SZ +p (x,-j + xfj') +b; (modq)
=¢ + GHV*.Enc (A@,bij) (modq) .

Therefore, CSA.reAgg(c;_;, cl(j, pk,-j, skij, Ag) isthe aggrega-
tion of the secure ciphertexts. O

In the fifth step of theCSA.reAgg algorithm,
GHV™.Enc(Ag,0) is added to be secure against an adversary
&/ who can eavesdrop on our controlled secure aggregation
protocol CSA. Assume that¢; = ¢, — A; s; (modg) in the
fifth step of CSA.reAgg(c;_;, c, pki sk, Ag), then any

J
adversary o/ who can eavesdrop on our controlled secure

aggregation protocol CSA is able to get ¢. = <;

i
A sij(modgq), ¢;_, and <, = Ays; +px; + b,-j (modgq). Then,

g can compute the following:

-t = Aijsij +px; + bij

Cij]

- Aijsij (modq)
=px;, +b; (modq) (10)
=px; + bij
= bij (modp).

Since px;, +bi]~ is a sufficiently short value, px;, +b,~j(mod g) is
the same as px;, +b,-]_ [14]. Therefore, &f can decrypt <, without
the secret key skij.

In the dec-Aggregation phase, after all the users %ij (1<
j < |#]) eliminate A,-j S, from c, the result is the same form

as a ciphertext generated under the public key A,. Therefore,
the receiver % 4 can decrypt it.

4. Secure Clinical Data Aggregation System

In this section, we provide an overview of our system and how
it works.

4.1. System Overview. The proposed system environment
consists of hospitals, an aggregator, and researchers. In our

Journal of Applied Mathematics

TABLE 4: Original clinical data.

Nonsensitive Sensitive
Zip code Age Condition

13062 25 Heart disease

I, 13035 31 Cancer
14850 45 Viral infection
13035 20 Heart disease
I, 14850 23 Heart disease
14855 52 Viral infection

13062 35 Cancer

Xy 13035 22 Cancer
13062 52 Heart disease
13062 27 Heart disease
X, 13062 33 Viral infection

14855 43 Cancer

system, each hospital outsources its clinical data to cloud
storage servers. Hospitals use the following hybrid method
to store data when outsourcing their clinical research data in
cloud servers: they make anonymous data publicly available
in the cloud servers using anonymity techniques for deiden-
tification in Section 2.1. In addition, hospitals also store their
encrypted numerical data together with the anonymous data
for statistical accuracy.

Suppose that there are 4 hospitals, #,, % ,, # 5, and
I, that want to share their clinical data and have pub-
lic and sescret key pairs (pk;,sk,), (pk,,sk,), (pks, sks),
and (pk,, sk,) of our CSA protocol, respectively. Suppose
that there is an aggregator /9% and a researcher X
who has a public and secret key pair (pkgy,sky) =
(Ag, Ty) of the GHV* homomorphic encryption scheme.
The original clinical data of hospitals are shown in Table 4.
Each hospital outsources its clinical data to cloud storage
servers. That is, #; stores deidentified nonsensitive data
(such as zip code and age), sensitive data in the raw,
and numerical data (such as age) using CSA.Enc(pk;, Age)
on cloud servers. Both anonymous and encrypted clinical
data on cloud servers are shown in Table 5, where (¢, ;, C;,1)
is an output of CSA.Enc(pk,,25), (C1,2>C;,2) is an output
of CSA.Enc(pk,,31), and so on.

When the researcher £ wants to know the rough estimate
of the age of the hospitals’ cancer patients, % can directly get
the estimate data from the cloud servers. When & wants to
figure out the average age of the hospitals’ cancer patients,
R can ask the aggregator /EE for an aggregated age.
AEE sums up the ages of cancer patients in each hospital,
then totals the ages across hospitals. That is, S EE per-
forms homomorphic additions to ciphertexts under the
same public key, such as ¢; = cl,z,c; = c;)z,c3 =
GHV*.Add(c;,¢5,),¢; = GHV .AdA(c} ;,¢;,),€4 = €43
and ¢, = cfm. After performing homomorphic additions,
AEE runs CSA.Agg((cl,c;),(c3,c;),(c4,c;),{1,3,4}) to get
an aggregated ciphertext ¢ = ¢; + ¢; + ¢,. In order to allow
R to know the aggregated age, each hospital in turn gives its
consent. &', # 5, and &, in turn perform CSA.reAgg(c, =

Journal of Applied Mathematics

TABLE 5: Anonymous and encrypted clinical data stored on cloud
servers.

Nonsensitive Sensitive Ciphertext pair

Zip code Age Condition CSA.Enc (pk,, Age)

1305 <30 Heart disease (C1,1>C;,1) /I 25
i 130 3% Cancer (crpr€y,) 1131
1485+ >40 Viral infection (c;5.¢,,) /I 45
Nonsensitive Sensitive Ciphertext pair

Zip code Age Condition CSA.Enc (pk,,Age)

130 * <30 Heart disease (¢1,€5) 11 20
7, 1485% <30 Heart disease (¢r206y,) 1123
1485+ >40 Viral infection (c3.65) /1 52
Nonsensitive Sensitive Ciphertext pair

Zip code Age Condition CSA.Enc (pk,, Age)
130 * 3% Cancer (cs165,) /1 35
5 130 <30 Cancer (€325 c;)z) /I 22
1305 >40 Heart disease (c33,€53) /] 52
Nonsensitive Sensitive Ciphertext pair

Zip code Age Condition CSA.Enc (pk,,Age)

130 * <30 Heart disease (cqpryy) 1127
Hy 130%% 3% Viral infection (cyn0y,) 1133
1485+ >40 Cancer (Cy0€y5) /1 43

¢, ¢, pky, sky, pky), CSA.reAgg(c,, c;, pks, sks, pky) and
CSA.reAgg(c,, c;, pky, sky, pkgy) to get €, ¢, and G,
respectively. After the agreement procedure, &% can get the
aggregated ciphertext ¢; under his/her public key. Then, %
can get an average age of the cancer patients, 131/4 = 32.75,
by performing GHV*.Dec(skg, ;) = b = 31 +35+22 +43 =
131, that is, the sum of the age of the cancer patients.

4.2. Attack Model. For designing a secure clinical data aggre-
gation system, the following conditions should be considered.

(1) (Anonymity) Adversaries should not exactly identify
only one private individual after looking ciphertexts
on cloud storage servers.

(2) (Confidentiality) Adversaries should not reveal any
information from the encrypted numerical data on
cloud storage servers.

(3) (External security) The third parties (external adver-
saries) should not know any information with infor-
mation flow.

(4) (Internal security) Hospitals and researchers (inter-
nal adversaries) except the researcher who sends
a request should not know any information with
information flow.

4.3. Our System. Now, we propose our secure clinical data
aggregation system (SCDA system hereafter). Let n be the
security parameter. Then we choose other parameters which
are used in our SCDA system as follows:

(i) ¢ =c(n) > 0,

(ii) p is a positive integer by setting a prime number g =
w(panCHlOgSn),
(iii) m = [8nlogq], and

(iv) B = 1/@7n"" lognlogq+/gm) is a Gaussian
parameter.

Suppose that there are ngy, hospitals Z; (1 <i < ng),ng
researchers Z; (1 < j < ngy), and an aggregator /&Y. We
assume that the ith hospital 7 hasn;; tuples and the
relational database in the cloud servers has no numerical
clinical data attributes.

The building blocks of our SCDA system are our con-
trolled secure aggregation protocol CSA and the GHV*
homomorphic encryption scheme GHV*. Our SCDA system
consists of the following phases which are illustrated in
Box 2: Preparation, Data Publication, Query, Aggregation,
Consent, and Acquisition. In the Preparation phase, each
hospital and each researcher generates a public key (pair)
and a secret key. In the Data Publication phase, each hospital
encrypts its numerical clinical data with his/her public key
pair and makes anonymous data using anonymity techniques
for deidentification. Then each hospital stores them in the
cloud servers. In the Query phase, one of the researchers
asks the aggregator #/ZF for an aggregated clinical data. In
the Aggregation phase, ciphertexts generated under distinct
hospitals are aggregated. In the Consent phase, each hospital
goes through the procedure for consent. In the Acquisition
phase, the researcher can get the aggregated clinical data.

5. Analysis

In this section, we analyze the security and efliciency in our
protocol.

5.1. Secure Parameters. We follow parameters which are
defined in our SCDA system from Section 4.2. Let # be the
security parameter, then other parameters are as follows:

(i) ¢ = c(n) >0,

(ii) p = n***log’n,
(iii) g = p’ is a prime number,
(iv) m = [8nloggq], and

v) B = 1/272 732 log nlog g+/q is a Gaussian param-
eter.

Using the above parameters, a ciphertext pair is only six
times as large as a plaintext because g = p> and the lengths
of a plaintext and a ciphertext pair are mlog,p bits and
2 - mlog,q bits, respectively. Our SCDA system supports 1"
additive operations in common with [14]. In the Query phase
of our SCDA system, therefore, the number of including
tuples in a request for an aggregated data must be less than
n°. Table 6 provides examples of secure parameters.

5.2. Security. We now analyze that our SCDA system is
anonymous, confidential, and secure against external and
internal adversaries.

10 Journal of Applied Mathematics
TABLE 6: Examples of secure parameters.

n m c q p B n Plaintext Ciphertext pair
128 30,865 1 1.39 x 10*° 1.12 x 10" 2.00 % 107° 128 37.86 KB 22713KB
128 69,705 3 1.18 x 10% 491 x 10 433x107%° 2.10 % 10° 193.07 KB 113 MB
256 70,910 1 421 x10* 3.48 x 10" 2.70 x 10710 256 99.90 KB 599.42 KB
256 159,688 3 9.39 x 10”7 9.79 x 10% 7.31x 107" 1.68 x 10’ 506.64 KB 2.97 MB
512 159,760 1 1.01 x 10% 1.00 x 10" 3.77 x 1071 512 253.55 KB 1.49 MB
512 359,509 3 5.90 x 10% 1.81 x 10% 1.28x107% 1.34 x 10 1.25 MB 752 MB
1,024 354,736 1 2.01 x 10 2.72 x 10" 5.41x 107" 1,024 0.61 MB 3.66 MB
1,024 798,622 3 3.08 x 10”7 3.13 x 10° 229x 1072 1.07 x 10° 3.09 MB 18.56 MB

get a public key pk; = A; and a secret key sk; = T}.

Servers.

(i € F) has s; tuples that meet the request, respectively.

CSA.Ageg({(c;, ¢))}ics»7) algorithm to get c and {c}};c ;-

to get b that is an aggregated clinical data.

Preparation. Each hospital 7; (1 < i < ng,) runs the CSA.Key(1",1", g) algorithm to get a public key pair
pk; = (A;, M) and a secret key sk; = T;. Each researcher % (1 < j < ng) runs the GHV ".Key(1", 1", q) algorithm to

Data Publication. Forallk (1 <k <ng)andl (1 <I< nTi), each hospital 7, (1 <i < ng,) runs the
CSAEnc(pk;,b;,,) algorithm to get a ciphertext pair (¢;,;, ¢;,), where b, ; is the Ith cell of the kth numeric
clinical data attribute of the ith hospital 7;. Then each hospital #; (1 < i < ny) makes its data anonymous using
anonymity techniques for de-identification. Finally, each hospital #; (1 < i < ng,) outsources its data in the cloud

Query. The jth researcher % sends a request for an aggregated data to the aggregator /&%. We assume that &, is
interested in the kth attribute and |.#| hospitals, #; (i € .#), have the data in which % ;s interested. Each hospital 7,

Aggregation. 9/ Y retrieves all ciphertext pairs satisfying % s request. For each i € .7, #¥Z runs the
GHV *.Add(c;y), - - > €y,) and GHV .Add(c;k’ll, e C;,k,ls_) algorithm to get (c;, ;). Then #/ZZ runs the

Consent. 9/ §% determines the order in which hospitals consented to % s request, then sends ¢ to the first hospital
and (], A;) to each hospital #; (i € .7). Each hospital & (i € .7) in turn performs the dec-Aggregation phase in
our CSA protocol. If any hospital #; (i € .7) does not want &; to have the aggregated clinical data, it can deny the
request by simply not performing the dec-Aggregation phase.

Acquisition. After the consent procedure, the last hospital 7 5 sends €| ; to %;. %, runs the GHV * .Add(skgg],, Csp)

1

Box 2: SCDA Protocol.

Theorem 3 (anonymity). Our SCDA system is anonymous if
the anonymity techniques which are used in our SCDA system
are anonymous.

Proof of Theorem 3. We use anonymity techniques for dei-
dentification, which guarantee anonymity. In our SCDA
system, each hospital outsources its clinical data to cloud
storage servers using these techniques for researchers. There-
fore, researchers, other hospitals, and the third party cannot
identify any individual using ciphertexts on cloud storage
servers. O

Besides using the anonymity techniques that are men-
tioned in Section 2.2, we could use the technique that is
used to make statistical database differentially private. In
2006, Dwork introduced the new concept, called “differen-
tial privacy,” which provides a strong privacy guarantee in
statistical databases [31]. To achieve the differential privacy,

we could add appropriately chosen random noise in statistical
databases.

Theorem 4 (confidentiality). Our encrypted numerical data
are confidential if the GHV™ homomorphic encryption scheme
is IND-CPA secure and every output of the Ajtais one-way
functionhy, : {0, 1" — Z is uniformly distributed over Z.

Proof of Theorem 4. By 'Theorem1 in Section3.l, the
encrypted numerical data are confidential. O

Theorem 5 (external and internal security). Our SCDA
system is secure against external and internal adversaries if the
anonymity techniques for deidentification are anonymous and
the GHV™ homomorphic encryption scheme is secure.

Proof of Theorem 5. All clinical data outsourced on cloud
storage servers are anonymous and confidential since all
hospitals use the anonymity techniques for deidentification

Journal of Applied Mathematics

1

TABLE 7: Complexity analysis of our SCDA system.

Computation cost

Communication cost

Preparation.
Data Publication.

O(ng) - CSA.Key + O(ng,) - GHV " .Key
O(n¢ - ng - np) - CSA.Enc

O(nc - ng - ny - |cl)

Query. .

Aggregation. O(F +s) - GHV *.Add O(F -s-]c|)
Consent. O(F) - CSA.reAgg O(F - |cl)
Acquisition. O(1) - GHV *.Dec .

Let ng be the number of hospitals, ng the number of researchers, nc the number of numeric clinical data attributes, nt an average of the number of tuples
owned in the ith hospital 77, .7 the number of hospitals such that the jth researcher &; is interested, s an average of the number of tuples in the ith hospital

Z; such that the jth researcher % is interested, and |c| the size of a ciphertext in the GHV * homomorphic encryption scheme.

TABLE 8: Experimental results of our SCDA system.

n m q P Data Publication. (sec.) Aggregation. (sec.) Consent. (sec.) Acquisition. (sec.)
128 30,865 1.39x10° 1.12x10" 72.571 0.895 330.070 3.267
128 69705 1.18x10% 491 x 10% 213.052 1.888 1,244.058 11.260
256 70910 4.21x10* 3.48 x 10" 199.752 1.768 1,290.020 11.941

and the GHV* homomorphic encryption scheme. All trans-
mitted data in our SCDA system are encrypted by the GHV*
homomorphic encryption scheme with fresh random num-
bers. Therefore, our SCDA system is secure against external
and internal adversaries if the anonymity techniques for dei-
dentification are anonymous and the GHV* homomorphic
encryption scheme is secure. O

5.3. Efficiency. Table 7 shows the complexity of our SCDA
system. In Table 7, parameters ny, ng, nc, ny;, %, and s; fol-
low in Box 2.

5.4. Experimental Results. To demonstrate the efliciency of
our system, we use MATLAB on a computer with an Intel(R)
Core(TM) i3-2100 CPU (3.10 GHz) processor and 4 GB of
RAM. Table 8 gives our experimental results. We assume that
there are 100 hospitals with 100 clinical data each. Each row
in Table 8 represents the mean of 15 trials.

5.5. Handling Overflows. In our SCDA system, a numerical
dataisrepresentedasb;, ; € Zzl (referredtoasb; € Z;’ in this
part). For handling overflows, we want to restrict b; € Z7',
notb; € Z. Thatis, b; € Z}" is represented in binary string.
For example, m = 5,b; =27 = [1 1 0 1 1],,andb, =
17 = [1 0 0 0 1], In additive operation on the GHV"
homomorphic encryption scheme, b, +b, =[1 1 0 1 1]+
[1 000 1]=[21 0 1 2]. Thenwecandecodeb,+b, =
2101 2]=2x2"+1x2°+0x2%+1x2"+2x2" =44
which is similar to the decoding method in binary string.

As illustrated in Section5.1, p > n° because p >
n***'log’n and the number of including tuples in a request
for an aggregated data should be less than »°. If we use the
above method (i.e., b; € Z3'), then our SCDA system has no
overflow problem, because b; +--- + b, € Zg’.

5.6. Long-Term Confidentiality. In the area of managing sen-
sitive information, cryptographic long-term confidentiality
is absolutely needed [11]. In 1996, Shor showed that the
RSA cryptosystem is broken by quantum attacks [12]. And
the DLP (Discrete Logarithm Problem) cryptosystem and
ECC (Elliptic Curve Cryptography) which are important
alternatives to the RSA cryptosystem are also broken by
quantum attacks.

In our SCDA system, we use the GHV* homomorphic
encryption scheme which is secure if the LWE problem is
hard. The LWE problem is hard if the SVP (Shortest Vector
Problem) is hard, and the SVP is known to be hard to quan-
tum attacks. Therefore, our SCDA system guarantees long-
term confidentiality because all algorithms in our SCDA
system are secure against quantum attacks.

6. Conclusion

In this paper, we have proposed how to outsource clinical
research data securely and how to control the outsourced
data against potential breaches of privacy. We also were able
to share accurate statistical patient data. To achieve this,
we design the controlled secure aggregation protocol that
enables aresearcher to get aggregated results from outsourced
ciphertexts of distinct researchers. Since our protocol is
designed by using the lattice-based GHV* homomorphic
encryption, it guarantees long-term security against quantum
computing attacks and is very efficient in computational
overhead.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

12

Acknowledgment

This research was partly supported by Basic Science
Research Programs through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-2012R1A1A3005550,
2013R1A2A2A01068200).

References

(1] “Health Iinsurance Portability and Accountability Act of 1996,
Public Law 104-191, 104th Congress, August 1996.

[2] Z. Lin, A. B. Owen, and R. B. Altman, “Genomic research and
human subject privacy;” Science, vol. 305, no. 5681, p. 183, 2004.

[3] G. Loukides, J. C. Denny, and B. Malin, “The disclosure of
diagnosis codes can breach research participants’ privacy;,
Journal of the American Medical Informatics Association, vol. 17,
no. 3, pp. 322-327, 2010.

[4] K. El Emam, “Methods for the de-identification of electronic
health records for genomic research,” Genome Medicine, vol. 3,
no. 4, article 25, pp. 1-25, 2011.

[5] P.Samaratiand L. Sweeney, “Protecting privacy when disclosing
information: k-anonymity and its enforcement through gen-
eralization and suppression,” Tech. Rep. SRI-CSL-98-04, SRI
Computer Science Laboratory, 1998.

[6] P. Samarati, “Protecting respondents’ identities in microdata
release;” IEEE Transactions on Knowledge and Data Engineering,
vol. 13, no. 6, pp. 1010-1027, 2001.

[7] L. Sweeney, “k-anonymity: a model for protecting privacy,
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 10, no. 5, pp. 557-570, 2002.

[8] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-
ramaniam, “¢-diversity: privacy beyond k-anonymity, ACM
Transactions on Knowledge Discovery from Data, vol. 1, no. 1,
article 3, pp. 1-3, 2007.

[9] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: privacy
beyond k-anonymity and ¢-diversity;” in Proceedings of the 23rd
International Conference on Data Engineering (ICDE °07), pp.
106-115, April 2007.

[10] D. R. Karp, S. Carlin, R. Cook-Deegan et al., “Ethical and
practical issues associated with aggregating databases,” PLoS
Medicine, vol. 5, no. 9, article €190, pp. 1333-1337, 2008.

[11] J. Buchmann, A. May, and U. Vollmer, “Perspectives for crypto-
graphic long-term security,” Communications of the ACM, vol.
49, no. 9, pp. 50-55, 2006.

[12] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer;” SIAM Journal
on Computing, vol. 26, no. 5, pp- 1484-1509, 1997.

[13] C.Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC °09), pp. 169-178, May 20009.

[14] C. Gentry, S. Halevi, and V. Vaikuntanathan, “A simple BGN-
type cryptosystem from LWE, in Advances in Cryptology—
EUROCRYPT 2010, vol. 6110 of Lecture Notes in Computer
Science, pp. 506-522, Springer, Berlin, Germany, 2010.

[15] H. Hacigiimiig, B. Iyer, and S. Mehrotra, “Efficient execution
of aggregation queries over encrypted relational databases,” in
Database Systems for Advanced Applications, vol. 2973 of Lecture
Notes in Computer Science, pp. 125-136, 2004.

[16] E. Mykletun and G. Tsudik, “Aggregation queries in the
databaase-as-a-service model,” in Proceedings of 20th Annual on
Data and Applications Security, pp. 89-103, July 2006.

Journal of Applied Mathematics

(17] Z. Yang, S. Zhong, and R. N. Wright, “Privacy-preserving
queries on encrypted data,” in Proceedings of the 11th European
Symposium On Research In Computer Security (ESORICS 06),
pp- 479-495, September 2006.

[18] G. Amanatidis, A. Boldyreva, and A. O’Neill, “Provably-secure
schemes for basic query support in outsourced databases,” in
Data and Applications Security XXI, pp. 14-30, 2007.

[19] T. Ge and S. Zdonik, “Answering aggregation queries in a
secure system model,” in Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB °07), pp. 519-530,
September 2007.

[20] W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure
kNN computation on encrypted databases,” in Proceedings of
the ACM International Conference on Management of Data
(SIGMOD °09), pp. 139-152, June 2009.

[21] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao,
“Privacy-preserving computation and verification of aggregate
queries on outsourced databases,” in Proceedings of the 9th
Privacy Enhancing Technologies Symposium (PETS "09), pp. 185
201, August 2009.

[22] A. D. Molina, M. Salajegheh, and K. Fu, “HICCUPS: health
information collaborative collection using privacy and security;’
in Proceedings of the Ist ACM Workshop on Security and Privacy
in Medical and Home-Care Systems (SPIMACS °09), pp. 21-30,
November 2009.

[23] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “EPPA: an eff-
icient and privacy-preserving aggregation scheme for secure
smart grid communications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 9, pp. 1621-1632, 2012.

[24] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography;,” Journal of the ACM, vol. 56, no. 6,
article 34, pp. 1-40, 2009.

[25] J. Katz and Y. Lindell, Introduction to Modern Cryptography:
Principles and Protocols, Chapman & Hall, Boca Raton, Fla,
USA, Ist edition, 2007.

[26] J. Alwen and C. Peikert, “Generating shorter bases for hard
random lattices,” Theory of Computing Systems, vol. 48, no. 3,
pp. 535-553, 2011

[27] M. Ajtai, “Generating hard instances of lattice problems
(extended abstract),” in Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (STOC ’96), pp. 99-108,
1996.

[28] O. Goldreich, S. Goldwasser, and S. Halevi, “Collision-free
hashing from lattice problems,” in Studies in Complexity and
Cryptography, vol. 6650 of Lecture Notes in Computer Science,
pp. 30-39, Springer, Heidelberg, Germany, 2011.

[29] O. Goldreich, H. Krawczyk, and M. Luby, “On the existence of
pseudorandom generators,” SIAM Journal on Computing, vol.
22, no. 6, pp. 1163-1175, 1993.

[30] S. C. Ramanna and P. Sarkar, “On quantifying the resistance of
concrete hash functions to generic multicollision attacks,” IEEE
Transactions on Information Theory, vol. 57, no. 7, pp. 4798-
4816, 2011.

[31] C. Dwork, “Differential privacy;” in Automata, Languages and
Programming, vol. 4052 of Lecture Notes in Computer Science,
pp. 1-12, 2006.

