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We consider the existence of positive solutions for a coupled system of nonlinear fractional differential equations with integral
boundary values. Assume the nonlinear term is superlinear in one equation and sublinear in the other equation. By constructing
two cones 𝐾

1
, 𝐾
2
and computing the fixed point index in product cone 𝐾

1
× 𝐾
2
, we obtain that the system has a pair of positive

solutions. It is remarkable that it is established on the Cartesian product of two cones, in which the feature of two equations can be
opposite.

1. Introduction

Fractional calculus is a very old concept dating back to
17th century; it involves fractional integration and fractional
differentiation. At the first stage, fractional calculus theory is
mainly focused on pure mathematical fields. In the last few
decades, fractional differential equations and fractional inte-
gration equations have found many applications in various
fields, such as science and engineering, physics, chemistry,
biology, economics, and signal and image processing; for
details, see [1–5]. In recent years, fractional differential equa-
tions have attracted increasing interests for their extensive
applications, which leads to intensive development of the
theory of fractional calculus. And more and more results
about the existence and uniqueness of solutions appear. We
can refer to [6] for the latest studies of fractional calculus.

The existence theory for initial value problems has been
paid considerable attentions by many authors; see [3, 7,
8] and the references cited therein. Also the existence of
positive solutions for boundary value problem of nonlinear
fractional differential equation has attracted attentions from
many researches; see [9–14]. By using the cone extension
method Feng et al. [15] studied the existence of solutions for

higher-order nonlinear fractional differential equation with
integral boundary conditions:

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑔 (𝑡) 𝑓 (𝑡, 𝑢 (t)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢
󸀠
(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0,

𝑢 (1) = ∫

1

0

ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡,

(1)

where 𝐷
𝛼

0+
is the standard Riemann-Liouville fractional

derivative of order 𝑛−1 < 𝛼 < 𝑛, 𝑛 ≥ 3,𝑔 ∈ C((0, 1), (0, +∞))

and 𝑔 may be singular at 𝑡 = 0 or 𝑡 = 1, ℎ ∈ 𝐿
1
(0, 1) is

nonnegative, and 𝑓 ∈ C((0, 1) × (0, +∞), (0, +∞)).
In recent years, many authors have established the

existence and uniqueness for solutions of some systems of
nonlinear fractional differential equations; readers can see
[16–21]. For example, by using the alternative of Leray-
Schauder theorem method Wang et al. [22] obtained the
existence and uniqueness of positive solution of nonzero
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boundary values problem for a coupled system of nonlinear
fractional differential equations:

𝐷
𝛼

0+
𝑢 (𝑡) = 𝑓 (𝑡, V (𝑡)) , 0 < 𝑡 < 1,

𝐷
𝛽

0+
V (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝑎𝑢 (𝜉) ,

V (0) = 0, V (1) = 𝑏V (𝜉) ,

(2)

where 1 < 𝛼, 𝛽 < 2, 0 ≤ 𝑎 ≤ 𝑏 ≤ 1, 0 < 𝜉 < 1,
𝑓, 𝑔 : (0, 1)×R×R → R are given continuous functions and
𝐷
𝛼

0+
is the standard Riemann-Liouville fractional derivative.

By using the cone extension and cone compression Zhao et
al. [23] studied the existence and nonexistence of positive
solutions for a class of third order boundary value problem
with integral boundary conditions in Banach spaces:

𝑥
󸀠󸀠󸀠

+ 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ 𝐽,

𝑥 (0) = 0, 𝑥
󸀠󸀠
(0) = 0, 𝑥 (1) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡.

(3)

Or

𝑥
󸀠󸀠󸀠

+ 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ 𝐽,

𝑥 (0) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡, 𝑥
󸀠󸀠
(0) = 0, 𝑥 (1) = 0,

(4)

where 𝐽 = (0, 1), 𝑓 ∈ C((0, 1) × 𝑃, 𝑃), 𝑔 ∈ 𝐿
1
(0, 1)

is nonnegative and 𝐷
𝛼

0+
is the standard Riemann-Liouville

fractional derivative; 𝑃 is a cone.
By using the cone extension and cone compression

method Yang et al. [24] established sufficient conditions for
the existence and nonexistence of positive solutions for a
general class with integral boundary value problem for a
coupled system of fractional equations:

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑎 (𝑡) 𝑓 (𝑡, V (𝑡)) = 0, 0 < 𝑡 < 1,

𝐷
𝛽

0+
V (𝑡) + 𝑏 (𝑡) 𝑔 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = ∫

1

0

𝜙 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

V (0) = 0, V (1) = ∫

1

0

𝜑 (𝑡) V (𝑡) 𝑑𝑡,

(5)

where 1 < 𝛼,𝛽 ≤ 2, 𝑎, 𝑏 ∈ C((0, 1), (0, +∞)),𝑓, 𝑔 ∈ C((0, 1)×

(0, +∞), (0, +∞)), and 𝜙, 𝜑 ∈ 𝐿
1
(0, 1) are nonnegative and

𝐷
𝛼

0+
is the standard Riemann-Liouville fractional derivative.
However, all these works are obtained by getting a fixed

point of a completely continuous operator in a cone of
product Banach spaces 𝑋

1
× 𝑋
2
. Thus, there is no essential

difference between we consider the positive solution of
coupled equations and positive solution of single equation.
Furthermore, the authors cannot guarantee the obtained pair
of positive solutions are all positive; maybe one is positive

and another is zero. The features of nonlinear term are
the same, which means the growth properties of nonlinear
term are similar.

Motivated by the above mentioned works, in this paper,
we consider the existence of positive solution to boundary
value problem for a coupled system of nonlinear fractional
differential equations as follows:

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 0 < 𝑡 < 1,

𝐷
𝛽

0+
V (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡) , V (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = ∫

1

0

𝜙 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

V (0) = 0, V (1) = ∫

1

0

𝜑 (𝑡) V (𝑡) 𝑑𝑡,

(6)

where 1 < 𝛼, 𝛽 ≤ 2, 𝑓, 𝑔 ∈ C((0, 1) × (0, +∞) ×

(0, +∞), (0, +∞)), and 𝜙, 𝜑 ∈ 𝐿
1
(0, 1) are nonnegative and

𝐷
𝛼

0+
is the standard Riemann-Liouville fractional derivative.

𝑓 and 𝑔 have different features. It is very difficult to deal with
our problem if we directly use the usual method because the
features of nonlinear term are different. In order to overcome
the difficulties, by using the ideals in [25–27], we need to
consider our problem on the Cartesian product of two cones
in the space C(0, 1); thus we can better exploit the feature of
two equations. We choose a cone 𝐾

1
× 𝐾
2
in the Cartesian

product of two cones in C(0, 1) × C(0, 1). By computing
the fixed point index in 𝐾

1
× 𝐾
2
, we obtain the existence of

positive solution (𝑢, V) of problem (6) such that 𝑢 > 0, V > 0.

2. Preliminary

In this section, we review some basic facts which are used
throughout this paper. We can see [10, 16, 25–29] for more
details.

Definition 1. For a function 𝑓 : [𝑎, +∞) → R, the Riemann-
Liouville fractional integral of order 𝛼 > 0 is defined by

𝐼
𝛼

𝑎+
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (7)

and the right-hand side is pointwise defined on [𝑎, +∞),
where 𝑎 ∈ R and Γ is the gamma function.

Definition 2. For a function𝑓 : [𝑎, +∞) → R, the Riemann-
Liouville fractional derivative of order 𝛼 > 0 is given by

𝐷
𝛼

𝑎+
𝑓 (𝑡) =

1

Γ (𝛼)

𝑑
𝑛

𝑑𝑡𝑛−1
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠, (8)

and the right-hand side is pointwise defined on [𝑎, +∞),
where 𝑎 ∈ R, 𝑛 = [𝛼] + 1 and Γ is the gamma function.

Let 𝐸 be a real Banach space with norm ‖ ‖ and let 𝐴 :

𝐸 → 𝐸 be an operator. A nonempty, closed, convex set𝑃 ⊂ 𝐸

is said to be a cone provided the following: (i) if 𝑥 ∈ 𝑃 and
𝜆 ≥ 0, then 𝜆𝑥 ∈ 𝑃; (ii) if 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃, then 𝑥 = 0
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are satisfied. 𝑢 is said to be a fixed point of 𝐴, if 𝑢 = 𝐴𝑢.
Ω is a bounded open subset of 𝐸 with boundary 𝜕Ω. Denote
𝑖 (𝐴, 𝑃 ∩ Ω, 𝑃) the fixed point index of 𝐴.

Lemma 3 (see [25–27]). Let 𝐸 be a Banach space and let𝐾
𝑖
⊂

𝐸 (𝑖 = 1, 2) be a closed convex cone in 𝐸. For 𝑟
𝑖
> 0 (𝑖 = 1, 2),

denote 𝐾
𝑟𝑖

= {𝑢 ∈ 𝐾
𝑖
| ‖𝑢‖ < 𝑟

𝑖
}, 𝜕𝐾
𝑖
= {𝑢 ∈ 𝐾

𝑖
| ‖𝑢‖ = 𝑟

𝑖
}.

Suppose 𝐴
𝑖
: 𝐾
𝑖

→ 𝐾
𝑖
is completely continuous. If 𝑢

𝑖
̸= 𝐴
𝑖
𝑢
𝑖
,

∀𝑢
𝑖
∈ 𝜕𝐾
𝑖
, then

𝑖 (𝐴,𝐾
𝑟1

× 𝐾
𝑟2
, 𝐾
1
× 𝐾
2
) = 𝑖 (𝐴

1
, 𝐾
𝑟1
, 𝐾
1
) ⋅ 𝑖 (𝐴

2
, 𝐾
𝑟2
, 𝐾
2
) ,

(9)

where 𝐴(𝑢, V) = (𝐴
1
𝑢, 𝐴
2
V) and for all (𝑢, V) ∈ (𝐾

1
× 𝐾
2
).

In order to prove the existence of solution for problem
(6), we can translate it into obtaining a fixed point of operator.
Then we use the topological method to deal with it.

Theorem 4. Let 𝐸 be a Banach space and let 𝐾
1
, 𝐾
2

⊂ 𝐸 be
a closed convex cone in 𝐸. Denote 𝐾

𝑟𝑖
= {𝑢 ∈ 𝐾

𝑖
| ‖𝑢‖ < 𝑟

𝑖
},

𝜕𝐾
𝑖

= {𝑢 ∈ 𝐾
𝑖
‖𝑢‖ = 𝑟

𝑖
}, where 𝑟 > 0, 𝑖 = 1, 2. Let 𝐷 =

(𝐾
𝑅1

\ 𝐾
𝑟1
) × (𝐾

𝑅2
\ 𝐾
𝑟2
). Suppose 𝑇 : 𝐾

1
× 𝐾
2

→ 𝐾
1
× 𝐾
2
is

completely continuous and 𝑇(𝑢, V) = (𝑇
1
(𝑢, V), 𝑇

2
(𝑢, V)). For

𝜆 ∈ [0, 1], let

𝐻
𝜆,1

(𝑢, V) = 𝜆𝑇
1
(𝑢, V) + (1 − 𝜆) 𝑇

1
(𝑢, 0) ,

𝐻
𝜆,2

(𝑢, V) = 𝜆𝑇
2
(𝑢, V) + (1 − 𝜆) 𝑇

2
(0, V) .

(10)

If 𝐻
𝜆,1
, 𝐻
𝜆,2

satisfy the following conditions:
(i) 𝐻
𝜆,1

is uniformly cone extension about V ∈ 𝐾
𝑅2
at𝐾
𝑅1

\

𝐾
𝑟1
, that is to say,

󵄩󵄩󵄩󵄩𝐻𝜆,1
󵄩󵄩󵄩󵄩 < ‖𝑢‖ , ∀𝑢 ∈ 𝜕𝐾

𝑟1
,

󵄩󵄩󵄩󵄩𝐻𝜆,1
󵄩󵄩󵄩󵄩 > ‖𝑢‖ , ∀𝑢 ∈ 𝜕𝐾

𝑅1
;

(11)

(ii) 𝐻
𝜆,2

is uniformly cone compression about 𝑢 ∈ 𝐾
𝑅1

at
𝐾
𝑅2

\ 𝐾
𝑟2
, that is to say,
󵄩󵄩󵄩󵄩𝐻𝜆,2

󵄩󵄩󵄩󵄩 > ‖V‖ , ∀V ∈ 𝜕𝐾
𝑟2
,

󵄩󵄩󵄩󵄩𝐻𝜆,2
󵄩󵄩󵄩󵄩 < ‖V‖ , ∀V ∈ 𝜕𝐾

𝑅2
,

(12)

then 𝑖(𝑇,D, 𝐾
1
× 𝐾
2
) = −1. Thus the mapping 𝑇 in the region

𝐷 has a fixed point.

Proof. Following a similar procedure to the method given in
[25–27], we present a proof. We suppose that 𝑇

1
(𝑢, 0) = 𝐴

1
𝑢

and 𝑇
2
(0, V) = 𝐴

2
V. Let 𝐴(𝑢, V) = (𝐴

1
𝑢, 𝐴
2
V). For 𝜆 ∈ [0, 1],

for any (𝑢, V) ∈ 𝐾
1
× 𝐾
2
, set

𝐻((𝑢, V) , 𝜆) = 𝜆𝑇 (𝑢, V) + (1 − 𝜆)𝐴 (𝑢, V) . (13)

Since 𝑇 is completely continuous, hence the mapping 𝐻

is also completely continuous. By Lemma 3 and homotopy
invariance of fixed point index (see [7, 28]), we have

𝑖 (𝑇,𝐷,𝐾
1
× 𝐾
2
)

= 𝑖 (𝐴
1
, 𝐾
𝑅1

\ 𝐾
𝑟1
, 𝐾
1
) ⋅ 𝑖 (𝐴

2
, 𝐾
𝑅2

\ 𝐾
𝑟2
, 𝐾
2
) .

(14)

Next, we compute 𝑖(𝑇,𝐷,𝐾
1
×𝐾
2
). By assumptions (i) and

(ii), also using the properties of fixed point index (see [7, 28]),
we have

𝑖 (𝐴
1
, 𝐾
𝑟1
, 𝐾
1
) = 𝑖 (𝐴

2
, 𝐾
𝑅2

, 𝐾
2
) = 1,

𝑖 (𝐴
1
, 𝐾
𝑅1

, 𝐾
1
) = 𝑖 (𝐴

2
, 𝐾
𝑟2
, 𝐾
2
) = 0.

(15)

Thanks to (15), we obtain

𝑖 (𝑇,𝐷,𝐾
1
× 𝐾
2
)

= 𝑖 (𝐴
1
, 𝐾
𝑅1

\ 𝐾
𝑟1
, 𝐾
1
) ⋅ 𝑖 (𝐴

2
, 𝐾
𝑅2

\ 𝐾
𝑟2
, 𝐾
2
)

= (𝑖 (𝐴
1
, 𝐾
𝑅1

, 𝐾
1
) − 𝑖 (𝐴

1
, 𝐾
𝑟1
, 𝐾
1
))

⋅ (𝑖 (𝐴
2
, 𝐾
𝑅2

, 𝐾
2
) − 𝑖 (𝐴

2
, 𝐾
𝑟2
, 𝐾
2
))

= (0 − 1) ⋅ (1 − 0) = −1.

(16)

The proof is complete.

Remark 5. If 𝐻
𝜆,1
, 𝐻
𝜆,2

were all cone extension or cone
compression, we can obtain the same conclusions.

The following lemmas are necessary to prove the existence
of positive solution for problem (6).

Lemma 6 (see [15]). Assume that ∫1
0
𝜙(𝑡)𝑢(𝑡)𝑑𝑡 ̸= 1. Then for

any 𝜓 ∈ C(0, 1), the solution of boundary value problem

𝐷
𝛼

0+
𝑢 (𝑡) + 𝜓 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = ∫

1

0

𝜙 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

(17)

is given by 𝑢(𝑡) = ∫
1

0
𝐺
1𝛼

(𝑡, 𝑠)𝜓(𝑠)𝑑𝑠, where 𝐺
1𝛼

(𝑡, 𝑠) =

𝐺
2𝛼

(𝑡, 𝑠) + 𝐺
3𝛼

(𝑡, 𝑠),

𝐺
2𝛼

(𝑡, 𝑠) =

{{{{

{{{{

{

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

Γ (𝛼)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

𝐺
3𝛼

(𝑡, 𝑠) =
𝑡
𝛼−1

1 − ∫
1

0
𝜙 (𝑡) 𝑡

𝛼−1𝑑𝑡

∫

1

0

𝜙 (𝑡) 𝐺
2𝛼

(𝑡, 𝑠) 𝑑𝑡.

(18)

Lemma 7 (see [15]). If ∫
1

0
𝜙(𝑡)𝑡
𝛼−1

𝑑𝑡 ∈ [0, 1), then Green’s
function 𝐺

1𝛼
(𝑡, 𝑠) has the following properties:

(i) 𝐺
1𝛼

(𝑡, 𝑠) ≥ 0 is continuous for any 𝑡, 𝑠 ∈ [0, 1],
𝐺
1𝛼

(𝑡, 𝑠) > 0 for any 𝑡, 𝑠 ∈ (0, 1);

(ii) 𝐺
1𝛼

(𝑡, 𝑠) ≤ 𝐺
1𝛼

(𝑠) for any 𝑡, 𝑠 ∈ [0, 1] and
min
𝑡∈[𝜃,1−𝜃]

𝐺
1𝛼

(𝑡, 𝑠) ≥ 𝛾
𝜃
𝐺
1𝛼

(𝑠), where 𝐺
1𝛼

(𝑠) =

𝐺
2𝛼

(𝑠, 𝑠) + 𝐺
3𝛼

(1, 𝑠), 𝛾
𝜃
= 𝜃
𝛼−1, 𝜃 ∈ (0, 1/2).
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3. Main Results

In this section, we will discuss the existence of positive solu-
tions for problem (6). For a coupled system,many researchers
transformed the problem into computing the fixed point
index of the composition operator on the single cone in
the Cartesian product space and the nonlinear terms in two
equations have similar features. However it is very difficult
to deal with our problem directly. Denote C+[0, 1] the
continuous function in [0, 1]with nonnegative value. In order
to make full use of the different nature of the two equations,
we construct single cone 𝐾

𝑖
and open set 𝐾

𝑅𝑖
\ 𝐾
𝑟𝑖
, 𝑖 = 1, 2

in C+[0, 1]. Thus we transform the problem into computing
the fixed point index of operator that is defined in Cartesian
product of two cones in open set𝐷 = (𝐾

𝑅1
\𝐾
𝑟1
)× (𝐾

𝑅2
\𝐾
𝑟2
)

of product cone 𝐾
1
× 𝐾
2
.

3.1. The Transformation of the Problem. Firstly, we construct
the relevant cone 𝐾 in Banach space C+[0, 1]. Then we
transform the problem into computing the fixed point index
of Cartesian product of cone with the nature of analytical
property of Green’s function.

Following, we introduce notations:

C
+
[0, 1] = {𝑢 ∈ C [0, 1] | 𝑢 (𝑡) ≥ 0, ∀𝑡 ∈ [0, 1]} , (19)

with the norm ‖𝑢‖ = max
𝑡∈[0,1]

{|𝑢(𝑡)|}. Clearly, it is a Banach
space. Define

𝐾
1
= {𝑢 ∈ C

+
[0, 1] | 𝑢 (𝑡) ≥ (

1

2
)

𝛼−1

‖𝑢 (𝑡)‖ ,

∀𝑡 ∈ [𝜃, 1 − 𝜃] , 𝜃 ∈ (0,
1

2
) } ,

𝐾
2
= {𝑢 ∈ C

+
[0, 1] | 𝑢 (𝑡) ≥ (

1

2
)

𝛽−1

‖𝑢 (𝑡)‖ ,

∀𝑡 ∈ [𝜃, 1 − 𝜃] , 𝜃 ∈ (0,
1

2
)} .

(20)

For 𝜆 ∈ [0, 1], 𝑢, V ∈ C+[0, 1], we define the operators

𝑇
𝜆,1

(𝑢, V) : C
+
[0, 1] × C

+
[0, 1] 󳨀→ C

+
[0, 1] ,

𝑇
𝜆,2

(𝑢, V) : C
+
[0, 1] × C

+
[0, 1] 󳨀→ C

+
[0, 1] ,

𝑇
𝜆
(𝑢, V) : C

+
[0, 1] × C

+
[0, 1] 󳨀→ C

+
[0, 1] × C

+
[0, 1] ,

(21)

as follows:

𝑇
𝜆,1

(𝑢, V) = ∫

1

0

𝐺
1𝛼

(𝑡, 𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠,

𝑇
𝜆,2

(𝑢, V) = ∫

1

0

𝐺
1𝛽

(𝑡, 𝑠) (𝜆𝑔 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑔 (𝑠, 0, V (𝑠))) 𝑑𝑠,

𝑇
𝜆
(𝑢, V) (𝑡) = (𝑇

𝜆,1
(𝑢, V) (𝑡) , 𝑇

𝜆,2
(𝑢, V) (𝑡)) .

(22)

Then we translate that problem (6) possesses a pair of
solutions (𝑢, V) if and only if 𝑇

𝜆
(𝑢, V)(𝑡) have a fixed point in

𝐾
1
× 𝐾
2
.

Lemma 8. The mapping 𝑇
𝜆

: 𝐾
1

× 𝐾
2

→ 𝐾
1

× 𝐾
2
as

mentioned above is completely continuous.

Proof. For any (𝑢, V) ∈ 𝐾
1
× 𝐾
2
, we want to prove 𝑇

𝜆
(𝑢, V) ∈

𝐾
1
×𝐾
2
, that is, to prove𝑇

𝜆,1
(𝑢, V) ∈ 𝐾

1
and𝑇
𝜆,2

(𝑢, V) ∈ 𝐾
2
. By

the preceding definition and the nature of Green’s function,
we have for 𝑡 ∈ [𝜃, 1 − 𝜃], 𝜃 ∈ (0, 1/2)

𝑇
𝜆,1

(𝑢, V)

= ∫

1

0

𝐺
1𝛼

(𝑡, 𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠

≥ ∫

1

0

𝛾
𝜃
𝐺
1𝛼

(𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠

= 𝛾
𝜃
∫

1

0

𝐺
1𝛼

(𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠

≥ (
1

2
)

𝛼−1

∫

1

0

𝐺
1𝛼

(𝑡, 𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠

≥ (
1

2
)

𝛼−1
󵄩󵄩󵄩󵄩𝑇𝜆,1 (𝑢, V)

󵄩󵄩󵄩󵄩 .

(23)

Similarly, 𝑇
𝜆,2

(𝑢, V) ≥ (1/2)
𝛽−1

‖𝑇
𝜆,2

(𝑢, V)‖, 𝑡 ∈ [𝜃, 1 − 𝜃],
𝜃 ∈ (0, 1/2). Thus, 𝑇

𝜆,1
(𝑢, V) ∈ 𝐾

1
, 𝑇
𝜆,2

(𝑢, V) ∈ 𝐾
2
, and

𝑇
𝜆
(𝐾
1
× 𝐾
2
) ⊂ 𝐾
1
× 𝐾
2
.

It is easy to prove that 𝑇
𝜆
(𝑢, V) is continuous in 𝐾

1
× 𝐾
2
.

So as Arzela-Ascoli theorem, we prove that 𝑇
𝜆

: 𝐾
1
×

𝐾
2

→ 𝐾
1
× 𝐾
2
is completely continuous.

3.2.TheMain Result and Its Proof. Now, we present our main
result.

Theorem 9. Assume that the nonlinear terms of the problem
(6) 𝑓 and 𝑔 meet the following conditions:

(𝐻
1
)

{{{{{{{

{{{{{{{

{

(𝑎
1
) lim
𝑢→0

+

sup max
𝑡∈[0,1]

𝑓 (𝑡, 𝑢, V)
𝑢

= 0

𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 V ∈ R+,

(𝑏
1
) lim
𝑢→+∞

inf min
𝑡∈[0,1]

𝑓 (𝑡, 𝑢, V)
𝑢

= +∞

𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 V ∈ R+,
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(𝐻
2
)

{{{{{{{

{{{{{{{

{

(𝑎
2
) lim
V→0+

inf min
𝑡∈[0,1]

𝑔 (𝑡, 𝑢, V)
V

= +∞

𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑢 ∈ R+,

(𝑏
2
) lim
V→+∞

sup max
𝑡∈[0,1]

𝑔 (𝑡, 𝑢, V)
V

= 0

𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝑢 ∈ R+,

(𝐻
3
) lim
𝑢→+∞

sup max
𝑡∈[0,1]

𝑔 (𝑡, 𝑢, V) = ℎ (V)

𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 V ∈ [0,𝑀] ,

(24)

where ℎ(V) is continuous in R+ and 𝑀 is a constant.
Then the problem (6) has at least a pair of positive solutions.

Proof. We select an appropriate open set 𝐷 = (𝐾
𝑅1

\ 𝐾
𝑟1
) ×

(𝐾
𝑅2

\𝐾
𝑟2
) in the product of cone𝐾

1
×𝐾
2
; then we will verify

that the solution operatormeets the conditions ofTheorem 4.
In the following, we separate our proof into four steps.

Step 1. Select 𝑟
1
> 0, in such a fashion that ‖𝑇

𝜆,1
(𝑢, V)‖ < ‖𝑢‖,

where 𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑟1

× 𝐾
1
. Based on assuming

(𝐻
1
)(𝑎
1
), for 𝜀

1
= (∫
1

0
𝐺
1𝛼

(𝑠)𝑑𝑠)
−1

> 0, there exists 𝑟
1

> 0,
such that 𝑓(𝑡, 𝑢, V) < 𝜀

1
𝑢, for all 𝑡 ∈ [0, 1], 0 ≤ 𝑢 ≤ 𝑟

1
, V ≥ 0.

Then when 𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑟1
×𝐾
1
, we have for 𝑡 ∈ [0, 1]

󵄩󵄩󵄩󵄩𝑇𝜆,1 (𝑢, V)
󵄩󵄩󵄩󵄩

= max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺
1𝛼

(𝑡, 𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< max
𝑡∈[0,1]

∫

1

0

𝐺
1𝛼

(𝑠)
󵄨󵄨󵄨󵄨𝜆𝜀1𝑢 (𝑠) + (1 − 𝜆) 𝜀

1
𝑢 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ max
𝑡∈[0,1]

∫

1

0

𝐺
1𝛼

(𝑠) 𝜀
1 |𝑢 (𝑠)| 𝑑𝑠

≤ 𝜀
1
∫

1

0

𝐺
1𝛼

(𝑠) max
𝑡∈[0,1]

|𝑢 (𝑠)| 𝑑𝑠

≤ 𝜀
1
∫

1

0

𝐺
1𝛼

(𝑠) 𝑑𝑠 ‖𝑢‖ = ‖𝑢‖ .

(25)

That is to say, ‖𝑇
𝜆,1

(𝑢, V)‖ < ‖𝑢‖, where 𝜆 ∈ [0, 1], (𝑢, V) ∈

𝜕𝐾
𝑟1

× 𝐾
1
.

Step 2. Select 𝑅
1
> 𝑟
1
; we claim that ‖𝑇

𝜆,1
(𝑢, V)‖ > ‖𝑢‖, where

𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑅1

× 𝐾
1
. In view of the assumption

(𝐻
1
)(𝑏
1
), for𝑁

1
= (𝛾
𝜃
∫
1

0
𝐺
1𝛼

(𝑠)𝑑𝑠)
−1

> 0, there exists 𝑅
0
> 0,

such that 𝑓(𝑡, 𝑢, V) < 𝑁
1
𝑢, for all 𝑡 ∈ [0, 1], 𝑢 ≥ 𝑅

0
, V ≥ 0. Let

𝑅
1
> max{𝑟

1
, 𝛾
𝜃
𝑅
0
}. Then when 𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾

𝑅1
×𝐾
1
,

we have 𝑡 ∈ [0, 1]

󵄩󵄩󵄩󵄩𝑇𝜆,1 (𝑢, V)
󵄩󵄩󵄩󵄩

= max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺
1𝛼

(𝑡, 𝑠) (𝜆𝑓 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑓 (𝑠, 𝑢 (𝑠) , 0)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> max
𝑡∈[0,1]

∫

1

0

𝛾
𝜃
𝐺
1𝛼

(𝑠)
󵄨󵄨󵄨󵄨𝜆𝑁1𝑢 (𝑠) + (1 − 𝜆)𝑁

1
𝑢 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≥ max
𝑡∈[0,1]

𝛾
𝜃
∫

1

0

𝐺
1𝛼

(𝑠)𝑁
1 |𝑢 (𝑠)| 𝑑𝑠

≥ 𝑁
1
𝛾
𝜃
∫

1

0

𝐺
1𝛼

(𝑠) max
𝑡∈(0,1)

|𝑢 (𝑠)| 𝑑𝑠

≥ 𝑁
1
𝛾
𝜃
∫

1

0

𝐺
1𝛼

(𝑠) 𝑑𝑠 ‖𝑢‖ = ‖𝑢‖ .

(26)

That is to say, ‖𝑇
𝜆,1

(𝑢, V)‖ > ‖𝑢‖, where 𝜆 ∈ [0, 1], (𝑢, V) ∈

𝜕𝐾
𝑅1

× 𝐾
1
.

Step 3. Select 𝑟
2

> 0, such that ‖𝑇
𝜆,2

(𝑢, V)‖ > ‖V‖, where 𝜆 ∈

[0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑟2

× 𝐾
2
. In view of the assumption (𝐻

2
)(𝑎
2
),

for 𝑁
2
= (𝛾
𝜃
∫
1

0
𝐺
1𝛼

(𝑠)𝑑𝑠)
−1

> 0, there exists 𝑟
2
> 0, such that

𝑔(𝑡, 𝑢, V) > 𝑁
2
V, for all 𝑡 ∈ [0, 1], 0 ≤ V ≤ 𝑟

2
, 𝑢 ≥ 0. Hence

when 𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑟2

× 𝐾
2
, we have for 𝑡 ∈ [0, 1]

󵄩󵄩󵄩󵄩𝑇𝜆,2 (𝑢, V)
󵄩󵄩󵄩󵄩

= max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺
1𝛽

(𝑡, 𝑠) (𝜆𝑔 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑔 (𝑠, 0, V (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> max
𝑡∈[0,1]

∫

1

0

𝛾
𝜃
𝐺
1𝛽

(𝑠)
󵄨󵄨󵄨󵄨𝜆𝑁2V (𝑠) + (1 − 𝜆)𝑁

2
V (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≥ max
𝑡∈[0,1]

𝛾
𝜃
∫

1

0

𝐺
1𝛽

(𝑠)𝑁
2 |V (𝑠)| 𝑑𝑠

≥ 𝑁
2
𝛾
𝜃
∫

1

0

𝐺
1𝛽

(𝑠) max
𝑡∈(0,1)

|V (𝑠)| 𝑑𝑠

≥ 𝑁
2
𝛾
𝜃
∫

1

0

𝐺
1𝛼

(𝑠) 𝑑𝑠 ‖V‖ = ‖V‖ .

(27)

That is to say, ‖𝑇
𝜆,2

(𝑢, V)‖ > ‖V‖, where 𝜆 ∈ [0, 1], (𝑢, V) ∈

𝜕𝐾
𝑟2

× 𝐾
2
.

Step 4. Select 𝑅
2

> 𝑟
2
, such that ‖𝑇

𝜆,2
(𝑢, V)‖ < ‖V‖, where

𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑅2

×𝐾
2
. Based on the condition (𝐻

2
)(𝑏
2
),

for 𝜀
2

= (∫
1

0
𝐺
1𝛼

(𝑠)𝑑𝑠)
−1

> 0, there exists 𝑅
󸀠
> 0, such that

𝑔(𝑡, 𝑢, V) < 𝜀
2
V, for all 𝑡 ∈ [0, 1], V ≥ 𝑅

󸀠, 𝑢 ≥ 0. Furthermore,
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paying attention to the assumptions (𝐻
3
), we can select 𝑅

2
>

0, 𝑅
2
which is sufficiently large and

max
𝑡∈[0,1]

{𝑔 (𝑡, 𝑢, V) | 0 ≤ V ≤ 𝑅
󸀠
, 𝑢 ≥ 0} < 𝜀

2
𝑅
2
. (28)

Thus 𝑔(𝑡, 𝑢, V) < 𝜀
2
𝑅
2
, where 𝑡 ∈ [0, 1], 0 ≤ V ≤ 𝑅

2
, 𝑢 ≥ 0.

Hence when 𝜆 ∈ [0, 1], (𝑢, V) ∈ 𝜕𝐾
𝑅2

× 𝐾
2
, we have for 𝑡 ∈

[0, 1]

󵄩󵄩󵄩󵄩𝑇𝜆,2 (𝑢, V)
󵄩󵄩󵄩󵄩

= max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺
1𝛽

(𝑡, 𝑠) (𝜆𝑔 (𝑠, 𝑢 (𝑠) , V (𝑠))

+ (1 − 𝜆) 𝑔 (𝑠, 0, V (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< max
𝑡∈[0,1]

∫

1

0

𝐺
1𝛽

(𝑠) (𝜆𝜀
2
𝑅
2
+ (1 − 𝜆) 𝜀

2
𝑅
2
) 𝑑𝑠

≤ max
𝑡∈[0,1]

∫

1

0

𝐺
1𝛽

(𝑠) 𝜀
2
𝑅
2
𝑑𝑠

≤ 𝜀
2
𝑅
2
∫

1

0

𝐺
1𝛽

(𝑠) max
𝑡∈[0,1]

V (𝑠) 𝑑𝑠

≤ 𝜀
2
𝑅
2
∫

1

0

G
1𝛼

(𝑠) 𝑑𝑠 = ‖V‖ .

(29)

That is to say, ‖𝑇
𝜆,2

(𝑢, V)‖ < ‖V‖, where 𝜆 ∈ [0, 1], (𝑢, V) ∈

𝜕𝐾
𝑅2

× 𝐾
2
.

Combining with (25)–(29), we know the conditions of
Theorem 4 are all established. Thus the completely continu-
ous operator 𝑇 has a fixed point in 𝐷; that is to say, at least a
pair of positive solutions exist for the problem (6). The proof
is complete.

Remark 10. Binding (27), (29) and the assumption (𝐻
1
)(𝑎
1
),

we can get a nonnegative solution (0, V) of the original
equations (6). In fact, by (27) and (29), we know the fixed
point index 𝑖(𝑇

0,2
(𝑢, V), 𝐾

𝑅2
\ 𝐾
𝑟2
, 𝐾
2
) = −1; that is to say, the

second equation of the original equations has a solution (0, V).
Further, by hypothesis (𝐻

1
)(𝑎
1
), we have 𝑓(𝑡, 0, V(𝑡)) = 0, so

the solution of the second equation is also the solution of the
first equation.
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