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The object of the present work is to give the new class of third- and fourth-order iterative methods for solving nonlinear equations.
Our proposed third-order method includes methods of Weerakoon and Fernando (2000), Homeier (2005), and Chun and Kim
(2010) as particular cases. The multivariate extension of some of these methods has been also deliberated. Finally, some numerical
examples are given to illustrate the performances of our proposed methods by comparing them with some well existing third- and
fourth-order methods. The efficiency of our proposed fourth-order method over some fourth-order methods is also confirmed by
basins of attraction.

1. Introduction

Solving nonlinear equations is one of the most important
problems in numerical analysis. To solve nonlinear equations,
some iterative methods (such as Secant method and Newton
method) are usually used.Throughout this paper, we consider
iterative methods to find a simple root 𝛼 of a nonlinear
equation 𝑓(𝑥) = 0. It is well known that the order of
convergence of the Newton method is two. To improve the
efficiency of the Newton method, many modified third-
order methods have been presented in the literature by
using different techniques. Weerakoon and Fernando in [1]
obtained a third-order method by approximating the integral
in Newton’s theorem by trapezoidal rule, Homeier in [2] by
using inverse function theorem, Chun and Kim in [3] by
using circle of curvature concept, and so forth. Kung and
Traub [4] presented a hypothesis on the optimality of the iter-
ative methods by giving 2𝑛−1 as the optimal order.Thismeans
that the Newton method involved two function evaluations
per iteration and is optimal with 1.414 as the efficiency index.
By taking into account the optimality concept, many authors
are trying to build iterativemethods of optimal (higher) order
of convergence.

The convergence order of the above discussed methods
is three with three (one function and two derivatives)

evaluations per full iteration. Clearly, its efficiency index
(3
1/3

≈ 1.442) is not high (optimal). In recent days, authors
are improving these types of nonoptimal order methods to
optimal order by using different techniques, such as in [5] by
using linear combination of two third-order methods and in
[6] by using polynomial approximations. Recently, Soleymani
et al. [7] have used two different weight functions in the
methods of [1, 2] to make them optimal.

This paper is organized as follows: in Section 2, we
describe a new class of third-order iterative methods by
using the concept of weight function which includes the
methods of [1–3]. After that, order of this class of methods
has been accelerated from three to four by introducing one
more weight function and without adding more function
evaluations. Section 3 is devoted to the extension of some
proposed methods to the multivariate case. Finally, we give
some numerical examples and the new methods are com-
pared with some existing third- and fourth-order methods.
Efficiency of our proposed fourth-order method is shown by
basins of attraction.

2. Methods and Convergence Analysis

Before constructing the methods, here we state the following
definitions.
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Definition 1. Let 𝑓(𝑥) be a real valued function with a simple
root 𝛼 and let 𝑥

𝑛
be a sequence of real numbers that converge

towards 𝛼. The order of convergence𝑚 is given by

lim
𝑛→∞

𝑥
𝑛+1
− 𝛼

(𝑥
𝑛
− 𝛼)
𝑚
= 𝜁 ̸= 0, (1)

where 𝜁 is the asymptotic error constant and𝑚 ∈ 𝑅+.

Definition 2. Let 𝑛 be the number of function evaluations
of the new method. The efficiency of the new method is
measured by the concept of efficiency index [8, 9] and defined
as

𝑚
1/𝑛

, (2)

where𝑚 is the order of convergence of the new method.

2.1. Third-Order Methods. In this section, we construct a
new class of two-step third-order iterative methods. Let us
consider the following iterative formula:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐴 (𝑡)

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

(3)

where 𝑡 = 𝑓
󸀠

(𝑦
𝑛
)/𝑓
󸀠

(𝑥
𝑛
). The following theorem indicates

under what conditions on the weight function in (3) the order
of convergence is three.

Theorem 3. Let the function 𝑓 have sufficient number of
continuous derivatives in a neighborhood of 𝛼which is a simple
root of 𝑓; then method (3) has third-order convergence, when
the weight function 𝐴(𝑡) satisfies the following conditions:

𝐴 (1) = 1, 𝐴
󸀠

(1) = −

1

2

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
󸀠󸀠

(1)

󵄨
󵄨
󵄨
󵄨
󵄨
< +∞. (4)

Proof. Let 𝑒
𝑛
= 𝑥
𝑛
− 𝛼 be the error in the 𝑛th iterate

and 𝑐
ℎ
= 𝑓
(ℎ)

(𝛼)/ℎ!, ℎ = 1, 2, 3, . . .. We provide Taylor’s
series expansion of each term involved in (3). By Taylor series
expansion around the simple root in the 𝑛th iteration, we have

𝑓 (𝑥
𝑛
) = 𝑓
󸀠

(𝛼) [𝑒
𝑛
+ 𝑐
2
𝑒
2

𝑛
+ 𝑐
3
𝑒
3

𝑛
+ 𝑐
4
𝑒
4

𝑛
+ 𝑐
5
𝑒
5

𝑛
] + 𝑂 (𝑒

6

𝑛
) ,

𝑓
󸀠

(𝑥
𝑛
) = 𝑓
󸀠

(𝛼)[1 + 2𝑐
2
𝑒
𝑛
+ 3𝑐
3
𝑒
2

𝑛
+ 4𝑐
4
𝑒
3

𝑛
+ 5𝑐
5
𝑒
4

𝑛
] + 𝑂 (𝑒

5

𝑛
) .

(5)

Furthermore, it can be easily found that

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

= 𝑒
𝑛
− 𝑐
2
𝑒
2

𝑛
+ (2𝑐
2

2
− 2𝑐
3
) 𝑒
3

𝑛
+ 𝑂 (𝑒

4

𝑛
) . (6)

By considering this relation, we obtain

𝑦
𝑛
= 𝛼 + 𝑐

2
𝑒
2

𝑛
+ 2 (𝑐
3
− 𝑐
2

2
) 𝑒
3

𝑛
+ 𝑂 (𝑒

4

𝑛
) . (7)

At this time, we should expand 𝑓󸀠(𝑦
𝑛
) around the root by

taking into consideration (7). Accordingly, we have

𝑓
󸀠

(𝑦
𝑛
) = 𝑓
󸀠

(𝛼) [1 + 2𝑐
2

2
𝑒
2

𝑛
+ (4𝑐
2
𝑐
3
− 4𝑐
3

2
) 𝑒
3

𝑛
+ 𝑂 (𝑒

4

𝑛
)] .

(8)

Furthermore, we have

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

= 1 − 2𝑐
2
𝑒
𝑛
+ (6𝑐
2

2
− 3𝑐
3
) 𝑒
2

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

4

𝑛
) . (9)

By virtue of (9) and (4), we attain

𝐴 (𝑡) ×

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

= 𝑒
𝑛
−

1

2

× [𝑐
3
− 4𝑐
2

2
(−1 + 𝐴

󸀠󸀠

(1))] 𝑒
3

𝑛
+ 𝑂 (𝑒

4

𝑛
) .

(10)

Finally, using (10) in the second step of (3), we have the
following error equation:

𝑒
𝑛+1

= 𝑥
𝑛+1
− 𝛼

= 𝑥
𝑛
− 𝐴 (𝑡) ×

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

− 𝛼

=

1

2

[𝑐
3
− 4𝑐
2

2
(−1 + 𝐴

󸀠󸀠

(1))] 𝑒
3

𝑛
+ 𝑂 (𝑒

4

𝑛
) ,

(11)

which has the third order of convergence. This proves the
theorem.

Particular Cases

Case 1. If we take 𝐴(𝑡) = 2/(1 + 𝑡) in (3), then we get the
formula

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
−

2𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
) + 𝑓
󸀠
(𝑦
𝑛
)

,

(12)

which is the same as established byWeerakoon and Fernando
in [1].

Case 2. If we take 𝐴(𝑡) = (𝑡 + 1)/2𝑡 in (3), then we get the
formula

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

2

(

1

𝑓
󸀠
(𝑥
𝑛
)

+

1

𝑓
󸀠
(𝑦
𝑛
)

) ,

(13)

which is the same as established by Homeier in [2].
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Case 3. If we take 𝐴(𝑡) = (3 − 𝑡)/2 in (3), then we get the
formula

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
−

1

2

(3 −

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

)

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

(14)

which is the same as established by Chun and Kim in [3].

Case 4. If we take 𝐴(𝑡) = 2𝑡/(3𝑡 − 1) in (3), then we get the
formula

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− (

2𝑓
󸀠

(𝑦
𝑛
)

3𝑓
󸀠
(𝑦
𝑛
) − 𝑓
󸀠
(𝑥
𝑛
)

)

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

(15)

and its error expression is given by

𝑒
𝑛+1

=

1

2

[−2𝑐
2

2
+ 𝑐
3
] 𝑒
3

𝑛
+ 𝑂 (𝑒

4

𝑛
) . (16)

Remark 4. By taking suitable weight function 𝐴(𝑡) in (3)
which satisfies the conditions of (4), one can get number of
third-order methods.

2.2. Fourth-Order Methods. The convergence order of the
previous class of methods is three with three (one function
and two derivatives) evaluations per full iteration. Clearly its
efficiency index (31/3 ≈ 1.442) is not high (optimal) so we
use one more weight function in the second step of (3) and
introduce a constant in its first step. Thus, we consider

𝑦
𝑛
= 𝑥
𝑛
− 𝑎 ⋅

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− {𝑃 (𝑡) × 𝑄 (𝑡)}

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

(17)

where𝑃(𝑡) and𝑄(𝑡) are real-valued weight functions with 𝑡 =
𝑓
󸀠

(𝑦
𝑛
)/𝑓
󸀠

(𝑥
𝑛
) and 𝑎 is a real constant.The following theorem

indicates under what conditions on the weight functions and
constant 𝑎 in (17) the order of convergence will arrive at the
optimal level four.

Theorem 5. Let the function 𝑓 have sufficient number of
continuous derivatives in a neighborhood of 𝛼which is a simple
root of𝑓; thenmethod (17) has fourth-order convergence, when
𝑎 = 2/3 and the weight functions 𝑃(𝑡) and 𝑄(𝑡) satisfy the
following conditions:

𝑃 (1) = 1, 𝑃
󸀠

(1) = −

1

2

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
(3)

(1)

󵄨
󵄨
󵄨
󵄨
󵄨
< ∞,

𝑄 (1) = 1, 𝑄
󸀠

(1) = −

1

4

, 𝑄
󸀠󸀠

(1) = 2 − 𝑃
󸀠󸀠

(1) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑄
(3)

(1)

󵄨
󵄨
󵄨
󵄨
󵄨
< ∞.

(18)

Proof. Using (5) and 𝑎 = 2/3 in the first step of (17), we have

𝑦
𝑛
= 𝛼 +

𝑒
𝑛

3

+

2𝑐
2
𝑒
2

𝑛

3

+

4 (𝑐
3
− 𝑐
2

2
) 𝑒
3

𝑛

3

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
5

𝑛
) .

(19)

Now we should expand 𝑓󸀠(𝑦
𝑛
) around the root by taking into

consideration (19). Thus, we have

𝑓
󸀠

(𝑦
𝑛
) = 𝑓
󸀠

(𝛼) [1 +

2𝑐
2
𝑒
𝑛

3

+

(4𝑐
2

2
+ 𝑐
3
) 𝑒
2

𝑛

3

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
5

𝑛
)] .

(20)

Furthermore, we have

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

= 1 −

2𝑐
2

3

𝑒
𝑛
+ (4𝑐

2

2
−

8𝑐
3

3

) 𝑒
2

𝑛
+ ⋅ ⋅ ⋅ + 𝑂 (𝑒

5

𝑛
) . (21)

By virtue of (21) and (18), we can obtain

{𝑃 (𝑡) × 𝑄 (𝑡)}

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

= 𝑒
𝑛
−

1

81

× [ − 81𝑐
2
𝑐
3
+ 9𝑐
4

+ (309 + 24𝐴
󸀠󸀠

(1) + 32𝐴
(3)

(1)

+32𝐵
(3)

(1)) 𝑐
3

2
] 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) .

(22)

Finally, using (22) in the second step of (17), we have the
following error expression:

𝑒
𝑛+1

= 𝑥
𝑛+1
− 𝛼

= 𝑥
𝑛
− {𝑃 (𝑡) × 𝑄 (𝑡)}

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

− 𝛼

=

1

81

[ − 81𝑐
2
𝑐
3
+ 9𝑐
4

+ (309 + 24𝐴
󸀠󸀠

(1) + 32𝐴
(3)

(1)

+32𝐵
(3)

(1)) 𝑐
3

2
] 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) ,

(23)

which shows the fourth-order convergence. It confirms the
result.

It is clear that our class of fourth-order iterative methods
(17) requires three function evaluations per iteration, that is,
one function and two first derivative evaluations. Thus our
new class is optimal. Clearly its efficiency index is 41/3 =
1.5874 (high). Now by choosing appropriate weight functions
in (17) which satisfy the conditions of (18), one can give a
number of optimal two-step fourth-order iterative methods.
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Particular Cases

Method 1. If we take 𝑃(𝑡) = 2/(1 + 𝑡), 𝑄(𝑡) = 2 − (7/4)𝑡 +
(3/4)𝑡

2, and 𝑎 = 2/3 in (17), thenwe get the followingmethod:

𝑦
𝑛
= 𝑥
𝑛
−

2

3

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− [2 −

7

4

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

+

3

4

(

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

)

2

]

×

2𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
) + 𝑓
󸀠
(𝑦
𝑛
)

,

(24)

and its error equation is given by

𝑒
𝑛+1

=

1

9

[−9𝑐
2
𝑐
3
+ 𝑐
4
+ 33𝑐
3

2
] 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) . (25)

Method 2. If we take 𝑃(𝑡) = (𝑡+1)/2𝑡,𝑄(𝑡) = (7/4)− (5/4)𝑡+
(1/2)𝑡

2, and 𝑎 = 2/3 in (17), thenwe get the followingmethod:

𝑦
𝑛
= 𝑥
𝑛
−

2

3

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− [

7

4

−

5

4

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

+

1

2

(

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

)

2

]

×

𝑓 (𝑥
𝑛
)

2

(

1

𝑓
󸀠
(𝑥
𝑛
)

+

1

𝑓
󸀠
(𝑦
𝑛
)

) ,

(26)

and its error equation is given by

𝑒
𝑛+1

=

1

9

[−𝑐
2
𝑐
3
+

𝑐
4

9

+

79

27

𝑐
3

2
] 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) . (27)

Method 3. If we take𝑃(𝑡) = (3−𝑡)/2,𝑄(𝑡) = (9/4)−(9/4)𝑡+𝑡2,
and 𝑎 = 2/3 in (17), then we get the following method:

𝑦
𝑛
= 𝑥
𝑛
−

2

3

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− [

9

4

−

9

4

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

+ (

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

)

2

]

× (

3

2

−

𝑓
󸀠

(𝑦
𝑛
)

2𝑓
󸀠
(𝑥
𝑛
)

)

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

(28)

which is the same as given in [10].

Method 4. If we take𝑃(𝑡) = 2𝑡/(3𝑡−1),𝑄(𝑡) = (3/2)−(3/4)𝑡+
(1/4)𝑡

2, and 𝑎 = 2/3 in (17), thenwe get the followingmethod:

𝑦
𝑛
= 𝑥
𝑛
−

2

3

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

𝑥
𝑛+1

= 𝑥
𝑛
− [

3

2

−

3

4

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

+

1

4

(

𝑓
󸀠

(𝑦
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

)

2

]

× (

2𝑓
󸀠

(𝑦
𝑛
)

3𝑓
󸀠
(𝑦
𝑛
) − 𝑓
󸀠
(𝑥
𝑛
)

)

𝑓 (𝑥
𝑛
)

𝑓
󸀠
(𝑥
𝑛
)

,

(29)

and its error equation is given by

𝑒
𝑛+1

= [

43

27

𝑐
3

2
− 𝑐
2
𝑐
3
+

𝑐
4

9

] 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) . (30)

Remark 6. By choosing the appropriate weight functions in
(17) which satisfy the conditions of (18), one can get number
of fourth-order methods.

3. Extension to Multivariate Case

In this section, we extend some methods of the previous
sections (similarly other methods can also be extended) to
the multivariate case. Method (15) for systems of nonlinear
equations can be written as

𝑌
(𝑘)

= 𝑋
(𝑘)

− [𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

) ,

𝑋
(𝑘+1)

= 𝑋
(𝑘)

− 2[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

−1

[𝐹
󸀠

(𝑌
(𝑘)

)]

⋅ [𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

) ,

(31)

where 𝑋(𝑘) = [𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
]
𝑇, (𝑘 = 0, 1, 2, . . .);

similarly 𝑌(𝑘); 𝐼 is 𝑛 × 𝑛 identity matrix; 𝐹(𝑋(𝑘)) = [𝑓
1
(𝑥
(𝑘)

1
,

𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
), 𝑓
2
(𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
), . . . , 𝑓

𝑛
(𝑥
(𝑘)

1
, 𝑥
(𝑘)

2
, . . . , 𝑥

(𝑘)

𝑛
)];

and 𝐹󸀠(𝑋(𝑘)) is the Jacobian matrix of 𝐹 at𝑋(𝑘).
Let 𝛼+𝐻 ∈ R𝑛 be any point of the neighborhood of exact

root 𝛼 ∈ R𝑛 of the nonlinear system 𝐹(𝑋) = 0. If Jacobian
matrix𝐹󸀠(𝛼) is nonsingular, then Taylor’s series expansion for
multivariate case is

𝐹 (𝛼 + 𝐻) = 𝐹
󸀠

(𝛼) [𝐻 + 𝐶
2
𝐻
2

+ 𝐶
3
𝐻
3

+ ⋅ ⋅ ⋅ + 𝐶
𝑝−1
𝐻
𝑝−1

]

+ 𝑂 (𝐻
𝑝

) ,

(32)

where 𝐶
𝑖
= [𝐹
󸀠

(𝛼)]

−1

(𝐹
(𝑖)

(𝛼)/𝑖!), 𝑖 ≥ 2, and

𝐹
󸀠

(𝛼 + 𝐻) = 𝐹
󸀠

(𝛼) [𝐼 + 2𝐶
2
𝐻 + 3𝐶

3
𝐻
2

+ ⋅ ⋅ ⋅ + (𝑝 − 1) 𝐶
𝑝−1
𝐻
𝑝−2

] + 𝑂 (𝐻
𝑝−1

) ,

(33)

where 𝐼 is an identity matrix. From the above equation, we
can find

[𝐹
󸀠

(𝛼 + 𝐻)]

−1

= [𝐹
󸀠

(𝛼)]

−1

[𝐼 + 𝐴
1
𝐻 + 𝐴

2
𝐻
2

+ ⋅ ⋅ ⋅ + 𝐴
𝑝−2
𝐻
𝑝−2

] + 𝑂 (𝐻
𝑝−1

) ,

(34)

where 𝐴
1
= −2𝐶

2
, 𝐴
2
= 4𝐶
2

2
− 3𝐶
3
, 𝐴
3
= −8𝐶

3

2
+ 6𝐶
2
𝐶
3
+

6𝐶
3
𝑐
2
−4𝐶
4
, and so on. Here we denote the error at 𝑘th iterate

by 𝐸(𝑘); that is, 𝐸(𝑘) = 𝑋(𝑘) −𝛼. Now the order of convergence
of method (31) is confirmed by the following theorem.
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Theorem 7. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently Frechet
differentiable in a convex set𝐷 containing a root 𝛼 of𝐹(𝑋) = 0.
Let us suppose that 𝐹󸀠(𝑋) is continuous and nonsingular in 𝐷
and𝑋(0) is close to 𝛼. Then the sequence {𝑋(𝑘)}

𝑘≥0
obtained by

the iterative expression (31) converges to 𝛼 with order three.

Proof. From (32), (33), and (34), we have

𝐹 (𝑋
(𝑘)

) = 𝐹
󸀠

(𝛼) [𝐸
(𝑘)

+ 𝐶
2
𝐸
(𝑘)
2

+ 𝐶
3
𝐸
(𝑘)
3

+ 𝐶
4
𝐸
(𝑘)
4

]

+ 𝑂(𝐸
(𝑘)
5

) ,

(35)

𝐹
󸀠

(𝑋
(𝑘)

) = 𝐹
󸀠

(𝛼) [𝐼 + 2𝐶
2
𝐸
(𝑘)

+ 3𝐶
3
𝐸
(𝑘)
2

+4𝐶
4
𝐸
(𝑘)
3

+ 5𝐶
5
𝐸
(𝑘)
4

] + 𝑂(𝐸
(𝑘)
5

) ,

(36)

[𝐹
󸀠

(𝑋
(𝑘)

)]

−1

= [𝐹
󸀠

(𝛼)]

−1

× {𝐼 − 2𝐶
2
𝐸
(𝑘)

+ (4𝐶
2

2
− 3𝐶
3
) 𝐸
(𝑘)
2

+ (−8𝐶
3

2
+ 6𝐶
2
𝐶
3
+ 6𝐶
3
𝐶
2
− 4𝐶
4
) 𝐸
(𝑘)
3

}

+ 𝑂(𝐸
(𝑘)
4

) ,

(37)

where 𝐶
𝑖
= [𝐹
󸀠

(𝛼)]
−1

(𝐹
(𝑖)

(𝛼)/𝑖!), 𝑖 = 2, 3, . . .. Now from (37)
and (35), we can obtain

[𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

)

= 𝐸
(𝑘)

− 𝐶
2
𝐸
(𝑘)
2

+ (2𝐶
2

2
− 2𝐶
3
) 𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) .

(38)

By virtue of (38), the first step of method (31) becomes

𝑌
(𝑘)

= 𝛼 + 𝐶
2
𝐸
(𝑘)
2

+ (−2𝐶
2

2
+ 2𝐶
3
) 𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) . (39)

Now the Taylor expansion for Jacobian matrix 𝐹󸀠(𝑌(𝑘)) is
given by

𝐹
󸀠

(𝑌
(𝑘)

) = 𝐹
󸀠

(𝛼) [𝐼 + 2𝐶
2

2
𝐸
(𝑘)
2

− (4𝐶
4

2
− 4𝐶
2
𝐶
3
) 𝐸
(𝑘)
3

] + 𝑂(𝐸
(𝑘)
4

) .

(40)

Therefore

[𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

)

= 𝐼 − 2𝐶
2
𝐸
(𝑘)

+ (6𝐶
2

2
− 3𝐶
3
) 𝐸
(𝑘)
2

+ (−4𝐶
4

2
− 12𝐶

3

2
+ 10𝐶

2
𝐶
3
+ 6𝐶
3
𝐶
2
− 4𝐶
4
) 𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) ,

[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

= 𝐹
󸀠

(𝛼) [2𝐼 − 2𝐶
2
𝐸
(𝑘)

+ (6𝐶
2

2
− 3𝐶
3
) 𝐸
(𝑘)
2

+ (−12𝐶
4

2
− 36𝐶

3

2
+ 30𝐶

2
𝐶
3
+ 18𝐶

3
𝐶
2
− 16𝐶

4
)

× 𝐸
(𝑘)
3

] + 𝑂(𝐸
(𝑘)
4

) .

(41)

The above equation implies

[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

−1

=

[𝐹
󸀠

(𝛼)]

−1

2

[𝐼 + 𝐵
1
𝐸
(𝑘)

+ 𝐵
2
𝐸
(𝑘)
2

+ 𝐵
3
𝐸
(𝑘)
3

]

+ 𝑂(𝐸
(𝑘)
4

) ,

(42)

where

𝐵
1
= 𝐶
2
,

𝐵
2
= −2𝐶

2

2
+

3

2

𝐶
3
,

𝐵
3
= 6𝐶
4

2
+ 13𝐶

3

2
−

27

2

𝐶
2
𝐶
3
−

15

2

𝐶
3
𝐶
2
+ 8𝐶
4
.

(43)

Now from (40) and (42), we have

[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

)

=

1

2

[𝐼 + 𝐸
(𝑘)

+

3

2

𝐶
3
𝐸
(𝑘)
2

+ (2𝐶
4

2
+ 15𝐶

3

2
−

19

3

𝐶
2
𝐶
3

−

15

2

𝐶
3
𝐶
2
+ 8𝐶
4
)𝐸
(𝑘)
3

] + 𝑂(𝐸
(𝑘)
4

) .

(44)

By using (44) and (38), it can be found that

2[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

−1

× [𝐹
󸀠

(𝑌
(𝑘)

)] [𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

)

= 𝐸
(𝑘)

+ (𝐶
2

2
−

1

2

𝐶
3
)𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) .

(45)
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Table 1: Functions and their roots.
𝑓(𝑥) 𝛼

𝑓
1
(𝑥) = 𝑒

−𝑥

− 1 +

𝑥

5

4.9651142317442763036. . .

𝑓
2
(𝑥) =

𝑥
3

+ 2.87𝑥
2

− 10.28

4.62

− 𝑥 2.0021187789538272889. . .

𝑓
3
(𝑥) =

𝑥 + Cos𝑥 Sin𝑥
𝜋

−

1

4

0.4158555967898679887. . .
𝑓
4
(𝑥) = 𝑥𝑒

−𝑥

− 0.1 0.1118325591589629648. . .

Finally, using (45) in the second step of (31), we see that the
error expression can be expressed as

𝐸
(𝑘+1)

= (−𝐶
2

2
+

𝐶
3

3

)𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) , (46)

which shows the theorem.

Similarly, method (29) for systems of nonlinear equations
is given by

𝑌
(𝑘)

= 𝑋
(𝑘)

−

2

3

[𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

) ,

𝑋
(𝑘+1)

= 𝑋
(𝑘)

− [

3

2

𝐼 −

3

4

[𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

)

+

1

4

([𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

))

2

]

⋅ 2[(3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

))]

−1

⋅ [𝐹
󸀠

(𝑌
(𝑘)

)] [𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

) .

(47)

The order of the convergence of this method is confirmed by
the following theorem.

Theorem 8. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently Frechet
differentiable in a convex set𝐷 containing a root 𝛼 of𝐹(Χ) = 0.
Let us suppose that 𝐹󸀠(Χ) is continuous and nonsingular in 𝐷
and𝑋(0) is close to 𝛼. Then the sequence {𝑋(𝑘)}

𝑘≥0
obtained by

the iterative expression (47) converges to 𝛼 with order four.

Proof. Multiplying (37) by (35), we get

𝑠 = [𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹 (𝑋
(𝑘)

)

= 𝐸
(𝑘)

− 𝐶
2
𝐸
(𝑘)
2

+ (2𝐶
2

2
− 2𝐶
3
) 𝐸
(𝑘)
3

+ (−4𝐶
3

2
+ 4𝐶
2
𝐶
3
+ 3𝐶
3
𝐶
2
− 3𝐶
4
) 𝐸
(𝑘)
4

+ 𝑂(𝐸
(𝑘)
5

) .

(48)

Substituting value of (48) in the first step of (47), we find

𝑌
(𝑘)

=

1

3

𝐸
(𝑘)

+

2

3

𝐶
2
𝐸
(𝑘)
2

+

4

3

(−𝐶
2

2
+ 𝐶
3
) 𝐸
(𝑘)
3

+

2

3

(4𝐶
3

2
− 4𝐶
2
𝐶
3
− 3𝐶
3
𝐶
2
+ 3𝐶
4
) 𝐸
(𝑘)
4

+ 𝑂(𝐸
(𝑘)
5

) .

(49)

By using (49), the Taylor expansion of Jacobian matrix
𝐹
󸀠

(𝑌
(𝑘)

) can be written as

𝐹
󸀠

(𝑌
(𝑘)

)

= 𝐹
󸀠

(𝛼) [𝐼 +

2

3

𝐶
2
𝐸
(𝑘)

+ (

4

3

𝐶
2

2
+

1

3

𝐶
3
)𝐸
(𝑘)
2

+ (

−8

3

𝐶
3

2
+

8

3

𝐶
2
𝐶
3
+

4

3

𝐶
3
𝐶
2
+

4

27

𝐶
4
)𝐸
(𝑘)
3

+ (

5

81

𝐶
5
+

16

3

𝐶
4

2
−

16

3

𝐶
3

2
𝐶
3
− 4𝐶
2
𝐶
3
𝐶
2

+4𝐶
2
𝐶
4
−

4

3

𝐶
3
𝐶
2

2
+

8

3

𝐶
2

3
+

8

9

𝐶
4
𝐶
2
)𝐸
(𝑘)
4

]

+ 𝑂(𝐸
(𝑘)
5

) .

(50)

From (37) and (50), it is obtained that

𝑡 = [𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

)

= 𝐼 −

4

3

𝐶
2
𝐸
(𝑘)

+ (4𝐶
2

2
−

8

3

𝐶
3
)𝐸
(𝑘)
2

+ (

−32

3

𝐶
3

2
+ 8𝐶
2
𝐶
3
+

16

3

𝐶
3
𝐶
2
−

104

27

𝐶
4
)𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) .

(51)

The above equation implies that

𝑡
2

= ([𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

))

2

= 𝐼 −

8

3

𝐶
2
𝐸
(𝑘)

+ (

88

9

𝐶
2

2
−

16

3

𝐶
3
)𝐸
(𝑘)
2

+ (−32𝐶
3

2
+

176

9

𝐶
2
𝐶
3
+

128

9

𝐶
3
𝐶
2

−

208

27

𝐶
4
)𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) .

(52)
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Table 2: Comparison of the absolute error occurring in the estimates of the exact root.

Function Guess Method |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼|

𝑓
1

5

NM 0.21464𝑒 − 4 0.83264𝑒 − 11 0.12530𝑒 − 23

WR3 0.11208𝑒 − 6 0.37810𝑒 − 23 0.14517𝑒 − 72

HM3 0.12544𝑒 − 6 0.59456𝑒 − 23 0.63310𝑒 − 72

CH3 0.98734𝑒 − 7 0.22705𝑒 − 23 0.27611𝑒 − 73

M3 0.13882𝑒 − 6 0.89316𝑒 − 23 0.23790𝑒 − 71

𝑓
2

2.5

NM 0.85925𝑒 − 1 0.32675𝑒 − 2 0.50032𝑒 − 5

WR3 0.18271𝑒 − 1 0.14770𝑒 − 5 0.79610𝑒 − 18

HM3 0.49772𝑒 − 2 0.33027𝑒 − 8 0.95318𝑒 − 27

CH3 0.27815𝑒 − 1 0.95903𝑒 − 5 0.41254𝑒 − 15

M3 0.14819𝑒 − 1 0.64153𝑒 − 6 0.51267𝑒 − 19

𝑓
3

0.4

NM 0.10737𝑒 − 3 0.50901𝑒 − 8 0.11442𝑒 − 16

WR3 0.20631𝑒 − 6 0.53436𝑒 − 21 0.92858𝑒 − 65

HM3 0.52795𝑒 − 6 0.19743𝑒 − 19 0.10325𝑒 − 59

CH3 0.93064𝑒 − 6 0.20624𝑒 − 18 0.22446𝑒 − 56

M3 0.12723𝑒 − 5 0.67803𝑒 − 18 0.10261𝑒 − 54

𝑓
4

0.3

NM 0.47567𝑒 − 1 0.22849𝑒 − 2 0.55356𝑒 − 5

WR3 0.13039𝑒 − 1 0.31800𝑒 − 5 0.45048𝑒 − 16

HM3 0.64393𝑒 − 3 0.72236𝑒 − 10 0.10226𝑒 − 30

CH3 0.34012𝑒 − 1 0.11125𝑒 − 3 0.34855𝑒 − 11

M3 0.75418𝑒 − 2 0.36460𝑒 − 6 0.41629𝑒 − 19

Table 3: Comparison of the absolute error occurring in the estimates of the exact root.

Function Guess Method |𝑥
1
− 𝛼| |𝑥

2
− 𝛼| |𝑥

3
− 𝛼|

𝑓
1

5

SL4 0.14780𝑒 − 5 0.47702𝑒 − 23 0.51761𝑒 − 93

KH4 0.47426𝑒 − 9 0.16796𝑒 − 40 0.26418𝑒 − 166

M4 I 0.42743𝑒 − 9 0.99425𝑒 − 41 0.29108𝑒 − 167

M4 II 0.41059𝑒 − 9 0.81178𝑒 − 41 0.12404𝑒 − 167

𝑓
2

2.5

SL4 0.26594𝑒 − 1 0.32982𝑒 − 6 0.76311𝑒 − 26

KH4 0.14965𝑒 − 1 0.45484𝑒 − 7 0.40826𝑒 − 29

M4 I 0.76770𝑒 − 2 0.12105𝑒 − 8 0.76261𝑒 − 36

M4 II 0.36004𝑒 − 2 0.23379𝑒 − 10 0.41876𝑒 − 43

𝑓
3

0.4

SL4 0.86290𝑒 − 7 0.78612𝑒 − 28 0.54150𝑒 − 112

KH4 0.52074𝑒 − 7 0.67319𝑒 − 29 0.18803𝑒 − 116

M4 I 0.24363𝑒 − 7 0.14724𝑒 − 30 0.19642𝑒 − 123

M4 II 0.14232𝑒 − 7 0.98181𝑒 − 32 0.22236𝑒 − 128

𝑓
4

0.3

SL4 0.14507𝑒 − 1 0.20259𝑒 − 6 0.81662𝑒 − 26

KH4 0.56586𝑒 − 1 0.78841𝑒 − 4 0.41658𝑒 − 15

M4 I 0.11886𝑒 − 1 0.73037𝑒 − 7 0.10950𝑒 − 27

M4 II 0.40617𝑒 − 2 0.36373𝑒 − 9 0.23749𝑒 − 37

Now from (51) and (52), we have

3

2

𝐼 −

3

4

𝑡 +

1

4

𝑡
2

= 𝐼 +

1

3

𝐶
2
𝐸
(𝑘)

+ (

−5

9

𝐶
2

2
+

2

3

𝐶
3
)𝐸
(𝑘)
2

+ (−

10

9

𝐶
2
𝐶
3
−

4

9

𝐶
3
𝐶
2
+

26

27

𝐶
4
)𝐸
(𝑘)
3

+ 𝑂(𝐸
(𝑘)
4

) .

(53)

Again by virtue of (50) and (36), it can be written as

[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

= 𝐹
󸀠

(𝛼) [2𝐼 + (4𝐶
2

2
− 2𝐶
3
) 𝐸
(𝑘)
2

+ (−8𝐶
3

2
+ 8𝐶
2
𝐶
3
+ 4𝐶
3
𝐶
2
−

32

9

𝐶
4
)𝐸
(𝑘)
3

+ (−

130

27

𝐶
5
+ 16𝐶

4

2
− 16𝐶

3

2
𝐶
3
− 12𝐶

2
𝐶
3
𝐶
2
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Table 4: Comparison of the number of iterations and function evaluations.

Function Guess NM CH3 HM3 WR3 M3 SL4 KH4 M4 I M4 II

𝑓
1

5.0 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 3 (9) 3 (9) 3 (9)
4.9 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 3 (9) 3 (9) 3 (9)
5.1 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 3 (9) 3 (9) 3 (9)
4.5 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 5 (15) 4 (12) 4 (12) 4 (12)
5.5 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 5 (15) 4 (12) 4 (12) 4 (12)
4.0 7 (14) 5 (15) 5 (15) 5 (15) 5 (15) F 4 (12) 4 (12) 4 (12)
6.0 7 (14) 5 (15) 5 (15) 5 (15) 5 (15) F 4 (12) 4 (12) 4 (12)

𝑓
2

2.5 8 (16) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 4 (12) 4 (12)
2.4 8 (16) 5 (15) 5 (15) 5 (15) 5 (15) 4 (12) 4 (12) 4 (12) 4 (12)
2.6 8 (16) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 4 (12) 4 (12)
1.5 8 (16) 6 (18) 5 (15) 5 (15) 5 (15) 5 (15) 6 (18) 5 (15) 5 (15)
3.0 9 (18) 6 (18) 5 (15) 6 (18) 6 (18) 5 (15) 5 (15) 4 (12) 5 (15)
1.0 10 (20) 10 (30) 6 (18) 7 (21) 6 (18) D 17 (51) 9 (27) 8 (24)
3.5 9 (18) 6 (18) 5 (15) 6 (18) 6 (18) D 5 (15) 5 (15) 5 (15)

𝑓
3

0.4 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 3 (9) 3 (9)
0.5 7 (14) 5 (15) 4 (12) 4 (12) 5 (15) 4 (12) 4 (12) 4 (12) 4 (12)
0.3 7 (14) 5 (15) 5 (15) 4 (12) 5 (15) 4 (12) 4 (12) 4 (12) 4 (12)
1.0 8 (16) 9 (27) 6 (18) 5 (15) 6 (18) D D 12 (36) 6 (18)
0.0 7 (14) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 4 (12) 4 (12) 4 (12)
−0.5 8 (16) 6 (18) 6 (18) 6 (18) 6 (18) D 5 (15) 5 (15) 5 (15)
0.8 8 (16) 6 (18) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15)

𝑓
4

0.3 8 (16) 6 (18) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 5 (15) 4 (12)
0.1 6 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 4 (12) 3 (9)
0.2 7 (14) 5 (15) 5 (15) 5 (15) 5 (15) 4 (12) 4 (12) 4 (12) 4 (12)
0.6 10 (20) 7 (21) 6 (18) 7 (21) 6 (18) 23 (69) F 9 (27) 8 (24)
−0.4 9 (18) 6 (18) 5 (15) 6 (18) 6 (18) 5 (15) 5 (15) 5 (15) 5 (15)
1.3 9 (18) F 7 (21) 7 (21) 14 (42) F 7 (21) 6 (18) 6 (18)
−0.9 10 (20) 7 (21) 6 (18) 6 (18) 6 (18) 6 (18) 6 (18) 5 (15) 5 (15)

+12𝐶
2
𝐶
4
− 4𝐶
3
𝐶
2

2
+ 8𝐶
2

3
+
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𝐶
4
𝐶
2
)𝐸
(𝑘)
4

]

+ 𝑂(𝐸
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) ,

(54)

which gives

[3𝐹
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2
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]

+ 𝑂(𝐸
(𝑘)
4

) ,

(55)

where

𝐹
1
= 4𝐶
2

2
− 2𝐶
3
,

𝐹
2
= −8𝐶

3

2
+ 8𝐶
2
𝐶
3
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3
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2
−
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4
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𝐹
3
= 16𝐶

4

2
− 16𝐶

3

2
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2
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3
𝐶
2

+ 12𝐶
2
𝐶
4
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3
𝐶
2

2
+ 8𝐶
2

3
−

8

3

𝐶
4
𝐶
2
−

130

27

𝐶
5
.

(56)

Now from (55) and (50), we have

𝑟 = 2[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)

)]

−1

𝐹
󸀠

(𝑌
(𝑘)

)
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2

3

𝐶
2
𝐸
(𝑘)

+ (

4

3

𝐶
3
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𝐶
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3

𝐶
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3
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27

𝐶
4
)𝐸
(𝑘)
3

] + 𝑂(𝐸
(𝑘)
4

) .

(57)

Premultiplying (57) by (48), it can be easily obtained that

𝑟 ⋅ 𝑠 = 2[3𝐹
󸀠

(𝑌
(𝑘)

) − 𝐹
󸀠

(𝑋
(𝑘)
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)] [𝐹
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−1
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Table 5: Comparison of the norm of the error occurring in the estimates of the exact root with some existing third-order methods.

Example Method ‖𝑋
(𝑘)

1
− 𝛼‖ ‖𝑋

(𝑘)

2
− 𝛼‖ ‖𝑋

(𝑘)

3
− 𝛼‖

Example 1

NR1 3.0274𝑒 − 5 5.4762𝑒 − 16 4.3730𝑒 − 48

NR2 3.0274𝑒 − 5 5.4762𝑒 − 16 4.3730𝑒 − 48

NT 5.9292𝑒 − 5 8.2124𝑒 − 15 2.9488𝑒 − 44

ON 3.0274𝑒 − 5 5.4762𝑒 − 16 4.3730𝑒 − 48

HZ 3.0274𝑒 − 5 5.4762𝑒 − 16 4.3730𝑒 − 48

NS 3.0274𝑒 − 5 5.4762𝑒 − 16 4.3730𝑒 − 48

M3 I 2.6220𝑒 − 5 2.6977𝑒 − 16 4.2171𝑒 − 49

Example 2

NR1 1.7406𝑒 − 1 7.1470𝑒 − 4 4.5647𝑒 − 11

NR2 1.6363𝑒 − 1 5.7582𝑒 − 4 2.3870𝑒 − 11

NT 2.4632𝑒 − 1 3.8429𝑒 − 3 1.4191𝑒 − 8

ON 1.7034𝑒 − 1 6.5958𝑒 − 4 3.5877𝑒 − 11

HZ 1.7034𝑒 − 1 6.5958𝑒 − 4 3.5877𝑒 − 11

NS 1.6817𝑒 − 1 6.3444𝑒 − 4 3.1928𝑒 − 11

M3 I 1.0152𝑒 − 1 7.0395𝑒 − 5 7.8189𝑒 − 14

Example 3

NR1 1.3267𝑒 − 3 4.0708𝑒 − 10 2.9007𝑒 − 30

NR2 1.3267𝑒 − 3 4.0708𝑒 − 10 2.9007𝑒 − 30

NT 3.0573𝑒 − 4 9.6593𝑒 − 9 7.2203𝑒 − 26

ON 1.3267𝑒 − 3 4.0708𝑒 − 10 2.9007𝑒 − 30

HZ 1.3267𝑒 − 3 4.0708𝑒 − 10 2.9007𝑒 − 30

NS 1.3267𝑒 − 3 4.0708𝑒 − 10 2.9007𝑒 − 30

M3 I 1.3282𝑒 − 3 4.0708𝑒 − 10 2.9007𝑒 − 30

Example 4

NR1 4.9646𝑒 − 2 2.0377𝑒 − 4 1.9717𝑒 − 11

NR2 4.9260𝑒 − 2 1.9653𝑒 − 4 1.7731𝑒 − 11

NT 6.8356𝑒 − 2 9.2740𝑒 − 4 3.6811𝑒 − 9

ON 4.9437𝑒 − 2 1.9989𝑒 − 4 1.8634𝑒 − 11

HZ 4.9453𝑒 − 2 1.9989𝑒 − 4 1.8634𝑒 − 11

NS 4.9460𝑒 − 2 2.0022𝑒 − 4 1.8727𝑒 − 11

M3 I 1.1965𝑒 − 1 5.9892𝑒 − 4 2.1213𝑒 − 10

Example 5

NR1 4.6620𝑒 − 5 8.9529𝑒 − 14 6.1663𝑒 − 40

NR2 4.6601𝑒 − 5 8.9516𝑒 − 14 6.1632𝑒 − 40

NT 9.7286𝑒 − 5 1.6394𝑒 − 12 7.5686𝑒 − 36

ON 4.6611𝑒 − 5 8.9521𝑒 − 14 6.1645𝑒 − 40

HZ 4.6611𝑒 − 5 8.9523𝑒 − 14 6.1648𝑒 − 40

NS 4.6611𝑒 − 5 6.9523𝑒 − 14 6.1648𝑒 − 40

M3 I 2.2192𝑒 − 5 1.3119𝑒 − 14 1.6090𝑒 − 42

Example 6

NR1 1.4068𝑒 − 3 2.3999𝑒 − 10 1.3581𝑒 − 30

NR2 1.4068𝑒 − 3 2.3999𝑒 − 10 1.3581𝑒 − 30

NT 3.1325𝑒 − 3 5.4369𝑒 − 9 3.1678𝑒 − 26

ON 1.4068𝑒 − 3 2.3999𝑒 − 10 1.3581𝑒 − 30

HZ 1.4068𝑒 − 3 2.3999𝑒 − 10 1.3581𝑒 − 30

NS 1.4068𝑒 − 3 2.3999𝑒 − 10 1.3581𝑒 − 30

M3 I 1.4391𝑒 − 3 2.6482𝑒 − 10 1.8147𝑒 − 30
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) .

(58)

Now by virtue of (53) and (58), it can be written as

[
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𝐼 −

3
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1

4

𝑡
2

] ⋅ 𝑟 ⋅ 𝑠

= 𝐸
(𝑘)

+ (−
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27

𝐶
3

2
+ 𝐶
3
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2
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1
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+ 𝑂(𝐸
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) .

(59)
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Table 6: Comparison of the norm of the error occurring in the estimates of the exact root with some existing fourth-order methods.

Example Method ‖𝑋
(𝑘)

1
− 𝛼‖ ‖𝑋

(𝑘)

2
− 𝛼‖ ‖𝑋

(𝑘)

3
− 𝛼‖

Example 1

M4 II 6.0516𝑒 − 7 5.2164𝑒 − 28 4.1540𝑒 − 112

BBK 1.5583𝑒 − 6 6.4678𝑒 − 26 2.6115𝑒 − 103

JR 9.5374𝑒 − 7 5.3169𝑒 − 27 7.1439𝑒 − 108

MT 9.3744𝑒 − 7 5.2761𝑒 − 27 6.9541𝑒 − 108

Example 2

M4 II 1.088𝑒 − 1 3.4338𝑒 − 6 3.0799𝑒 − 24

BBK 9.4638𝑒 − 2 9.2598𝑒 − 6 8.3045𝑒 − 22

JR 9.8464𝑒 − 2 5.4080𝑒 − 6 4.6299𝑒 − 23

MT 2.5630𝑒 − 2 1.0710𝑒 − 8 8.4788𝑒 − 34

Example 3

M4 II 2.0890𝑒 − 4 1.1590𝑒 − 16 4.0534𝑒 − 67

BBK 5.1609𝑒 − 4 9.7061𝑒 − 15 4.4270𝑒 − 59

JR 3.0309𝑒 − 4 7.5797𝑒 − 16 1.0992𝑒 − 63

MT 2.6127𝑒 − 4 3.5709𝑒 − 16 4.6078𝑒 − 65

Example 4

M4 II 1.0527𝑒 − 2 4.6896𝑒 − 8 1.6605𝑒 − 29

BBK 3.5372𝑒 − 2 9.9178𝑒 − 6 1.0195𝑒 − 19

JR 2.4911𝑒 − 2 1.5682𝑒 − 6 3.3904𝑒 − 23

MT 3.0081𝑒 − 2 3.5059𝑒 − 6 1.1628𝑒 − 21

Example 5

M4 II 1.6108𝑒 − 6 8.8401𝑒 − 24 6.5622𝑒 − 93

BBK 5.3003𝑒 − 6 2.7113𝑒 − 21 1.4597𝑒 − 82

JR 2.8482𝑒 − 6 1.3655𝑒 − 22 5.7544𝑒 − 88

MT 3.4874𝑒 − 6 3.0141𝑒 − 22 1.2962𝑒 − 86

Example 6

M4 II 1.7279𝑒 − 4 4.5090𝑒 − 17 2.0519𝑒 − 69

BBK 4.0878𝑒 − 4 3.2118𝑒 − 15 1.2129𝑒 − 59

JR 2.4748𝑒 − 4 2.7691𝑒 − 16 4.2681𝑒 − 64

MT 2.0133𝑒 − 4 1.0206𝑒 − 16 6.7467𝑒 − 66

Finally using (59), in the second step of method (47) we get

𝐸
(𝑘+1)

= (
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27

𝐶
3

2
− 𝐶
3
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2
+

1

9

𝐶
4
)𝐸
(𝑘)
4

+ 𝑂(𝐸
(𝑘)
5

) . (60)

Thus the proof is completed.

4. Numerical Testing

4.1. Single Variable. We consider four test nonlinear func-
tions given in Table 1 to illustrate the accuracy of the new
proposed methods. The root of each nonlinear test function
is also listed. All the computations reported here have been
done using MATMEMATICA 8. Scientific computations in
many branches of science and technology demand very high
precision degree of numerical precision. We consider the
number of decimal places as follows: 200 digits floating point
(SetAccuraccy = 200) with SetAccuraccy command. The test
nonlinear functions are listed in Table 1. Here we compare
performances of our new third-order method (15) with the
Newton method (NM), Weerakoon and Fernando method
(WR3) (12), Homeier method (HM3) (13), and Chun and
Kim method (CH3) (14) and our fourth-order methods (M4
I) (24) and (M4 II) (29) with the fourth-order methods (17)
(SL4) of [7] and (6) (KH4) of [11]. The results of comparison
for the test functions for third- and fourth-order methods are
given in Tables 2 and 3, respectively.

In Table 4, numerical tests are given for third-order
and fourth-order methods. The test functions have been
performed with stopping criterion |𝑓(𝑥

𝑘+1
)| ≤ 10

−120; in
addition, the maximum number of iterations is less than 100.
The computational results presented in Table 4 show that the
presented methodM4 II converges more rapidly than almost
all these methods. This new method requires less number of
functional evaluations. This means that the new method has
better efficiency in computing process as compared to the
othermethods. For some initial guess, ourmethod gives some
bad results as compared to the Newton method but in this
case other methods either failed (F)/diverge (D) or gave poor
performances as compared to our method M4 II. Also one
advantage of our method is that some of the third-order and
fourth-order methods failed/diverge for some initial guess
but our method does not. So we can conclude that our
method M4 II is efficient.

4.2. Multivariate Case. Here we consider six nonlinear sys-
tem problems.The residual norms for first, second, and third
iteration are mentioned in Tables 5 and 6, respectively. We
compare our third-order method (31) (M3 I) with the third-
ordermethodsAlgorithm 2.2 (NR1) andAlgorithm 2.3 (NR2)
of [12], Newton-type method (10) (NT) of [13], Newton-
Simpson’s method (5) (NS) and Open-Newton’s method (6)
(ON) of [14], and Algorithm (2) (HZ) of [15] and our fourth-
order method (47) (M4 II) with fourth-order method (3.5)
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Figure 1: Basin of attraction for polynomial 𝑧2 − 1.

(BBK) of [16], method (22) (JR) of [17], andmethod (7) (MT)
of [18]. Here the results of comparison for the test functions
for third- and fourth-order methods are given in Tables 5 and
6, respectively.

Consider the following systems of nonlinear equations.

Example 1. We have

𝑥
2

1
− 𝑥
2
− 19 = 0,

−𝑥
2

1
+

𝑥
3

2

6

+ 𝑥
2
− 17 = 0

(61)

with initial guess 𝑋(0) = (5.1, 6.1)𝑇 and one of its solutions
is 𝛼 = (5, 6)

𝑇. The Jacobian matrix of the above system of
equations is given by

[

[

2𝑥
1

−1

−2𝑥
1
1 +

𝑥
2

2

2

]

]

. (62)

Example 2. We have

log (𝑥
2
) − 𝑥
2

1
+ 𝑥
1
𝑥
2
= 0,

log (𝑥
1
) − 𝑥
2

2
+ 𝑥
1
𝑥
2
= 0

(63)
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Figure 2: Basin of attraction for polynomial 𝑧3 + 4𝑧2 − 10.

with initial guess 𝑋(0) = (0.5, 1.5)𝑇 and one of its solutions
is 𝛼 = (1, 1)

𝑇. The Jacobian matrix of the above system of
equations is given by

[

[

[

[

−2𝑥
1
+ 𝑥
2
𝑥
1
+

1

𝑥
2

1

𝑥
1

+ 𝑥
2
𝑥
1
− 2𝑥
2

]

]

]

]

. (64)

Example 3. We have

𝑥
2
𝑥
3
+ 𝑥
4
(𝑥
2
+ 𝑥
3
) = 0,

𝑥
1
𝑥
3
+ 𝑥
4
(𝑥
1
+ 𝑥
3
) = 0,

𝑥
1
𝑥
2
+ 𝑥
4
(𝑥
1
+ 𝑥
2
) = 0,

𝑥
1
𝑥
2
+ 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
3
= 1

(65)
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Figure 3: Basin of attraction for polynomial 𝑧3 − 1.

with initial guess 𝑋(0) = (0.5, 0.5, 0.5, −0.2)𝑇 and one of its
solutions is 𝛼 ≈ (0.577350, 0.577350, 0.577350, −0.288675)𝑇.
The Jacobian matrix of the above system of equations is given
by

[

[

[

[

0

𝑥
3
+ 𝑥
4

𝑥
3
+ 𝑥
4

0

𝑥
2
+ 𝑥
4

𝑥
1
+ 𝑥
4

𝑥
2
+ 𝑥
4

𝑥
1
+ 𝑥
4

0

𝑥
2
+ 𝑥
3

𝑥
1
+ 𝑥
3

𝑥
1
+ 𝑥
2

𝑥
2
+ 𝑥
3

𝑥
1
+ 𝑥
3

𝑥
1
+ 𝑥
2

0

]

]

]

]

. (66)

Example 4. We have

− sin (𝑥
1
) + cos (𝑥

2
) = 0,

−

1

𝑥
2

+ (𝑥
3
)
𝑥
1

= 0,

𝑒
𝑥
1
− (𝑥
3
)
2

= 0

(67)

with initial guess𝑋(0) = (1, 0.5, 1.5)𝑇 and one of its solutions
is 𝛼 = (0.9095, . . . , 0.6612, . . . , 1.5758, . . . )

𝑇. The Jacobian
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Figure 4: Basin of attraction for polynomial 𝑧5 − 1.

matrix of the above system of equations is given by

[

[

[

[

− cos (𝑥
1
) − sin (𝑥

2
) 0

𝑥
𝑥
1

3
log (𝑥

3
)

1

𝑥
2

2

𝑥
1
𝑥
−1+𝑥
1

3

𝑒
𝑥
1

0 −2𝑥
3

]

]

]

]

. (68)

Example 5. We have

−𝑒
−𝑥
1
+ 𝑥
2
+ 𝑥
3
= 0,

−𝑒
−𝑥
2
+ 𝑥
1
+ 𝑥
3
= 0,

−𝑒
−𝑥
3
+ 𝑥
1
+ 𝑥
2
= 0

(69)

with initial guess 𝑋(0) = (−0.8, 1.1, 1.1)
𝑇 and one of its

solutions is 𝛼 = (−0.8320, . . . , 1.1489, . . . , 1.1489, . . .)
𝑇. The

Jacobian matrix of the above system of equations is given by

[

[

𝑒
−𝑥
1

1 1

1 𝑒
−𝑥
2

1

1 1 𝑒
−𝑥
3

]

]

. (70)

Example 6. We have

𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
− 9 = 0,

𝑥
1
𝑥
2
𝑥
3
− 1 = 0,

𝑥
1
+ 𝑥
2
− 𝑥
2

3
= 0

(71)
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Figure 5: Basin of attraction for polynomial 𝑧4 − 1.

with initial guess 𝑋(0) = (3, 1, 2)
𝑇 and one of its solutions

is 𝛼 = (2.2242, . . . , 0.22838, . . . , 1.5837, . . . )
𝑇. The Jacobian

matrix of above equations is given by

[

[

2𝑥
1

2𝑥
2

2𝑥
3

𝑥
2
𝑥
3
𝑥
1
𝑥
3
𝑥
1
𝑥
2

1 1 −2𝑥
3

]

]

. (72)

5. Basin of Attraction

The basin of attraction for complex Newton’s method was
first initiated by Cayley [19].The basin of attraction is a way to
view how an algorithm behaves as a function for the various
starting points. It is another way to compare the iterative

methods. We consider a rectangle 𝐷 = [−2, 2] × [−2, 2] ∈ C

and assign a colour to each point 𝑧
0
∈ 𝐷 according to

the root at which the corresponding iterative method
starting from 𝑧

0
converges; for more details one may see

[20, 21]. In this section, the following test functions have
been considered for comparison: (i) 𝑧2 − 1 (ii) 𝑧3 − 1 (iii)
𝑧
3

+ 4𝑧
2

− 10 (iv) 𝑧5 − 1 (v) 𝑧4 − 1, and their roots are
{−1+0. 𝑖, 1+0.𝑖}, {1.36523, −2.68262+0.358259𝑖, −2.68262−
0.358259𝑖}, {1, −0.5 − 0.866025𝑖, −0.5 + 0.866025𝑖},
{1, −0.809017 − 0.587785𝑖, 0.309017 + 0.951057𝑖, 0.309017 −

0.951057𝑖, −0.809017 + 0.587785𝑖} and {−1, 0 − 1.𝑖, 0 + 1.𝑖, 1},
respectively.

We compare our fourth-order method (30) (M4 II) with
Jarratt’smethod (JM4) of [22], (17) (SL4) of [7], and (6) (KH4)
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of [11]. The results of the comparisons are given in Figures
1, 2, 3, 4, and 5. In our first figure, we have performed all
the methods to obtain the zeros of the quadratic polynomial
𝑧
2

− 1. From Figure 1, it is clear that JM4 is best followed by
our proposed method M4 II; methods KH4 and SL4 do not
perform well. In Figure 2, we have taken a cubic polynomial
𝑧
3

+ 4𝑧
2

− 10. In this case again JM4 is best with simplest
boundary of basin but our proposedmethodM4 II also shows
the simpler boundaries as compared to methods SL4 and
KH4. In Figure 3 we have considered a polynomial 𝑧3 − 1.
It can be seen that, as before, JM4 and M4 II are better than
SL4 and KH4. In Figures 4 and 5, we have taken polynomials
𝑧
5

− 1 and 𝑧4 − 1, respectively. In both figures, methods
JM4 and M4 II dominate the other two methods, that is,
SL4 and KH4. One can note that taking tighter conditions in
programming code may develop picture with better quality
than these.

From Figures 1–5, it is clear that our proposed fourth-
ordermethod and Jarratt’s method performwell as compared
to the other two fourth-order methods.

6. Conclusion

In this paper, we have proposed a class of third- and fourth-
order iterative methods for finding simple roots of nonlinear
equations. Our third-order method includes methods of
Weerakoon and Fernando [1], Homeier [2], and Chun and
Kim [3] as particular cases. We have also extended some
of our proposed methods from single to multivariate case.
A number of numerical examples are given to illustrate the
performances of our methods by comparing them with some
well existing third- and fourth-order iterative methods. The
efficiency of our fourth-order method over some existing
fourth-order methods is also supported by basin of attrac-
tions.
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