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We discuss a class of new nonlinear weakly singular difference inequality, which is solved by change of variable, discrete Hölder
inequality, discrete Jensen inequality, the mean-value theorem for integrals and amplification method, and Gamma function.
Explicit bound for the unknown function is given clearly. Moreover, an example is presented to show the usefulness of our results.

1. Introduction

Being an important tool in the study of qualitative properties
of solutions of differential equations and integral equations,
various generalizations of Gronwall inequalities and their
applications have attracted great interests of many mathe-
maticians (such as [1–21]). Gronwall-Bellman inequality [22,
23] can be stated as follows: if 𝑢 and 𝑓 are nonnegative and
continuous functions on an interval [𝑎, 𝑏] satisfying

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑎

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (1)

for some constant 𝑐 ≥ 0, then

𝑢 (𝑡) ≤ 𝑐 exp(∫
𝑡

𝑎

𝑓 (𝑠) 𝑑𝑠) , 𝑡 ∈ [𝑎, 𝑏] . (2)

In 1981, Henry [2] discussed the following linear singular
integral inequality:

𝑢 (𝑡) ≤ 𝑎 + 𝑏∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑢 (𝑠) 𝑑𝑠. (3)

In 2007, Ye et al. [20] discussed linear singular integral
inequality:

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑢 (𝑠) 𝑑𝑠. (4)

In 2011, Abdeldaim and Yakout [21] studied a new integral
inequality of Gronwall-Bellman-Pachpatte type

𝑢 (𝑡) ≤ 𝑢
0
+ ∫

𝑡

𝑡0

𝑓 (𝑠) 𝑢 (𝑠)

× [𝑢 (𝑠) + ∫

𝑠

𝑡0

ℎ (𝜏)

× [𝑢 (𝜏) + ∫

𝜏

𝑡0

𝑔 (𝜉) 𝑢 (𝜉) 𝑑𝜉] 𝑑𝜏] 𝑑𝑠.

(5)

On the other hand, many physical problems arising in a
wide variety of applications are governed by finite difference
equations.The theory of difference equations has been devel-
oped as a natural discrete analogue of corresponding theory
of differential equations. Difference inequalities which give
explicit bounds on unknown functions provide a very useful
and important tool in the study of many qualitative as well
as quantitative properties of solutions of nonlinear difference
equations (such as [24–32]). Sugiyama [26] established the
most precise and complete discrete analogue of the Gronwall
inequality in the following form:

𝑢 (𝑛) ≤ 𝑢
0
+

𝑛−1

∑

𝑠 = 𝑛0

𝑓 (𝑠) 𝑢 (𝑠) . (6)
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For instance, Pachpatte [27] considered the following discrete
inequality:

𝑢 (𝑛) ≤ 𝑢
0
+

𝑛−1

∑

𝑠 = 𝑛0

𝑓 (𝑠) [𝑢 (𝑠) + ℎ (𝑠)]

+

𝑛−1

∑

𝑠 = 𝑛0

𝑓 (𝑠)(

𝑠−1

∑

𝜏 = 𝑛0

𝑔 (𝜏) 𝑢 (𝜏)) , ∀𝑛 ∈ 𝑁
0
.

(7)

In 2006, Cheung and Ren [29] studied

𝑢
𝑝
(𝑚, 𝑛) ≤ 𝑐 +

𝑚−1

∑

𝑠 =𝑚0

𝑛−1

∑

𝑡 = 𝑛0

𝑎 (𝑠, 𝑡) 𝑢
𝑞
(𝑠, 𝑡)

+

𝑚−1

∑

𝑠 =𝑚0

𝑛−1

∑

𝑡 = 𝑛0

𝑏 (𝑠, 𝑡) 𝑢
𝑞
(𝑠, 𝑡) 𝑤 (𝑢 (𝑠, 𝑡)) .

(8)

Later, Zheng et al. [31] discussed the following discrete
inequality:

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑘

∑

𝑖 = 1

𝑛−1

∑

𝑠 = 0

𝑓
𝑖
(𝑛, 𝑠) 𝑤

𝑖
(𝑢 (𝑠)) . (9)

Motivated by the results given in [2, 20, 21, 32], in this paper,
we discuss a new linear singular integral inequality

𝑢 (𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛)

×

𝑛−1

∑

𝑠 = 0

(𝑡
𝑛
− 𝑡
𝑠
)
𝛽−1

𝜏
𝑠
𝑤
1
(𝑢 (𝑠))

× [𝑢 (𝑠) + ℎ (𝑠) +

𝑠−1

∑

𝜏 = 0

(𝑡
𝑠
− 𝑡
𝜏
)
𝛽−1

𝜏
𝜏
𝑤
2
(𝑢 (𝜏))] ,

(10)

where 𝑡
0
= 0, 𝜏

𝑠
= 𝑡
𝑠+1

− 𝑡
𝑠
> 0, sup

𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈ N} = 𝜏,
and lim

𝑛→∞
𝑡
𝑛
= ∞.

For the reader’s convenience, we present some necessary
lemmas.

Lemma 1 (discrete Jensen inequality [28]). Let
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
be nonnegative real numbers, 𝑟 > 1 is a

real number, and 𝑛 is a natural number. Then

(𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
)
𝑟

≤ 𝑛
𝑟−1

(𝐴
𝑟

1
+ 𝐴
𝑟

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑟

𝑛
) . (11)

Lemma 2 (discrete Hölder inequality [30]). Let 𝑎
𝑖
, 𝑏
𝑖
(𝑖 =

1, 2, . . . , 𝑛) be nonnegative real numbers, and let𝑝, 𝑞 be positive
numbers such that (1/𝑞) + (1/𝑝) = 1; then

𝑛−1

∑

𝑠 = 0

𝑎
𝑖
𝑏
𝑖
≤ (

𝑛−1

∑

𝑠 = 0

𝑎
𝑝

𝑖
)

1/𝑝

(

𝑛−1

∑

𝑠 = 0

𝑏
𝑞

𝑖
)

1/𝑞

. (12)

Lemma 3. Let 𝑡
0
= 0, 𝜏

𝑠
= 𝑡
𝑠+1

− 𝑡
𝑠
> 0, sup

𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈
N} = 𝜏, and lim

𝑛→∞
𝑡
𝑛
= ∞. If𝛽 ∈ [0, 1/2], 0 < 𝑝 < 1/(1−𝛽),

then
𝑛−1

∑

𝑠 = 0

(𝑡
𝑛
− 𝑡
𝑠
)
𝑝(𝛽−1)

𝑒
𝑝𝑡𝑠
𝜏
𝑠
≤

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)) , (13)

where 1+𝑝(𝛽−1) > 0, Γ(𝛽) := ∫∞
0
𝜏
𝛽−1

𝑒
−𝜏
𝑑𝜏 is the well-known

Γ-function.

Proof. By the definition of integration and the conditions in
Lemma 3, we have

𝑛−1

∑

𝑠 = 0

(𝑡
𝑛
− 𝑡
𝑠
)
𝑝𝛽−𝑝

𝑒
𝑝𝑡𝑠
𝜏
𝑠
≤ ∫

𝑡𝑛

0

(𝑡
𝑛
− 𝑠)
𝑝𝛽−𝑝

𝑒
𝑝𝑠
𝑑𝑠. (14)

Using a change of variables 𝜏 = 𝑡
𝑛
− 𝑠 and 𝜉 = 𝑝𝜏, we have the

estimation

∫

𝑡𝑛

0

(𝑡
𝑛
− 𝑠)
𝑝(𝛽−1)

𝑒
𝑝𝑠
𝑑𝑠 = −∫

0

𝑡𝑛

𝜏
𝑝(𝛽−1)

𝑒
𝑝𝑡𝑛−𝑝𝜏

𝑑𝜏

= 𝑒
𝑝𝑡𝑛
∫

𝑡𝑛

0

𝜏
𝑝(𝛽−1)

𝑒
−𝑝𝜏

𝑑𝜏

=

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

∫

𝑝𝑡𝑛

0

𝜉
𝑝(𝛽−1)

𝑒
−𝜉
𝑑𝜉

≤

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)) .

(15)

Since 0 < 𝛽 ≤ 1/2, 𝑝 < 1/(1 − 𝛽), 1 + 𝑝(𝛽 − 1) > 0, and
Γ(1 + 𝑝(𝛽 − 1)) ∈ 𝑅

+, from (14) and (15), we have the relation
(13).

2. Main Result

In this section, we give the estimation of unknown function
in (10). Let N := {0, 1, 2, . . .}. For function 𝑧(𝑛), its difference
is defined by Δ𝑧 = 𝑧(𝑛 + 1) − 𝑧(𝑛). Obviously, the linear
difference equation △𝑧(𝑛) = 𝑏(𝑛) with the initial condition
𝑧(𝑛
0
) = 0 has the solution 𝑧(𝑛) = ∑𝑛−1

𝑠=0
𝑏(𝑠). For convenience,

in the sequel we complementarily define that ∑−1
𝑠=0

𝑏(𝑠) = 0.

Theorem 4. Suppose that 0 < 𝛽 ≤ 1/2 is a constant,
𝑎(𝑛), 𝑏(𝑛) are nonnegative andnondecreasing functions defined
on N, 𝑤

1
(𝑢), 𝑤

2
(𝑢)/𝑤

1
(𝑢), 𝑤

𝑞

2
(𝑢
1/𝑞
)/(𝑢𝑤

𝑞

1
(𝑢
1/𝑞
)) are nonneg-

ative, nondecreasing, and continuous functions defined on R
+
,

𝑡
0
= 0, 𝜏

𝑠
= 𝑡
𝑠+1

− 𝑡
𝑠
> 0, sup

𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈ N} = 𝜏, and
lim
𝑛→∞

𝑡
𝑛
= ∞. If 𝑢(𝑡) satisfies (10), then

𝑢 (𝑛) ≤ {𝐻
−1

1
{𝐻
−1

2
[𝐻
−1

3
(𝑈 (𝑛))]}}

1/𝑞

, ∀𝑛 ∈ N
1
, (16)
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where

𝑈 (𝑛) := 𝐻
3
(𝐻
2
(𝐻
1
(2
𝑞−1
𝑎 (𝑛)) + 𝑓 (𝑛)

𝑛−1

∑

𝑠 = 0

ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

)

+𝑓 (𝑛)

𝑛−1

∑

𝑠 = 0

𝑒
−𝑞𝑡𝑠

) + 𝑔 (𝑛)

𝑛−1

∑

𝑠 = 0

𝑒
−𝑞𝑡𝑠

,

(17)

𝐻
1
(𝑢) := ∫

𝑢

𝑐1

𝑑𝑠

𝑤
𝑞

1
(𝑠
1/𝑞
)

, 𝑢 > 0, 𝑐
1
> 0, (18)

𝐻
2
(𝑢) := ∫

𝑢

𝑐2

𝑑𝑠

𝐻
−1

1
(𝑠)

, 𝑢 > 0, 𝑐
2
> 0, (19)

𝐻
3
(𝑢) := ∫

𝑢

𝑐3

𝐻
−1

2
(𝐻
−1

1
(𝑠)) 𝑤

𝑞

1
((𝐻
−1

2
(𝐻
−1

1
(𝑠)))

1/𝑞

)

𝑤
𝑞

2
((𝐻
−1

2
(𝐻
−1

1
(𝑠)))
1/𝑞

)

,

𝑢 > 0, 𝑐
3
> 0,

(20)

𝑓 (𝑛) := 6
𝑞−1
(𝑏 (𝑛))

𝑞
𝜏
𝑞(𝑝−1)/𝑝

× [

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

,

(21)

𝑔 (𝑛) := 𝜏
𝑞(𝑝−1)/𝑝

(

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)))

𝑞/𝑝

, (22)

and 𝑝 = 1 + 𝛽, 𝑞 = 1 + 1/𝛽, N
1
:= {0, 1, 2, . . . , 𝐾

1
}, 𝐾
1
is the

largest integer number such that

𝑈 (𝐾
1
) ∈ Dom (𝐻

−1

3
) , 𝐻

−1

3
(𝑈 (𝐾

1
)) ∈ Dom (𝐻

−1

2
) ,

𝐻
−1

2
(𝐻
−1

3
(𝑈 (𝐾

1
))) ∈ Dom (𝐻

−1

1
) .

(23)

Proof. From (10), we have

𝑢 (𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛)

×

𝑛−1

∑

𝑠 = 0

(𝑡
𝑛
− 𝑡
𝑠
)
𝛽−1

𝑒
𝑡𝑠
𝑒
−𝑡𝑠
𝜏
𝑠
𝑤
1
(𝑢 (𝑠))

× [𝑢 (𝑠) + ℎ (𝑠) +

𝑠−1

∑

𝜎= 0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢 (𝜎))] ,

∀𝑛 ∈ N.
(24)

Applying Lemma 2 with 𝑝 = 1 + 𝛽, 𝑞 = 1 + 1/𝛽 to (24), we
obtain that

𝑢 (𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛) 𝜏
(𝑝−1)/𝑝

[

𝑛−1

∑

𝑠 = 0

(𝑡
𝑛
− 𝑡
𝑠
)
𝑝𝛽−𝑝

𝑒
𝑝𝑡𝑠
𝜏
𝑠
]

1/𝑝

× [

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

×[𝑢 (𝑠)+ ℎ (𝑠)+

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢 (𝜎))]

𝑞

]

1/𝑞

,

(25)

where 𝜏
𝑠
< 𝜏 is used. Applying Lemma 3, we have

𝑢 (𝑛) ≤ 𝑎 (𝑛) + 𝑏 (𝑛) 𝜏
(𝑝−1)/𝑝

[

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

1/𝑝

× [

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

× [𝑢(𝑠) + ℎ(𝑠) +

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢(𝜎))]

𝑞

]

1/𝑞

.

(26)

By discrete Jensen inequality (11) with 𝑛 = 2, 𝑟 = 𝑞, from (26)
we obtain that

𝑢
𝑞
(𝑛) ≤ 2

𝑞−1
(𝑎 (𝑛))

𝑞
+ 2
𝑞−1
(𝑏 (𝑛))

𝑞
𝜏
𝑞(𝑝−1)/𝑝

× [

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

×

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

× [𝑢 (𝑠) + ℎ (𝑠) +

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢 (𝜎))]

𝑞

.

(27)
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Again using discrete Jensen inequality (11) with 𝑛 = 3, 𝑟 = 𝑞,
from (27) we obtain that

𝑢
𝑞
(𝑛) ≤ 2

𝑞−1
(𝑎 (𝑛))

𝑞
+ 2
𝑞−1
(𝑏 (𝑛))

𝑞
𝜏
𝑞(𝑝−1)/𝑝

× [

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝

×

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

× [3
𝑞−1
𝑢
𝑞
(𝑠) + 3

𝑞−1
ℎ
𝑞
(𝑠) + 3

𝑞−1

×[

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢 (𝜎))]

𝑞

] ,

∀𝑛 ∈ N.

(28)

For [∑𝑠−1
𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢(𝜎))]

𝑞 in (28), applying Lemma 2
with 𝑝 = 1 + 𝛽, 𝑞 = 1 + 1/𝛽, we obtain that

[

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝛽−1

𝜏
𝜎
𝑤
2
(𝑢 (𝜎))]

𝑞

≤ 𝜏
𝑞(𝑝−1)/𝑝

(

𝑠−1

∑

𝜎=0

(𝑡
𝑠
− 𝑡
𝜎
)
𝑝𝛽−𝑝

𝑒
𝑝𝑡𝜎
𝜏
𝜎
)

𝑞/𝑝

×

𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑢 (𝜎))

≤ 𝜏
𝑞(𝑝−1)/𝑝

(

𝑒
𝑝𝑡𝑠

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)))

𝑞/𝑝

×

𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑢 (𝜎)) ;

(29)

here Lemma 3 is used. Substituting (29) into (28), we have

𝑢
𝑞
(𝑛) ≤ 2

𝑞−1
(𝑎 (𝑛))

𝑞
+ 2
𝑞−1
(𝑏 (𝑛))

𝑞
𝜏
𝑞(𝑝−1)/𝑝

× [

𝑒
𝑝𝑡𝑛

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1))]

𝑞/𝑝𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

× [3
𝑞−1
𝑢
𝑞
(𝑠) + 3

𝑞−1
ℎ
𝑞
(𝑠) + 3

𝑞−1
𝜏
𝑞(𝑝−1)/𝑝

× (

𝑒
𝑝𝑡𝑠

𝑝
1+𝑝(𝛽−1)

Γ (1 + 𝑝 (𝛽 − 1)))

𝑞/𝑝

×

𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑢 (𝜎))]

= 2
𝑞−1
(𝑎 (𝑛))

𝑞
+ 𝑓 (𝑛)

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

× [𝑢
𝑞
(𝑠) + ℎ

𝑞
(𝑠) + 𝑔 (𝑠)

𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑢 (𝜎))]

= 2
𝑞−1
(𝑎 (𝑛))

𝑞
+ 𝑓 (𝑛)

𝑛−1

∑

𝑠=0

ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

+ 𝑓 (𝑛)

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(𝑢 (𝑠))

× [𝑢
𝑞
(𝑠) + 𝑔 (𝑠)

𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑢 (𝜎))] ,

∀𝑛 ∈ N,
(30)

where𝑓(𝑛) and𝑔(𝑛) are defined by (21) and (22), respectively.
Let V(𝑛) := 𝑢𝑞(𝑛); from (30) we have

V (𝑛) ≤ 2𝑞−1(𝑎 (𝑛))𝑞 + 𝑓 (𝑛)
𝑛−1

∑

𝑠=0

ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(V1/𝑞 (𝑠))

+ 𝑓 (𝑛)

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(V1/𝑞 (𝑠))

× [V (𝑠) + 𝑔 (𝑠)
𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(V1/𝑞 (𝜎))] ,

∀𝑛 ∈ N.

(31)

Since 𝑓(𝑛), 𝑔(𝑛) are nondecreasing functions, from (31) we
have

V (𝑛) ≤ 2𝑞−1(𝑎 (𝐾))𝑞 + 𝑓 (𝐾)
𝑛−1

∑

𝑠=0

ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(V1/𝑞 (𝑠))

+ 𝑓 (𝐾)

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

𝑤
𝑞

1
(V1/𝑞 (𝑠))

× [V (𝑠) + 𝑔 (𝐾)
𝑠−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(V1/𝑞 (𝜎))] ,

∀𝑛 ∈ [0, 𝐾] ∩ N,

(32)

where𝐾 ∈ N, 𝐾 ≤ 𝐾
1
is chosen arbitrarily.

Let 𝑧
1
(𝑡) denote the function on the right-hand side

of (32), which is a positive and nondecreasing function on
[0, 𝐾] ∩ N. From (32), we have

𝑧
1
(0) = 2

𝑞−1
(𝑎 (𝐾))

𝑞
, V (𝑛) ≤ 𝑧

1
(𝑛) , ∀𝑛 ∈ [0, 𝐾] ∩ N.

(33)
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Using Δ𝑧
1
(𝑛) = 𝑧

1
(𝑛 + 1) − 𝑧

1
(𝑛) and (33), we obtain

Δ𝑧
1
(𝑛) = 𝑓 (𝐾) ℎ

𝑞
(𝑛) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(V1/𝑞 (𝑛))

+ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(V1/𝑞 (𝑛))

× [V (𝑛) + 𝑔 (𝐾)
𝑛−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(V1/𝑞 (𝜎))]

≤ 𝑓 (𝐾) ℎ
𝑞
(𝑛) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(𝑧
1/𝑞

1
(𝑛))

+ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(𝑧
1/𝑞

1
(𝑛))

× [𝑧
1
(𝑛) + 𝑔 (𝐾)

𝑛−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑧
1/𝑞

1
(𝜎))] ,

(34)

for all 𝑛 ∈ [0, 𝐾] ∩ N.
Let

𝑦 (𝑛) = 𝑧
1
(𝑛) + 𝑔 (𝐾)

𝑛−1

∑

𝜎=0

𝑒
−𝑞𝑡𝜎

𝑤
𝑞

2
(𝑧
1/𝑞

1
(𝜎)) ,

∀𝑛 ∈ [0, 𝐾] ∩ N.

(35)

Then

𝑦 (0) = 𝑧
1
(0) , 𝑧

1
(𝑛) ≤ 𝑦 (𝑛) , ∀𝑛 ∈ [0, 𝐾] ∩ N. (36)

From (35), we have

Δ𝑦 (𝑛) = Δ𝑧
1
(𝑛) + 𝑔 (𝐾) 𝑒

−𝑞𝑡𝑛
𝑤
𝑞

2
(𝑧
1/𝑞

1
(𝑛))

≤ 𝑓 (𝐾) ℎ
𝑞
(𝑛) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(𝑧
1/𝑞

1
(𝑛))

+ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(𝑧
1/𝑞

1
(𝑛)) 𝑦 (𝑛)

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

2
(𝑧
1/𝑞

1
(𝑛))

≤ 𝑓 (𝐾) ℎ
𝑞
(𝑛) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛))

+ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛)) 𝑦 (𝑛)

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

2
(𝑦
1/𝑞
(𝑛)) .

(37)

It implies that, for all 𝑛 ∈ [0, 𝐾] ∩ N,
Δ𝑦 (𝑛)

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛))

≤ 𝑓 (𝐾) ℎ
𝑞
(𝑛) 𝑒
−𝑞𝑡𝑛

+ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑦 (𝑛)

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

2
(𝑦
1/𝑞
(𝑛))

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛))

.

(38)

On the other hand, by the mean-value theorem for integrals,
for arbitrarily given integers 𝑛, 𝑛 + 1 ∈ [0, 𝐾] ∩N, there exists
𝜉 in the open interval (𝑦(𝑛), 𝑦(𝑛 + 1)) such that

𝐻
1
(𝑦 (𝑛 + 1)) − 𝐻

1
(𝑦 (𝑛)) = ∫

𝑦(𝑛+1)

𝑦(𝑛)

𝑑𝑠

𝑤
𝑞

1
(𝑠
1/𝑞
)

=

Δ𝑦 (𝑛)

𝑤
𝑞

1
(𝜉
1/𝑞
)

≤

Δ𝑦 (𝑛)

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛))

,

(39)

for all 𝑛 ∈ [0, 𝐾] ∩ N, where𝐻
1
is defined by (18). From (38)

and (39), we have

𝐻
1
(𝑦 (𝑛 + 1)) − 𝐻

1
(𝑦 (𝑛)) ≤ 𝑓 (𝐾) ℎ

𝑞
(𝑛) 𝑒
−𝑞𝑡𝑛

+ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑦 (𝑛)

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

2
(𝑦
1/𝑞
(𝑛))

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛))

.

(40)

Taking 𝑛 = 𝑠 in (40) and summing up over 𝑠 from 0 to 𝑛 − 1,
from (40) we obtain

𝐻
1
(𝑦 (𝑛)) ≤ 𝐻

1
(𝑦 (0)) +

𝑛−1

∑

𝑠=0

𝑓 (𝐾) ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

+

𝑛−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑦 (𝑠)

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

2
(𝑦
1/𝑞
(𝑠))

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑠))

≤ 𝐻
1
(𝑦 (0)) +

𝐾−1

∑

𝑠=0

𝑓 (𝐾) ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

+

𝑛−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑦 (𝑠)

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

2
(𝑦
1/𝑞
(𝑠))

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑠))

,

∀𝑛 ∈ [0, 𝐾] ∩ N.

(41)

Let 𝑧
2
(𝑡) denote the function on the right-hand side of (41),

which is a positive and nondecreasing function on [0, 𝐾]∩N.
From (41), we have

𝑧
2
(0) = 𝐻

1
(𝑦 (0)) +

𝐾−1

∑

𝑠=0

𝑓 (𝐾) ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

,

𝑦 (𝑛) ≤ 𝐻
−1

1
(𝑧
2
(𝑛)) ,

∀𝑛 ∈ [0, 𝐾] ∩ N.

(42)

Using Δ𝑧
2
(𝑛) = 𝑧

2
(𝑛 + 1) − 𝑧

2
(𝑛) and (42), we obtain

Δ𝑧
2
(𝑛) = 𝑓 (𝐾) 𝑒

−𝑞𝑡𝑛
𝑦 (𝑛) + 𝑔 (𝐾) 𝑒

−𝑞𝑡𝑛

𝑤
𝑞

2
(𝑦
1/𝑞
(𝑛))

𝑤
𝑞

1
(𝑦
1/𝑞
(𝑛))

≤ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

𝐻
−1

1
(𝑧
2
(𝑛))

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

2
((𝐻
−1

1
(𝑧
2
(𝑛)))

1/𝑞

)

𝑤
𝑞

1
((𝐻
−1

1
(𝑧
2
(𝑛)))
1/𝑞

)

,

∀𝑛 ∈ [0, 𝐾] ∩ N.

(43)
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From (43), we have

Δ𝑧
2
(𝑛)

𝐻
−1

1
(𝑧
2
(𝑛))

≤ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

𝑤
𝑞

2
((𝐻
−1

1
(𝑧
2
(𝑛)))

1/𝑞

)

𝐻
−1

1
(𝑧
2
(𝑛)) 𝑤

𝑞

1
((𝐻
−1

1
(𝑧
2
(𝑛)))
1/𝑞

)

,

(44)

for all 𝑛 ∈ [0, 𝐾] ∩ N. Again by the mean-value theorem for
integrals, for arbitrarily given integers 𝑛, 𝑛 + 1 ∈ [0, 𝐾] ∩ N,
there exists 𝜉 in the open interval (𝑧

2
(𝑛), 𝑧
2
(𝑛 + 1)) such that

𝐻
2
(𝑧
2
(𝑛 + 1)) − 𝐻

2
(𝑧
2
(𝑛)) = ∫

𝑧2(𝑛+1)

𝑧2(𝑛)

𝑑𝑠

𝐻
−1

1
(𝑠)

=

Δ𝑧
2
(𝑛)

𝐻
−1

1
(𝜉)

≤

Δ𝑧
2
(𝑛)

𝐻
−1

1
(𝑧
2
(𝑛))

,

(45)

where𝐻
2
is defined by (19). From (44) and (45), we have

𝐻
2
(𝑧
2
(𝑛 + 1)) − 𝐻

2
(𝑧
2
(𝑛))

≤ 𝑓 (𝐾) 𝑒
−𝑞𝑡𝑛

+ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

×

𝑤
𝑞

2
((𝐻
−1

1
(𝑧
2
(𝑛)))

1/𝑞

)

𝐻
−1

1
(𝑧
2
(𝑛)) 𝑤

𝑞

1
((𝐻
−1

1
(𝑧
2
(𝑛)))
1/𝑞

)

.

(46)

Taking 𝑛 = 𝑠 in (46) and summing up over 𝑠 from 0 to 𝑛 − 1,
from (46) we obtain

𝐻
2
(𝑧
2
(𝑛))

≤ 𝐻
2
(𝑧
2
(0)) +

𝑛−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

2
((𝐻
−1

1
(𝑧
2
(𝑛)))

1/𝑞

)

𝐻
−1

1
(𝑧
2
(𝑠)) 𝑤

𝑞

1
((𝐻
−1

1
(𝑧
2
(𝑠)))
1/𝑞

)

≤ 𝐻
2
(𝑧
2
(0)) +

𝐾−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

2
((𝐻
−1

1
(𝑧
2
(𝑛)))

1/𝑞

)

𝐻
−1

1
(𝑧
2
(𝑠)) 𝑤

𝑞

1
((𝐻
−1

1
(𝑧
2
(𝑠)))
1/𝑞

)

,

(47)

for all 𝑛 ∈ [0, 𝐾] ∩ N. Let

𝑧
3
(𝑛) = 𝐻

2
(𝑧
2
(0)) +

𝐾−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

𝑤
𝑞

2
((𝐻
−1

1
(𝑧
2
(𝑛)))

1/𝑞

)

𝐻
−1

1
(𝑧
2
(𝑠)) 𝑤

𝑞

1
((𝐻
−1

1
(𝑧
2
(𝑠)))
1/𝑞

)

.

(48)

Then

𝑧
3
(0) = 𝐻

2
(𝑧
2
(0)) +

𝐾−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

,

𝑧
2
(𝑛) ≤ 𝐻

−1

2
(𝑧
3
(𝑛)) .

(49)

From (48) and (49), we have

𝐻
−1

1
(𝐻
−1

2
(𝑧
3
(𝑠)))𝑤

𝑞

1
((𝐻
−1

1
(𝐻
−1

2
(𝑧
3
(𝑠))))

1/𝑞

)Δ𝑧
3
(𝑛)

𝑤
𝑞

2
((𝐻
−1

1
(𝐻
−1

2
(𝑧
3
(𝑛))))

1/𝑞

)

≤ 𝑔 (𝐾) 𝑒
−𝑞𝑡𝑛

.

(50)

Using the mean-value theorem for integrals, from (50) we
have

𝐻
3
(𝑧
3
(𝑛)) ≤ 𝐻

3
(𝑧
3
(0)) +

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

, (51)

where 𝐻
3
is defined by (20). From (36), (42), (49), and (51),

we have

𝑧
1
(𝑛) ≤ 𝑦 (𝑛) ≤ 𝐻

−1

1
(𝑧
2
(𝑛)) ≤ 𝐻

−1

1
(𝐻
−1

2
(𝑧
3
(𝑛)))

≤ 𝐻
−1

1
{𝐻
−1

2
[𝐻
−1

3
(𝐻
3
(𝑧
3
(0)) +

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

)]}

= 𝐻
−1

1
{𝐻
−1

2
[𝐻
−1

3
(𝐻
3
(𝐻
2
(𝑧
2
(0)) +

𝐾−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠
)

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

)]}
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= 𝐻
−1

1

× {𝐻
−1

2
[𝐻
−1

3
(𝐻
3
(𝐻
2
(𝐻
1
(𝑧
1
(0))

+

𝐾−1

∑

𝑠=0

𝑓 (𝐾) ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

)

+

𝐾−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

)

+

𝑛−1

∑

𝑠=0

𝑔 (𝐾) 𝑒
−𝑞𝑡𝑠

)]} ,

∀𝑛 ∈ [0, 𝐾] ∩ N.
(52)

Using V(𝑛) := 𝑢𝑞(𝑛) and (33), from (52) we obtain that

𝑢 (𝑛)

= V1/𝑞 (𝑛) ≤ 𝑧
1/𝑞

1
(𝑛)

≤ {𝐻
−1

1
{𝐻
−1

2
[𝐻
−1

3
(𝐻
3
(𝐻
2
(𝐻
1
(𝑧
1
(0))

+

𝐾−1

∑

𝑠=0

𝑓 (𝐾) ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

)

+

𝐾−1

∑

𝑠=0

𝑓 (𝐾) 𝑒
−𝑞𝑡𝑠

)

+

𝑛−1

∑

𝑠=0

𝑔(𝐾)𝑒
−𝑞𝑡𝑠

)]}}

1/𝑞

,

∀𝑛 ∈ [0, 𝐾] ∩ N.
(53)

Since𝐾 is chosen arbitrarily, from (53) we have

𝑢 (𝑛)

≤ {𝐻
−1

1
{𝐻
−1

2
[𝐻
−1

3
(𝐻
3
(𝐻
2
(𝐻
1
(𝑧
1
(0))

+

𝑛−1

∑

𝑠=0

𝑓 (𝑛) ℎ
𝑞
(𝑠) 𝑒
−𝑞𝑡𝑠

)

+

𝑛−1

∑

𝑠=0

𝑓 (𝑛) 𝑒
−𝑞𝑡𝑠

)

+

𝑛−1

∑

𝑠=0

𝑔(𝑛)𝑒
−𝑞𝑡𝑠

)]}}

1/𝑞

,

∀𝑛 ∈ N
1
.

(54)

This is our required estimation (16) of unknown function in
(10).

3. Application

In this section, we apply our results to discuss the bound-
edness of solutions of an iterative difference equation with a
weakly singular kernel.

Example 5. Suppose that𝑢(𝑛) satisfies the difference equation

𝑥 (𝑛) = 1 +

𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
−2/3

𝜏
𝑠

× [𝑥 (𝑠) +

𝑠−1

∑

𝜏=0

(𝑡
𝑠
− 𝑡
𝜏
)
−2/3

𝜏
𝜏
𝑥 (𝜏) (ln |𝑥 (𝜏)|4)

1/4

] ,

∀𝑛 ∈ N,
(55)

where 𝑡
0
= 0, 𝜏

𝑠
= 𝑡
𝑠+1

− 𝑡
𝑠
> 0, sup

𝑠∈N,0≤𝑠≤𝑛−1{𝜏𝑠, 𝑠 ∈ N} = 𝜏,
and lim

𝑛→∞
𝑡
𝑛
= ∞. Then we have

|𝑥 (𝑛)| ≤ 1 +

𝑛−1

∑

𝑠=0

(𝑡
𝑛
− 𝑡
𝑠
)
−2/3

𝜏
𝑠

× [|𝑥 (𝑠)| +

𝑠−1

∑

𝜏=0

(𝑡
𝑠
− 𝑡
𝜏
)
−2/3

×𝜏
𝜏
|𝑥 (𝜏)| (ln |𝑥 (𝜏)|4)

1/4

] ,

(56)

for all 𝑛 ∈ N. Let 𝑎(𝑛) ≡ 𝑏(𝑛) ≡ 1, ℎ(𝑛) ≡ 0, 𝛽 = 1/3, 𝑝 =

4/3, 𝑞 = 4, 𝑤
1
(𝑢) ≡ 1, 𝑤

2
(𝑢) = 𝑢(ln 𝑢4)1/4. From (18) to (20)

we obtain that

𝐻
1
(𝑢) := ∫

𝑢

0

𝑑𝑠 = 𝑢, 𝑢 > 0, 𝐻
1
(∞) = ∞,

𝐻
−1

1
(𝑢) = 𝑢,

𝐻
2
(𝑢) :=∫

𝑢

1

𝑑𝑠

𝑠

= ln 𝑢, 𝑢 > 0, 𝐻
2
(∞) = ∞,

𝐻
−1

2
(𝑢) = 𝑒

𝑢
,

𝐻
3
(𝑢) :=∫

𝑢

1

𝑑𝑠

𝑠

= ln 𝑢, 𝑢 > 0, 𝐻
3
(∞) = ∞,

𝐻
−1

3
(𝑢) = 𝑒

𝑢
,

𝑓 (𝑛) := 6
3
𝜏[

𝑒
4𝑡𝑛/3

(4/3)
1/9
Γ (

1

9

)]

3

,

𝑔 (𝑛) := 𝜏(

𝑒
4𝑡𝑛/3

(4/3)
1/9
Γ (

1

9

))

3

.

(57)
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UsingTheorem 4, we get

𝑢 (𝑛)

≤ {exp[exp( ln(ln 8 + 63𝜏[ 𝑒
4𝑡𝑛/3

(4/3)
1/9
Γ (

1

9

)]

3

×

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

)

+ 𝜏(

𝑒
4𝑡𝑛/3

(4/3)
1/9
Γ (

1

9

))

3

×

𝑛−1

∑

𝑠=0

𝑒
−𝑞𝑡𝑠

)]}

1/𝑞

, ∀𝑛 ∈ N,

(58)

which is an upper bound of |𝑥(𝑛)| in (55).
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