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We present a parameterized family of finite-difference schemes to analyze the energy properties for linearly elastic constant-
coefficient Timoshenko systems considering shear deformation and rotatory inertia. We derive numerical energies showing the
positivity, and the energy conservation property and we show how to avoid a numerical anomaly known as locking phenomenon
on shear force. Our method of proof relies on discrete multiplier techniques.

1. Introduction

The importance of beam theories is well known in the
world of engineering and mathematics. The most commonly
used beam theories of linear elastic structures are the Euler-
Bernoulli beam, the Rayleigh beam, and the Timoshenko
beam, with the last being a hyperbolic partial differen-
tial equation that has many applications in cutting-edge
technologies for flexible structures, such as robotics. The
governing equations of Timoshenko beams are considered an
improvement over the Euler-Bernoulli and Rayleigh beams
since shear deformation is taken into account. The work of
Han et al. [1] offers an excellent description of these models
for transversely vibrating uniform beams.

There is a large number of publications concerning the
study of Timoshenko systems [2]. In general, this has been
always a description through a system of second-order dif-
ferential equations, in which the vibration amplitude and the
angle due to pure bending were the searched functions. One
instructive introduction in [3] contains important references
to the early progress in investigating the solutions that
represent the mechanical deformations of the Timoshenko
model.

The 1D equations to the theory of Timoshenko for plane
beams are given by

𝜌𝐴𝜑
𝑡𝑡

(𝑥, 𝑡) = 𝑆
𝑥

(𝑥, 𝑡) ,

𝜌𝐼𝜓
𝑡𝑡

(𝑥, 𝑡) = 𝑀
𝑥

(𝑥, 𝑡) − 𝑆 (𝑥, 𝑡) ,

(1)

where 𝑡 is the time, 𝑥 is the distance along the center line of
beam,𝜑 is the transverse displacement,𝜓 is the rotation of the
neutral axis due to bending, 𝜌 is the mass density of material,
𝑀 is the bendingmoment, 𝑆 is the transverse shear force,𝐴 is
the cross-section area, and 𝐼 is the second moment of cross-
section area. The relationship between stress and stretch for
elastic behavior of the elastic beam is given by

𝑀 (𝑥, 𝑡) = 𝐸𝐼𝜓
𝑥

(𝑥, 𝑡) ,

𝑆 (𝑥, 𝑡) = 𝑘𝐴𝐺 (𝜑
𝑥

(𝑥, 𝑡) + 𝜓 (𝑥, 𝑡)) ,

(2)

where 𝐸 is Young’s modulus, 𝐺 is the modulus of rigidity, and
𝑘 is the transverse shear factor.

Therefore, taking into account (2) and (1), Timoshenko
[2] established the following differential equations that incor-
porate the effects of transverse shear in the cross section of the
beam of length 𝐿:

𝜌
1
𝜑
𝑡𝑡

− 𝜅(𝜑
𝑥

+ 𝜓)
𝑥

= 0, in (0, 𝐿) × (0, 𝑇) , (3)

𝜌
2
𝜓
𝑡𝑡

− 𝑏𝜓
𝑥𝑥

+ 𝜅 (𝜑
𝑥

+ 𝜓) = 0, in (0, 𝐿) × (0, 𝑇) , (4)

where 𝜌
1

= 𝜌𝐴, 𝜅 = 𝑘𝐺𝐴, 𝜌
2

= 𝜌𝐼, and 𝑏 = 𝐸𝐼.
Now let us mention some numerical aspects concerning

1D Timoshenko systems. Space semidiscretizations are com-
mon in many works dealing with Timoshenko beams [4–8].
In general, they arise in the design of numerical schemes to
compute approximated solutions of continuous models. For
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example, a common approach consists in choosing a spatial
discretization taking into account the application of finite
elementmethods on partial differential equations.The results
are systems of ordinary differential equations in time 𝑡.

It is well known that standard Galerkin finite element
method using equal-order piecewise linear approximations
for the rotations 𝜓 and displacement 𝜑 yields locking phe-
nomenon. This means that this method produces unsatis-
factory numerical results when the thickness is very small.
From the point of view of the numerical analysis, the locking
phenomenon usually shows itself in that the a priori error
estimates for these methods depend on the thickness of
the structure in such a way that it degenerates when this
parameter becomes small. We recommend the notable works
by Arnold in [9], Hughes et al. [10], Prathap and Bhashyam
[11], Li [12], Loula et al. [13, 14], and Reddy [15] to a deep dis-
cussion of the subject. In particular, the locking phenomenon
is characterized by an overestimation on rigidity coefficient
given by

𝑏
ℎ

= 𝑏 (1 +
𝜅

12𝑏
ℎ
2
) , (5)

in the case of standard finite element method where ℎ is the
mesh-size (see [11]).

For a finite ℎ the overestimation 𝑏
ℎ
is grossly exaggerated

by the shear stiffness term and it modifies the bending rigid-
ity. In particular, for plane beams of rectangular geometry
with width 𝑎 and thickness 𝜖 we get 𝐴 = 𝑎𝜖, 𝐼 = 𝑎𝜖

3
/12

and 𝑏
ℎ
is rewritten as

𝑏
ℎ

= 𝐸𝐼 [1 +
𝑘
󸀠
𝐺

𝐸
(

ℎ

𝜖
)

2

] . (6)

We can see the locking on shear force in the limit case
𝜖 → 0. To avoid it we can take the limit ℎ → 0, but naturally
there exist limitations to computational cost.

This paper is mainly concerned with theoretical analysis
of finite-difference schemes applied toTimoshenko equations
(3)-(4) aiming to identify the locking numbers. To identify
them, we use the energy method adapted for our numerical
approach. We do not attempt to converge questions for
the semidiscrete schemes treated here. We refer the readers
to the excellent survey of Zuazua [16] where semidiscrete
hyperbolic problems have been considered.

The remainder of the paper is organized as follows. In
Section 2 we established the energy conservation property
to continuous model of Timoshenko beams. In Section 3
we introduce numerical schemes in spatial finite difference
applied to Timoshenko equations and we show how the
locking numbers appear. To do this, we use the 𝜃-scheme.
Finally, in Section 4 we conclude our work with future
perspectives.

2. Energy Conservation Property of
the Timoshenko Equations

In this section we describe the energy conservation property
with respect to energy functional of the Timoshenko equa-
tions.

For our purposes we consider here the following bound-
ary conditions of more practical interest that are given by

free-free:
𝜅 (𝜑
𝑥

+ 𝜓) (0, 𝑡) = 𝑏𝜓
𝑥

(0, 𝑡) = 0,

𝜅 (𝜑
𝑥

+ 𝜓) (𝐿, 𝑡) = 𝑏𝜓
𝑥

(𝐿, 𝑡) = 0,

(7)

built in-free:
𝜑 (0, 𝑡) = 𝜓 (0, 𝑡) = 0,

𝜅 (𝜑
𝑥

+ 𝜓) (𝐿, 𝑡) = 𝑏𝜓
𝑥

(𝐿, 𝑡) = 0,

(8)

hinged-hinged:

𝜑 (0, 𝑡) = 𝜓
𝑥

(0, 𝑡) = 0, 𝜑 (𝐿, 𝑡) = 𝜓
𝑥

(𝐿, 𝑡) = 0, (9)

built in-hinged:

𝜑 (0, 𝑡) = 𝜓 (0, 𝑡) = 0, 𝜑 (𝐿, 𝑡) = 𝜓
𝑥

(𝐿, 𝑡) = 0, (10)

built in-built in:

𝜑 (0, 𝑡) = 𝜓 (0, 𝑡) = 𝜑 (𝐿, 𝑡) = 𝜓 (𝐿, 𝑡) = 0, (11)

for all 𝑡 ≥ 0. Additionally we consider initial conditions given
by

𝜑 (⋅, 0) = 𝜑
0

(⋅) , 𝜑
𝑡

(⋅, 0) = 𝜑
1

(⋅) ,

𝜓 (⋅, 0) = 𝜓
0

(⋅) , 𝜓
𝑡

(⋅, 0) = 𝜓
1

(⋅) , ∀𝑥 ∈ (0, 𝐿) .

(12)

There exists an important nonlinear functional related to
Timoshenko equations. It is an energy functional composed
of potential and kinetic energy. Indeed, taking into considera-
tion any boundary conditions (7)–(11) the energy of solutions
for Timoshenko equations (3)-(4) is given by

𝐸 (𝑡) :=
𝜌
1

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜑𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +
𝜌
2

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜓𝑡
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+
𝑏

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜓𝑥
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +
𝜅

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜑𝑥 + 𝜓
󵄨󵄨󵄨󵄨
2

𝑑𝑥.

(13)

As usual, we can find that if we multiply formally the first
equation in (3) by 𝜑

𝑡
we get

𝜌
1

∫

𝐿

0

𝜑
𝑡𝑡

𝜑
𝑡
𝑑x − 𝜅 ∫

𝐿

0

(𝜑
𝑥

+ 𝜓)
𝑥
𝜑
𝑡
𝑑𝑥 = 0, (14)

and then
𝜌
1

2

𝑑

𝑑𝑡
∫

𝐿

0

𝜑
2

𝑡
𝑑𝑥 − 𝜅 (𝜑

𝑥
+ 𝜓) 𝜑

𝑡

󵄨󵄨󵄨󵄨󵄨

𝐿

0
+ 𝜅 ∫

𝐿

0

(𝜑
𝑥

+ 𝜓) 𝜑
𝑡𝑥

𝑑𝑥 = 0.

(15)

On the other hand, if we multiply formally the second
equation in (4) by 𝜓

𝑡
we get

𝜌
2

2

𝑑

𝑑𝑡
∫

𝐿

0

𝜓
2

𝑡
𝑑𝑥 − 𝑏𝜓

𝑥
𝜓
𝑡

󵄨󵄨󵄨󵄨󵄨

𝐿

0
+

𝑏

2

𝑑

𝑑𝑡
∫

𝐿

0

𝜓
2

𝑥
𝑑𝑥

+ 𝜅 ∫

𝐿

0

(𝜑
𝑥

+ 𝜓) 𝜓
𝑡
𝑑𝑥 = 0.

(16)
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If we add up (15) and (16) we get

𝑑

𝑑𝑡
[

𝜌
1

2
∫

𝐿

0

𝜑
2

𝑡
𝑑𝑥 +

𝜌
2

2
∫

𝐿

0

𝜓
2

𝑡
𝑑𝑥

+
𝑏

2
∫

𝐿

0

𝜓
2

𝑥
𝑑𝑥 +

𝜅

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜑𝑥 + 𝜓
󵄨󵄨󵄨󵄨
2

𝑑𝑥]

− b𝜓
𝑥
𝜓
𝑡

󵄨󵄨󵄨󵄨
𝐿

0
− 𝜅 (𝜑

𝑥
+ 𝜓) 𝜑

𝑡

󵄨󵄨󵄨󵄨
𝐿

0
= 0,

(17)

and then
𝑑

𝑑𝑡
𝐸 (𝑡) − 𝑏𝜓

𝑥
𝜓
𝑡

󵄨󵄨󵄨󵄨
𝐿

0
− 𝜅(𝜑

𝑥
+ 𝜓)𝜑

𝑡

󵄨󵄨󵄨󵄨
𝐿

0
= 0. (18)

Taking any boundary conditions (7)–(11) we obtain that

𝐸 (𝑡) =
𝜌
1

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜑1
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +
𝜌
2

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜓1
󵄨󵄨󵄨󵄨
2

𝑑𝑥 +
𝑏

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜓0𝑥
󵄨󵄨󵄨󵄨
2

𝑑𝑥

+
𝜅

2
∫

𝐿

0

󵄨󵄨󵄨󵄨𝜑0𝑥 + 𝜓
0

󵄨󵄨󵄨󵄨
2

𝑑𝑥 = 𝐸 (0) , ∀𝑡 ≥ 0.

(19)

We call this the energy conservation property and the
Timoshenko equations are purely conservative. Therefore, it
is interesting and convenient that numerical schemes applied
to Timoshenko equations preserve consistently the property
(19). That is to say, the numerical energy must be nonlinear
and positive and it will obey the energy conservation property.

3. Finite-Difference Semidiscretizations and
Properties

In this section, we introduce numerical schemes in finite-
difference semi-discretization applied to 1D Timoshenko
equations.

Firstly, we present the equations used by Wright [8] and
we obtain the associated energy (locking free) by using the
energymethod.Thismethod consists in the use of the discrete
multiplier techniques as described by Infante and Zuazua
[17].

Secondly, we consider the 𝜃-scheme applied to angle
rotation 𝜓 and we determine the values of 𝜃 to achieve the
positivity of the associated energy and to avoid the number
𝑏
ℎ
in (6). Again, we use the discrete multiplier techniques.
For our purposes we consider 𝐽 an integer nonnegative

and ℎ = 𝐿/(𝐽 + 1) a spatial subdivision of the interval (0, 𝐿)

given by

0 = 𝑥
0

< 𝑥
1

< ⋅ ⋅ ⋅ < 𝑥
𝐽

< x
𝐽+1

= 𝐿, (20)

with 𝑥
𝑗

= 𝑗ℎ each node of the mesh. We write the following
finite-difference semidiscretization to (3)-(4) as

𝜌
1
𝜑
󸀠󸀠

𝑗
− 𝜅Δ
ℎ
𝜑
𝑗

− 𝜅
𝜓
𝑗+1

− 𝜓
𝑗−1

2ℎ
= 0, (21)

𝜌
2
𝜓
󸀠󸀠

𝑗
− 𝑏Δ
ℎ
𝜓
𝑗

+ 𝜅
𝜑
𝑗+1

− 𝜑
𝑗−1

2ℎ

+ 𝜅
𝜓
𝑗+1

+ 2𝜓
𝑗

+ 𝜓
𝑗−1

4
= 0,

(22)

where we use

Δ
ℎ
𝜑
𝑗

:=
𝜑
𝑗+1

− 2𝜑
𝑗

+ 𝜑
𝑗−1

ℎ2
, Δ

ℎ
𝜓
𝑗

:=
𝜓
𝑗+1

− 2𝜓
𝑗

+ 𝜓
𝑗−1

ℎ2
,

(23)

to discrete Laplacian in one spatial dimension. Here “󸀠”
denotes derivation with respect to time. Moreover, we use
𝜑
𝑗

= 𝜑
𝑗
(𝑡), 𝜓

𝑗
= 𝜓
𝑗
(𝑡) for all 𝑗 = 1, 2, . . . , 𝐽 and

𝑡 > 0 to denote the approximate values of the continuous
solutions 𝜑(𝑗ℎ, 𝑡) and 𝜓(𝑗ℎ, 𝑡) on the mesh, respectively. The
homogeneous boundary conditions (7)–(11) in semidiscrete
setting are given by

(i) free-free:

𝜅 [
𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] = 0,

𝜅 [
𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] = 0,

𝑏
𝜓
1

− 𝜓
0

ℎ
−

𝜅ℎ

2
[

𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] = 0,

𝑏
𝜓
𝐽+1

− 𝜓
𝐽

ℎ
+

𝜅ℎ

2
[

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] = 0,

(24)

(ii) built in-free:

𝜑
0

= 0, 𝜅 [
𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] = 0,

𝜓
0

= 0, 𝑏
𝜓
𝐽+1

− 𝜓
𝐽

ℎ
+

𝜅ℎ

2
[

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
]=0,

(25)

(iii) hinged-hinged:

𝜑
0

= 𝜑
𝐽+1

= 0,

𝑏
𝜓
1

− 𝜓
0

ℎ
−

𝜅ℎ

2
[

𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] = 0,

𝑏
𝜓
𝐽+1

− 𝜓
𝐽

ℎ
+

𝜅ℎ

2
[

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] = 0,

(26)

(iv) built in-hinged:

𝜑
0

= 𝜑
𝐽+1

= 0,

𝜓
0

= 0, 𝑏
𝜓
𝐽+1

− 𝜓
𝐽

ℎ
+

𝜅ℎ

2
[

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] = 0,

(27)

(v) built in-built in:

𝜑
0

= 𝜑
𝐽+1

= 𝜓
0

= 𝜓
𝐽+1

= 0, (28)

∀𝑡 ∈ (0, 𝑇). The initial conditions are discretized as follows:

𝜑
𝑗

(0) = 𝜑
0

𝑗
, 𝜑

󸀠

𝑗
(0) = 𝜑

1

𝑗
, 𝜓

𝑗
(0) = 𝜓

0

𝑗
,

𝜓
󸀠

𝑗
(0) = 𝜓

1

𝑗
, 𝑗 = 0, 1, 2, . . . , 𝐽 + 1.

(29)



4 Journal of Applied Mathematics

Equations (21)-(22) were the object of the study in the
works of Wright [7, 8] and the references contained therein.
In particular, these equations can be obtained by assembling
the stiffness and (lumped) mass matrices of a two-noded
beam element which has linear shape functions for rotation
𝜓 and displacement 𝜑. Moreover, these equations are locking
free; that is, the associated numerical energy is free of the
overestimation (6). See Proposition 1 below.

The energy of system (21)–(29) is given by

𝐸
ℎ

(𝑡) :=
ℎ

2

𝐽

∑

𝑗=1

𝜌
1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
ℎ

2

𝐽

∑

𝑗=1

𝜌
2

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
ℎ

2

𝐽

∑

𝑗=0

[𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+𝜅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
+

𝜓
𝑗+1

+ 𝜓
𝑗

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] ,

(30)

which is a discretization of the continuous energy 𝐸(𝑡) given
in (13). Note that 𝐸

ℎ
(𝑡) is free of the overestimation (5).

Proposition 1 (conservation of energy). For any ℎ > 0 and
(𝜑
𝑗
(𝑡), 𝜑
󸀠

𝑗
(𝑡), 𝜓
𝑗
(𝑡), 𝜓
󸀠

𝑗
(𝑡)) solutions of (21)-(22) and for any

boundary conditions (24)–(28) and initial conditions (29), the
energy is given by

𝐸
ℎ

(𝑡) :=
ℎ

2

𝐽

∑

𝑗=1

𝜌
1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
ℎ

2

𝐽

∑

𝑗=1

𝜌
2

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
ℎ

2

𝐽

∑

𝑗=0

[𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+𝜅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
+

𝜓
𝑗+1

+ 𝜓
𝑗

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] ,

(31)

and it satisfies

𝐸
ℎ

(𝑡) = 𝐸
ℎ

(0) , ∀𝑡 ∈ [0, 𝑇] . (32)

Proof. To prove our affirmation we use the energy method
in the following manner: we multiply (21)-(22) by using the
discrete multipliers ℎ𝜑

󸀠

𝑗
(𝑡) and ℎ𝜓

󸀠

𝑗
(𝑡), respectively, and we

take the sum over 𝑗 = 1, 2, . . . , 𝐽. Then we obtain

𝜌
1

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

= 𝜅ℎ

𝐽

∑

𝑗=1

[
𝜑
𝑗+1

− 2𝜑
𝑗

+ 𝜑
𝑗−1

ℎ2
+

𝜓
𝑗+1

− 𝜓
𝑗−1

2ℎ
] 𝜑
󸀠

𝑗
,

𝜌
2

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

= 𝑏ℎ

𝐽

∑

𝑗=1

[
𝜓
𝑗+1

− 2𝜓
𝑗

+ 𝜓
𝑗−1

ℎ2
] 𝜓
󸀠

𝑗

− 𝜅ℎ

𝐽

∑

𝑗=1

𝜑
𝑗+1

− 𝜑
𝑗−1

2ℎ
𝜓
󸀠

𝑗

− 𝜅ℎ

𝐽

∑

𝑗=1

𝜓
𝑗+1

+ 2𝜓
𝑗

+ 𝜓
𝑗−1

4
𝜓
󸀠

𝑗
.

(33)

Some elementary calculations show that

𝜅ℎ

𝐽

∑

𝑗=1

[
𝜑
𝑗+1

− 2𝜑
𝑗

+ 𝜑
𝑗−1

ℎ2
+

𝜓
𝑗+1

− 𝜓
𝑗−1

2ℎ
] 𝜑
󸀠

𝑗

=
𝜅ℎ

ℎ

𝐽

∑

𝑗=1

[
𝜑
𝑗+1

− 𝜑
𝑗

ℎ
+

𝜓
𝑗+1

+ 𝜓
𝑗

2
] 𝜑
󸀠

𝑗

−
𝜅ℎ

ℎ

𝐽

∑

𝑗=1

[
𝜑
𝑗

− 𝜑
𝑗−1

ℎ
+

𝜓
𝑗

+ 𝜓
𝑗−1

2
] 𝜑
󸀠

𝑗

=
𝜅ℎ

ℎ

𝐽

∑

𝑗=1

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
𝜑
󸀠

𝑗
+

𝜅ℎ

ℎ

𝐽

∑

𝑗=1

𝜓
𝑗+1

+ 𝜓
𝑗

2
𝜑
󸀠

𝑗

−
𝜅ℎ

ℎ

𝐽−1

∑

𝑗=0

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
𝜑
󸀠

𝑗+1
−

𝜅ℎ

ℎ

𝐽−1

∑

𝑗=0

𝜓
𝑗+1

+ 𝜓
𝑗

2
𝜑
󸀠

𝑗+1

=
𝜅ℎ

ℎ

𝐽

∑

𝑗=0

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
𝜑
󸀠

𝑗
+

𝜅ℎ

ℎ

𝐽

∑

𝑗=0

𝜓
𝑗+1

+ 𝜓
𝑗

2
𝜑
󸀠

𝑗

−
𝜅ℎ

ℎ

𝐽

∑

𝑗=0

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
𝜑
󸀠

𝑗+1
−

𝜅ℎ

ℎ

𝐽

∑

𝑗=0

𝜓
𝑗+1

+ 𝜓
𝑗

2
𝜑
󸀠

𝑗+1

− 𝜅
𝜑
1

− 𝜑
0

ℎ
𝜑
󸀠

0
− 𝜅

𝜓
1

+ 𝜓
0

2
𝜑
󸀠

0
+ 𝜅

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
𝜑
󸀠

𝐽+1

+ 𝜅
𝜓
𝐽+1

+ 𝜓
𝐽

2
𝜑
󸀠

𝐽+1
,

(34)

and then we can write

𝜌
1

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

= −𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑗+1

− 𝜑
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=S0ℎ(𝑡)

−𝜅ℎ

𝐽

∑

𝑗=0

𝜓
𝑗+1

+ 𝜓
𝑗

2

𝜑
󸀠

𝑗+1
− 𝜑
󸀠

𝑗

ℎ
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=S1ℎ(𝑡)

− 𝜅 [
𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] 𝜑
󸀠

0

+ 𝜅 [
𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] 𝜑
󸀠

𝐽+1
.

(35)

Analogously,

𝑏ℎ

𝐽

∑

𝑗=1

[
𝜓
𝑗+1

− 2𝜓
𝑗

+ 𝜓
𝑗−1

ℎ2
] 𝜓
󸀠

𝑗
− 𝜅ℎ

𝐽

∑

𝑗=1

𝜑
𝑗+1

− 𝜑
𝑗−1

2ℎ
𝜓
󸀠

𝑗

− 𝜅ℎ

𝐽

∑

𝑗=1

𝜓
𝑗+1

+ 2𝜓
𝑗

+ 𝜓
𝑗−1

4
𝜓
󸀠

𝑗

= −𝑏
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

+ 𝜓
𝑗

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
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− 𝑏
𝜓
1

− 𝜓
0

ℎ
𝜓
󸀠

0
+ 𝑏

𝜓
𝐽+1

− 𝜓
𝐽

ℎ
𝜓
󸀠

𝐽+1

−𝜅ℎ

𝐽

∑

𝑗=0

𝜑
𝑗+1

− 𝜑
𝑗

ℎ

𝜓
󸀠

𝑗
+ 𝜓
󸀠

𝑗+1

2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=S2ℎ(𝑡)

+
𝜅ℎ

2
[

𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] 𝜓
󸀠

0

+
𝜅ℎ

2
[

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] 𝜓
󸀠

𝐽+1
.

(36)

Adding the functionals S
𝑖ℎ

(𝑡), 𝑖 = 0, 1, 2, and collecting
the terms above we can write

𝜌
1

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜌
2

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

= −
ℎ

2
𝜅

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[(
𝜑
𝑗+1

− 𝜑j

ℎ
) + (

𝜓
𝑗+1

+ 𝜓
𝑗

2
)]

2

− 𝑏
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝜅 [
𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] 𝜑
󸀠

0

+ 𝜅 [
𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] 𝜑
󸀠

𝐽+1
− 𝑏

𝜓
1

− 𝜓
0

ℎ
𝜓
󸀠

0

+ 𝑏
𝜓
𝐽+1

− 𝜓
𝐽

ℎ
𝜓
󸀠

𝐽+1
+

𝜅ℎ

2
[

𝜑
1

− 𝜑
0

ℎ
+

𝜓
1

+ 𝜓
0

2
] 𝜓
󸀠

0

+
𝜅ℎ

2
[

𝜑
𝐽+1

− 𝜑
𝐽

ℎ
+

𝜓
𝐽+1

+ 𝜓
𝐽

2
] 𝜓
󸀠

𝐽+1
.

(37)

We note that the boundary conditions (24)–(28) result
naturally from this procedure. Therefore, for any boundary
conditions (24)–(28) we get

𝑑

𝑑𝑡
𝐸
ℎ

(𝑡) = 0 󳨐⇒ 𝐸
ℎ

(𝑡) = 𝐸
ℎ

(0) , ∀𝑡 ∈ [0, 𝑇] , (38)

and therefore the system (21)–(29) is conservative in
agreement with continuous counterpart.

3.1. The Locking Number from 𝜃-Scheme. In general, discrete
models may not share the same qualitative behavior as their
continuous counterparts. This is the case of locking phe-
nomenon on shear force in Timoshenko beams characterized
by overestimation (6).

Here we show for 𝜃-scheme how locking number appears.
We assume a convex linear combination to angle rotation 𝜓

in the following manner: we replace 𝜓
𝑗
(𝑡) by

𝜃𝜓
𝑗+1

(𝑡) + (1 − 2𝜃) 𝜓
𝑗

(𝑡) + 𝜃𝜓
𝑗−1

(𝑡) , ∀𝑡 ∈ [0, 𝑇] . (39)

Then we establish a difference scheme for (3)-(4) as
follows:

𝜌
1
𝜑
󸀠󸀠

𝑗
− 𝜅Δ
ℎ
𝜑
𝑗

− 𝜅
𝜓
𝑗+1

− 𝜓
𝑗−1

2ℎ
= 0,

𝜌
2
𝜓
󸀠󸀠

𝑗
− 𝑏Δ
ℎ
𝜓
𝑗

+ 𝜅
𝜑
𝑗+1

− 𝜑
𝑗−1

2ℎ

+ 𝜅 (𝜃𝜓
𝑗+1

+ (1 − 2𝜃) 𝜓
𝑗

+ 𝜃𝜓
𝑗−1

) = 0,

(40)

where 𝜃 ∈ is a positive parameter. For simplicity we consider
homogeneous Dirichlet boundary conditions

𝜑
0

(𝑡) = 𝜑
𝐽+1

(𝑡) = 𝜓
0

(𝑡) = 𝜓
𝐽+1

(𝑡) = 0, ∀𝑡 ≥ 0. (41)

The energy of (40)-(41) is given by

𝐸
𝜃ℎ

(𝑡) :=
ℎ

2

𝐽

∑

𝑗=0

[𝜌
1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜌
2

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑏
𝜃ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+𝜅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑗+1

− 𝜑
𝑗

ℎ
+

𝜓
𝑗+1

+ 𝜓
𝑗

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

] ,

(42)

where we have that

𝑏
𝜃ℎ

= 𝑏 [1 +
𝜅

𝑏
ℎ
2

(
1

4
− 𝜃)] . (43)

It is clear that the positivity of𝐸
𝜃ℎ

(𝑡) holds for 𝜃 ∈ [0, 1/4]

and only for 𝜃 = 1/4 we have that 𝑏
(1/4)ℎ

= 𝑏. To see how the
locking number 𝑏

𝜃ℎ
for any 𝜃 ∈ [0, 1/4[ affects the numerical

solution, again we consider a rectangular beam, where 𝐴 =

𝑎𝜖, 𝐼 = 𝑎𝜖
3
/12 with width 𝑎 and thickness 𝜖 and then

𝑏
𝜃ℎ

= 𝑏 [1 +
𝜅

𝑏
ℎ
2

(
1

4
− 𝜃)]

= 𝐸𝐼 [1 + 12
𝑘
󸀠
𝐺

𝐸
(

ℎ

𝜖
)

2

(
1

4
− 𝜃)] .

(44)

Clearly for 0 ≤ 𝜃 < 1/4wedonot have accurate numerical
approximations when the beam thickness is small. This is
the case of 𝜃 = 1/6 (equivalent to standard finite element
method) such that 𝜓(𝑥

𝑗
, 𝑡) ≈ (𝜓

𝑗+1
(𝑡) + 4𝜓

𝑗
(𝑡) + 𝜓

𝑗−1
(𝑡))/6

and the same problem occurs with standard finite difference
given by 𝜓(𝑥

𝑗
, 𝑡) ≈ 𝜓

𝑗
(case 𝜃 = 0).

Proposition 2. For any ℎ > 0 and (𝜑
𝑗
(𝑡), 𝜑
󸀠

𝑗
(𝑡), 𝜓
𝑗
(𝑡), 𝜓
󸀠

𝑗
(𝑡))

solutions of (40)-(41) we have

𝐸
𝜃ℎ

(𝑡) = 𝐸
𝜃ℎ

(0) , ∀𝑡 ∈ [0, 𝑇] . (45)

Proof. In what follows we use the results from Proposition 1.
Then we have
2

∑

𝑚=0

S
𝑚ℎ

(𝑡) = − 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[(
𝜑
𝑗+1

− 𝜑
𝑗

ℎ
) + (

𝜓
𝑗+1

+ 𝜓
𝑗

2
)]

2

+ 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

+ 𝜓
𝑗

2
)

2

.

(46)
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On the other hand,

𝜅ℎ

𝐽

∑

𝑗=1

[𝜃𝜓
𝑗+1

+ (1 − 2𝜃) 𝜓
𝑗

+ 𝜃𝜓
𝑗−1

] 𝜓
󸀠

𝑗

= 𝜅𝜃ℎ

𝐽

∑

𝑗=1

[𝜓
𝑗+1

− 2𝜓
𝑗

+ 𝜓
𝑗−1

] 𝜓
󸀠

𝑗
+ 𝜅ℎ

𝐽

∑

𝑗=1

𝜓
𝑗
𝜓
󸀠

𝑗
,

= − 𝜅𝜃
ℎ
3

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝜅ℎ

𝐽

∑

𝑗=1

𝜓
𝑗
𝜓
󸀠

𝑗
.

(47)

Therefore,

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[𝜌
1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜌
2

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

]

= −
ℎ

2
𝜅

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[(
𝜑
𝑗+1

− 𝜑
𝑗

ℎ
) + (

𝜓
𝑗+1

+ 𝜓
𝑗

2
)]

2

− (𝑏 − 𝜅𝜃ℎ
2
)

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

+ 𝜓
𝑗

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

𝜓
2

𝑗

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=Jℎ(𝑡)

(48)

NowJ
ℎ
(𝑡) is rewritten as

J
ℎ

(𝑡) = 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

+ 𝜓
𝑗

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(𝜓
𝑗+1

− 𝜓
𝑗
)
2

+ 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[𝜓
2

𝑗+1
− 2𝜓
𝑗+1

𝜓
𝑗
]

= − 𝜅
ℎ
3

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

− 𝜓
𝑗

ℎ
)

2

+ 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[

𝜓
2

𝑗+1
+ 2𝜓
𝑗+1

𝜓
𝑗

+ 𝜓
2

𝑗

4

+

4𝜓
2

𝑗+1
− 8𝜓
𝑗+1

𝜓
𝑗

4
]

= − 𝜅
ℎ
3

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

− 𝜓
𝑗

ℎ
)

2

+ 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[

5𝜓
2

𝑗+1
− 6𝜓
𝑗+1

𝜓
𝑗

+ 𝜓
2

𝑗

4
] .

(49)

On the other hand, having in mind the boundary condi-
tions (41), we have that

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑗+1

󵄨󵄨󵄨󵄨󵄨

2

=

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜓
𝑗

󵄨󵄨󵄨󵄨󵄨

2

, (50)

and then

J
ℎ

(𝑡) = − 𝜅
ℎ
3

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

− 𝜓
𝑗

ℎ
)

2

+ 𝜅
ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[

3𝜓
2

𝑗+1
− 6𝜓
𝑗+1

𝜓
𝑗

+ 3𝜓
2

𝑗

4
]

= − 𝜅
ℎ
3

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

− 𝜓
𝑗

ℎ
)

2

+ 𝜅
3ℎ
3

8

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

− 𝜓
𝑗

ℎ
)

2

= − 𝜅
ℎ
3

8

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

(
𝜓
𝑗+1

− 𝜓
𝑗

ℎ
)

2

.

(51)

Therefore, we obtain that

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[𝜌
1

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜌
2

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

2

]

= −
ℎ

2
𝜅

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

[(
𝜑
𝑗+1

− 𝜑
𝑗

ℎ
) + (

𝜓
𝑗+1

+ 𝜓
𝑗

2
)]

2

− [𝑏 + 𝜅ℎ
2

(
1

4
− 𝜃)]

ℎ

2

𝑑

𝑑𝑡

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑗+1

− 𝜓
𝑗

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

(52)

and then we get

𝑑

𝑑𝑡
𝐸
𝜃ℎ

(𝑡) = 0 󳨐⇒ 𝐸
𝜃ℎ

(𝑡) = 𝐸
𝜃ℎ

(0) , ∀𝑡 ∈ [0, 𝑇] , (53)

where 𝐸
𝜃ℎ

(𝑡) is given by (42).

Remark 3. Deriving the energy 𝐸
𝜃ℎ

(𝑡), collecting the com-
mon terms, and using the conservation law (53) we obtain
the semidiscrete equations given by

𝜌
1
𝜑
󸀠󸀠

𝑗
− 𝜅Δ
ℎ
𝜑
𝑗

− 𝜅
𝜓
𝑗+1

− 𝜓
𝑗−1

2ℎ
= 0,

𝜌
2
𝜓
󸀠󸀠

𝑗
− 𝑏Δ
ℎ
𝜓
𝑗

− 𝜅ℎ
2

(
1

4
− 𝜃) Δ

ℎ
𝜓
𝑗

+ 𝜅
𝜑
𝑗+1

− 𝜑
𝑗−1

2ℎ
+ 𝜅

𝜓
𝑗+1

+ 2𝜓
𝑗

+ 𝜓
𝑗−1

4
= 0.

(54)

Naturally, we can notice that (54) is inspired in a disper-
sive approximation of the Timoshenko equations given by

𝜌
1
𝜑
𝑡𝑡

− 𝜅(𝜑
𝑥

+ 𝜓)
𝑥

= 0, (55)

𝜌
2
𝜓
𝑡𝑡

− 𝑏𝜓
𝑥𝑥

− 𝜅ℎ
2

(
1

4
− 𝜃) 𝜓

𝑥𝑥
+ 𝜅 (𝜑

𝑥
+ 𝜓) = 0. (56)



Journal of Applied Mathematics 7

For any 𝜃 ∈ [0, 1/4[, (56) is a typical example of a
modified PDE. In [18], LeVeque offers an excellent approach
of numerical methods applied to PDE that modify the
original PDE.

4. Conclusion

In this work, we have developed nonstandard finite-
difference semidiscretizations applied to the Timoshenko
equations (3)-(4) by using the 𝜃-method. We showed by
the discrete energy method that the numerical equations
preserve the positivity and the conservation to numerical
energy and we identified a numerical anomaly known as
locking phenomenon for 𝜃 ∈ [0, 1/4[.

The results presented here are important from point of
viewof the theoretical numerical analysis. Actually, an impor-
tant problem from stabilization theory of the Timoshenko
equations (3)-(4) says respect to exponential decay by taking
into account some dissipative mechanism. In particular,
MuñozRivera andRacke [19, 20] showed that (3)-(4) on effect
of an only damping of the type 𝜓

𝑡
on angle rotation equations

are exponentially stable if and only if 𝜅/𝜌
1

= 𝑏/𝜌
2
. Therefore,

it is interesting to know if the locking free scheme (𝜃 = 1/4)

preserves the same qualitative behavior.
Important issues to be investigated concern observability

and control of numerical solutions of Timoshenko equations.
To the best of our knowledge, we did not find in the literature
numerical problems concerning observability uniform to
semidiscrete schemes applied to the Timoshenko equations.
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