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This paper is concerned with the numerical stability of Runge-Kutta methods for a class of nonlinear functional differential and
functional equations. The sufficient conditions for the stability and asymptotic stability of (𝑘, 𝑙)-algebraically stable Runge-Kutta
methods are derived. A numerical test is given to confirm the theoretical results.

1. Introduction

This paper is concerned with the numerical solution of the
following nonlinear functional differential and functional
equations (FDFEs):

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑧 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝑔 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑧 (𝑡 − 𝜏)) ,

𝑡 ≥ 0,

(1)

with the initial conditions

𝑦 (𝑡) = 𝜑 (𝑡) , 𝑧 (𝑡) = 𝜓 (𝑡) , 𝑡 ≤ 0, (2)

where 𝜏 > 0 is a real constant, 𝑦 and 𝑧 are unknown vectors
of complex functions, 𝑓 and 𝑔 are given vectors of complex
functions with appropriate domains of definition, and 𝜑 and
𝜓 are given vectors of complex functions which satisfy the
consistency relation

𝜓 (0) = 𝑔 (0, 𝜑 (0) , 𝜑 (−𝜏) , 𝜓 (−𝜏)) . (3)

Systems of the form (1) are sometimes called hybrid
systems [1] or coupled delay differential and difference
equations [2, 3]. They arise widely in the fields of science and
technology, such as control systems, physics, and biology (see
[1–6] and the references therein). In particular, they include

neutral delay differential equations (NDDEs) as special cases.
In fact, the explicit NDDEs

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑦


(𝑡 − 𝜏)) (4)

are equivalent to

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑧 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , 𝑧 (𝑡 − 𝜏)) ,
(5)

while the implicit NDDEs

[𝑧 (𝑡) − 𝐺 (𝑡, 𝑧 (𝑡 − 𝜏))]

= 𝑓 (𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏)) (6)

are equivalent to

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) + 𝐺 (𝑡, 𝑧 (𝑡 − 𝜏)) , 𝑧 (𝑡 − 𝜏)) ,

𝑧 (𝑡) = 𝑦 (𝑡) + 𝐺 (𝑡, 𝑧 (𝑡 − 𝜏)) .
(7)

In recent years, numerical methods for explicit NDDEs
and implicit NDDEs have been studied extensively and a
significant number of numerical stability results have been
found (see [7–20]). However, the above results of numerical
stability cannot be applied to the more general problem (1).
In 1999, Liu [6] discussed the numerical stability of Runge-
Kutta collocation methods with a constrained grid and linear
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𝜃-methods with a uniformed grid for linear systems of
FDFEs:

𝑦


(𝑡) + 𝐴
1
𝑦 (𝑡) + 𝐴

2
𝑦 (𝑡 − 𝜏) + 𝐵

1
𝑧 (𝑡 − 𝜏) = 0,

𝑧 (𝑡) + 𝐴
3
𝑦 (𝑡) + 𝐴

4
𝑦 (𝑡 − 𝜏) + 𝐵

2
𝑧 (𝑡 − 𝜏) = 0,

𝑡 ≥ 0,

(8)

where 𝜏 is a positive constant and 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐵
1
, and

𝐵
2
are the coefficient matrices. Then, the asymptotic stability

of linear multistep methods, one-leg methods, Runge-Kutta
methods, multistep Runge-Kutta methods, and Rosenbrock
methods for linear systems of FDFEs (8) was investigated in
papers [21–23], respectively. Recently, Yu and Li [24] and Yu
andWen [25] dealt with the stability and asymptotic stability
of the analytical and numerical solutions (obtained by one-
leg methods) of nonlinear FDFEs (1), respectively. In the
present paper, we further discuss the numerical stability of
Runge-Kuttamethods for the nonlinear FDFEs.The sufficient
conditions for the stability and asymptotic stability of (𝑘, 𝑙)-
algebraically stable Runge-Kutta methods are derived.

2. Stability of the Problem Class
𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿)

Let ⟨⋅, ⋅⟩ be an inner product and ‖ ⋅ ‖ the corresponding
norm in complex 𝑁-dimensional space C𝑁; assume that the
mappings 𝑓 and 𝑔 in (1) satisfy the following conditions:

Re ⟨𝑢
1
− 𝑢
2
, 𝑓 (𝑡, 𝑢

1
, V, 𝑤) − 𝑓 (𝑡, 𝑢

2
, V, 𝑤)⟩

≤ 𝛼
𝑢1 − 𝑢

2


2

, ∀𝑡 ≥ 0, 𝑢
1
, 𝑢
2
, V, 𝑤 ∈ C

𝑁
,

(9)

𝑓 (𝑡, 𝑢, V
1
, 𝑤
1
) − 𝑓 (𝑡, 𝑢, V

2
, 𝑤
2
)


≤ 𝛽
1

V1 − V
2

 + 𝛽
2

𝑤1 − 𝑤
2

 ,

∀𝑡 ≥ 0, 𝑢, V
1
, V
2
, 𝑤
1
, 𝑤
2
∈ C
𝑁
,

(10)

𝑔 (𝑡, 𝑢
1
, V
1
, 𝑤
1
) − 𝑔 (𝑡, 𝑢

2
, V
2
, 𝑤
2
)


≤ 𝛾
1

𝑢1 − 𝑢
2

 + 𝛾
2

V1 − V
2

 + 𝛿
𝑤1 − 𝑤

2

 ,

∀𝑡 ≥ 0, 𝑢
1
, 𝑢
2
, V
1
, V
2
, 𝑤
1
, 𝑤
2
∈ C
𝑁
,

(11)

where 𝛼, 𝛽
1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, and 𝛿 are real constants and 𝛿 < 1.

Throughout this paper, we assume that the problem (1)
has unique exact solution 𝑦(𝑡), 𝑧(𝑡) and denote the problem
class consisting of all problems (1) with (9)–(11) by class
𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿).

Remark 1. Inequality 2.1 means that we admit of stiffness of
the problem, that is, admitting large value for the classical
Lipschitz constant of 𝑓(𝑡, 𝑢, V, 𝑤) with respect to the second
argument 𝑢 (for the concept of stiffness we refer to [26, 27]).

Remark 2. Linear systems of FDFEs (8) belong to the class
𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿), where 𝛼 = 𝜇(−𝐴

1
), 𝜇(⋅) is the logarith-

mic matrix norm corresponding to the inner product norm
in C𝑁, and 𝛽

1
= ‖𝐴

2
‖, 𝛽
2
= ‖𝐵
1
‖, 𝛾
1
= ‖𝐴

3
‖, 𝛾
2
= ‖𝐴

4
‖,

𝛿 = ‖𝐵
2
‖.

For problems of the class 𝐷(𝛼, 𝛽
1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿), we have

the following stability results (see [24]).

Theorem 3. Suppose the problem (1) belongs to the class
𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) and 𝛼+𝛽

1
+𝛽
2
+𝛽
2
(𝛾
1
+𝛾
2
)/(1−𝛿) ≤ 0.

Then one has the following inequalities:
𝑦 (𝑡) − 𝑦 (𝑡)



≤ max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,
𝜓 (𝑡) − �̃� (𝑡)

} , 𝑡 > 0,

‖𝑧 (𝑡) − �̃� (𝑡)‖

≤ (
𝛾
1
+ 𝛾
2

1 − 𝛿
+ 𝛿) max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,
𝜓 (𝑡) − �̃� (𝑡)

} ,

𝑡 > 0.

(12)

Here and later, 𝑦(𝑡), �̃�(𝑡) denote the solution of any given
perturbed problem of (1):

𝑦


(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , �̃� (𝑡 − 𝜏)) ,

�̃� (𝑡) = 𝑔 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏) , �̃� (𝑡 − 𝜏)) ,

𝑡 ≥ 0,

(13)

with the initial conditions

𝑦 (𝑡) = 𝜑 (𝑡) , �̃� (𝑡) = �̃� (𝑡) , 𝑡 ≤ 0, (14)

which satisfy the consistency relation

�̃� (0) = 𝑔 (0, 𝜑 (0) , 𝜑 (−𝜏) , �̃� (−𝜏)) . (15)

Theorem 4. Suppose the problem (1) belongs to the class 𝐷(𝛼,

𝛽
1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) and 𝛼+𝛽

1
+𝛽
2
+𝛽
2
(𝛾
1
+𝛾
2
)/(1−𝛿) < 0. Then

one has

lim
𝑡→+∞

𝑦 (𝑡) − 𝑦 (𝑡)
 = 0, lim

𝑡→+∞

‖𝑧 (𝑡) − �̃� (𝑡)‖ = 0,

(16)

which characterizes the asymptotic stability property of the
problem (1).

3. Stability Analysis of Runge-Kutta
Methods for FDFEs

An 𝑠-stage Runge-Kutta method for ordinary differential
equations (ODEs) can be expressed as

𝑐 𝐴

𝑏𝑇
=

𝑐
1

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑠

𝑐
2

𝑎
21

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑠

... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑐
𝑠

𝑎
𝑠1

𝑎
𝑠2

⋅ ⋅ ⋅ 𝑎
𝑠𝑠

𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑠

, (17)

where 𝐴 = (𝑎
𝑖𝑗
) ∈ R𝑠×𝑠, 𝑏 = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑠
)
𝑇
∈ R𝑠, and 𝑐 =

(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑠
)
𝑇
∈ R𝑠. In this paper we always assume that 0 ≤

𝑐
𝑖
≤ 1 (𝑖 = 1, 2, . . . , 𝑠) and ∑

𝑠

𝑗=1
𝑏
𝑗
= 1.
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The adaptation of the Runge-Kutta method (17) for
solving the problem (1) leads to

𝑌
(𝑛)

𝑖
= 𝑦
𝑛
+ ℎ

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
(𝑛)

𝑗
, 𝑌
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
) ,

𝑖 = 1, 2, . . . , 𝑠,

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ

𝑠

∑
𝑗=1

𝑏
𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
(𝑛)

𝑗
, 𝑌
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
) ,

𝑧
𝑛
= 𝑔 (𝑡

𝑛
, 𝑦
𝑛
, 𝑦
𝑛−𝑚

, 𝑧
𝑛−𝑚

) ,

(18)

where the integration step size ℎ = 𝜏/𝑚, 𝑚 is an arbitrarily
given positive integer, 𝑡

𝑛
= 𝑛ℎ, 𝑌(𝑛)

𝑖
, 𝑦
𝑛
, and 𝑧

𝑛
denote

approximations to 𝑦(𝑡
𝑛
+ 𝑐
𝑖
ℎ), 𝑦(𝑡

𝑛
), and 𝑧(𝑡

𝑛
), respectively,

𝑦
𝑛

= 𝜑(𝑡
𝑛
) and 𝑧

𝑛
= 𝜓(𝑡

𝑛
) for 𝑛 ≤ 0, and 𝑍

(𝑛)

𝑖
is an

approximation to 𝑧(𝑡
𝑛
+ 𝑐
𝑖
ℎ) which is obtained by using the

following formula:

𝑍
(𝑛)

𝑖
= 𝑔 (𝑡

𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛−𝑚)

𝑖
, 𝑍
(𝑛−𝑚)

𝑖
) , 𝑖 = 1, 2, . . . , 𝑠,

(19)

where 𝑌(𝑛)
𝑖

= 𝜑(𝑡
𝑛
+𝑐
𝑖
ℎ) and𝑍

(𝑛)

𝑖
= 𝜓(𝑡
𝑛
+𝑐
𝑖
ℎ) for 𝑡

𝑛
+𝑐
𝑖
ℎ ≤ 0.

Similarly, applying the same method to the perturbed
problem (13), we have

�̃�
(𝑛)

𝑖
= 𝑦
𝑛
+ ℎ

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, �̃�
(𝑛)

𝑗
, �̃�
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
) ,

𝑖 = 1, 2, . . . , 𝑠,

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ

𝑠

∑
𝑗=1

𝑏
𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, �̃�
(𝑛)

𝑗
, �̃�
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
) ,

�̃�
𝑛
= 𝑔 (𝑡

𝑛
, 𝑦
𝑛
, 𝑦
𝑛−𝑚

, �̃�
𝑛−𝑚

) ,

(20)

where �̃�(𝑛)
𝑖

, 𝑦
𝑛
, and �̃�

𝑛
denote approximations to 𝑦(𝑡

𝑛
+ 𝑐
𝑖
ℎ),

𝑦(𝑡
𝑛
), and �̃�(𝑡

𝑛
), respectively, 𝑦

𝑛
= 𝜑(𝑡

𝑛
) and �̃�

𝑛
= �̃�(𝑡

𝑛
) for

𝑛 ≤ 0, and 𝑍
(𝑛)

𝑖
is an approximation to �̃�(𝑡

𝑛
+ 𝑐
𝑖
ℎ) which is

obtained by using the following formula:

𝑍
(𝑛)

𝑖
= 𝑔 (𝑡

𝑛
+ 𝑐
𝑖
ℎ, �̃�
(𝑛)

𝑖
, �̃�
(𝑛−𝑚)

𝑖
, 𝑍
(𝑛−𝑚)

𝑖
) , 𝑖 = 1, 2, . . . , 𝑠,

(21)

where �̃�(𝑛)
𝑖

= 𝜑(𝑡
𝑛
+𝑐
𝑖
ℎ) and𝑍

(𝑛)

𝑖
= �̃�(𝑡
𝑛
+𝑐
𝑖
ℎ) for 𝑡

𝑛
+𝑐
𝑖
ℎ ≤ 0.

Definition 5 (see [28]). Let 𝑘, 𝑙 be real constants with 𝑘 > 0.
A Runge-Kutta method (17) is said to be (𝑘, 𝑙)-algebraically
stable if there exists a diagonal nonnegative matrix 𝐷 =

diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑠
) such that 𝑀 = [𝑀

𝑖𝑗
] ∈ R(𝑠+1)×(𝑠+1) is

nonnegative definite, where

𝑀 = (
𝑘 − 1 − 2𝑙𝑒𝑇𝐷𝑒 𝑒𝑇𝐷 − 𝑏𝑇 − 2𝑙𝑒𝑇𝐷𝐴

𝐷𝑒 − 𝑏 − 2𝑙𝐴𝑇𝐷𝑒 𝐷𝐴 + 𝐴𝑇𝐷 − 𝑏𝑏𝑇 − 2𝑙𝐴𝑇𝐷𝐴
) ,

(22)

and 𝑒 = (1, 1, . . . , 1)
𝑇

∈ R𝑠. Particularly, the (1, 0)-
algebraically stable method is called algebraically stable for
short.

Theorem 6. Assume that the Runge-Kutta method (17) is
(𝑘, 𝑙)-algebraically stable with 0 < 𝑘 ≤ 1. Then the numerical
solutions 𝑦

𝑛
, 𝑧
𝑛
and 𝑦

𝑛
, �̃�
𝑛
, obtained by applying the corre-

spondingmethod (18) to the problems (1) and (13)which belong
to the class 𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) with (𝛼 + 𝛽

1
+ 𝛽
2
+ 𝛽
2
(𝛾
1
+

𝛾
2
)/(1 − 𝛿))ℎ ≤ 𝑙, respectively, satisfy the global stability

inequalities
𝑦𝑛 − 𝑦

𝑛

 ≤ 𝐶 max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,
𝜓 (𝑡) − �̃� (𝑡)

} ,

(23)

𝑧𝑛 − �̃�
𝑛

 ≤ (
𝐶 (𝛾
1
+ 𝛾
2
)

1 − 𝛿
+ 𝛿) max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,

𝜓 (𝑡) − �̃� (𝑡)
} ,

(24)

where 𝐶 depends only on the method, 𝛽
1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿, and 𝜏.

Proof. Let

𝑤
𝑛
= 𝑦
𝑛
− 𝑦
𝑛
, 𝑊

(𝑛)

𝑖
= 𝑌
(𝑛)

𝑖
− �̃�
(𝑛)

𝑖
, 𝑖 = 1, 2, . . . , 𝑠,

𝑄
(𝑛)

𝑖
= 𝑓 (𝑡

𝑛
+ 𝑐
𝑖
ℎ, 𝑌
(𝑛)

𝑖
, 𝑌
(𝑛−𝑚)

𝑖
, 𝑍
(𝑛−𝑚)

𝑖
)

− 𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, �̃�
(𝑛)

𝑖
, �̃�
(𝑛−𝑚)

𝑖
, 𝑍
(𝑛−𝑚)

𝑖
) ,

𝑆 = max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,
𝜓 (𝑡) − �̃� (𝑡)

} ,

(25)

and 𝑞
𝑗
= ⌊(𝑛+𝑐

𝑗
)/𝑚⌋ (𝑗 = 1, 2, . . . , 𝑠, 𝑛 > 0), where ⌊⋅⌋ denotes

the integer part; then 𝑞
𝑗
𝜏 ≤ 𝑡
𝑛
+ 𝑐
𝑗
ℎ < (𝑞

𝑗
+ 1)𝜏.

It follows from (18) and (20) that

𝑊
(𝑛)

𝑖
= 𝑤
𝑛
+ ℎ

𝑠

∑
𝑗=1

𝑎
𝑖𝑗
𝑄
(𝑛)

𝑗
, 𝑖 = 1, 2, . . . , 𝑠, (26)

𝑤
𝑛+1

= 𝑤
𝑛
+ ℎ

𝑠

∑
𝑗=1

𝑏
𝑗
𝑄
(𝑛)

𝑗
, 𝑛 = 0, 1, . . . . (27)

Thus, it is easily obtained that (see [28])

𝑤𝑛+1

2

− 𝑘
𝑤𝑛


2

− 2

𝑠

∑
𝑗=1

𝑑
𝑗
Re ⟨𝑊(𝑛)

𝑗
, ℎ𝑄
(𝑛)

𝑗
− 𝑙𝑊
(𝑛)

𝑗
⟩

= −

𝑠+1

∑
𝑖=1

𝑠+1

∑
𝑗=1

𝑀
𝑖𝑗
⟨𝜉
𝑖
, 𝜉
𝑗
⟩,

(28)

where 𝜉
1
= 𝑤
𝑛
, 𝜉
𝑖
= ℎ𝑄

(𝑛)

𝑖−1
, 𝑖 = 2, 3, . . . , 𝑠 + 1. In view of

(𝑘, 𝑙)-algebraic stability of the method and 0 < 𝑘 ≤ 1, we get

𝑤𝑛+1

2

≤
𝑤𝑛


2

+ 2

𝑠

∑
𝑗=1

𝑑
𝑗
Re⟨𝑊(𝑛)

𝑗
, ℎ𝑄
(𝑛)

𝑗
− 𝑙𝑊
(𝑛)

𝑗
⟩. (29)
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By using conditions (9)–(11), we have

2Re ⟨𝑊(𝑛)
𝑗

, ℎ𝑄
(𝑛)

𝑗
⟩

= 2ℎRe ⟨𝑊(𝑛)
𝑗

, 𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
(𝑛)

𝑗
, 𝑌
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, �̃�
(𝑛)

𝑗
, �̃�
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
)⟩

≤ 2ℎ𝛼

𝑊
(𝑛)

𝑗



2

+ 2ℎ

𝑊
(𝑛)

𝑗



×

𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, �̃�
(𝑛)

𝑗
, 𝑌
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
)

−𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, �̃�
(𝑛)

𝑗
, �̃�
(𝑛−𝑚)

𝑗
, 𝑍
(𝑛−𝑚)

𝑗
)

.

(30)

When 𝑡
𝑛
+ 𝑐
𝑗
ℎ − 𝜏 < 0, that is, 𝑞

𝑗
= 0, (30) leads to

2Re ⟨𝑊(𝑛)
𝑗

, ℎ𝑄
(𝑛)

𝑗
⟩

≤ 2ℎ𝛼

𝑊
(𝑛)

𝑗



2

+ 2ℎ

𝑊
(𝑛)

𝑗


(𝛽
1
+ 𝛽
2
) 𝑆

≤ (2𝛼 + 𝛽
1
+ 𝛽
2
) ℎ


𝑊
(𝑛)

𝑗



2

+ ℎ (𝛽
1
+ 𝛽
2
) 𝑆
2
.

(31)

On the other hand, when 𝑡
𝑛
+𝑐
𝑗
ℎ−𝜏 ≥ 0, that is, 𝑞

𝑗
≥ 1, using

conditions (9)–(11) and 𝛿 < 1, (30) leads to

2Re⟨𝑊(𝑛)
𝑗

, ℎ𝑄
(𝑛)

𝑗
⟩

≤ 2ℎ𝛼

𝑊
(𝑛)

𝑗



2

+ 2ℎ

𝑊
(𝑛)

𝑗



× (𝛽
1


𝑊
(𝑛−𝑚)

𝑗


+ 𝛽
2


𝑍
(𝑛−𝑚)

𝑗
− 𝑍
(𝑛−𝑚)

𝑗


)

≤ 2ℎ𝛼

𝑊
(𝑛)

𝑗



2

+ 2ℎ

𝑊
(𝑛)

𝑗



× [𝛽
1


𝑊
(𝑛−𝑚)

𝑗


+ 𝛽
2
(𝛾
1


𝑊
(𝑛−𝑚)

𝑗


+ 𝛾
2


𝑊
(𝑛−2𝑚)

𝑗



+ 𝛿

𝑍
(𝑛−2𝑚)

𝑗
− 𝑍
(𝑛−2𝑚)

𝑗


)]

≤ 2ℎ𝛼

𝑊
(𝑛)

𝑗



2

+ 2ℎ

𝑊
(𝑛)

𝑗



× (𝛽
1


𝑊
(𝑛−𝑚)

𝑗


+ 𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1 

𝑊
(𝑛−𝑖𝑚)

𝑗



+𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2 

𝑊
(𝑛−𝑖𝑚)

𝑗


+ 𝛽
2
𝛾
2
𝛿
𝑞𝑗−1𝑆 + 𝛽

2
𝛿
𝑞𝑗𝑆)

≤ 2ℎ𝛼

𝑊
(𝑛)

𝑗



2

+ ℎ𝛽
1
(

𝑊
(𝑛)

𝑗



2

+

𝑊
(𝑛−𝑚)

𝑗



2

)

+ ℎ𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1

(

𝑊
(𝑛)

𝑗



2

+

𝑊
(𝑛−𝑖𝑚)

𝑗



2

)

+ ℎ𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2

(

𝑊
(𝑛)

𝑗



2

+

𝑊
(𝑛−𝑖𝑚)

𝑗



2

)

+ ℎ𝛽
2
𝛿
𝑞𝑗−1 (𝛾

2
+ 𝛿) (


𝑊
(𝑛)

𝑗



2

+ 𝑆
2
)

≤ (2𝛼 + 𝛽
1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
) ℎ


𝑊
(𝑛)

𝑗



2

+ ℎ𝛽
1


𝑊
(𝑛−𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛿
𝑞𝑗−1 (𝛾

2
+ 𝛿) 𝑆

2
.

(32)

Here and below, we define∑𝑡
𝑘=𝑠

equal to 0 for 𝑡 < 𝑠. Combin-
ing (31) and (32) yields

2Re ⟨𝑊(𝑛)
𝑗

, ℎ𝑄
(𝑛)

𝑗
⟩

≤ (2𝛼 + 𝛽
1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
) ℎ


𝑊
(𝑛)

𝑗



2

+ ℎ𝛽
1


𝑊
(𝑛−𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛿
𝑞𝑗−1 (𝛾

2
+ 𝛿) 𝑆

2
.

(33)

Substituting (33) into (29) and using condition (𝛼 + 𝛽
1
+𝛽
2
+

𝛽
2
(𝛾
1
+ 𝛾
2
)/(1 − 𝛿))ℎ ≤ 𝑙, we obtain

𝑤𝑛+1

2

≤
𝑤𝑛


2

+

𝑠

∑
𝑗=1

𝑑
𝑗
[((2𝛼 + 𝛽

1
+ 𝛽
2

+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
) ℎ − 2𝑙)


𝑊
(𝑛)

𝑗



2

+ ℎ𝛽
1


𝑊
(𝑛−𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ℎ𝛽
2
𝛿
𝑞𝑗−1 (𝛾

2
+ 𝛿) 𝑆

2
]

≤
𝑤𝑛


2

+

𝑠

∑
𝑗=1

𝑑
𝑗
[−(𝛽

1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
) ℎ


𝑊
(𝑛)

𝑗



2

+ ℎ𝛽
1


𝑊
(𝑛−𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ℎ𝛽
2
𝛿
𝑞𝑗−1 (𝛾

2
+ 𝛿) 𝑆

2
] .

(34)
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By induction, (34) gives

𝑤𝑛+1

2

≤
𝑤0


2

+

𝑛

∑
𝑘=0

𝑠

∑
𝑗=1

𝑑
𝑗
[−(𝛽

1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
)

× ℎ

𝑊
(𝑘)

𝑗



2

+ ℎ𝛽
1


𝑊
(𝑘−𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
1

⌊(𝑘+𝑐𝑗)/𝑚⌋

∑
𝑖=1

𝛿
𝑖−1

𝑊
(𝑘−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
2

⌊(𝑘+𝑐𝑗)/𝑚⌋

∑
𝑖=2

𝛿
𝑖−2

𝑊
(𝑘−𝑖𝑚)

𝑗



2

+
ℎ𝛽
2
(𝛾
2
+ 𝛿) 𝑆2

𝛿
𝛿
⌊(𝑘+𝑐𝑗)/𝑚⌋]

≤
𝑤0


2

+

𝑠

∑
𝑗=1

𝑑
𝑗
[−(𝛽

1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
)

× ℎ

𝑛

∑
𝑘=0


𝑊
(𝑘)

𝑗



2

+ ℎ𝛽
1

𝑛

∑
𝑘=−𝑚


𝑊
(𝑘)

𝑗



2

+ ℎ
𝛽
2
𝛾
1

1 − 𝛿

𝑛

∑
𝑘=−𝑚


𝑊
(𝑘−𝑚)

𝑗



2

+ ℎ
𝛽
2
𝛾
2

1 − 𝛿

𝑛

∑
𝑘=−𝑚


𝑊
(𝑘)

𝑗



2

+
𝛽
2
(𝛾
2
+ 𝛿) 𝜏𝑆2

𝛿 (1 − 𝛿)
]

≤
𝑤0


2

+

𝑠

∑
𝑗=1

𝑑
𝑗
[(−(𝛽

1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
) ℎ

+ℎ𝛽
1
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
ℎ)

𝑛

∑
𝑘=0


𝑊
(𝑘)

𝑗



2

+ 𝜏(𝛽
1
+
𝛽
2
(𝛾
1
+𝛾
2
)

1−𝛿
) max
−𝑚≤𝑘≤−1


𝑊
(𝑘)

𝑗



2

+
𝛽
2
(𝛾
2
+ 𝛿) 𝜏𝑆2

𝛿 (1 − 𝛿)
]

≤
𝑤0


2

+

𝑠

∑
𝑗=1

𝑑
𝑗
(𝛽
1
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
+
𝛽
2
(𝛾
2
+ 𝛿)

𝛿 (1 − 𝛿)
) 𝜏𝑆
2
.

(35)

Therefore, there is a real constant 𝐶 depending only on the
method, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿, and 𝜏 such that the inequality (23)

holds. On the other hand, using condition (11) and 𝛿 < 1, we
have

𝑧𝑛 − �̃�
𝑛

 =
𝑔 (𝑡
𝑛
, 𝑦
𝑛
, 𝑦
𝑛−𝑚

, 𝑧
𝑛−𝑚

) − 𝑔 (𝑡
𝑛
, 𝑦
𝑛
, 𝑦
𝑛−𝑚

, �̃�
𝑛−𝑚

)


≤ 𝛾
1

𝑤𝑛
 + 𝛾
2

𝑤𝑛−𝑚
 + 𝛿

𝑧𝑛−𝑚 − �̃�
𝑛−𝑚



≤ (
𝐶 (𝛾
1
+ 𝛾
2
)

1 − 𝛿
+ 𝛿)

× max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,
𝜓 (𝑡) − �̃� (𝑡)

} ,

(36)

and this completes the proof of Theorem 6.

Particularly, for the algebraically stable Runge-Kutta
method, we have the following.

Corollary 7. Assume that the Runge-Kutta method (17) is
algebraically stable. Then the numerical solutions 𝑦

𝑛
, 𝑧
𝑛

and 𝑦
𝑛
, �̃�
𝑛
, obtained by applying the corresponding method

(18) to the problems (1) and (13) which belong to the class
𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿)with 𝛼+𝛽

1
+𝛽
2
+𝛽
2
(𝛾
1
+𝛾
2
)/(1−𝛿) ≤ 0,

respectively, satisfy the global stability inequalities

𝑦𝑛 − 𝑦
𝑛

 ≤ 𝐶 max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,
𝜓 (𝑡) − �̃� (𝑡)

} ,

𝑧𝑛 − �̃�
𝑛

 ≤ (
𝐶 (𝛾
1
+ 𝛾
2
)

1 − 𝛿
+ 𝛿) max
−𝜏≤𝑡≤0

{
𝜑 (𝑡) − 𝜑 (𝑡)

 ,

𝜓 (𝑡) − �̃� (𝑡)
} ,

(37)

where 𝐶 depends only on the method, 𝛽
1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿, and 𝜏.

Remark 8. It is well known that the formulae Gauss, Radau
IA, Radau IIA, and Lobatto IIIC (for ODEs) are all alge-
braically stable. Therefore, in terms of Corollary 7, the
corresponding methods are globally stable for solving the
nonlinear FDFEs of the class 𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) which

satisfy the condition 𝛼 + 𝛽
1
+ 𝛽
2
+ 𝛽
2
(𝛾
1
+ 𝛾
2
)/(1 − 𝛿) ≤ 0.

In the following, we further discuss the asymptotic
stability of the Runge-Kutta method.

Theorem 9. Assume that the Runge-Kutta method (17) is
(𝑘, 𝑙)-algebraically stable with 0 < 𝑘 ≤ 1, 𝐷 > 0 (i.e., the
matrix𝐷 is positive definite), det𝐴 ̸= 0, and |1 − 𝑏𝑇𝐴−1𝑒| < 1.
Then the numerical solutions 𝑦

𝑛
, 𝑧
𝑛
and 𝑦

𝑛
, �̃�
𝑛
, obtained by

applying the corresponding method (18) to the problems (1)
and (13) which belong to the class 𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) with

(𝛼 + 𝛽
1
+ 𝛽
2
+ 𝛽
2
(𝛾
1
+ 𝛾
2
)/(1 − 𝛿))ℎ < 𝑙, respectively, satisfy

lim
𝑛→+∞

𝑦𝑛 − 𝑦
𝑛

 = 0, lim
𝑛→+∞

𝑧𝑛 − �̃�
𝑛

 = 0. (38)

The relations (38) characterize the asymptotic stability property
of the method.
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Proof. Let 𝜎 = (𝛼 + 𝛽
1
+ 𝛽
2
+ 𝛽
2
(𝛾
1
+ 𝛾
2
)/(1 − 𝛿))ℎ − 𝑙; thus

𝜎 < 0. In terms of the proof of Theorem 6, we have

𝑤𝑛+1

2

≤
𝑤𝑛


2

+

𝑑

∑
𝑗=1

𝑑
𝑗
[(2𝜎 − (𝛽

1
+ 𝛽
2
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿
) ℎ)

×

𝑊
(𝑛)

𝑗



2

+ ℎ𝛽
1


𝑊
(𝑛−𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
1

𝑞𝑗

∑
𝑖=1

𝛿
𝑖−1

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ ℎ𝛽
2
𝛾
2

𝑞𝑗

∑
𝑖=2

𝛿
𝑖−2

𝑊
(𝑛−𝑖𝑚)

𝑗



2

+ℎ𝛽
2
𝛿
𝑞𝑗−1 (𝛾

2
+ 𝛿) 𝑆

2
] .

(39)

By induction, (39) gives

𝑤𝑛+1

2

≤
𝑤0


2

+

𝑠

∑
𝑗=1

𝑑
𝑗
[ (2𝜎 − 𝛽

2
ℎ)

𝑛

∑
𝑘=0


𝑊
(𝑘)

𝑗



2

+ (𝛽
1
+
𝛽
2
(𝛾
1
+ 𝛾
2
)

1 − 𝛿

+
𝛽
2
(𝛾
2
+ 𝛿)

𝛿 (1 − 𝛿)
) 𝜏𝑆
2
] .

(40)

Since (2𝜎 − 𝛽
2
ℎ) < 0 and𝐷 > 0, we easily obtain that

lim
𝑛→+∞


𝑊
(𝑛)

𝑗


= 0, 𝑗 = 1, 2, . . . , 𝑠. (41)

On the other hand, while det𝐴 ̸= 0, denote 𝐺 = [𝑔
𝑖𝑗
] = 𝐴−1;

thus (26) yields

𝑄
(𝑛)

𝑖
=

1

ℎ

𝑠

∑
𝑗=1

𝑔
𝑖𝑗
(𝑊
(𝑛)

𝑗
− 𝑤
𝑛
) , 𝑖 = 1, 2, . . . , 𝑠. (42)

Substituting (42) into (27) leads to

𝑤
𝑛+1

= (1 − 𝑏
𝑇
𝐴
−1
𝑒)𝑤
𝑛
+

𝑠

∑
𝑖=1

𝑠

∑
𝑗=1

𝑏
𝑖
𝑔
𝑖𝑗
𝑊
(𝑛)

𝑗
. (43)

Noting that |1 − 𝑏𝑇𝐴−1𝑒| < 1 and (41), we easily obtain

lim
𝑛→+∞

𝑤𝑛
 = lim
𝑛→+∞

𝑦𝑛 − 𝑦
𝑛

 = 0. (44)

Furthermore, using condition (11), we have

𝑧𝑛 − �̃�
𝑛

 =
𝑔 (𝑡
𝑛
, 𝑦
𝑛
, 𝑦
𝑛−𝑚

, 𝑧
𝑛−𝑚

) − 𝑔 (𝑡
𝑛
, 𝑦
𝑛
, 𝑦
𝑛−𝑚

, �̃�
𝑛−𝑚

)


≤ 𝛾
1

𝑤𝑛
 + 𝛾
2

𝑤𝑛−𝑚
 + 𝛿

𝑧𝑛−𝑚 − �̃�
𝑛−𝑚

 .

(45)

Considering that 𝛿 < 1 and (44), (45) leads to

lim
𝑛→+∞

𝑧𝑛 − �̃�
𝑛

 = 0, (46)

and this completes the proof of Theorem 9.

Particularly, for the algebraically stable Runge-Kutta
method, we have the following.

Corollary 10. Assume that the Runge-Kutta method (17) is
algebraically stable with𝐷 > 0, det𝐴 ̸= 0, and |1−𝑏𝑇𝐴−1𝑒| < 1.
Then the numerical solutions 𝑦

𝑛
, 𝑧
𝑛
and 𝑦

𝑛
, �̃�
𝑛
, obtained by

applying the corresponding method (18) to the problems (1)
and (13) which belong to the class 𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) with

𝛼 + 𝛽
1
+ 𝛽
2
+ 𝛽
2
(𝛾
1
+ 𝛾
2
)/(1 − 𝛿) < 0, respectively, satisfy

lim
𝑛→+∞

𝑦𝑛 − 𝑦
𝑛

 = 0, lim
𝑛→+∞

𝑧𝑛 − �̃�
𝑛

 = 0. (47)

Remark 11. It is well known that the formulae Radau IA,
Radau IIA, and Lobatto IIIC (for ODEs) are algebraically
stable with 𝐷 > 0, det𝐴 ̸= 0 and |1 − 𝑏𝑇𝐴−1𝑒| < 1. Therefore,
in terms of Corollary 10, the corresponding methods are
asymptotically stable for solving the nonlinear FDFEs of the
class𝐷(𝛼, 𝛽

1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿)which satisfy the condition 𝛼+𝛽

1
+

𝛽
2
+ 𝛽
2
(𝛾
1
+ 𝛾
2
)/(1 − 𝛿) < 0.

Remark 12. In the paper [25], it is proved that an A-stable
one-leg method is globally stable and a strongly A-stable
one-leg method is asymptotically stable for FDFEs. However,
any A-stable one-leg method has order at most two. In the
present paper, the stability results are based on (𝑘, 𝑙)-algebraic
stability of Runge-Kuttamethods, which, in general, can be of
high order.

4. Numerical Experiments

Consider the following initial value problem:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
=

𝜕
2𝑢 (𝑥, 𝑡)

𝜕𝑥2
+ sin 𝑢 (𝑥, 𝑡 − 𝜋) cos V (𝑥, 𝑡 − 𝜋) ,

0 < 𝑥 < 1, 𝑡 ≥ 0,

V (𝑥, 𝑡) = sin 𝑢 (𝑥, 𝑡) sin 𝑢 (𝑥, 𝑡 − 𝜋) + 0.2V (𝑥, 𝑡 − 𝜋) ,

𝑢 (𝑥, 𝑡) = (𝑥 − 𝑥
2
) sin 𝑡, V (𝑥, 𝑡) = (𝑥

2
− 𝑥) sin 𝑡,

0 < 𝑥 < 1, 𝑡 ≤ 0,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, V (0, 𝑡) = V (1, 𝑡) = 0.

(48)
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Figure 1: Values ‖𝑢
𝑛
− �̃�
𝑛
‖ (a) and values ‖V

𝑛
− Ṽ
𝑛
‖ (b) with ℎ = 𝜋/100.
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Figure 2: Values ‖𝑢
𝑛
− �̃�
𝑛
‖ (a) and values ‖V

𝑛
− Ṽ
𝑛
‖ (b) with ℎ = 𝜋/100.

After application of the numerical method of lines, we obtain
the following FDFEs:

𝑢


𝑖
(𝑡) =

1

Δ𝑥2
(𝑢
𝑖−1

(𝑡) − 2𝑢
𝑖
(𝑡) + 𝑢

𝑖+1
(𝑡))

+ sin 𝑢
𝑖
(𝑡 − 𝜋) cos V

𝑖
(𝑡 − 𝜋) , 𝑡 ≥ 0,

V
𝑖
(𝑡) = sin 𝑢

𝑖
(𝑡) sin 𝑢

𝑖
(𝑡 − 𝜋) + 0.2V

𝑖
(𝑡 − 𝜋) ,

𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑢
𝑖
(𝑡) = 𝑖Δ𝑥 (1 − 𝑖Δ𝑥) sin 𝑡,

V
𝑖
(𝑡) = 𝑖Δ𝑥 (𝑖Δ𝑥 − 1) sin 𝑡, 𝑡 ≤ 0,

𝑢
0
(𝑡) = 𝑢

𝑁
(𝑡) ≡ 0, V

0
(𝑡) = V

𝑁
(𝑡) ≡ 0,

(49)

where Δ𝑥 is the spatial step,𝑁 is a natural number such that
𝑁Δ𝑥 = 1, 𝑥

𝑖
= 𝑖Δ𝑥, 𝑖 = 1, 2, . . . , 𝑁 − 1, and 𝑢

𝑖
(𝑡) = 𝑢(𝑥

𝑖
, 𝑡),

V
𝑖
(𝑡) = V(𝑥

𝑖
, 𝑡). Then, the problem (49) belongs to the class

𝐷(𝛼, 𝛽
1
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛿) with

𝛼 = −4𝑁
2sin2 𝜋

2𝑁
, 𝛽

1
= 𝛽
2
= 𝛾
1
= 𝛾
2
= 1, 𝛿 = 0.2,

(50)

where the inner product is standard inner product. We take
Δ𝑥 = 0.01 (i.e., 𝑁 = 100) for the numerical method of lines;
thus the condition 𝛼+𝛽

1
+𝛽
2
+𝛽
2
(𝛾
1
+𝛾
2
)/(1−𝛿) ≤ 0 (< 0) is

satisfied, which means the analytical solution of the problem
(49) is stable and asymptotically stable.

As an example, we consider the 2-stage Radau IIA
method:

𝑐 𝐴

𝑏𝑇
=

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

, (51)
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for solving the problem (49) and its perturbed problem,
where the initial conditions of the perturbed problem are

�̃�
𝑖
(𝑡) = 5𝑖Δ𝑥 (1 − 𝑖Δ𝑥) sin 𝑡,

Ṽ
𝑖
(𝑡) = 5𝑖Δ𝑥 (𝑖Δ𝑥 − 1) sin 𝑡,

𝑡 ≤ 0.

(52)

According to the results of Corollaries 7 and 10, the
corresponding method (for FDFEs) will be stable and
asymptotically stable. We denote the numerical solutions
of problem (49) and its perturbed problem 𝑢

𝑛
, V
𝑛
and �̃�

𝑛
,

Ṽ
𝑛
, respectively, where 𝑢

𝑛
and V

𝑛
are approximations

to [𝑢
1
(𝑡
𝑛
), 𝑢
2
(𝑡
𝑛
), . . . , 𝑢

𝑁−1
(𝑡
𝑛
)]
𝑇 and [V

1
(𝑡
𝑛
), V
2
(𝑡
𝑛
), . . . ,

V
𝑁−1

(𝑡
𝑛
)]
𝑇, respectively. The values ‖𝑢

𝑛
− �̃�
𝑛
‖ and ‖V

𝑛
− Ṽ
𝑛
‖

are listed in Figure 1 (where the abscissa denotes variable 𝑡).
As a comparison, we consider the explicit 3-stage Runge-

Kutta method

𝑐 𝐴

𝑏𝑇
=

0 0 0 0

1/2 1/2 0 0

1 −1 2 0

1/6 4/6 1/6

, (53)

for solving the problem (49) and its perturbed problem, and
list the values ‖𝑢

𝑛
− �̃�
𝑛
‖ and ‖V

𝑛
− Ṽ
𝑛
‖ in Figure 2.

From Figure 1, one can see that the values ‖𝑢
𝑛
− �̃�
𝑛
‖ and

‖V
𝑛
− Ṽ
𝑛
‖ are bounded and tend to zero. This coincides with

the results of Corollaries 7 and 10. However, for the explicit
3-stage Runge-Kutta method (53), which is not algebraically
stable, the situation is inverse as one can see that the values
‖𝑢
𝑛
− �̃�
𝑛
‖ are divergent as 𝑛 → +∞.
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