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After establishing the sparse representation of the source signal subspace, we propose a new method to estimate the direction
of arrival (DOA) by solving an ℓ

1
-norm minimization for sparse signal recovery of the source powers. Second-order cone

programming is applied to reformulate this optimization problem, and it is solved effectively by employing the interior point
method. Due to the keeping of the signal subspace and the discarding of the noise subspace, the proposed method is more robust
to noise than many other sparsity-based methods.The real data tests and the numerical simulations demonstrate that the proposed
method has improved accuracy and robustness to noise, and it is not sensitive to the knowledge about the number of sources. We
discuss the computational cost of our method theoretically, and the experiment results verify the computational effectiveness.

1. Introduction

Sparse signal recovery (SSR) is an emerging field and has
received considerable attention in recent years [1–4]. It has
been applied widely in many fields, such as medical imaging
[5, 6], wireless communication and telemonitoring [7, 8],
and sensor networks [9, 10]. In the framework of standard
SSR (sSSR) with complex data, the mathematical model of
measurement is

y = Φx + n, (1)

where y ∈ C𝑀×1 is an available measurement vector, Φ ∈

C𝑀×𝑁 is a known projection matrix with 𝑀 significantly
smaller than𝑁, n is a noise term, and x ∈ C𝑁×1 is the original
signal vector to estimate. In order to ensure the uniqueness of
the signal recovered from the underdetermined system (1), x
should be 𝐾-sparse and 𝐾 ≪ 𝑁. Under the assumption that
the estimation of x is sparest, the intuitive estimator is

x∗ = arg min
x∈C𝑁×1

‖x‖0 s.t. 󵄩󵄩󵄩󵄩y −Φx󵄩󵄩󵄩󵄩2 ≤ 𝜖, (2)

where ‖x‖
0
= #{𝑥

𝑛
| 𝑥
𝑛

̸= 0 and 𝑥
𝑛
∈ x} denotes the number

of the nonzero entries in x and 𝜖
2 is an appropriately upper

bound on the noise power ‖n‖2
2
. As we know, however, it

is NP-hard to solve this combinatorial optimization. Fortu-
nately, some researches [1, 2] guarantee that if x is reasonably
sparse and Φ satisfies some suitable conditions, the ℓ

1
-norm

minimization (3) is equivalent to (2):

x∗ = arg min
x∈C𝑁×1

‖x‖1 s.t. 󵄩󵄩󵄩󵄩y −Φx󵄩󵄩󵄩󵄩2 ≤ 𝜖, (3)

where ‖x‖
1

= ∑
𝑁

𝑛=1
|𝑥
𝑛
|. This optimization (3) is a convex

relaxation and can be solved by many algorithms.
Array processing is used widely in many applications,

including electronic warfare and civil aviation. During the
past years, besides the design and the improvement about the
electronic of the array system [11, 12], a lot of mathematical
methods have been proposed to improve the performance of
array processing. Due to the spatial sparsity of the incident
sources, the sSSR methodology (3) and its extension to
the multiple measurement vector (MMV) model [13–15]
are exploited to accomplish the direction-of-arrival (DOA)
estimation based on the array processing [16–27]. Compared
with the classical superresolution methods, such as MUSIC
[28], these sparsity-based methods have many advantages,
including requirement of only a few snapshots, dealing with
the correlated sources, and better performance. For almost
all of them, however, the measurement domain is either the
array output or the array covariance matrix. In this paper,
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we propose a novel sparsity-based method for DOA esti-
mation by exploiting the source signal subspace as the
measurement domain. Firstly, we provide a method based on
the sSSR methodology using the array covariance, which we
refer to as sSSR-AC. On the basis of sSSR-AC, we present a
sparse representation of the signal subspace and establish the
sSSR model of the source powers, and finally a second-order
cone programming (SOCP) [29] is applied to formulate this
sSSRproblem.TheSOCP is solved by interior point technique
[30]. We refer to this method as sSSR-SS. Because the sSSR is
implemented in the signal subspace by discarding the noise
part, sSSR-SS is more robust to noise than other sparsity-
basedmethodswhich use the array output or array covariance
as the measurement domain.

The rest of this paper is organized as follows. In Section 2,
after presenting the sparse representation of the signal
subspace, we formulate the DOA estimation as an sSSR
problem. In Section 3, we transform this sSSR problem into
an SOCP form and obtain its solution by employing the
interior pointmethod, andwe analyze the computational cost
of the proposed method. Finally, we carry out the real data
tests and the numerical simulations in Section 4 and make
the conclusions in Section 5.

Thenotations used in this paper are introduced as follows:
I
𝐿
denotes the identity matrix with size 𝐿 × 𝐿, and, for

simplicity, I stands for the identity matrix, of which the
dimension can be determined from the context. A ⊗ B
represents the Kronecker product of the matrices A and B.
vec(A) denotes the vectorization of matrix A by stacking its
columns one by one into a single-column vector. A𝑇 and
A𝐻 are the transpose and the conjugate transpose of A,
respectively. Re(A) and Im(A) denote the real and the image
parts of A.

2. Sparse Signal Recovery for DOA Estimation

Assume that 𝐾 far-field narrowband and motionless sources
impinge on an 𝑀-sensor linear array from directions 𝜃 =

[𝜃
1
, 𝜃
2
, . . . , 𝜃

𝐾
]
𝑇. The array output contaminated by noise is

represented as

y (𝑡) = A (𝜃) s (𝑡) + n (𝑡) , 𝑡 = 1, 2, . . . , 𝐿, (4)

where s(𝑡) = [𝑠
1
(𝑡), 𝑠
2
(𝑡), . . . , 𝑠

𝐾
(𝑡)]
𝑇 is the spatial signal

vector of the incident sources, 𝑠
𝑘
(𝑡) is the signal waveform

of the 𝑘th source, and n(𝑡) is a zero-mean additive complex
Gaussian white noise with the covariance matrix Rn = 𝜎

2I.
The noise is uncorrelated with source signals. 𝐿 is the number
of the snapshots. A(𝜃) is the array manifold matrix and
denoted as

A (𝜃) = [a (𝜃
1
) , a (𝜃

2
) , . . . , a (𝜃

𝐾
)] , (5)

where a(𝜃
𝑘
) = [𝑒

−𝑗2𝜋𝑓0𝜏1,𝑘 , 𝑒
−𝑗2𝜋𝑓0𝜏2,𝑘 , . . . , 𝑒

−𝑗2𝜋𝑓0𝜏𝑀,𝑘]
𝑇

is the
array steering vector corresponding to the 𝑘th sources, 𝑓

0

denotes the carrier frequency, and 𝜏
𝑚,𝑘

, which is related to the
arriving direction 𝜃

𝑘
, is the propagational time-delay of the

𝑘th signal between the reference and the 𝑚th sensor of the

array. The covariance matrix of the array output is calculated
by

Ry = 𝐸 {y (𝑡) y𝐻 (𝑡)} = ARsA
𝐻
+ 𝜎
2I, (6)

where Rs = 𝐸{s(𝑡)s𝐻(𝑡)} is the covariance matrix of the
incident source signals.

2.1. sSSR-AC. Since the spatial sources are distributed
sparsely, the potential bearing space of the incident sources
can be discretized to form a spatial sampling grid Θ =

[𝜗
1
, 𝜗
2
, . . . , 𝜗

𝑁
]
𝑇 with 𝑁 ≫ 𝐾. For convenience of descrip-

tion, we assume 𝜃 ⊂ Θ. x(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡)]
𝑇 is

defined as a zero-padded version of the signal vector s(𝑡) from
𝜃 to Θ; that is, if there exists 𝜗

𝑛
= 𝜃
𝑘
, then 𝑥

𝑛
(𝑡) = 𝑠

𝑘
(𝑡);

and otherwise, 𝑥
𝑛
(𝑡) = 0. Therefore, x(𝑡) is a𝐾-sparse vector.

Correspondingly, Φ(Θ) ∈ C𝑀×𝑁 is an extension of the array
manifold matrix A(𝜃); that is

Φ (Θ) = [a (𝜗
1
) , a (𝜗

2
) , . . . , a (𝜗

𝑁
)] . (7)

Then the array output (4) is represented as a sparse linear
combination ofΦ(Θ)

y (𝑡) = Φ (Θ) x (𝑡) + n (𝑡) , 𝑡 = 1, 2, . . . , 𝐿, (8)

and thus the covariance matrix (6) can be rewritten as

Ry = ΦRxΦ
𝐻
+ 𝜎
2I (9)

with Rx = 𝐸{x(𝑡)x𝐻(𝑡)}. Under the assumption that the
sources are spatially uncorrelated, we have Rx = diag(𝜎2

1
,

𝜎
2

2
, . . . , 𝜎

2

𝑁
), and𝜎

2

𝑛
is the power of the 𝑛th source signal.Thus,

(9) can be reformulated as

r = Ψp + 𝜎
2Ik, (10)

where r = vec(Ry) ∈ C𝑀
2
×1, Ik = vec(I) ∈ R𝑀

2
×1, Ψ =

[b(𝜗
1
), b(𝜗
2
), . . . , b(𝜗

𝑁
)] ∈ C𝑀

2
×𝑁 with b(𝜗

𝑛
) = a𝐻(𝜗

𝑛
) ⊗

a(𝜗
𝑛
) ∈ C𝑀

2
×1, and p = [𝜎

2

1
, 𝜎
2

2
, . . . , 𝜎

2

𝑁
]
𝑇. Actually, 𝜎2

𝑛
= 0

if 𝑥
𝑛
(𝑡) = 0 for 𝑛 ∈ [1, 2, . . . , 𝑁]. Therefore, p is also a 𝐾-

sparse vector, and the DOA estimation is transformed into a
problem of sparse signal recovery of p with the array out y(𝑡)
and the overcomplete basisΦ available.

Since p is 𝐾-sparse and 𝐾 ≪ 𝑁, we can solve the
inverse problem of sparse signal recovery using ℓ

1
-norm

minimization, and the estimator is

p∗ = arg min
p∈R𝑁×1

‖p‖
1

s.t. ‖r −Ψp‖
2
≤ 𝛽, (11)

where 𝛽 is a positive parameter and we assume that a good
choice of 𝛽 is made. After p is solved from (11), the DOA
estimation of the true sources is obtained according to the
support or the peaks of p∗. We will adopt an SOCP described
in Section 3 to solve (11). We call the estimator (11) as sSSR-
AC. According to the description as above, it is obvious that
sSSR-AC does not require a priori information about the
number of the true sources.
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Mathematically, we can obtain the DOAs estimation by
solving

min ‖x(𝑡)‖1

s.t. 󵄩󵄩󵄩󵄩y(𝑡) −Φx(𝑡)
󵄩󵄩󵄩󵄩2 ≤ 𝜀

(12)

based on the single snapshot model (8). However, the esti-
mator (11), which uses the multiple snapshots in synergy, will
be more robust to noise and achieve better accuracy. The
main drawback of the estimator (11) is that the size and the
computational cost of the optimization increase quadratically
with the number of the sensors𝑀.

2.2. sSSR-SS. In order to overcome the computational draw-
back of sSSR-AC, we introduce the subspace method. We
decompose the array covariance matrix Ry to obtain the
source signal subspace. If the dimension of the signal sub-
space is smaller than the number of the sensors, we use
this signal subspace to replace the array covariance. This
technique will reduce the dimension and computational
cost. Moreover, the subspace decomposition will improve
the robustness to noise by keeping the signal subspace and
discarding the noise one.

Take the eigenvalue decomposition (EVD) of Ry:

Ry = UΣU𝐻, (13)

then the first 𝐾 columns of the matrix U, corresponding to
the 𝐾 largest eigenvalues of Ry, are the basis of the signal
subspace, and 𝐾 is the dimension of this subspace. In the
application of array signal processing, the number 𝑀 of the
sensors is always not very large so that the computational
workload of this EVD is quite small.

Here we do not use the signal subspace directly by taking
the linear combination of the first 𝐾 eigenvectors. Instead of
that, we consider the parallel alliance of these eigenvectors.
By Setting D = [I

𝐾
0]𝑇 ∈ R𝑀×𝐾, where 0 is a zero matrix

with dimension 𝐾 × (𝑀 − 𝐾), we get the parallel alliance of
these bases:

Z = UΣD = RyUD. (14)

Now we multiply two sides of (9) simultaneously by UD
to obtain

Z = ΦRx (Φ
𝐻UD) + 𝜎

2UD, (15)

where Z ∈ C𝑀×𝐾. Let Ω = D𝐻U𝐻Φ and write as Ω =

[𝜔
⋅,1
,𝜔
⋅,2
, . . . ,𝜔

⋅,𝑁
] ∈ C𝐾×𝑁, where 𝜔

⋅,𝑛
denotes the 𝑛th

column ofΩ; then similarly to (10), the vectorization version
of the signal subspace model (15) is represented as

z = Ξp + 𝜎
2e, (16)

where z = vec(Z) ∈ C𝑀𝐾×1, e = vec(UD) ∈ C𝑀𝐾×1, Ξ =

[𝜉
⋅,1
, 𝜉
⋅,2
, . . . , 𝜉

⋅,𝑁
] ∈ C𝑀𝐾×𝑁 with 𝜉

⋅,𝑛
= 𝜔
𝐻

⋅,𝑛
⊗ a(𝜗
𝑛
) ∈ C𝑀𝐾×1,

and p = [𝜎
2

1
, 𝜎
2

2
, . . . , 𝜎

2

𝑁
]
𝑇. Therefore, the estimator of p is

p∗ss = argmin ‖p‖
1

s.t. ‖z − Ξp‖
2
≤ 𝛿, (17)

where 𝛿 is a positive parameter and we assume that a good
choice of 𝛿 is alsomade.Theproblem (17) will bemanipulated
into the SOCP form and then solved by interior point
method. We refer to this method as sSSR-SS. Compared with
(11), it is obvious that when 𝐾 < 𝑀, the computational
complexity of sSSR-SS will be lower than that of sSSR-AC.

3. SOCP Form of Sparse Signal Recovery

In the sparse signal recovery (3), the objection ‖x‖1 =

∑
𝑁

𝑛=1
√Re (𝑥

𝑖
)
2
+ Im (𝑥

𝑖
)
2 is neither linear nor quadratic

about the real and the imaginary components of x. To deal
with this problem, we transform (3) into an SOCP problem,
the general form of which is

min f𝑇t

s.t. 󵄩󵄩󵄩󵄩A𝑖t + b
𝑖

󵄩󵄩󵄩󵄩2 ≤ c𝑇
𝑖
t + 𝑑
𝑖

𝑖 = 1, 2, . . . , ℎ,

Fy = g,

(18)

where t ∈ R𝑚 is the optimization variable, and the known
parameters are f ∈ R𝑚, A

𝑖
∈ R(𝑚𝑖−1)×𝑚, b

𝑖
∈ R𝑚𝑖−1, c

𝑖
∈ R𝑚,

𝑑
𝑖
∈ R, F ∈ R𝑟×𝑚, and g ∈ R𝑟.
The second-order cone of dimension 𝑛 is defined as

SOC𝑛 = {[
𝑦

x] | 𝑦 ∈ R, x ∈ R
𝑛−1

, ‖x‖2 ≤ 𝑦} , (19)

and zero cone of dimension 𝑟 is

0𝑟 = {x | x ∈ R
𝑟
, x = 0} , (20)

so the constraints of (18) are equivalent to

[
c𝑇
𝑖
t + 𝑑
𝑖

A
𝑖
t + b
𝑖

] ∈ SOC𝑚𝑖 ,

Fy − g ∈ 0𝑟.
(21)

Thus, we call the optimization (18) as SOCP. It is a convex
optimization, since the objection is a convex function and the
feasible region is a convex set. Actually, SOCP is a general
framework for several convex optimization problems. For
example, when c

𝑖
= 0 for all 𝑖, the SOCP (18) is reduced to

a quadratically constrained linear program (QCLP) problem.
By defining an auxiliary variable k = y − Φx and a new

matrix

Φ̃ = [
Re (Φ) Im (Φ)

− Im (Φ) Re (Φ)] , (22)

we can represent the sparse signal recovery (3) as an SOCP,
exactly QCLP, as follows:

min c𝑇t

s.t.
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
Re (𝑥
𝑖
)

Im (𝑥
𝑖
)
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
Re (k)
Im (k)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝜖,

Bt = d,

(23)
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where c = [1, 0, 0, 1, 0, 0, . . . , 1, 0, 0, 0𝑇
2𝑀+1

] ∈ R3𝑁+2𝑀+1,
0
2𝑀+1

is a zero-column vector with dimension 2𝑀 + 1,
Re(k) = [Re(V

1
),Re(V

2
), . . . ,Re(V

𝑀
)]
𝑇, Im(k) = [Im(V

1
),

Im(V
2
), . . . , Im(V

𝑀
)]
𝑇, d = [Re (y)𝑇, Im (y)𝑇, 𝜖]𝑇, and thema-

trix B is expressed as

B = [
B
1

B
2

B
3

0 ] ∈ R
(2𝑀+1)×(3𝑁+1+2𝑀)

, (24)

where B
1

= [0, Φ̃
⋅,1
, Φ̃
⋅,𝑁+1

, 0, Φ̃
⋅,2
, Φ̃
⋅,𝑁+2

, . . . , 0, Φ̃
⋅,𝑁

,

Φ̃
⋅,𝑁+𝑁

, 0] ∈ R2𝑀×(3𝑁+1), Φ̃
⋅,𝑖
means the 𝑖th column of the

matrix Φ̃, B
2
= I
2𝑀

, and B
3
= [0, 0, . . . , 0, 1] ∈ R1×(3𝑁+1).

The optimization variable is t = [𝑢
1
,Re(𝑥

1
), Im(𝑥

1
), 𝑢
2
,

Re(𝑥
2
), Im(𝑥

2
), . . . , 𝑢

𝑁
,Re(𝑥

𝑁
), Im(𝑥

𝑁
), 𝜖,Re(V

1
),Re(V

2
), . . .,

Re(V
𝑀
), Im(V

1
), Im(V

2
), . . . , Im(V

𝑀
)]
𝑇, which in- cludes the

real and the image parts of the sparse signal x that we pursue.
We employ the package called SeDuMi [31] to obtain the

numerical solution of the SOCP (23) by using the interior
point method. The computational complexity of the interior
point method depends on the number of iterations and the
computational workload per iteration. For (23), the cost of
each iteration is 𝑂((3𝑁 + 2𝑀 + 1)

3
). However, the number

of iterations is worst-case bound above by𝑂(√𝑁 + 1), which
is independent of the size 𝑀 of the array. Therefore, the
computational complexity of the SOCP for (17) is about
(𝑂(3𝑁+2𝑀𝐾+1)

3
) and that for (11) is about𝑂((3𝑁+2𝑀

2
+

1)
3
). When𝐾 < 𝑀, the latter is higher than the former.

4. Experiments

In this section, we carry out several experiments to investigate
the performance of our sSSR-AC and sSSR-SS. Firstly, we
compare the spectra of them with those of ℓ

1
-SVD [16],

OGSBI-SVD [25], and MUSIC [28] both in real data tests
and numerical simulations, respectively.Then, we analyze the
statistical performance of them by comparing the root mean
square error (RMSE) ofDOA estimation in various scenarios.
Here, the RMSE is defined as

RMSE =
√

∑
𝑀𝐶

𝑚𝑐=1
∑
𝐾

𝑘=1
(𝜃
(𝑚𝑐)

𝑘
− 𝜃
(𝑚𝑐)

𝑘
)
2

𝐾 ⋅ 𝑀𝐶
,

(25)

where 𝑀𝐶 is the total number of Monte Carlo trials, 𝜃(𝑚𝑐)
𝑘

is
the true direction of the 𝑘th source in the𝑚𝑐th trial, and 𝜃

(𝑚𝑐)

𝑘

is the estimation of 𝜃(𝑚𝑐)
𝑘

.
In the following experiments, the uniform linear array

(ULA) is taken into account. The number of the sensors is
𝑀 = 8, and the intersensor spacing is 𝑑 = 0.07𝑚. The
incident sources are complex sinusoid signals with carrier
frequency 𝑓

0
= 2.143GHz, so that the element spacing of the

ULA is half the wavelength of the source signals. The sources
are spatially uncorrelated. The uniform spatial sampling grid
is equipped for ℓ

1
-SVD, MUSIC, and our methods. The grid

interval is Δ𝜗
1
= 0.1
∘. OGSBI-SVD algorithm is taken as one

of the representatives of themethods based on off-gridmodel,
and it is designed with grid interval Δ𝜗

2
= 2
∘ for accurate yet

fast DOA estimation (see [25] for details). The number of the

sources is assumed to be known.Thenumber of the snapshots
is 𝐿 = 256.

4.1. Comparison of Spatial Spectra. Firstly we illustrate the
practical validity of our methods by implementing the real
data tests in the narrowband scenario.The real measurement
data was collected by an antenna ULA consisting of 8 sensors
for S\C waveband signals in a microwave black room. The
sampling frequency was 500Msps. The power of noise was
unknown yet as low as possible. Before DOA estimation, the
array output has been pretreated with phase correction and
amplitude correction.

In Figure 1, we compare the spatial spectra of ourmethods
sSSR-AC and sSSR-SS with those of ℓ

1
-SVD, OGSBI-SVD,

andMUSIC. In Figure 1(a), the true directions of two sources
are −6.25

∘ and 7.05
∘. Our methods can distinguish the two

sources as well as ℓ
1
-SVD and have higher resolution than

MUSIC. In Figure 1(b), two sources come from −6.25
∘ and

0
∘, and the angular separation between them is smaller than
that in Figure 1(a). At this moment, our methods and ℓ

1
-

SVD are still able to resolve the two sources clearly, while
the peaks of MUSIC are not so distinct. Both in Figures
1(a) and 1(b), the spectrum peaks of OGSBI-SVD are quite
indistinct, and maybe the reason is that the performance of
OGSBI-SVD is not so good in the scenario of high SNR
(signal-to-noise ratio), and the simulation results in Figure 2
illustrate this speculation, where the spectra of OGSBI-SVD
are conspicuous in low SNR.

We set the SNR to−5 dB and then the spatial spectra of the
various methods are shown in Figure 2. The true directions
of two sources are [−5

∘
, 5
∘
] in Figure 2(a) and [−5

∘
, 0
∘
] in

Figure 2(b), respectively. As we can see, the peaks of sSSR-SS
are consistently sharp as well as those in Figures 1(a) and 1(b).
The results demonstrate that even though the SNR is low
(−5 dB) and the source separation is small (5∘), sSSR-SS has
an excellent performance of DOA estimation consistently.
Although the spectra of sSSR-AC show some false peaks in
low SNR as shown in Figure 2, it has high accuracy for DOA
estimation when the number of the true sources is known
exactly (see Table 1).

Because of the implementation of SVD, we find that sSSR-
SS needs the knowledge of the number of sources. However,
we illustrate that our sSSR-SS is not sensitive to themistake of
the source number. By using the real data used in Figure 1(a),
we plot the spectra of sSSR-SS in Figure 3 for the assumed
numbers of the sources, 𝐾 = 1, 3, 5, 7, respectively. It is
obvious that the variation among these spectra is very small.
This result demonstrates the low sensitivity of sSSR-SS to the
assumed number of the sources.

For the scenario of multiple sources, there is an attractive
question that how many sources at most we can resolve by
using our methods. Similarly to the ℓ

1
-SVD, our methods

cannot separate 𝑀 sources simultaneously. However, our
methods can resolve𝑀−1 sources if the angular separation is
not too small.The result shown in Figure 4 demonstrates this
fact. In Figure 4, the sources impinge on the array from −60

∘,
−40
∘, −20∘, 0∘, 20∘, 40∘, and 60

∘. The number of the sources is
7, and the number of the sensors is𝑀 = 8. The SNR is −5 dB.
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Figure 1: Spatial spectra of ℓ
1
-SVD, OGSBI-SVD, MUSIC, sSSR-AC, and sSSR-SS in real data tests for (a) sources from [−6.25

∘
, 7.05
∘
] and

(b) sources from [−6.25
∘
, 0
∘
].

Table 1: The RMSE of DOA estimation in real data tests.

0∘ −6.25∘ 7.05∘ [−6.25∘, 0∘] [0∘, 7.05∘] [−6.25∘, 7.05∘]
sSSR-SS 0.1423 0.1194 0.0605 1.5447 1.0955 0.5803
sSSR-AC 0.1423 0.1194 0.0605 1.8943 1.2457 0.6024
ℓ
1
-SVD 0.1423 0.1197 0.0605 0.5746 0.2388 0.5307

OGSBI-SVD 0.7579 0.8815 0.5326 14.2306 11.4163 1.9361
MUSIC 0.1423 0.1197 0.0605 8.1617 6.8539 0.9076

In this simulation, sSSR-SS and sSSR-AC have sharp peaks at
the true directions as well as ℓ

1
-SVD.

The comparison results in the above experiments, espe-
cially in the real data tests, imply that our methods sSSR-
AC and sSSR-SS are effective for DOA estimation in the
real application. According to the spatial spectra, we can
suggest visually that they have some advantages, including
that they have better resolution and surpass many other
classical methods, the performance of them does not depend
on the accurate estimation of the source number, and they
can estimate and separate at most 𝑀 − 1 sources where 𝑀

is the number of the sensors. Particularly, sSSR-SS is quite
robust to noise and has good performance in low SNR. All of
the visual judgements will be further verified by the following
experiments about the statistical performance.

4.2. Comparison of RMSE. In this section, we compare the
RMSE of our methods to those of ℓ

1
-SVD, OGSBI-SVD, and

MUSIC. For each scenario, 500 independent trials are carried
out to calculate the RMSE.

We present the RMSE of sSSR-SS, sSSR-AC, and other
compared methods using the real measurement data in

Table 1. We observe that, for scenario of single source or large
angular separation, the accuracy of sSSR-SS and sSSR-AC is
similar to that of ℓ

1
-SVD and MUSIC, while for scenario

of small angular separation, the accuracy of our methods is
slightly lower than that of ℓ

1
-SVD, yet much higher than

that of MUSIC. Similarly to the result shown in Figure 1,
the data in Table 1 demonstrates that our methods always
surpass theOGSBI-SVD in all scenarios under consideration.
The comparison results presented in Table 1 indicate that
sSSR-SS and sSSR-AC have excellent performance and good
resolution of DOA estimation in the real application.

We plot the RMSE curves of DOA estimation versus SNR
in Figure 5(a).The SNR varies from −12 dB to 0 dB with step-
length 2 dB. CRLB in Figure 5(a) denotes the Cramer-Rao
lower bound (CRLB) of DOA estimation. We assume that
two sources come from −5

∘
+ Δ𝜃 and 5

∘
+ Δ𝜃, respectively,

with Δ𝜃 produced uniformly and randomly within spatial
interval [−1∘, 1∘]. Thus, the source directions are off-grid and
the angular separation is always 10∘ in each trial. Figure 5(a)
reveals that the RMSE curve of sSSR-SS is closest to CRLB.
sSSR-AC almost performs better than ℓ

1
-SVD and OGSBI-

SVD all along, and it significantly outperformsMUSIC when
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Figure 2: Spatial spectra of ℓ
1
-SVD, OGSBI-SVD, MUSIC, sSSR-

AC, and sSSR-SS in numerical simulations for (a) sources from
[−5
∘
, 5
∘
] and (b) sources from [−5

∘
, 0
∘
]. SNR = −5 dB.

the SNR is lower than −6 dB.The results shown in Figure 5(a)
confirm that our methods surpass other methods and have
remarkable robustness to noise.

In the next experiment, we examine the performance of
our methods with respect to the angular separation between
two sources. Consider the directions of two sources are −𝜃 +

Δ𝜃 and 𝜃 + Δ𝜃 with Δ𝜃 produced uniformly and randomly
within [−1

∘
, 1
∘
]; then the angular separation is 2𝜃. We set

𝜃 = 2, 3, . . . , 30 and SNR = −5 dB. The curves of RMSE
versus angular separation are plotted in Figure 5(b). The
curves indicate that sSSR-SS and sSSR-AC outperform other
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Figure 3: Spatial spectra of sSSR-SS in real data tests for the assumed
number of the sources𝐾 = 1, 3, 5, 7, while the correct number of the
sources is 𝐾 = 2.
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Figure 4: Spatial spectra for𝑀 − 1 sources with SNR = −5 dB.

methods when the angular separation is smaller than 12
∘,

while they perform as well as others in other scenarios under
consideration. This result implies that our methods have the
best capability for superresolution among these compared
methods.

Finally we close this section by comparing the compu-
tational complexity of the various methods with respect to
the number of the sensors 𝑀. The directions of two sources
are set as in Figure 5(a). The SNR is set to 0 dB, and the
number of the sensors varies from 8 to 20 with step-length 2.
Figure 6 shows the average running time of the various
methods calculated over 500 independent trials.The running
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Figure 5: RMSE of ℓ
1
-SVD, OGSBI-SVD, MUSIC, sSSR-AC, and

sSSR-SS with respect to (a) SNR with source separation 10
∘ fixed

and (b) source separation with SNR = 0 dB fixed.

time of sSSR-SS contains the cost of the implementation of
SVD. The experiment is carried out in MATLAB v.7.8.0 on
a PC with a Window XP system and a 4GHz CPU. The
curve of sSSR-AC is a quadratic curve about 𝑀, and this
fact verifies the theoretical analysis about the computational
cost of sSSR-AC in Section 2.1. In addition, The curves of
the average running time presented in Figure 6 illustrate that
our sSSR-SS is faster than ℓ

1
-SVD and sSSR-AC, and this

result confirms that the subspace decomposition technique is
able to reduce the cost of sSSR-AC indeed. Although OGSBI-
SVD and MUSIC run faster than sSSR-SS, the benefit of our
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Figure 6: The average running time of ℓ
1
-SVD, OGSBI-SVD,

MUSIC, sSSR-AC, and sSSR-SS with respect to the number of the
sensors𝑀.

methods is the higher accuracy of DOA estimation, and this
fact has been illustrated by the above real data tests and the
numerical simulations.

The comparison about the statistical performance of the
various methods further confirms the advantages of our
methods. Particularly, sSSR-SS based on the signal subspace
reduces the computational cost and has superior robustness
to noise.

5. Conclusion

In this paper, we propose a new method sSSR-SS for DOA
estimation in the framework of sparse signal recovery with
complex data. sSSR-SS takes source signal subspace as the
measurement domain and exploits the parallel alliance of
the basis of this signal subspace to reduce the computational
cost and improve the robustness to noise. Based on the
alliance, we design an optimization of sparse signal recovery
for DOA estimation, reformulate it into an SOCP form, and
solve it using the interior point method. We compare the
performance of sSSR-SS with the classical ℓ

1
-SVD, OGSBI-

SVD, and MUSIC in the numerical simulations and real
data tests. The results demonstrate the effectiveness of our
sSSR-SS, including no sensitivity to the assumed number of
the sources, the number of resolvable sources at most, the
computational complexity, and the practicability for practical
application. Moreover, the experiment results verified the
increased resolution and improved accuracy of sSSR-SS,
especially the robustness to noise.
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