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The synchronization problem of two delayed complex dynamical networks with output coupling is investigated by using impulsive
hybrid control schemes, where only scalar signals need to be transmitted from the drive network to the response one. Based on the
Lyapunov stability theorem and the impulsive hybrid control method, some sufficient conditions guaranteeing synchronization of
such complex networks are established for both the cases of coupling delay and node delay are considered, respectively. Finally, two
illustrative examples with numerical simulations are given to show the feasibility and efficiency of theoretical results.

1. Introduction

A complex network is composed of a number of coupled
nodes, where each node is a dynamical system and can
only access the local neighboring information. In our daily
life, many nature and artificial systems can be described by
the complex dynamical networks, such as the World Wide
Web, various wireless communication networks, metabolic
networks, biological neural works, epidemic network, traffic
network, and many others [1–3]. In the past decade, the
synchronization problem for complex networks has attracted
much attention from various disciplines [4–11]. Many kinds
of synchronization have been proposed, such as complete
synchronization, lag synchronization, cluster synchroniza-
tion, and generalized synchronization. For a network which
cannot achieve synchronization by itself, one can design some
appropriate controllers to force the network to synchronize
onto a homogenous trajectory, such as adaptive control [12–
14], pinning control [15–18], intermittent control [19, 20], and
impulsive control [21–27].

Generally, network synchronization can be classified into
inner synchronization and outer synchronization. Briefly,
the synchronization inside a network is called inner syn-
chronization, that is, the coherent behavior of all the nodes
within a network, while outer synchronization aims at the

study of dynamics between coupled networks [28]. Li et al.
[29] theoretically and numerically demonstrated the possi-
bility of outer synchronization between two networks hav-
ing the same topological structures. Subsequently, through
the adaptive control or impulsive control, synchronization
between two networks is also studied in [30–34], which
could deal with more complicated cases, such as different
node dynamics, nonidentical topological structures, or time-
varying delays. However, these schemes demand all the states
of the drive network to be sent to the response network.
This is impractical and not economical for real network
applications, such as communication networks, where too
many links or a too wide bandwidth in communication
channels among uses is very unlikely. To resolve this problem,
observer-based synchronization schemes have been used
where the receiver uses an observer to estimate the states of
the drive. This will decrease the number of coupling signals
between drive and response. Recently, the state observer
approach has been applied to chaos synchronization [35–37]
and synchronization of complex networks [38, 39]. Based
on the state observer approach, Jiang et al. [38] formulated
a complex network model and derived some criteria to
investigate the local synchronization in the network. In [39],
a new scheme for outer synchronization has been proposed
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based on the pinning-state-observer approach, where only
part of nodes are controlled in response networks and only
scalar signals need to be transmitted from the drive network
to the response one. However, they did not take into account
the time delay. Ignoring them may lead to design flaws
and incorrect analysis conclusions. Hence, time delays in
couplings or in dynamical nodes have received considerable
attention. On the other hand, in most of the impulsive
synchronization methods [21–27], response system needs to
have access to all of the drive system states. This means
that all the drive system states should be transmitted to the
response systemwhichwill decrease the security and capacity
of the communication channel and the complexity of the
communication system will be increased. To the best of our
knowledge, synchronization between two delayed complex
dynamical networks with output coupling has received very
little research attention despite its significance in practice;
therefore, the main purpose of this paper is to shorten such
a gap. The main novelty of this paper can be summarized
as follows. First, the adaptive impulsive observer problem
for outer synchronization of delayed complex dynamical
networks with output coupling is considered in this paper.
Second, only by using the output of the drive network at
discrete instant times, the response network would be able to
estimate states of the drive network.

Motivated by the above discussions, in this paper, we
are going to design an outer synchronization scheme where
receiver only needs the output of the drive network. Applying
the effective, robust, and low-cost impulsive hybrid control
method, we study outer synchronization between the drive
network and the response network with delay. The cases of
coupling delay and node delay are considered, respectively.
Sufficient conditions of synchronization of two coupled
networks are derived based on the comparison theorem of
an impulsive differential system.Theproposed scheme herein
will be very useful for practical engineering applications, such
as network monitoring and network communications.

The rest of this paper is organized as follows. In Section 2,
model description and some necessary preliminaries are
given. The impulsive state observer is proposed, and outer
synchronization criteria are derived in Section 3. In Section 4,
numerical results are given to validate the theoretical analysis.
Finally, some concluding remarks are stated in Section 5.

2. Model Description and Preliminaries

This section provides some mathematical preliminaries to
derive the main results of this paper.

2.1. Notations. The notations in this paper are quite stan-
dard. 𝑅𝑛 and 𝑅

𝑛×𝑛 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑛 × 𝑛 real matrices. The
superscript 𝑇 denotes matrix or vector transposition. 𝐼

𝑛
is

the 𝑛 × 𝑛 identity matrix. 𝜆max(𝐴) means the maximum
eigenvalue of matrix 𝐴. The Euclidean norm in 𝑅

𝑛 is defined
as ‖ ⋅ ‖, for vector 𝑥 ∈ 𝑅

𝑛, ‖𝑥‖ = 𝑥
𝑇

𝑥, for matrix 𝐴 ∈ 𝑅
𝑛×𝑛,

‖𝐴‖ = √𝜆max(𝐴
𝑇𝐴). ⊗ is the Kronecker product of two

matrices. The matrices, if their dimensions are not explicitly
stated, are assumed to have appropriate dimensions.

2.2. Comparison Theorem. The following comparison theo-
rem is important to study the impulsive control of delayed
complex dynamical networks with output coupling.

Lemma 1 (see [40]). Let 0 ≤ 𝜏(𝑡), 𝜏
1
(𝑡), 𝜏

2
(𝑡), . . . , 𝜏

𝑚
(𝑡) ≤

𝜏, 𝜏 = max (𝜏, 𝜏
1
, 𝜏

2
, . . . , 𝜏

𝑚
), 𝐹(𝑡, 𝑢, 𝑢

1
, . . . , 𝑢

𝑚
) :

𝑅
+

×

𝑚+1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑅 × ⋅ ⋅ ⋅ × 𝑅→ 𝑅 be nondecreasing in 𝑢

𝑖
for each fixed

(𝑡, 𝑢, 𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢

𝑖+1
, 𝑢

𝑚
), 𝑖 = 1, 2, . . . , 𝑚, and 𝐼

𝑘
(𝑢) : 𝑅 →

𝑅 be nondecreasing in 𝑢. Suppose that 𝑢(𝑡) and 𝜐(𝑡) satisfy

𝐷
+

𝑢 (𝑡) ≤ 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢
1
(𝑡 − 𝜏

1
(𝑡)) , . . . , 𝑢

𝑚
(𝑡 − 𝜏

𝑚
(𝑡))) ,

𝑡 ≥ 0,

𝑢 (𝑡
𝑘
) ≤ 𝐼

𝑘
𝑢 (𝑡

−

𝑘
) , 𝑘 ∈ 𝑁,

𝐷
+

𝜐 (𝑡) > 𝐹 (𝑡, 𝜐 (𝑡) , 𝜐
1
(𝑡 − 𝜏

1
(𝑡)) , . . . , 𝜐

𝑚
(𝑡 − 𝜏

𝑚
(𝑡))) ,

𝑡 ≥ 0,

𝜐 (𝑡
𝑘
) ≥ 𝐼

𝑘
𝜐 (𝑡

−

𝑘
) , 𝑘 ∈ 𝑁,

(1)

where the right and upper Dini derivative𝐷+

𝑢(𝑡) is defined as
𝐷
+

𝑢(𝑡) = lim
ℎ→0

+(𝑢(𝑡 + ℎ) − 𝑢(𝑡))/ℎ, where ℎ → 0
+ means

that ℎ approaches zero from the right-hand side. Then 𝑢(𝑡) ≤

𝜐(𝑡) for −𝜏 ≤ 𝑡 ≤ 0 implies that 𝑢(𝑡) ≤ 𝜐(𝑡) for 𝑡 ≥ 0.

2.3. Model Description. The drive network and the response
network with output coupling delay can generally be
described as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑗
(𝑡) ,

(2)

̇̂𝑥
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑗
(𝑡) ,

(3)

where 𝑢
𝑖
(𝑡) is control input, 1 ≤ 𝑖 ≤ 𝑁, 𝑥

𝑖
(𝑡) =

(𝑥
𝑖1
(𝑡), 𝑥

𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))

𝑇

∈ 𝑅
𝑛 is the state vector of the 𝑖th

node, 𝑦
𝑖
(𝑡) ∈ 𝑅

𝑝 is the output variable of the 𝑖th node, 1 ≤

𝑝 ≤ 𝑛, 𝑥
𝑖
(𝑡) ∈ 𝑅

𝑛 is the estimated state vector, 𝑦
𝑖
(𝑡) ∈ 𝑅

𝑝 is
the estimated output vector, 𝑓 : 𝑅

+

× 𝑅
𝑛

→ 𝑅
𝑛 is a smooth

nonlinear function, 𝐻 ∈ 𝑅
𝑝×𝑛 is the output matrix of each

node, Γ ∈ 𝑅
𝑛×𝑝 is the inner coupling matrix, and the time-

varying delay 𝜏(𝑡) is bounded by a known constant; that is
0 ≤ 𝜏(𝑡) ≤ 𝜏, and 𝐶 = (𝑐

𝑖𝑗
)
𝑁×𝑁

is the delayed outer coupling
configuration matrix with zero-sum rows, in which 𝑐

𝑖𝑗
̸= 0 if

there is a link from node 𝑖 to node 𝑗 (𝑖 ̸= 𝑗), and 𝑐
𝑖𝑗

= 0

otherwise.
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On the other hand, two output coupled networks with
dynamical nodes delay are described by

�̇�
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐻𝑥

𝑖
(𝑡) ,

(4)

̇̂𝑥
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡) + 𝑢

𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐻𝑥

𝑖
(𝑡) .

(5)

Assumption 2. Assuming that there is a positive-definite
diagonal matrix𝑃 = diag (𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑛
), such that𝑓 satisfies

the following inequality:

(𝑥 − 𝑦)
𝑇

𝑃 (𝑓 (𝑡, 𝑥, 𝑥 (𝑡 − 𝜏)) − 𝑓 (𝑡, 𝑦, 𝑦 (𝑡 − 𝜏)))

≤ 𝐾(𝑥 − 𝑦)
𝑇

(𝑥 − 𝑦)

+ 𝐿(𝑥 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏))
𝑇

(𝑥 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏)) ,

(6)

for𝐾 > 0, 𝐿 > 0, all 𝑥, 𝑦 ∈ 𝑅
𝑛 and 𝑡 > 0.

Remark 3. Assumption 2 gives some requirements for the
dynamics of isolated nodes in network. If the function
describing each node satisfies uniform Lipschitz condition
with respect to the time, that is, ‖𝑓(𝑡, 𝑥, 𝑥(𝑡−𝜏))−𝑓(𝑡, 𝑦, 𝑦(𝑡−
𝜏))‖ ≤ 𝐾

1
‖𝑥 − 𝑦‖ + 𝐿

1
‖𝑥(𝑡 − 𝜏) − 𝑦(𝑡 − 𝜏)‖, one can

choose 𝐾
1

= 𝐾 + 𝜀𝐿/2, 𝐿
1

= 𝐿/(2𝜀), and 𝑃 = 𝐼
𝑛
to

satisfy Assumption 2, where 𝜀 is a positive constant. It is easy
to verify that many chaotic systems with delays or without
delays satisfy Assumption 2, for example, Chua’s oscillator,
Rössler system, Lorenz system, Chen system, and Lü system
as well as the delayed Lorenz system, delayed Hopfield neural
networks, and delayed cellular neural networks.

Definition 4. Two networks are said to achieve globally
exponential synchronization if ‖𝑥

𝑖
(𝑡)−𝑥

𝑖
(𝑡)‖ ≤ 𝑀

0
𝑒
−𝜃𝑡, 𝑀

0
>

0, 𝜃 > 0, and 𝑡 ≥ 0.

3. Adaptive Impulsive Criteria for Network
with Output Coupling

In this section, we discuss outer synchronization of the drive-
response dynamical network with output coupling via the
impulsive hybrid controller under two cases: with node delay
and with coupling delay. In order to achieve synchronization
of two networks, the impulsive hybrid controller, for the 𝑖

node, is designed as

𝑢
𝑖
(𝑡) = 𝑢

1𝑖
+ 𝑢

2𝑖
, (7)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑢
1𝑖

is the nonlinear feedback
controller, the impulsive control 𝑢

2𝑖
= ∑

∞

𝑘=1
𝐵
𝑖𝑘
(𝑦

𝑖
− 𝑦

𝑖
)𝛿(𝑡 −

𝑡
𝑘
), and the impulsive instant sequence {𝑡

𝑘
}
∞

𝑘=1
satisfies 0 =

𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝑡
𝑘
= +∞. 𝐵

𝑖𝑘
∈ 𝑅

𝑛×𝑝 is

the states impulses gainmatrix and 𝛿(⋅) is the Dirac impulsive
function; that is,

𝛿 (𝑡 − 𝑡
𝑘
) = {

1, 𝑡 = 𝑡
𝑘
,

0, 𝑡 ̸= 𝑡
𝑘
.

(8)

3.1. Coupling Delay. Two networks with coupling delays and
impulsive control can be equivalently expressed as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑖
(𝑡) ,

̇̂𝑥
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

1𝑖
,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑖
(𝑡) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

Δ𝑥
𝑖
= 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) = 𝐵

𝑖𝑘
(𝑦

𝑖
− 𝑦

𝑖
) , 𝑡 = 𝑡

𝑘
,

(9)

where 𝑥
𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

𝑥
𝑖
(𝑡) and 𝑥

𝑖
(𝑡
−

𝑘
) = lim

𝑡→ 𝑡
−

𝑘

𝑥
𝑖
(𝑡).

Without loss of generality, we assume that lim
𝑡→ 𝑡
−

𝑘

𝑥
𝑖
(𝑡) =

𝑥
𝑖
(𝑡
𝑘
), which means that the solution of (9) is left continuous

at time 𝑡
𝑘
. 𝐵

𝑖𝑘
∈ 𝑅

𝑛×𝑝 is impulsive control gain.
Let 𝑒

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑖
(𝑡); then the synchronization error of

two networks can be written as

̇𝑒
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) − 𝑓 (𝑡, 𝑥

𝑖
(𝑡))

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝐻𝑒

𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

1𝑖
,

𝑒
𝑦𝑖
(𝑡) = 𝐻𝑒

𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑒
𝑖
= 𝐵

𝑖𝑘
𝐻𝑒

𝑖
, 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . .

(10)

Here, the adaptive controller 𝑢
1𝑖

and updating laws are
designed as follows:

𝑢
1𝑖
= −𝑑

𝑖
Γ (𝑦

𝑖
− 𝑦

𝑖
) ,

̇𝑑
𝑖
= 𝑘

𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡) , 𝑘

𝑖
> 0.

(11)

Then, we have the following results.

Theorem 5. Let 0 < 𝜌 = sup{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞. Suppose

Assumption 2 holds, the drive network (2) and the response
network (3) with impulsive controller (7) will achieve globally
exponential synchronization in the following sense:

‖𝑒 (𝑡)‖ ≤ 𝑀𝑒
−(𝜆𝑡/2)sup

−𝜏≤𝑠≤0

𝜙 (𝑠)
 , 𝑡 ≥ 0, (12)



4 Journal of Applied Mathematics

if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 0 < 𝜂 < 1,

(13)

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+
𝜀 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖

𝜂
] < 0,

(14)

where𝑀 = (1/𝜂)√(𝜆max(𝑃))/(𝜆min(𝑃)), 𝐷
∗

= 𝑑
∗

𝐼
𝑁
, and 𝑑

∗

is the minimum value of the initial feedback strength 𝑑
𝑖0
. 𝜆 > 0

is the solution of 𝜆 − 𝑎 + 𝑏𝑒
𝜆𝜏

= 0 within which

𝑎 = −
2 ln 𝜂
𝜌

− 𝜆max (𝑃
−1

)

× [2𝐾 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻) +
𝜀 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖

𝜂
] ,

𝑏 = 𝜆max (𝑃
−1

)
𝜀 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖

𝜂
.

(15)

Proof. In order to obtain the criteria of synchronization for
the drive-response networks (9), we translate this problem
to research the stability of the error system (10) around the
zero solution. Consider the following Lyapunov candidate
function:

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃𝑒

𝑖
(𝑡) . (16)

When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑁, one has

𝑉 (𝑡
+

𝑘
) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
+

𝑘
) 𝑃𝑒

𝑖
(𝑡
+

𝑘
)

=

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
𝑘
) (𝐼

𝑛
+ 𝐵

𝑖𝑘
𝐻)

𝑇

𝑃 (𝐼
𝑛
+ 𝐵

𝑖𝑘
𝐻) 𝑒

𝑖
(𝑡
𝑘
)

≤ max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

‖𝑃‖ 𝜆max (𝑃
−1

)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
𝑘
) 𝑃𝑒

𝑖
(𝑡
𝑘
)

≤ 𝜂
2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
𝑘
) 𝑃𝑒

𝑖
(𝑡
𝑘
) = 𝜂

2

𝑉 (𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(17)

For 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ 𝑁, differentiating 𝑉(𝑡) along the

solution of (10), one obtains

�̇� (𝑡) = 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃[

[

𝑓 (𝑡, 𝑥
𝑖
(𝑡)) − 𝑓 (𝑡, 𝑥

𝑖
(𝑡))

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝐻𝑒

𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑑

𝑖
Γ𝐻𝑒

𝑖
(𝑡)]

]

≤ 2𝐾

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡) − 2𝑑

∗

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃Γ𝐻𝑒

𝑖
(𝑡)

+ 2𝜀𝑒
𝑇

(𝑡) (𝐶 ⊗ 𝑃Γ𝐻) 𝑒 (𝑡 − 𝜏 (𝑡)) .

(18)

It is clear that

2𝜀𝑒
𝑇

(𝑡) (𝐶 ⊗ 𝑃Γ𝐻) 𝑒 (𝑡 − 𝜏 (𝑡))

≤
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖ 𝑒

𝑇

(𝑡) 𝑒 (𝑡)

+ 𝜀𝜂 ‖𝐶 ⊗ 𝑃Γ𝐻‖ 𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑒 (𝑡 − 𝜏 (𝑡)) ,

(19)

where 𝑒(𝑡) = (𝑒
𝑇

1
(𝑡), 𝑒

𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡))

𝑇.
Then, we get

�̇� (𝑡) ≤ [2𝐾 +
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖]

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡)

− 2𝑑
∗

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃Γ𝐻𝑒

𝑖
(𝑡)

+ 𝜂𝜀 ‖𝐶 ⊗ 𝑃Γ𝐻‖

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

≤ 𝜆max (𝑃
−1

) [2𝐾 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖]𝑉 (𝑡)

+ 𝜆max (𝑃
−1

) 𝜀𝜂 ‖𝐶 ⊗ 𝑃Γ𝐻‖𝑉 (𝑡 − 𝜏 (𝑡)) .

(20)

For any 𝜀 > 0, let 𝜐(𝑡) be a unique solution of the following
impulsive delayed dynamical system:

̇𝜐 (𝑡) = 𝜆max (𝑃
−1

) [2𝐾 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖] 𝜐 (𝑡)

+ 𝜆max (𝑃
−1

) 𝜀𝜂 ‖𝐶 ⊗ 𝑃Γ𝐻‖ 𝜐 (𝑡 − 𝜏 (𝑡)) + 𝜍, 𝑡 ̸= 𝑡
𝑘
,

𝜐 (𝑡
𝑘
) = 𝜂

2

𝜐 (𝑡
−

𝑘
) , 𝑘 ∈ 𝑁,

𝜐 (𝑠) = 𝜆max (𝑃)
𝜙(𝑠)



2

, −𝜏 ≤ 𝑠 ≤ 0,

(21)

where 𝜙(𝑠) = (𝜙
𝑇

1
(𝑠), 𝜙

𝑇

2
(𝑠), . . . , 𝜙

𝑇

𝑁
(𝑠))

𝑇.
Since 𝑉(𝑠) ≤ 𝜆max(𝑃)‖𝜙(𝑠)‖

2 for −𝜏 ≤ 𝑠 ≤ 0, it follows
from (20)-(21) and Lemma 1 that

0 ≤ 𝑉 (𝑡) ≤ 𝜐 (𝑡) , for 𝑡 ≥ 0. (22)
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By the formula for the variation of parameters, one
obtains 𝜐(𝑡) from (21) that

𝜐 (𝑡) = 𝜔 (𝑡, 0) 𝜐 (0)

+ ∫

𝑡

0

𝜔 (𝑡, 𝑠) (𝜆max (𝑃
−1

) 𝜀𝜂 ‖𝐶 ⊗ 𝑃Γ𝐻‖

× 𝜐 (𝑠 − 𝜏 (𝑠)) + 𝜍) 𝑑𝑠,

(23)

where 𝜔(𝑡, 𝑠), 0 ≤ 𝑠 ≤ 𝑡, is Cauchy matrix of the linear system

̇𝜍 (𝑡) = 𝜆max (𝑃
−1

) [2𝐾 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖] 𝜍 (𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝜍 (𝑡
+

𝑘
) = 𝜂

2

𝜍 (𝑡
−

𝑘
) , 𝑘 ∈ 𝑁.

(24)

According to the representation of the Cauchy matrix
[41], we get the following estimation of 𝜔(𝑡, 𝑠) since 0 < 𝜂 < 1

and 𝑡
𝑘
− 𝑡

𝑘−1
≤ 𝜌,

𝜔 (𝑡, 𝑠) = 𝑒
𝜆max(𝑃

−1
)[2𝐾−2𝜆min(𝐷

∗
⊗𝑃Γ𝐻)+(𝜀/𝜂)‖𝐶⊗𝑃Γ𝐻‖](𝑡−𝑠)

∏

𝑠<𝑡
𝑘
≤𝑡

𝜂
2

≤ 𝑒
(−𝑎−(2 ln 𝜂/𝜌))(𝑡−𝑠)

𝜂
2(((𝑡−𝑠)/𝜌)−1)

= 𝜂
−2

𝑒
−𝑎(𝑡−𝑠)

, 0 ≤ 𝑠 ≤ 𝑡.

(25)

For simplicity, let 𝜎 = 𝜂
−2

𝜆max(𝑃)sup−𝜏≤𝑠≤0{‖𝜙(𝑠)‖
2

};
from (23) and (25), one has

𝜐 (𝑡) ≤ 𝜂
−2

𝑒
−𝑎𝑡

𝜐 (0)

+ ∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝜂
−2

[𝜆max (𝑃
−1

) 𝜀𝜂 ‖𝐶 ⊗ 𝑃Γ𝐻‖

×𝜐 (𝑠 − 𝜏 (𝑠)) + 𝜍] 𝑑𝑠

≤ 𝜎𝑒
−𝑎𝑡

+ ∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

[𝑏𝜐 (𝑠 − 𝜏 (𝑠)) +
𝜍

𝜂2
] 𝑑𝑠.

(26)

Define𝐻(𝜆) = 𝜆 − 𝑎 + 𝑏𝑒
𝜆𝜏; from (14), one has 𝑎 − 𝑏 > 0,

and also 𝐻(0) < 0, 𝐻(+∞) > 0, and 𝐻


(𝜆) = 1 + 𝑏𝜏𝑒
𝜆𝜏

>

0. Therefore, there exists a unique solution 𝜆 > 0 such that
𝐻(𝜆) = 0.

On the other hand, since 𝜀, 𝜆, 𝑎 − 𝑏 > 0, and (1/𝜂) > 1,
one has

𝜐 (𝑡) ≤ 𝜂
−2 sup

−𝜏≤𝑠≤0

𝜐 (𝑠) < 𝜎𝑒
−𝜆𝑡

+
𝜍

𝜂2 (𝑎 − 𝑏)
,

− 𝜏 ≤ 𝑡 ≤ 0.

(27)

In the following, we will prove that the following inequal-
ity holds

𝜐 (𝑡) < 𝜎𝑒
−𝜆𝑡

+
𝜍

𝜂2 (𝑎 − 𝑏)
, 𝑡 ≥ 0. (28)

If (26) is not true, that is, it is assumed that there exists a
𝑡
∗

> 0 such that

𝜐 (𝑡
∗

) ≥ 𝜎𝑒
−𝜆𝑡
∗

+
𝜍

𝜂2 (𝑎 − 𝑏)
, (29)

𝜐 (𝑡) < 𝜎𝑒
−𝜆𝑡

+
𝜍

𝜂2 (𝑎 − 𝑏)
, 𝑡 < 𝑡

∗

. (30)

One has from (24) and (28) that

𝜐 (𝑡
∗

) ≤ 𝜎𝑒
−𝑎𝑡
∗

+ ∫

𝑡
∗

0

𝑒
−𝑎(𝑡
∗
−𝑠)

[𝑏𝜐 (𝑠 − 𝜏 (𝑠)) +
𝜍

𝜂2
] 𝑑𝑠

≤ 𝑒
−𝑎𝑡
∗

[𝜎 +
𝜀

𝜂2 (𝑎 − 𝑏)
+ 𝑏𝜎𝑒

𝜆𝜏

∫

𝑡
∗

0

𝑒
−(𝜆−𝑎)𝑠

𝑑𝑠

+∫

𝑡
∗

0

𝑒
𝑎𝑠

𝑎𝜍

𝜂2 (𝑎 − 𝑏)
𝑑𝑠]

= 𝜎𝑒
−𝜆𝑡
∗

+
𝜍

𝜂2 (𝑎 − 𝑏)
[1 − 𝑒

−𝑎𝑡
∗

] ,

< 𝜎𝑒
−𝜆𝑡
∗

+
𝜍

𝜂2 (𝑎 − 𝑏)
,

(31)

which contradicts with (29), and so (28) holds. Letting 𝜍 →

0, we get

𝑉 (𝑡) ≤ 𝜐 (𝑡) ≤ 𝜎𝑒
−𝜆𝑡

. (32)

Moreover,

𝑉 (𝑡) ≥ 𝜆min (𝑃) ‖𝑒(𝑡)‖
2

, 𝑡 ≥ 0. (33)

From (32) and (33), we have

‖𝑒 (𝑡)‖ ≤
1

𝜂
√
𝜆max (𝑃)

𝜆min (𝑃)
sup

−𝜏≤𝑠≤0

{
𝜙(𝑠)



2

} 𝑒
−(𝜆/2)𝑡

. (34)

When 𝑡 → ∞, the error system (10) is global exponential
asymptotically stable, which implies that the drive network
and the response network achieve synchronization by using
impulsive hybrid controller. This completes the proof of
Theorem 5.

Similarly, we can easily obtain the following result for the
case 𝜂 ≥ 1.

Theorem 6. Let 𝜌 = inf{𝑡
𝑘
− 𝑡

𝑘−1
} > 0. Suppose Assumption 2

holds; if there exists a constant 𝜂 ≥ 1 such that

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
, 𝜌

𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

,

(35)

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+ 𝜀𝜂 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖] < 0,

(36)
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then the drive network (2) and the response network (3)
with impulsive controller (7) will achieve globally exponential
synchronization in the following sense:

‖𝑒 (𝑡)‖ ≤ 𝑀𝑒
−(𝜆𝑡/2) sup

−𝜏≤𝑠≤0

𝜙 (𝑠)
 , 𝑡 ≥ 0, (37)

where𝑀 = (1/𝜂)√(𝜆max(𝑃))/(𝜆min(𝑃)), 𝜆 > 0 is the solution
of 𝜆 − 𝑎 + 𝑏𝑒

𝜆𝜏

= 0 within which

𝑎 = −
2 ln 𝜂
𝜌

− 𝜆max (𝑃
−1

) [2𝐾 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+𝜀𝜂 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖] ,

𝑏 = 𝜆max (𝑃
−1

) 𝜀𝜂 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖ .

(38)

Proof. Take the same Lyapunov candidate function𝑉(𝑡) as in
Theorem 5. By the proof of Theorem 5, we can get

�̇� (𝑡) ≤ 𝜆max (𝑃
−1

) [2𝐾 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+ 𝜀𝜂 ‖𝐶 ⊗ 𝑃Γ𝐻‖]𝑉 (𝑡)

+ 𝜆max (𝑃
−1

)
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖𝑉 (𝑡 − 𝜏 (𝑡)) .

(39)

According to the representation of the Cauchymatrix, we
get the following estimation of 𝜔(𝑡, 𝑠), since 𝜂 > 1 and 𝑡

𝑘
−

𝑡
𝑘−1

≥ 𝜌,

𝜔 (𝑡, 𝑠) = 𝑒
𝜆max(𝑃

−1
)[2𝐾−2𝜆min(𝐷

∗
⊗𝑃Γ𝐻)+𝜀𝜂‖𝐶⊗𝑃Γ𝐻‖](𝑡−𝑠)

∏

𝑠<𝑡
𝑘
≤𝑡

𝜂
2

≤ 𝑒
(−𝑎−(2 ln 𝜂/𝜌))(𝑡−𝑠)

𝜂
2(((𝑡−𝑠)/𝜌)+1)

= 𝜂
2

𝑒
−𝑎(𝑡−𝑠)

, 0 ≤ 𝑠 ≤ 𝑡.

(40)

Let 𝜎 = 𝜂
2

𝜆max(𝑃)sup−𝜏≤𝑠≤0{‖𝜙(𝑠)‖
2

}, and accordingly

𝜐 (𝑡) ≤ 𝜂
2

𝑒
−𝑎𝑡

𝜐 (0)

+ ∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝜂
2

[𝜆max (𝑃
−1

)
𝜀

𝜂
‖𝐶 ⊗ 𝑃Γ𝐻‖

×𝜐 (𝑠 − 𝜏 (𝑠)) + 𝜍] 𝑑𝑠

≤ 𝜎𝑒
−𝑎𝑡

+ ∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

[𝑏𝜐 (𝑠 − 𝜏 (𝑠)) + 𝜂
2

𝜍] 𝑑𝑠.

(41)

Let 𝐻(𝜆) = 𝜆 − 𝑎 + 𝑏𝑒
𝜆𝜏; from (36), one has 𝑎 − 𝑏 > 0,

and also𝐻(0) < 0, 𝐻(+∞) > 0, and 𝐻


(𝜆) = 1 + 𝑏𝜏𝑒
𝜆𝜏

> 0.
Therefore, there exists a unique solution 𝜆 > 0.

Since 𝜀, 𝜆, 𝑎 − 𝑏 > 0, and 𝜂 ≥ 1, one has

𝜐 (𝑡) ≤ 𝜂
2 sup
−𝜏≤𝑠≤0

𝜐 (𝑠)

< 𝜎𝑒
−𝜆𝑡

+
𝜍𝜂

2

(𝑎 − 𝑏)
, −𝜏 ≤ 𝑡 ≤ 0.

(42)

In the following, we will prove that the following inequal-
ity holds

𝜐 (𝑡) < 𝜎𝑒
−𝜆𝑡

+
𝜍𝜂

2

(𝑎 − 𝑏)
, 𝑡 ≥ 0. (43)

If (28) is not true, that is, it is assumed that there exists a
𝑡
∗

> 0 such that

𝜐 (𝑡
∗

) ≥ 𝜎𝑒
−𝜆𝑡
∗

+
𝜍𝜂

2

(𝑎 − 𝑏)
, (44)

𝜐 (𝑡) < 𝜎𝑒
−𝜆𝑡

+
𝜍𝜂

2

(𝑎 − 𝑏)
, 𝑡 < 𝑡

∗

. (45)

One has from (41) and (45) that

𝜐 (𝑡
∗

) ≤ 𝜎𝑒
−𝑎𝑡
∗

+ ∫

𝑡
∗

0

𝑒
−𝑎(𝑡
∗
−𝑠)

[𝑏𝜐 (𝑠 − 𝜏 (𝑠)) + 𝜂
2

𝜍] 𝑑𝑠

< 𝑒
−𝑎𝑡
∗

(𝜎 +
𝜍𝜂

2

(𝑎 − 𝑏)
)

+ 𝑒
−𝑎𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎𝑠

[𝑏(𝜎𝑒
−𝜆(𝑠−𝜏(𝑠))

+
𝜍𝜂

2

(𝑎 − 𝑏)
) + 𝜍𝜂

2

]𝑑𝑠

≤ 𝑒
−𝑎𝑡
∗

[𝜎 + 𝑏𝜎𝑒
−𝜆𝜏

∫

𝑡
∗

0

𝑒
(𝑎−𝜆)𝑠

𝑑𝑠 +
𝑎𝜍𝜂

2

(𝑎 − 𝑏)
∫

𝑡
∗

0

𝑒
𝑎𝑠

𝑑𝑠]

= 𝜎𝑒
−𝜆𝑡
∗

+
𝜍𝜂

2

(𝑎 − 𝑏)
[1 − 𝑒

−𝑎𝑡
∗

] ,

< 𝜎𝑒
−𝜆𝑡
∗

+
𝜍𝜂

2

(𝑎 − 𝑏)
,

(46)

which contradicts with (44), and so (43) holds. Letting 𝜍 →

0, we have

𝑉 (𝑡) ≤ 𝜐 (𝑡) ≤ 𝜎𝑒
−𝜆𝑡

. (47)

This completes the proof of Theorem 5.

For most complex dynamical networks with nodes cou-
pled by state variables [4–34], we can also obtain outer syn-
chronization between two such networks using the proposed
scheme as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥

𝑗
(𝑡 − 𝜏 (𝑡)) ,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑖
(𝑡) ,

̇̂𝑥
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑥

𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

1𝑖
,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑖
(𝑡) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

Δ𝑥
𝑖
= 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) = 𝐵

𝑖𝑘
(𝑦

𝑖
− 𝑦

𝑖
) , 𝑡 = 𝑡

𝑘
.

(48)
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Then, the error system is derived as follows:

̇𝑒
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡)) − 𝑓 (𝑡, 𝑥

𝑖
(𝑡))

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑒

𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

1𝑖
,

𝑒
𝑦𝑖
(𝑡) = 𝐻𝑒

𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑒
𝑖
= 𝐵

𝑖𝑘
𝐻𝑒

𝑖
, 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . .

(49)

Then, we have the following corollaries.

Corollary 7. Let 0 < 𝜌 = sup{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞. Suppose

Assumption 2 holds; the drive-response network (48) with
impulsive controller (7) will achieve globally exponential syn-
chronization if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 0 < 𝜂 < 1,

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ)

+
𝜀 ‖(𝐶 ⊗ 𝑃Γ)‖

𝜂
] < 0.

(50)

Corollary 8. Let 𝜌 = inf{𝑡
𝑘
−𝑡

𝑘−1
} > 0. Suppose Assumption 2

holds, the drive-response network (48) with impulsive con-
troller (7) will achieve globally exponential synchronization if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 𝜂 ≥ 1,

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ)

+ 𝜀𝜂 ‖(𝐶 ⊗ 𝑃Γ)‖] < 0.

(51)

The proof of Corollaries 7 and 8 is the same as that of
Theorem 5 and thus omitted here.

3.2. Node Delay. Two networks with node delays and impul-
sive control can be equivalently expressed as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡) ,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑖
(𝑡) ,

̇̂𝑥
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) + 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝑦

𝑗
(𝑡) + 𝑢

1𝑖
,

𝑦
𝑗
(𝑡) = 𝐻𝑥

𝑖
(𝑡) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

Δ𝑥
𝑖
= 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) = 𝐵

𝑖𝑘
(𝑦

𝑖
− 𝑦

𝑖
) , 𝑡 = 𝑡

𝑘
.

(52)

Accordingly, the synchronization error of two networks
with node delays can be equivalently expressed as follows:

̇𝑒
𝑖
(𝑡) = 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑡, 𝑥

𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝐻𝑒

𝑗
(𝑡) + 𝑢

1𝑖
,

𝑒
𝑦𝑖
(𝑡) = 𝐻𝑒

𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑒
𝑖
= 𝐵

𝑖𝑘
𝐻𝑒

𝑖
, 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . .

(53)

Then, we obtain the following results.

Theorem 9. Let 0 < 𝜌 = sup{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞. Suppose

Assumption 2 holds; the drive network (4) and the response
network (5) with impulsive controller (7) will achieve globally
exponential synchronization if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 0 < 𝜂 < 1,

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+ 𝜀 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖ +
𝐿

𝜂2
] < 0.

(54)

Proof. Take the same Lyapunov candidate function𝑉(𝑡) as in
Theorem 5. By the proof of Theorem 5, we can get

�̇� (𝑡) = 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃[

[

𝑓 (𝑡, 𝑥
𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑡, 𝑥
𝑖
(𝑡) , 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝜀

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ𝐻𝑒

𝑗
(𝑡) − 𝑑

𝑖
Γ𝐻𝑒

𝑖
(𝑡)]

]

≤ 2𝐾

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑖
(𝑡) + 2𝐿

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒

𝑖
(𝑡 − 𝜏 (𝑡))

− 2𝑑
∗

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑃Γ𝐻𝑒

𝑖
(𝑡) + 2𝜀𝑒

𝑇

(𝑡) (𝐶 ⊗ 𝑃Γ𝐻) 𝑒 (𝑡)

≤ 𝜆max (𝑃
−1

) (2𝐿 − 2𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+2𝜀 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖ )𝑉 (𝑡)

+ 2𝜆max (𝑃
−1

) 𝐿𝑉 (𝑡 − 𝜏 (𝑡)) .

(55)

The rest of the proof of Theorem 9 is the same as that of
Theorem 5 and thus omitted here.
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Theorem 10. Let 𝜌 = inf{𝑡
𝑘
−𝑡

𝑘−1
} > 0. Suppose Assumption 2

holds; the drive network (4) and the response network (5)
with impulsive controller (7) will achieve globally exponential
synchronization if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 𝜂 ≥ 1,

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ𝐻)

+ 𝜀 ‖(𝐶 ⊗ 𝑃Γ𝐻)‖ + 𝜂
2

𝐿] < 0.

(56)

Similar to the Corollaries 7 and 8, we have the following
corollaries.

Corollary 11. Let 0 < 𝜌 = sup{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞. Suppose

Assumption 2 holds, the drive-response network with impulsive
controller (7)will achieve globally exponential synchronization
if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 0 < 𝜂 < 1,

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ)

+ 𝜀 ‖(𝐶 ⊗ 𝑃Γ)‖ +
𝐿

𝜂2
] < 0.

(57)

Corollary 12. Let 𝜌 = inf{𝑡
𝑘
− 𝑡

𝑘−1
} > 0. Suppose

Assumption 2 holds, the drive-response network with impulsive
controller (7)will achieve globally exponential synchronization
if

max
𝑘

𝐼𝑛 + 𝐵
𝑖𝑘
𝐻


2

= 𝜌
𝑘
,

𝜌
𝑘
‖𝑃‖ 𝜆max (𝑃

−1

) ≤ 𝜂
2

, 𝜂 ≥ 1,

ln 𝜂
𝜌

+ 𝜆max (𝑃
−1

) [𝐾 − 𝜆min (𝐷
∗

⊗ 𝑃Γ)

+𝜀 ‖(𝐶 ⊗ 𝑃Γ)‖ + 𝜂
2

𝐿] < 0.

(58)

Remark 13. It is noted that the configuration matrix 𝐶 does
not need to be symmetric, diffusive, or irreducible. This
means that the networks can be undirected or directed
networks and may also contain isolated nodes or clusters.
Therefore, the network structures here are very general and
the results can be applied to great many complex dynamical
networks.

Remark 14. In the above theorems and corollaries, the matrix
Γ and 𝐻 can be chosen as 𝑛 × 𝑝 and 𝑝 × 𝑛 matrices, 1 ≤

𝑝 ≤ 𝑛, based on the method of output coupling; the amount
of coupling variables between every two connected nodes
is flexible, which can save a lot of channel resources and
simplify the network topological structure and is more useful
for practical engineering applications.

4. Numerical Results

In this section, numerical simulations are given to verify and
demonstrate the effectiveness of the proposed synchroniza-
tion schemes for synchronizing the drive-response network
with time-delayed dynamical nodes or coupling delay. We
consider several networkswith four nodes, wherewewill take
chaotic systems as the dynamics of nodes. The total synchro-
nization error calculated by ‖𝑒(𝑡)‖ = √∑

𝑁

𝑖=1
‖𝑥

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)‖

2 is
used to measure the evolution process.

Example 15. In the first example, we consider diffusively
coupled networks with coupling delay. The chaotic Chua’s
circuit is taken as the node dynamic system of the networks
and given by

(

�̇�

̇𝑦

�̇�

) = (

𝑝 (𝑦 − 𝑥 − 𝑔 (𝑥))

𝑥 − 𝑦 + 𝑧

−𝑞𝑦

) , (59)

where 𝑔(𝑥) = 𝑛𝑥 + 0.5(𝑚 − 𝑛)(|𝑥 + 1| − |𝑥 − 1|), 𝑝 = 10, 𝑞 =

14.87, 𝑛 = −0.68, and𝑚 = −1.27.
For simplicity, the diffusive coupling configurationmatrix

𝐶 = (𝑐
𝑖𝑗
)
𝑁×𝑁

is chosen as

𝐶 = (

−5 1 3 1

1 −3 2 0

1 0 −2 1

2 1 0 −3

) . (60)

In the numerical simulations, we assume 𝜀 = 0.01, 𝑑∗ =

50, Γ = [2 5 1]
𝑇, 𝐻 = [1 0 0], and 𝐵

𝑖𝑘
= [−0.3 −

0.3 − 0.3]
𝑇. The coupling delay is 𝜏(𝑡) = 2 − 𝑒

−𝑡. The initial
values are chosen in the real number interval [−1, 1]. Let 𝑃 =

diag (0.2, 0.5, 0.2); we have (𝑥−𝑦)𝑇𝑃(𝑓(𝑥)−𝑓(𝑦)) ≤ [‖𝑃𝐴‖ +

0.2(|𝑛|+|𝑚−𝑛|)](𝑥−𝑦)
𝑇

(𝑥−𝑦); thus,𝑓 satisfies Assumption 2
with 𝐾 = ‖𝑃𝐴‖ + 0.2𝑝 (|𝑛| + |𝑚 − 𝑛|) = 6.3888. After calcu-
lations, getting ‖(𝐶 ⊗ 𝑃Γ𝐻)‖ = 6.6746, max ‖𝐼

𝑛
+ 𝐵

𝑖𝑘
𝐻‖

2

=

𝜌
𝑘
= 1, one gets 𝜌

𝑘
‖𝑃‖𝜆max(𝑃

−1

) = 2.5 ≤ 𝜂
2. According

to Theorem 6, let 𝜂 = 1.6 > 1; one gets 𝜌 > 0.0171.
Thus, taking the impulsive interval 𝑡

𝑘+1
− 𝑡

𝑘
= 0.02.

Figure 1 shows the evolution process of the state errors 𝑒
𝑖
(𝑡).

Figure 2 displays the total synchronization error ‖𝑒(𝑡)‖ of
two Chua’s circuit networks with the impulsive controller.
Figure 3 illustrates the impulsive applied to each state of the
observer at instant times. In the early times of the simulation,
since state estimation errors are large, the magnitude of the
synchronization impulses is larger and as time increases
the magnitude of the impulses will decrease. Numerical
simulations show that synchronization of two Chua’s circuit
networks with output coupling can be easily achieved by the
simple impulsive control scheme.

Example 16. In this example, we consider nondiffusively
coupled networks with node delay. The chaotic delayed
Hopfield neural network

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓 (𝑥 (𝑡)) + 𝐶𝑓 (𝑥 (𝑡 − 𝜏)) , (61)
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Figure 1: Evolution process of synchronization errors of two Chua’s
circuit networks.
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Figure 2: Evolution process of total synchronization error ‖𝑒(𝑡)‖ of
two Chua’s circuit networks.
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Figure 4: Evolution process of synchronization errors of two
delayed Hopfield neural networks.

with 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡))

𝑇

∈ 𝑅
2

, 𝑓(𝑥(𝑡)) = (tanh(𝑥
1
(𝑡)),

tanh(𝑥
2
(𝑡)))

𝑇

∈ 𝑅
2, and 𝐴 = (

−1.0 0

0 −1.0
), 𝐵 = (

2.1 −0.1

−5.0 3.0
), 𝐶 =

(
−1.5 −0.1

−0.2 −2.5
) , which has a very rich complex dynamical behav-

ior and contains, for example, a double-scroll chaotic attrac-
tor for time delay 𝜏 = 1, is regarded as the node dynamic
system of the networks.

For simplicity, the nondiffusive coupling configuration
matrix 𝐶 = (𝑐

𝑖𝑗
)
𝑁×𝑁

is chosen as

𝐶 = (

5 1 −3 1

1 0 2 0

−1 0 2 1

−2 1 0 3

) . (62)

In the numerical simulations, we assume Γ = [1 1]
𝑇, 𝐻 =

[1 1], and 𝐵
𝑖𝑘
= [−0.5 − 0.5]

𝑇. After calculations, 𝑓 satisfies
Assumption 2 with 𝐾 = 𝐿 = 1. But the other conditions are
chosen to be the same as above; the conditions ofTheorem 10
are satisfied; the simulation results are as shown in Figures
4, 5, and 6. From the numerical results, the outer synchro-
nization is achieved by employing impulsive controller.Thus,
all numerical simulations illustrate the effectiveness of the
proposed synchronization criteria.

5. Conclusion

In this paper, synchronization between the drive network and
the response network is investigated based on the impulsive
hybrid observer approach. Only by employing the output
of the drive network at discrete instant times, the response
networkwould be able to estimate all states.Whilemost of the
impulsive synchronization methods need all the states of the
drive at the receiver. Based on the stability analysis of impul-
sive delayed systems and comparison method, sufficient con-
ditions of synchronization between two complex networks
are obtained. Numerical simulations have been given to
show the effectiveness and the correctness of the theoretical
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Figure 5: Evolution process of total synchronization error ‖𝑒(𝑡)‖ of
two delayed Hopfield neural networks.
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analysis finally. In the near future, it would be of interest
to study the impulsive control problem for output coupled
complex networks with dynamically switching topologies
and time delays.
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