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To better deal with imprecise and uncertain information in decision making, the definition of linguistic intuitionistic fuzzy
sets (LIFSs) is introduced, which is characterized by a linguistic membership degree and a linguistic nonmembership degree,
respectively. To compare any two linguistic intuitionistic fuzzy values (LIFVs), the score function and accuracy function are
defined. Then, based on 𝑡-norm and 𝑡-conorm, several aggregation operators are proposed to aggregate linguistic intuitionistic
fuzzy information, which avoid the limitations in exiting linguistic operation. In addition, the desired properties of these linguistic
intuitionistic fuzzy aggregation operators are discussed. Finally, a numerical example is provided to illustrate the efficiency of the
proposed method in multiple attribute group decision making (MAGDM).

1. Introduction

Intuitionistic fuzzy set (IFS) [1], which is characterized by
a degree of membership and a degree of nonmembership,
is a very powerful tool to process vague information. After
the pioneering study of Atanassov [1], the IFS has captured
much attention from researchers in various fields and many
achievements have been made, such as entropy measure of
IFS [2–7], distance, or similarity measure between IFSs [8–
13] and aggregation operators of IFS [14–21]. In addition,
related to IFS, some authors proposed several other tools
to handle vague and imprecise information whereby two
or more sources of vagueness appear simultaneously [22].
Atanassov andGargov [23] introduced the notion of interval-
valued intuitionistic fuzzy set (IVIFS), which is characterized
by a membership function and a nonmembership function
with interval values. Torra [24] and Torra and Narukawa [25]
gave a definition of hesitant fuzzy set (HFS), which can better
deal with the situations where several values are possible to
determine the membership of an element. Zhu et al. [26]
defined dual hesitant fuzzy set in terms of two functions that
return two sets of membership values and nonmembership
values, respectively, for each element in the domain.

Although, the foregoing fuzzy tools are suitable for
dealing with problems that are defined as quantitative sit-
uations [22], uncertainty is often because of the vagueness
of meanings that is used by experts in problems whose

nature is rather qualitative. For example, for reason of the
increasing complexity of the decision making environment,
time pressure, and the lack of data or knowledge about
the problem domain, in the process of decision making
under intuitionistic fuzzy environment, a decision maker
may have difficulty in expressing the degree of membership
and nonmembership as exact values, whereas he or she may
think the use of linguistic values is more straightforward
and suitable to express the degree of membership and non-
membership. Similar to IFS, linguistic intuitionistic fuzzy set
(LIFS) is characterized by a linguisticmembership degree and
a linguistic nonmembership degree, respectively. By using
the LIFS, decision makers are able to consider a linguistic
hesitancy degree in the belongingness of an element to a set,
where they cannot easily express their subjective judgment
with a single linguistic term.

The outline of the paper is organized as follows. The
following section presents a brief introduction to the basic
knowledge that will be used in the definition of LIFS.
Section 3 gives the concept of LIFS and constructs the
score function and accuracy function for LIFS. Section 4
develops several aggregation operators for LIFS. Section 5
proposes a MAGDM method with linguistic intuitionistic
fuzzy information. In Section 6, an application of the new
approach is presented. Finally, conclusions are provided in
Section 7.
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2. Preliminaries

In the following, some basic concepts and knowledge related
to IFS and linguistic approach are briefly described.

Definition 1 (see [1]). Let𝑋 be a universal set. An IFS 𝐴 in𝑋

is given as

𝐴 = {(𝑥, 𝜇
𝐴 (𝑥) , V𝐴 (𝑥)) | 𝑥 ∈ 𝑋} , (1)

where the functions 𝜇
𝐴
(𝑥) : 𝑋 → [0, 1], V

𝐴
(𝑥) : 𝑋 → [0, 1]

stand for the degree of membership and nonmembership
of the element 𝑥 to 𝐴, respectively. Any 𝑥 ∈ 𝑋 meets the
condition 0 ≤ 𝜇

𝐴
(𝑥) + V

𝐴
(𝑥) ≤ 1.

𝜋
𝐴
(𝑥) is called intuitionistic index or degree of indeter-

minacy of 𝑥 to 𝐴 : 𝜋
𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − V

𝐴
(𝑥). Obviously, if

𝜋
𝐴
(𝑥) = 0, IFS 𝐴 is reduced to a fuzzy set.
Some basic definitions and operations on IFS are pre-

sented as follows.

Definition 2 (see [14, 15]). If 𝐴 and 𝐵 are two IFSs of the set
𝑋, then

(1) 𝐴 = 𝐵 if and only if ∀𝑥 ∈ 𝑋, 𝜇
𝐴
(𝑥) = 𝜇

𝐵
(𝑥), and

V
𝐴
(𝑥) = V

𝐵
(𝑥);

(2) 𝐴𝑐 = {(𝑥, V
𝐴
(𝑥), 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑋}, where 𝐴

𝑐 is the
complement of 𝐴;

(3) 𝐴 ∧ 𝐵 = (min(𝜇
𝐴
(𝑥), 𝜇
𝐵
(𝑥)),max(V

𝐴
(𝑥), V
𝐵
(𝑥)));

(4) 𝐴 ∨ 𝐵 = (max(𝜇
𝐴
(𝑥), 𝜇
𝐵
(𝑥)),min(V

𝐴
(𝑥), V
𝐵
(𝑥)));

(5) 𝐴 ⊕ 𝐵 = (𝜇
𝐴
(𝑥) + 𝜇

𝐵
(𝑥) − 𝜇

𝐴
(𝑥)𝜇
𝐵
(𝑥), V
𝐴
(𝑥)V
𝐵
(𝑥));

(6) 𝐴 ⊗ 𝐵 = (𝜇
𝐴
(𝑥)𝜇
𝐵
(𝑥), V
𝐴
(𝑥) + V

𝐵
(𝑥) − V

𝐴
(𝑥)V
𝐵
(𝑥));

(7) 𝜆𝐴 = (1 − (1 − 𝜇
𝐴
(𝑥))
𝜆
, V
𝐴
(𝑥)
𝜆
), 𝜆 > 0;

(8) 𝐴𝜆 = (𝜇
𝐴
(𝑥)
𝜆, 1 − (1 − V

𝐴
(𝑥))
𝜆
), 𝜆 > 0.

In real world, many decision making problems present
qualitative aspects that are complex to assess by means of
numerical values. In such cases, it may be more suitable to
consider them as linguistic variables.

Let 𝑆 = {𝑠
𝑖
| 𝑖 = 0, 1, . . . , 𝑡} be a finite linguistic term set

with odd cardinality, where 𝑠
𝑖
represents a possible linguistic

term for a linguistic variable. For example, a set of seven terms
𝑆 can be expressed as follows:

𝑆 = {𝑠
0
= N (none) , 𝑠1 = VL (very low) , 𝑠

2
= L (low) ,

𝑠
3
= M (medium) , 𝑠4 = H (high) ,

𝑠
5
= VH (very high) , 𝑠

6
= P (perfect)} .

(2)

It is required that the linguistic term set should satisfy the
following characteristics [27–30].

(1) The set is ordered: 𝑠
𝑖
> 𝑠
𝑗
, if and only if 𝑖 > 𝑗.

(2) There is a negation operator: Neg(𝑠
𝑖
) = 𝑠
𝑗
such that

𝑗 = 𝑡 − 𝑖.
(3) Max operator: max(𝑠

𝑖
, 𝑠
𝑗
) = 𝑠
𝑖
, if and only if 𝑖 ≥ 𝑗.

(4) Min operator: min(𝑠
𝑖
, 𝑠
𝑗
) = 𝑠
𝑖
, if and only if 𝑖 ≤ 𝑗.

To preserve all the given information, Xu [31] extended
the discrete term set 𝑆 to a continuous linguistic term set 𝑆 =

{𝑠
𝛼
| 𝑠
0
< 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [0, 𝑡]}, where, if 𝑠

𝛼
∈ 𝑆, then 𝑠

𝛼
is called

the original linguistic term. Otherwise, 𝑠
𝛼
is called the virtual

linguistic term.

Definition 3 (see [31, 32]). Consider any two linguistic terms
𝑠
𝛼
, 𝑠
𝛽

∈ 𝑆, and 𝜇, 𝜇
1
, 𝜇
2

∈ [0, 1], the add and multiply
operations of linguistic variable are defined as follows:

𝑠
𝛼
⊕ 𝑠
𝛽
= 𝑠
𝛽
⊕ 𝑠
𝛼
= 𝑠
𝛼+𝛽

,

𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝛽
⊗ 𝑠
𝛼
= 𝑠
𝛼𝛽
.

(3)

𝑡-norm and 𝑡-conorm have been widely used to construct
operations for fuzzy sets and IFSs.

Definition 4 (see [33, 34]). A 𝑡-norm is a mapping 𝑇 : [0, 1] ×

[0, 1] → [0, 1] satisfying, for all 𝑥, 𝑦, 𝑧 ∈ [0, 1],

(1) 𝑇(𝑥, 1) = 𝑥;

(2) 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥);

(3) 𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧);

(4) 𝑇(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑧) whenever 𝑦 ≤ 𝑧.

The four basic 𝑡-norms 𝑇
𝑀
, 𝑇
𝑃
, 𝑇
𝐿
, and 𝑇

𝐷
are given as

follows:

𝑇
𝑀
(𝑥, 𝑦) = min(𝑥, 𝑦), (lattice operation);

𝑇
𝑃
(𝑥, 𝑦) = 𝑥 ⋅ 𝑦, (algebraic operation);

𝑇
𝐿
(𝑥, 𝑦) = max(𝑥+𝑦−1, 0), (Lukasiewicz operation);

𝑇
𝐷
(𝑥, 𝑦) = {

0 if (𝑥,𝑦)∈[0,1)2
min(𝑥,𝑦) otherwise. (drastic operation).

Definition 5 (see [33, 34]). A t-conorm is a mapping 𝑆 :

[0, 1] × [0, 1] → [0, 1] satisfying, for all 𝑥, 𝑦, 𝑧 ∈ [0, 1],

(1) 𝑆(𝑥, 0) = 𝑥;

(2) 𝑆(𝑥, 𝑦) = 𝑆(𝑦, 𝑥);

(3) 𝑆(𝑥, 𝑆(𝑦, 𝑧)) = 𝑆(𝑆(𝑥, 𝑦), 𝑧);

(4) 𝑆(𝑥, 𝑦) ≤ 𝑆(𝑥, 𝑧) whenever 𝑦 ≤ 𝑧.

The four basic 𝑡-conorms 𝑆
𝑀
, 𝑆
𝑃
, 𝑆
𝐿
, and 𝑆

𝐷
are given as

follows:

𝑆
𝑀
(𝑥, 𝑦) = max(𝑥, 𝑦), (lattice operation);

𝑆
𝑃
(𝑥, 𝑦) = 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦, (algebraic operation);

𝑆
𝐿
(𝑥, 𝑦) = min(𝑥 + 𝑦, 1), (Lukasiewicz operation);

𝑆
𝐷
(𝑥, 𝑦) = {

max(𝑥,𝑦) if (𝑥,𝑦)∈(0,1]2
1 otherwise.

(drastic operation).

3. Linguistic Intuitionistic Fuzzy Set

The concept of linguistic intuitionistic fuzzy set (LIFS) is
given as follows.
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Definition 6. Let𝑋 be a finite universal set and 𝑆 = {𝑠
𝛼
| 𝑠
0
<

𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [0, 𝑡]} a continuous linguistic term set. A LIFS 𝐴

in𝑋 is given as

𝐴 = {(𝑥, 𝑠
𝜃 (𝑥) , 𝑠𝜎 (𝑥)) | 𝑥 ∈ 𝑋} , (4)

where 𝑠
𝜃
(𝑥), 𝑠
𝜎
(𝑥) ∈ 𝑆 stand for the linguistic membership

degree and linguistic nonmembership of the element 𝑥 to 𝐴,
respectively.

For any 𝑥 ∈ 𝑋, the condition 0 ≤ 𝜃 + 𝜎 ≤ 𝑡 is always
satisfied. 𝜋(𝑥) is called linguistic indeterminacy degree of 𝑥
to 𝐴 : 𝜋(𝑥) = 𝑠

𝑡−𝜃−𝜎
. Obviously, if 𝜃 + 𝜎 = 𝑡, then LIFS

𝐴 has the minimum linguistic indeterminacy degree, that
is, 𝜋(𝑥) = 𝑠

0
, which means the membership degree of 𝑥 to

𝐴 can be precisely expressed with a single linguistic term
and LIFS 𝐴 is reduced to a linguistic variable. Oppositely,
if 𝜃 = 𝜎 = 0, then LIFS 𝐴(𝑥) has the maximum linguistic
indeterminacy degree; that is, 𝜋(𝑥) = 𝑠

𝑡
. Similar to IFS,

the LIFS 𝐴(𝑥) can be transformed into an interval linguistic
variable [𝑠

𝜃
(𝑥), 𝑠
𝑡−𝜎

(𝑥)], which indicates that the minimum
andmaximum linguisticmembership degrees of the elements
𝑥 to 𝐴 are 𝑠

𝜃
and 𝑠
𝑡−𝜎

, respectively.
For notational simplicity, we suppose both LIFS 𝐴 and

𝐵 contain only one element, which stand for linguistic
intuitionistic fuzzy values (LIFVs), that is, the pairs 𝐴 =

(𝑠
𝜃
, 𝑠
𝜎
) and 𝐵 = (𝑠

𝜇
, 𝑠]).

To compare any two LIFVs, the score function and
accuracy function are defined as follows.

Definition 7. Let 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) and 𝐵 = (𝑠

𝜇
, 𝑠]) be two LIFVs,

with 𝑠
𝜃
, 𝑠
𝜎
, 𝑠
𝜇
, 𝑠] ∈ 𝑆 = {𝑠

𝛼
| 𝑠
0
< 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [0, 𝑡]}. The score

function of 𝐴 is defined as

𝑆 (𝐴) = 𝑠
(𝑡+𝜃−𝜎)/2

, (5)

and the accuracy function is defined as

𝐻(𝐴) = 𝑠
𝜃+𝜎

. (6)

Thus, 𝐴 and 𝐵 can be ranked by the following procedure:

(1) if 𝑆(𝐴) > 𝑆(𝐵), then 𝐴 > 𝐵;
(2) if 𝑆(𝐴) = 𝑆(𝐵) and

(a) 𝐻(𝐴) = 𝐻(𝐵), then 𝐴 = 𝐵;
(b) 𝐻(𝐴) > 𝐻(𝐵), then 𝐴 > 𝐵;
(c) 𝐻(𝐴) < 𝐻(𝐵), then 𝐴 < 𝐵.

It is easy to see that 0 ≤ (𝑡+𝜃−𝜎)/2 ≤ 𝑡 and 0 ≤ 𝜃+𝜎 ≤ 𝑡,
which means 𝑠

(𝑡+𝜃−𝜎)/2
, 𝑠
𝜃+𝜎

∈ 𝑆.

Example 8. Let 𝐴 = (𝑠
1
, 𝑠
3
), 𝐵 = (𝑠

0
, 𝑠
4
), and 𝐶 = (𝑠

1
, 𝑠
5
) be

LIFVs, which are derived from 𝑆 = {𝑠
𝛼
| 𝑠
0
< 𝑠
𝛼
≤ 𝑠
6
, 𝛼 ∈

[0, 6]}.
Applying formulas (5) and (6), we have

𝑆 (𝐴) = 𝑠
2
> 𝑆 (𝐵) = 𝑆 (𝐶) = 𝑠

1
,

𝐻 (𝐵) = 𝑠
4
< 𝐻 (𝐶) = 𝑠

6
.

(7)

Thus, we obtain 𝐴 > 𝐶 > 𝐵.

4. Aggregation Operators for Linguistic
Intuitionistic Fuzzy Sets

Since the definition of LIFS is given, it is necessary to
introduce the operations and computations between them.

Definition 9. Let 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) and 𝐵 = (𝑠

𝜇
, 𝑠]) be two LIFVs;

then

(1) 𝐴 = 𝐵 if and only if 𝑠
𝜃
= 𝑠
𝜇
and 𝑠
𝜎
= 𝑠];

(2) 𝐴𝑐 = (𝑠
𝜎
, 𝑠
𝜃
), where 𝐴𝑐 is the complement of 𝐴;

(3) the intersection of 𝐴 and 𝐵: 𝐴 ∧ 𝐵 =

(min(𝑠
𝜃
, 𝑠
𝜇
),max(𝑠

𝜎
, 𝑠]));

(4) the union of 𝐴 and 𝐵: 𝐴 ∨ 𝐵 =

(max(𝑠
𝜃
, 𝑠
𝜇
),min(𝑠

𝜎
, 𝑠])).

Motivated by 𝑡-norm and 𝑡-conorm, we propose the
following operation laws for linguistic variables.

Definition 10. Considering any two linguistic terms 𝑠
𝛼
, 𝑠
𝛽
∈

𝑆 = {𝑠
𝛾
| 𝑠
0
< 𝑠
𝛾
≤ 𝑠
𝑡
, 𝛾 ∈ [0, 𝑡]}, the add and multiply

operations of linguistic variable are defined as follows:

𝑠
𝛼
⊕ 𝑠
𝛽
= 𝑠
𝛽
⊕ 𝑠
𝛼
= 𝑠
𝑡𝑆(𝛼/𝑡,𝛽/𝑡)

, (8)

𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝛽
⊗ 𝑠
𝛼
= 𝑠
𝑡𝑇(𝛼/𝑡,𝛽/𝑡)

, (9)

where 𝑆(𝛼/𝑡, 𝛽/𝑡) and 𝑇(𝛼/𝑡, 𝛽/𝑡) are 𝑡-conorm and 𝑡-norm,
respectively.

Since 𝑆(𝛼/𝑡, 𝛽/𝑡), 𝑇(𝛼/𝑡, 𝛽/𝑡) ∈ [0, 1], we have 𝑡𝑆(𝛼/𝑡,

𝛽/𝑡), 𝑡𝑇(𝛼/𝑡, 𝛽/𝑡) ∈ [0, 𝑡], which indicate the operation
results match the original linguistic term set 𝑆; that is,
𝑠
𝑡𝑆(𝛼/𝑡,𝛽/𝑡)

, 𝑠
𝑡𝑇(𝛼/𝑡,𝛽/𝑡)

∈ 𝑆. In addition, it is worth noting that,
because of the monotonicity of 𝑡-conorm and 𝑡-norm, the
values of function 𝑡𝑆(𝛼/𝑡, 𝛽/𝑡) and 𝑡𝑇(𝛼/𝑡, 𝛽/𝑡) aremonoton-
ically increasing with the increasing of 𝛼 and 𝛽, which means
the operation results obtained by (8) and (9) are in accord
with our intuition.

If we take the well-known 𝑆
𝑃
(𝛼/𝑡, 𝛽/𝑡) and 𝑇

𝑃
(𝛼/𝑡, 𝛽/𝑡)

into (8) and (9), respectively, then they can be rewritten as
follows:

𝑠
𝛼
⊕ 𝑠
𝛽
= 𝑠
𝛽
⊕ 𝑠
𝛼
= 𝑠
𝑡(𝛼/𝑡+𝛽/𝑡−𝛼𝛽/𝑡

2
)
= 𝑠
𝛼+𝛽−𝛼𝛽/𝑡

,

𝑠
𝛼
⊗ 𝑠
𝛽
= 𝑠
𝛽
⊗ 𝑠
𝛼
= 𝑠
𝑡(𝛼𝛽/𝑡

2
)
= 𝑠
𝛼𝛽/𝑡

.

(10)

Example 11. Let 𝑆 = {𝑠
𝛼
| 𝑠
0
< 𝑠
𝛼
≤ 𝑠
6
, 𝛼 ∈ [0, 6]}. Applying

(10), we have 𝑠
3
⊕ 𝑠
4
= 𝑠
3+4−3×4/6

= 𝑠
5
, 𝑠
4
⊕ 𝑠
5
= 𝑠
4+5−4×5/6

=

𝑠
5.667

, 𝑠
3
⊗ 𝑠
4
= 𝑠
3×4/6

= 𝑠
2
, and 𝑠

4
⊗ 𝑠
5
= 𝑠
4×5/6

= 𝑠
3.333

.
Thus, we obtain 𝑠

3
⊕ 𝑠
4
< 𝑠
4
⊕ 𝑠
5
and 𝑠
3
⊗ 𝑠
4
< 𝑠
4
⊗ 𝑠
5
. Such

results seem to be intuitive and can be easily accepted.

Alternatively, if we take the operation laws ofDefinition 3,
we have 𝑠

3
⊕ 𝑠
4
= 𝑠
7
∉ 𝑆, 𝑠

4
⊗ 𝑠
5
= 𝑠
20

∉ 𝑆, where the
subscripts of 𝑠

7
and 𝑠

20
are bigger than the cardinality of

linguistic term set 𝑆. In addition, if we extend the discrete
term set 𝑆 to a continuous term set 𝑆



= {𝑠
𝛼

| 𝛼 ∈

[0, 𝑞]} [35], where 𝑞 (𝑞 > 𝑡) is a sufficiently large positive
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integer, there is an unavoidable question on how to define
the semantics for 𝑠

7
and 𝑠
20
. Obviously, 𝑠

7
or 𝑠
20
has different

semantics in different linguistic term set 𝑆 with different
cardinalities. As a result, it is unrealistic to assign semantics
to a given linguistic value 𝑠

𝛼
derived from linguistic term set

with variable cardinality. If we follow the method of 𝑠
𝛼
⊕ 𝑠
𝛽
=

min{𝑠
𝛼+𝛽

, 𝑠
𝑡
} and 𝑠

𝛼
⊗ 𝑠
𝛽
= min{𝑠

𝛼𝛽
, 𝑠
𝑡
} [36] for 𝑠

𝛼
,𝑠
𝛽
∈ 𝑆 =

{𝑠
𝛾

| 𝑠
0

< 𝑠
𝛾

≤ 𝑠
𝑡
, 𝛾 ∈ [0, 𝑡]}, then we have 𝑠

3
⊕ 𝑠
4

=

𝑠
4
⊕ 𝑠
5
= 𝑠
6
and 𝑠
3
⊗ 𝑠
4
= 𝑠
4
⊗ 𝑠
5
= 𝑠
6
. Such results seem to be

counter-intuitive and may not be easily accepted. Applying
(10), we can overcome the limitations that the subscripts of
the linguistic variable are bigger than the cardinality of the
corresponding linguistic term set 𝑆 and obtain results agreed
with our intuition.

Based on (10), we can get the following operation laws for
LIFVs.

Definition 12. Let 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) and 𝐵 = (𝑠

𝜇
, 𝑠]) be two LIFVs,

where 𝑠
𝜃
, 𝑠
𝜎
, 𝑠
𝜇
, 𝑠] ∈ 𝑆 = {𝑠

𝛼
| 𝑠
0
< 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [0, 𝑡]} with

𝜆 > 0; then

𝐴 ⊕ 𝐵 = (𝑠
𝑡(𝜃/𝑡+𝜇/𝑡−𝜃𝜇/𝑡

2
)
, 𝑠
𝑡(𝜎]/𝑡2)) = (𝑠

𝜃+𝜇−𝜃𝜇/𝑡
, 𝑠
𝜎]/𝑡) , (11)

𝐴 ⊗ 𝐵 = (𝑠
𝑡(𝜃𝜇/𝑡

2
)
, 𝑠
𝑡(𝜎/𝑡+]/𝑡−𝜎]/𝑡2)) = (𝑠

𝜃𝜇/𝑡
, 𝑠
𝜎+]−𝜎]/𝑡) , (12)

𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆 ) , (13)

𝐴
𝜆
= (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
) . (14)

Some special cases of 𝜆𝐴 and 𝐴
𝜆 are obtained as follows.

If 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) = (𝑠
𝑡
, 𝑠
0
), then

𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆) = (𝑠
𝑡(1−(1−𝑡/𝑡)

𝜆
)
, 𝑠
𝑡(0/𝑡)

𝜆) = (𝑠
𝑡
, 𝑠
0
) ,

𝐴
𝜆
= (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
) = (𝑠

𝑡(𝑡/𝑡)
𝜆 , 𝑠
𝑡(1−(1−0/𝑡)

𝜆
)
) = (𝑠

𝑡
, 𝑠
0
) .

(15)

If 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) = (𝑠
0
, 𝑠
𝑡
), then

𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆) = (𝑠
𝑡(1−(1−0/𝑡)

𝜆
)
, 𝑠
𝑡(𝑡/𝑡)
𝜆) = (𝑠

0
, 𝑠
𝑡
) ,

𝐴
𝜆
= (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
) = (𝑠

𝑡(0/𝑡)
𝜆 , 𝑠
𝑡(1−(1−𝑡/𝑡)

𝜆
)
) = (𝑠

0
, 𝑠
𝑡
) .

(16)

If 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) = (𝑠
0
, 𝑠
0
), then

𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆)=(𝑠
𝑡(1−(1−0/𝑡)

𝜆
)
, 𝑠
𝑡(0/𝑡)

𝜆)=(𝑠
0
, 𝑠
0
) ,

𝐴
𝜆
= (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
)=(𝑠
𝑡(0/𝑡)

𝜆 , 𝑠
𝑡(1−(1−0/𝑡)

𝜆
)
)=(𝑠
0
, 𝑠
0
) .

(17)

If 𝜆 → 0, then

𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆) = (𝑠
0
, 𝑠
𝑡
) ,

𝐴
𝜆
= (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
) = (𝑠

𝑡
, 𝑠
0
) .

(18)

If 𝜆 → +∞, then

𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆) = (𝑠
𝑡
, 𝑠
0
) ,

𝐴
𝜆
= (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
) = (𝑠

0
, 𝑠
𝑡
) .

(19)

Theorem 13. Let 𝐴 = (𝑠
𝜃
, 𝑠
𝜎
) and 𝐵 = (𝑠

𝜇
, 𝑠]) be two LIFVs,

where 𝑠
𝜃
, 𝑠
𝜎
, 𝑠
𝜇
, 𝑠] ∈ 𝑆 = {𝑠

𝛼
| 𝑠
0
< 𝑠
𝛼
≤ 𝑠
𝑡
, 𝛼 ∈ [0, 𝑡]} with

𝜆, 𝜆
1
, 𝜆
2
> 0. Then, one has

(1) 𝜆(𝐴 ⊕ 𝐵) = 𝜆𝐴 ⊕ 𝜆𝐵,

(2) 𝜆
1
𝐴 ⊕ 𝜆

2
𝐴 = (𝜆

1
+ 𝜆
2
)𝐴,

(3) 𝐴𝜆 ⊗ 𝐵
𝜆
= (𝐴 ⊗ 𝐵)

𝜆,

(4) 𝐴𝜆1 ⊗ 𝐴
𝜆
2 = 𝐴
𝜆
1
+𝜆
2 .

Proof. (1) By (11), we have 𝐴 ⊕ 𝐵 = (𝑠
𝜃+𝜇−𝜃𝜇/𝑡

, 𝑠
𝜎]/𝑡). Thus,

based on (13), we have

𝜆 (𝐴 ⊕ 𝐵) = (𝑠
𝑡(1−(1−(𝜃+𝜇−𝜃𝜇/𝑡)/𝑡)

𝜆
)
, 𝑠
𝑡((𝜎]/𝑡)/𝑡)𝜆)

= (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
(1−𝜇/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆
(]/𝑡)𝜆) .

(20)

Similarly, since 𝜆𝐴 = (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆) and 𝜆𝐵 =

(𝑠
𝑡(1−(1−𝜇/𝑡)

𝜆
)
, 𝑠
𝑡(]/𝑡)𝜆), then

𝜆𝐴 ⊕ 𝜆𝐵

= (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
)+𝑡(1−(1−𝜇/𝑡)

𝜆
)−𝑡(1−(1−𝜃/𝑡)

𝜆
)(1−(1−𝜇/𝑡)

𝜆
)
,

𝑠
𝑡(𝜎/𝑡)

𝜆
𝑡(]/𝑡)𝜆/𝑡)

= (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆
(1−𝜇/𝑡)

𝜆
)
, 𝑠
𝑡(𝜎/𝑡)

𝜆
(]/𝑡)𝜆) .

(21)

Hence, we obtain 𝜆(𝐴 ⊕ 𝐵) = 𝜆𝐴 ⊕ 𝜆𝐵.
(2) By (13), we have 𝜆

1
𝐴 = (𝑠

𝑡(1−(1−𝜃/𝑡)
𝜆1 )
, 𝑠
𝑡(𝜎/𝑡)

𝜆1 ) and
𝜆
2
𝐴 = (𝑠

𝑡(1−(1−𝜃/𝑡)
𝜆2 )
, 𝑠
𝑡(𝜎/𝑡)

𝜆2 ); thus, we obtain

𝜆
1
𝐴 ⊕ 𝜆

2
𝐴

= (𝑠
𝑡(1−(1−𝜃/𝑡)

𝜆1 )+𝑡(1−(1−𝜃/𝑡)
𝜆2 )−𝑡(1−(1−𝜃/𝑡)

𝜆1 )(1−(1−𝜃/𝑡)
𝜆2 )
,

𝑠
𝑡(𝜎/𝑡)

𝜆1 (𝜎/𝑡)
𝜆2 )

= (𝑠
𝑡(1−𝜃/𝑡)

𝜆1 (1−𝜃/𝑡)
𝜆2 , 𝑠𝑡(𝜎/𝑡)

𝜆1+𝜆2 )

= (𝑠
𝑡(1−𝜃/𝑡)

𝜆1+𝜆2 , 𝑠𝑡(𝜎/𝑡)
𝜆1+𝜆2 ) = (𝜆

1
+ 𝜆
2
) 𝐴.

(22)

(3) By (14), we get 𝐴𝜆 = (𝑠
𝑡(𝜃/𝑡)

𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)
) and 𝐵

𝜆
=

(𝑠
𝑡(𝜇/𝑡)

𝜆 , 𝑠
𝑡(1−(1−]/𝑡)𝜆)); thus, based on (12), we have

𝐴
𝜆
⊗ 𝐵
𝜆

= (𝑠
𝑡(𝜃/𝑡)

𝜆
(𝜇/𝑡)
𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
)+𝑡(1−(1−]/𝑡)𝜆)−𝑡(1−(1−𝜎/𝑡)𝜆)(1−(1−]/𝑡)𝜆))

= (𝑠
𝑡(𝜃/𝑡)

𝜆
(𝜇/𝑡)
𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
(1−]/𝑡)𝜆)) .

(23)
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Since 𝐴 ⊗ 𝐵 = (𝑠
𝜃𝜇/𝑡

, 𝑠
𝜎+]−𝜎]/𝑡), then, by (14), we have

(𝐴 ⊗ 𝐵)
𝜆

= (𝑠
𝑡(𝜃𝜇/𝑡/𝑡)

𝜆 , 𝑠
𝑡(1−(1−(𝜎+]−𝜎]/𝑡)/𝑡)𝜆))

= (𝑠
𝑡(𝜃/𝑡)

𝜆
(𝜇/𝑡)
𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡−]/𝑡−𝜎]/𝑡2)𝜆))

= (𝑠
𝑡(𝜃/𝑡)

𝜆
(𝜇/𝑡)
𝜆 , 𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆
(1−]/𝑡)𝜆)) .

(24)

Hence, we obtain 𝐴
𝜆
⊗ 𝐵
𝜆
= (𝐴 ⊗ 𝐵)

𝜆.
(4) By (14), we have 𝐴

𝜆
1 = (𝑠

𝑡(𝜃/𝑡)
𝜆1 , 𝑠𝑡(1−(1−𝜎/𝑡)

𝜆1 )
) and

𝐴
𝜆
2 = (𝑠
𝑡(𝜃/𝑡)

𝜆2 , 𝑠𝑡(1−(1−𝜎/𝑡)
𝜆2 )
); thus, we have

𝐴
𝜆
1
⊗ 𝐴
𝜆
2

= (𝑠
𝑡(𝜃/𝑡)

𝜆1 (𝜃/𝑡)
𝜆2 ,

𝑠
𝑡(1−(1−𝜎/𝑡)

𝜆1 )+𝑡(1−(1−𝜎/𝑡)
𝜆2 )−𝑡(1−(1−𝜎/𝑡)

𝜆1 )(1−(1−𝜎/𝑡)
𝜆2 )
)

= (𝑠
𝑡(𝜃/𝑡)

𝜆1+𝜆2 , 𝑠𝑡(1−(1−𝜎/𝑡)
𝜆1 )(1−𝜎/𝑡)

𝜆2 )
)

= (𝑠
𝑡(𝜃/𝑡)

𝜆1+𝜆2 , 𝑠𝑡(1−(1−𝜎/𝑡)
𝜆1+𝜆2 )

) = 𝐴
𝜆
1
+𝜆
2
,

(25)

which completes the proof of Theorem 13.

Motivated by the intuitionistic fuzzy aggregation oper-
ators [14, 15], in what follows, we define some aggregation
operators for LIFVs.

Definition 14. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set
of LIFVs. Then, the linguistic intuitionistic fuzzy weighted
averaging (LIFWA) operator is defined as

LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = 𝑤
1
𝐴
1
⊕ 𝑤
2
𝐴
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑤

𝑛
𝐴
𝑛

= (𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃
𝑖
/𝑡)
𝑤𝑖 )
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
𝑤𝑖 ) ,

(26)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of 𝐴

𝑖
(𝑖 =

1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1.

In Particular, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the

LIFWA operator is reduced to a linguistic intuitionistic fuzzy
averaging (LIFA) operator; that is,

LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) =

1

𝑛
𝐴
1
⊕
1

𝑛
𝐴
2
⊕ ⋅ ⋅ ⋅ ⊕

1

𝑛
𝐴
𝑛

= (𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃
𝑖
/𝑡)
1/𝑛
)
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
1/𝑛) .

(27)

Based on Definition 14, we get some properties of the
LIFWA operator.

Theorem 15. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFVs and 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of 𝐴

𝑖
(𝑖 =

0, 1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1; then one has

the following.

(1) Idempotency. If all 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that

is, 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) = (𝑠
𝜃
, 𝑠
𝜎
), for any 𝑖, then

𝐿𝐼𝐹𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = (𝑠

𝜃
, 𝑠
𝜎
) . (28)

(2) Monotonicity. Let 𝐴
𝑖
= (𝑠
𝜃


𝑖

, 𝑠
𝜎


𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a
set of LIFVs. If 𝑠

𝜃


𝑖

≥ 𝑠
𝜃
𝑖

and 𝑠
𝜎


𝑖

≤ 𝑠
𝜎
𝑖

, for any 𝑖, then

𝐿𝐼𝐹𝑊𝐴(𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑛
) ≥ 𝐿𝐼𝐹𝑊𝐴(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) ,

(29)

for any 𝑤.
(3) Boundary. Consider

(min
𝑖

(𝑠
𝜃
𝑖

) ,max
𝑖

(𝑠
𝜎
𝑖

)) ≤ 𝐿𝐼𝐹𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

≤ (max
𝑖

(𝑠
𝜃
𝑖

) ,min
𝑖

(𝑠
𝜎
𝑖

)) .

(30)

Proof. (1) Since 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) = (𝑠
𝜃
, 𝑠
𝜎
), for any 𝑖, then

LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= (𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃/𝑡)

𝑤𝑖 )
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎/𝑡)
𝑤𝑖 )

= (𝑠
𝑡(1−(1−𝜃/𝑡))

, 𝑠
𝑡(𝜎/𝑡)

) = (𝑠
𝜃
, 𝑠
𝜎
) .

(31)

(2) If 𝑠
𝜃


𝑖

≥ 𝑠
𝜃
𝑖

, that is, 𝜃
𝑖
≥ 𝜃
𝑖
, for any 𝑖, then we have

𝜃


𝑖
≥ 𝜃
𝑖
⇒ 0 ≤ 1 −

𝜃


𝑖

𝑡
≤ 1 −

𝜃
𝑖

𝑡
≤ 1

⇒ (1 −
𝜃


𝑖

𝑡
)

𝑤
𝑖

≤ (1 −
𝜃
𝑖

𝑡
)

𝑤
𝑖

⇒

𝑛

∏

𝑖=1

(1 −
𝜃


𝑖

𝑡
)

𝑤
𝑖

≤

𝑛

∏

𝑖=1

(1 −
𝜃
𝑖

𝑡
)

𝑤
𝑖

⇒ 1 −

𝑛

∏

𝑖=1

(1 −
𝜃


𝑖

𝑡
)

𝑤
𝑖

≥ 1 −

𝑛

∏

𝑖=1

(1 −
𝜃
𝑖

𝑡
)

𝑤
𝑖

⇒ 𝑡(1−

𝑛

∏

𝑖=1

(1 −
𝜃


𝑖

𝑡
)

𝑤
𝑖

) ≥ 𝑡(1−

𝑛

∏

𝑖=1

(1 −
𝜃
𝑖

𝑡
)

𝑤
𝑖

) .

(32)

Similarly, when 𝑠
𝜎


𝑖

≤ 𝑠
𝜎
𝑖

, for any 𝑖, we can get
𝑡∏
𝑛

𝑖=1
(𝜎


𝑖
/𝑡)
1/𝑛

≤ 𝑡∏
𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
1/𝑛.

According to Definition 7, we obtain

(𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃


𝑖
/𝑡)
1/𝑛
)
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎


𝑖
/𝑡)
1/𝑛)

≥ (𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃
𝑖
/𝑡)
1/𝑛
)
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
1/𝑛) ;

(33)

that is,

LIFWA (𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑛
) ≥ LIFWA (𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) .

(34)
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(3) Since min
𝑖
(𝑠
𝜃
𝑖

) ≤ 𝑠
𝜃
𝑖

≤ max
𝑖
(𝑠
𝜃
𝑖

) and max
𝑖
(𝑠
𝜎
𝑖

) ≤

𝑠
𝜎
𝑖

≤ min
𝑖
(𝑠
𝜎
𝑖

), for any 𝑖, then, based on the monotonicity
of Theorem 15, we derive

(min
𝑖

(𝑠
𝜃
𝑖

) ,max
𝑖

(𝑠
𝜎
𝑖

)) ≤ LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

≤ (max
𝑖

(𝑠
𝜃
𝑖

) ,min
𝑖

(𝑠
𝜎
𝑖

)) .

(35)

Definition 16. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set
of LIFVs. Then, the linguistic intuitionistic fuzzy ordered
weighted averaging (LIFOWA) operator is defined as

LIFOWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= 𝑤
1
𝐴
(1)

⊕ 𝑤
2
𝐴
(2)

⊕ ⋅ ⋅ ⋅ ⊕ 𝑤
𝑛
𝐴
(𝑛)

= (𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃
(𝑖)
/𝑡)
𝑤𝑖 )
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎
(𝑖)
/𝑡)
𝑤𝑖 ) ,

(36)

where 𝐴
(𝑖)

= (𝑠
𝜃
(𝑖)

, 𝑠
𝜎
(𝑖)

) is the 𝑖th largest of 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛

and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the associated weight vector of

𝐴
(𝑖)

(𝑖 = 1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1.

Similar to Theorem 15, we have some properties of the
LIFOWA operator.

Theorem 17. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set of
linguistic intuitionistic fuzzy values and𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇

the associated weight vector of 𝐴
(𝑖)

(𝑖 = 1, 2, . . . , 𝑛), with 𝑤
𝑖
∈

[0, 1] and ∑𝑛
𝑖=1

𝑤
𝑖
= 1; then one has the following.

(1) Idempotency. If all 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that

is, 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) = (𝑠
𝜃
, 𝑠
𝜎
), for any 𝑖, then

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = (𝑠

𝜃
, 𝑠
𝜎
) . (37)

(2) Monotonicity. Let 𝐴
𝑖
= (𝑠
𝜃


𝑖

, 𝑠
𝜎


𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a
set of linguistic intuitionistic fuzzy values. If 𝑠

𝜃


𝑖

≥ 𝑠
𝜃
𝑖

and 𝑠
𝜎


𝑖

≤ 𝑠
𝜎
𝑖

, for any 𝑖, then

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑛
) ≥ 𝐿𝐼𝐹𝑂𝑊𝐴(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) ,

(38)

for any 𝑤.
(3) Boundary. Consider

(min
𝑖

(𝑠
𝜃
𝑖

) ,max
𝑖

(𝑠
𝜎
𝑖

)) ≤ 𝐿𝐼𝐹𝑂𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

≤ (max
𝑖

(𝑠
𝜃
𝑖

) ,min
𝑖

(𝑠
𝜎
𝑖

)) .

(39)

(4) Commutativity. Let 𝐴
𝑖
= (𝑠
𝜃


𝑖

, 𝑠
𝜎


𝑖

) (𝑖 = 0, 1, 2, . . . , 𝑛)

be a set of linguistic intuitionistic fuzzy values, then for
any 𝑤

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑛
) = 𝐿𝐼𝐹𝑂𝑊𝐴(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) ,

(40)

where (𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑛
) is any permutation of

(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
).

Definition 18. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set
of LIFVs. Then, the linguistic intuitionistic fuzzy weighted
geometric (LIFWG) operator is defined as

LIFWG (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = 𝐴
𝑤
1

1
⊗ 𝐴
𝑤
2

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝐴

𝑤
𝑛

𝑛

= (𝑠
𝑡∏
𝑛

𝑖=1
(𝜃
𝑖
/𝑡)
𝑤𝑖 , 𝑠𝑡(1−∏

𝑛

𝑖=1
(1−𝜎
𝑖
/𝑡)
𝑤𝑖 )
) ,

(41)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇is the weight vector of 𝐴

𝑖
(𝑖 =

1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1.

The LIFWG operator has the following properties.

Theorem 19. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFVs and 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of 𝐴

𝑖
(𝑖 =

1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1; then one has the

following.

(1) Idempotency. If all 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that

is, 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) = (𝑠
𝜃
, 𝑠
𝜎
), for any 𝑖, then

𝐿𝐼𝐹𝑊𝐺 (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = (𝑠

𝜃
, 𝑠
𝜎
) . (42)

(2) Monotonicity. Let 𝐴
𝑖
= (𝑠
𝜃


𝑖

, 𝑠
𝜎


𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a
set of linguistic intuitionistic fuzzy values. If 𝑠

𝜃


𝑖

≥ 𝑠
𝜃
𝑖

and 𝑠
𝜎


𝑖

≤ 𝑠
𝜎
𝑖

, for any 𝑖, then

𝐿𝐼𝐹𝑊𝐺(𝐴


1
, 𝐴


2
, . . . , 𝐴



𝑛
) ≥ 𝐿𝐼𝐹𝑊𝐺 (𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) ,

(43)

for any 𝑤.
(3) Boundary. Consider

(min
𝑖

(𝑠
𝜃
𝑖

) ,max
𝑖

(𝑠
𝜎
𝑖

)) ≤ 𝐿𝐼𝐹𝑊𝐺 (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

≤ (max
𝑖

(𝑠
𝜃
𝑖

) ,min
𝑖

(𝑠
𝜎
𝑖

)) .

(44)

Definition 20. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set
of LIFVs. Then, the linguistic intuitionistic fuzzy ordered
weighted geometric (LIFOWG) operator is defined as

LIFOWG(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= 𝐴
𝑤
1

(1)
⊗ 𝐴
𝑤
2

(2)
⊗ ⋅ ⋅ ⋅ ⊗ 𝐴

𝑤
𝑛

(𝑛)

= (𝑠
𝑡∏
𝑛

𝑖=1
(𝜃
(𝑖)
/𝑡)
𝑤𝑖 , 𝑠𝑡(1−∏

𝑛

𝑖=1
(1−𝜎
(𝑖)
/𝑡)
𝑤𝑖 )
) ,

(45)

where 𝐴
(𝑖)

= (𝑠
𝜃
(𝑖)

, 𝑠
𝜎
(𝑖)

) is the 𝑖th largest of 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛

and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the associated weight vector of

𝐴
(𝑖)

(𝑖 = 1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1.

Similar to Theorem 15, we have some properties of the
LIFOWG operator.
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Theorem 21. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFVs and 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the associated weight vector

of 𝐴
(𝑖)

(𝑖 = 1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1; then

one has the following.

(1) Idempotency. If all 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are equal, that

is, 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) = (𝑠
𝜃
, 𝑠
𝜎
), for any 𝑖, then

𝐿𝐼𝐹𝑂𝑊𝐺(𝐴
1
, 𝐴
2
, ..., 𝐴

𝑛
) = (𝑠

𝜃
, 𝑠
𝜎
) . (46)

(2) Monotonicity. Let 𝐴
𝑖
= (𝑠
𝜃


𝑖

, 𝑠
𝜎


𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a
set of linguistic intuitionistic fuzzy values. If 𝑠

𝜃


𝑖

≥ 𝑠
𝜃
𝑖

and 𝑠
𝜎


𝑖

≤ 𝑠
𝜎
𝑖

, for any 𝑖, then

𝐿𝐼𝐹𝑂𝑊𝐺(𝐴


1
, 𝐴


2
, ..., 𝐴


𝑛
) ≥ 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴

1
, 𝐴
2
, ..., 𝐴

𝑛
) ,

(47)

for any 𝑤.
(3) Boundary. Consider

(min
𝑖

(𝑠
𝜃
𝑖

) ,max
𝑖

(𝑠
𝜎
𝑖

)) ≤ 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴
1
, 𝐴
2
, ..., 𝐴

𝑛
)

≤ (max
𝑖

(𝑠
𝜃
𝑖

) ,min
𝑖

(𝑠
𝜎
𝑖

)) .

(48)

(4) Commutativity. Let𝐴
𝑖
= (𝑠
𝜃


𝑖

, 𝑠
𝜎


𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a
set of linguistic intuitionistic fuzzy values; then for any
𝑤

𝐿𝐼𝐹𝑂𝑊𝐺(𝐴


1
, 𝐴


2
, ..., 𝐴


𝑛
) = 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴

1
, 𝐴
2
, ..., 𝐴

𝑛
) ,

(49)

where (𝐴


1
, 𝐴


2
, ..., 𝐴


𝑛
) is any permutation of

(𝐴
1
, 𝐴
2
, ..., 𝐴

𝑛
).

Lemma 22 (see [37, 38]). Let 𝑥
𝑖
> 0, 𝜆

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛,

and ∑𝑛
𝑖=1

𝜆
𝑖
= 1; then

𝑛

∏

𝑖=1

𝑥
𝜆
𝑖

𝑖
≤

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
, (50)

with equality if and only if 𝑥
1
= 𝑥
2
= ⋅ ⋅ ⋅ = 𝑥

𝑛
.

Based on Lemma 22, we have the following theorem.

Theorem 23. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

)(𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFVs; then one has

𝐿𝐼𝐹𝑊𝐴(𝐴
1
, 𝐴
2
, ..., 𝐴

𝑛
) ≥ 𝐿𝐼𝐹𝑊𝐺 (𝐴

1
, 𝐴
2
, ..., 𝐴

𝑛
) ,

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴
1
, 𝐴
2
, ..., 𝐴

𝑛
) ≥ 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴

1
, 𝐴
2
, ..., 𝐴

𝑛
) ,

(51)

with equality if and only if 𝐴
1
= 𝐴
2
= ⋅ ⋅ ⋅ = 𝐴

𝑛
.

Proof. Let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the weight vector of

𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑛), with 𝑤

𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1; then,

by Lemma 22, we have 1 −∏
𝑛

𝑖=1
(1 − 𝜃

𝑖
/𝑡)
𝑤
𝑖 ≥ 1 − ∑

𝑛

𝑖=1
𝑤
𝑖
(1 −

𝜃
𝑖
/𝑡) = 1−∑

𝑛

𝑖=1
𝑤
𝑖
+∑
𝑛

𝑖=1
𝑤
𝑖
𝜃
𝑖
/𝑡 = ∑

𝑛

𝑖=1
𝑤
𝑖
𝜃
𝑖
/𝑡 ≥ ∏

𝑛

𝑖=1
(𝜃
𝑖
/𝑡)
𝑤
𝑖 ,

with equality if and only if 𝜃
1

= 𝜃
2

= ⋅ ⋅ ⋅ = 𝜃
𝑛
; that is,

𝑡(1 − ∏
𝑛

𝑖=1
(1 − 𝜃

𝑖
/𝑡)
𝑤
𝑖) ≥ 𝑡∏

𝑛

𝑖=1
(𝜃
𝑖
/𝑡)
𝑤
𝑖 , with equality if and

only if 𝜃
1
= 𝜃
2
= ⋅ ⋅ ⋅ = 𝜃

𝑛
; and ∏

𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
𝑤
𝑖 ≤ ∑

𝑛

𝑖=1
𝑤
𝑖
𝜎
𝑖
/𝑡 =

1 − ∑
𝑛

𝑖=1
𝑤
𝑖
(1 − 𝜎

𝑖
/𝑡) ≤ 1 − ∏

𝑛

𝑖=1
(1 − 𝜎

𝑖
/𝑡)
𝑤
𝑖 , with equality if

and only if 𝜎
1
= 𝜎
2
= ⋅ ⋅ ⋅ = 𝜎

𝑛
; that is, 𝑡(∏𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
𝑤
𝑖) ≤

𝑡(1 − ∏
𝑛

𝑖=1
(1 − 𝜎

𝑖
/𝑡)
𝑤
𝑖), with equality if and only if 𝜎

1
= 𝜎
2
=

⋅ ⋅ ⋅ = 𝜎
𝑛
.

Consequently, by Definition 7, we obtain
(𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜃
𝑖
/𝑡)
𝑤𝑖 )
, 𝑠
𝑡∏
𝑛

𝑖=1
(𝜎
𝑖
/𝑡)
𝑤𝑖 ) ≥ (𝑠

𝑡∏
𝑛

𝑖=1
(𝜃
𝑖
/𝑡)
𝑤𝑖 ,

𝑠
𝑡(1−∏

𝑛

𝑖=1
(1−𝜎
𝑖
/𝑡)
𝑤𝑖 )
), with equality if and only if 𝜃

1
= 𝜃
2

=

⋅ ⋅ ⋅ = 𝜃
𝑛
and 𝜎

1
= 𝜎
2
= ⋅ ⋅ ⋅ = 𝜎

𝑛
; that is,

LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) ≥ LIFWG (𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
) , (52)

with equality if and only if 𝐴
1
= 𝐴
2
= ⋅ ⋅ ⋅ = 𝐴

𝑛
.

Similarly, we can also prove LIFOWA(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) ≥

LIFOWG(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
), with equality if and only if 𝐴

1
=

𝐴
2
= ⋅ ⋅ ⋅ = 𝐴

𝑛
.

Besides the above properties, we can derive the following
desirable results of the LIFOWAandLIFOWGoperators.

Theorem 24. Let 𝐴
𝑖
= (𝑠
𝜃
𝑖

, 𝑠
𝜎
𝑖

) (𝑖 = 1, 2, . . . , 𝑛) be a set of
LIFVs and 𝑤 = (𝑤

1
, 𝑤
2
, ..., 𝑤
𝑛
)
𝑇 the associated weight vector

of 𝐴
(𝑖)

(𝑖 = 1, 2, . . . , 𝑛), with 𝑤
𝑖
∈ [0, 1] and∑𝑛

𝑖=1
𝑤
𝑖
= 1. Then

one has the following.

(1) If 𝑤 = (1, 0, . . . , 0)
𝑇, then

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= max
𝑖

(𝐴
𝑖
) .

(53)

(2) If 𝑤 = (0, 0, . . . , 1)
𝑇, then

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= min
𝑖

(𝐴
𝑖
) .

(54)

(3) If 𝑤
𝑖
= 1 and 𝑤

𝑗
= 0, for 𝑗 ̸= 𝑖, then

𝐿𝐼𝐹𝑂𝑊𝐴(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
) = 𝐿𝐼𝐹𝑂𝑊𝐺(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= 𝐴
(𝑖)
,

(55)

where 𝐴
(𝑖)

= (𝑠
𝜃
(𝑖)

, 𝑠
𝜎
(𝑖)

) is the 𝑖th largest of
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
.

Example 25. Let 𝐴
1
= (𝑠
1
, 𝑠
2
), 𝐴
2
= (𝑠
1
, 𝑠
3
), 𝐴
3
= (𝑠
2
, 𝑠
4
),

and 𝐴
4
= (𝑠
4
, 𝑠
1
) be LIFVs, which are derived from 𝑆 = {𝑠

𝛼
|

𝑠
0
< 𝑠
𝛼
≤ 𝑠
6
, 𝛼 ∈ [0, 6]}, and let 𝑤 = (0.2, 0.3, 0.4, 0.1)

𝑇 be the
weight vector of 𝐴

𝑖
(𝑖 = 1, 2, 3, 4).
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Applying (26) and (41), we obtain the aggregated LIFVs
as follows:

LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

4
) = (𝑠

6(1−∏
4

𝑖=1
(1−𝜃
𝑖
/6)
𝑤𝑖 )
, 𝑠
6∏
4

𝑖=1
(𝜎
𝑖
/6)
𝑤𝑖 )

= (𝑠
1.827

, 𝑠
2.781

) ,

LIFWG (𝐴
1
, 𝐴
2
, . . . , 𝐴

4
) = (𝑠

6∏
4

𝑖=1
(𝜃
𝑖
/6)
𝑤𝑖 , 𝑠6(1−∏

4

𝑖=1
(1−𝜎
𝑖
/6)
𝑤𝑖 )
)

= (𝑠
1.516

, 𝑠
3.157

) .

(56)

It is easy to see that

LIFWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

4
) = (𝑠

1.827
, 𝑠
2.781

)

> LIFWG (𝐴
1
, 𝐴
2
, . . . , 𝐴

4
)

= (𝑠
1.516

, 𝑠
3.157

) .

(57)

By Definition 7, we calculate the following values of score
function and accuracy function.

𝑆 (𝐴
1
) = 𝑠
(6+1−2)/2

= 𝑠
2.5
, 𝑆 (𝐴

2
) = 𝑠
(6+1−3)/2

= 𝑠
2
,

𝑆 (𝐴
3
) = 𝑠
(6+2−4)/2

= 𝑠
2
, 𝑆 (𝐴

4
) = 𝑠
(6+4−1)/2

= 𝑠
4.5
,

𝐻 (𝐴
2
) = 𝑠
1+3

= 𝑠
4
, 𝐻 (𝐴

3
) = 𝑠
2+4

= 𝑠
6
.

(58)

Since 𝑆(𝐴
4
) > 𝑆(𝐴

1
) > 𝑆(𝐴

2
) = 𝑆(𝐴

3
) and 𝐻(𝐴

3
) >

𝐻(𝐴
2
), then

𝐴
(1)

= 𝐴
4
= (𝑠
4
, 𝑠
1
) , 𝐴

(2)
= 𝐴
1
= (𝑠
1
, 𝑠
2
) ,

𝐴
(3)

= 𝐴
3
= (𝑠
2
, 𝑠
4
) , 𝐴

(4)
= 𝐴
2
= (𝑠
1
, 𝑠
3
) .

(59)

Assume that 𝑤 = (0.155, 0.345, 0.345, 0.155)
𝑇, which are

determined by the normal distribution based method [39], is
the associated weight vector of 𝐴

(𝑖)
. Then, by (36) and (45),

we have

LIFOWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= (𝑠
6(1−∏

4

𝑖=1
(1−𝜃
(𝑖)
/6)
𝑤𝑖 )
, 𝑠
6∏
𝑛

𝑖=1
(𝜎
(𝑖)
/6)
𝑤𝑖)

= (𝑠
1.983

, 𝑠
2.430

) ,

LIFOWG (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= (𝑠
6∏
𝑛

𝑖=1
(𝜃
(𝑖)
/6)
𝑤𝑖 , 𝑠6(1−∏

𝑛

𝑖=1
(1−𝜎
(𝑖)
/6)
𝑤𝑖 )
)

= (𝑠
1.575

, 𝑠
2.882

) .

(60)

It is easy to see that

LIFOWA (𝐴
1
, 𝐴
2
, . . . , 𝐴

4
) = (𝑠

1.983
, 𝑠
2.430

)

> LIFOWG (𝐴
1
, 𝐴
2
, . . . , 𝐴

4
)

= (𝑠
1.575

, 𝑠
2.882

) .

(61)

5. MAGDM Method with Linguistic
Intuitionistic Fuzzy Information

In the following, we present a handling method forMAGDM
problems, where the weight vector of attributes is known and
the attribute performance values take the form of LIFVs.

Let 𝐴 = (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
) be the set of alternatives and

𝐶 = (𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
) the set of attributes, whose weight vector

is 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
), with 𝑤

𝑖
∈ [0, 1] and ∑

𝑛

𝑖=1
𝑤
𝑖
= 1. Let

𝐷 = (𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑙
) be the set of decision makers. Suppose

𝑅
𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

is the decision matrix, where 𝑟
𝑘

𝑖𝑗
= (𝑠
𝑘

𝜃
𝑖𝑗

, 𝑠
𝑘

𝜎
𝑖𝑗

)

denotes the preference value and takes the form of LIFV,
which is given by decision makers 𝐷

𝑘
for alternative 𝐴

𝑖
with

respect to attribute 𝐶
𝑗
and 𝑠
𝑘

𝜃
𝑖𝑗

, 𝑠
𝑘

𝜎
𝑖𝑗

∈ 𝑆 = {𝑠
𝑖
| 𝑖 = 0, 1, . . . , 𝑡}.

The proposed method is described as follows.

Step 1. Construct the linguistic intuitionistic fuzzy decision
matrix 𝑅

𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

.

Step 2. Utilize the LIFOWA or LIFOWG operator to derive
the aggregated decision matrix 𝑅 = (𝑟

𝑖𝑗
)
𝑚×𝑛

:

𝑟
𝑖𝑗
= (𝑠
𝜃
𝑖𝑗

, 𝑠
𝜎
𝑖𝑗

) = LIFOWA (𝑟
1

𝑖𝑗
, 𝑟
2

𝑖𝑗
, . . . , 𝑟

𝑙

𝑖𝑗
) ,

or 𝑟
𝑖𝑗
= (𝑠
𝜃
𝑖𝑗

, 𝑠
𝜎
𝑖𝑗

) = LIFOWG (𝑟
1

𝑖𝑗
, 𝑟
2

𝑖𝑗
, . . . , 𝑟

𝑙

𝑖𝑗
) ,

(62)

where the LIFOWA and LIFOWGweights are determined by
the normal distribution based method [39].

Step 3. Aggregate 𝑟
𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑛) to yield the collective

overall preference values 𝑟
𝑖
for each alternative 𝐴

𝑖
(𝑖 =

1, 2, . . . , 𝑚) based on the LIFWA or LIFWG operator.

Step 4. Rank the alternatives in accordance with 𝑟
𝑖
, according

to Definition 7.

6. Numerical Example

In this section, we consider an example adapted from
Herrera and Herrera-Viedma [40]. Suppose an investment
company, which wants to invest a sum of money in the
best option. There is a panel with four possible alternatives
of where to invest the money: 𝐴

1
is a car industry; 𝐴

2

is a food company; 𝐴
3
is a computer company; 𝐴

4
is

an arms industry. The investment company must make a
decision according to four criteria: 𝐶

1
is the risk analysis;

𝐶
2
is the growth analysis; 𝐶

3
is the social-political impact

analysis; 𝐶
4
is the environmental impact analysis. The weight

vector of attributes is 𝑤 = (0.3, 0.1, 0.2, 0.4). Three experts
are invited to provide their preferences for each alterna-
tive on each attribute with the linguistic term set 𝑆 =

{𝑠
0

= extremely poor, 𝑠
1

= very poor, 𝑠
2

= poor, 𝑠
3

=

slightly poor, 𝑠
4
= fair, 𝑠

5
= slightly good, 𝑠

6
= good, 𝑠

7
=

very good, 𝑠
8
= extremely good}.



Journal of Applied Mathematics 9

Table 1: The decision matrix 𝑅
1
given by𝐷

1
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

(𝑠
6
, 𝑠
1
) (𝑠

3
, 𝑠
1
) (𝑠

3
, 𝑠
3
) (𝑠

1
, 𝑠
6
)

𝐴
2

(𝑠
3
, 𝑠
4
) (𝑠

3
, 𝑠
4
) (𝑠

2
, 𝑠
5
) (𝑠

2
, 𝑠
4
)

𝐴
3

(𝑠
1
, 𝑠
3
) (𝑠

2
, 𝑠
3
) (𝑠

3
, 𝑠
2
) (𝑠

6
, 𝑠
1
)

𝐴
4

(𝑠
6
, 𝑠
2
) (𝑠

4
, 𝑠
3
) (𝑠

5
, 𝑠
1
) (𝑠

7
, 𝑠
1
)

Table 2: The decision matrix 𝑅
2
given by𝐷

2
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

(𝑠
3
, 𝑠
2
) (𝑠

4
, 𝑠
1
) (𝑠

3
, 𝑠
4
) (𝑠

2
, 𝑠
3
)

𝐴
2

(𝑠
5
, 𝑠
2
) (𝑠

2
, 𝑠
1
) (𝑠

3
, 𝑠
4
) (𝑠

2
, 𝑠
5
)

𝐴
3

(𝑠
2
, 𝑠
3
) (𝑠

3
, 𝑠
3
) (𝑠

1
, 𝑠
2
) (𝑠

3
, 𝑠
3
)

𝐴
4

(𝑠
5
, 𝑠
2
) (𝑠

3
, 𝑠
3
) (𝑠

5
, 𝑠
2
) (𝑠

4
, 𝑠
1
)

Table 3: The decision matrix 𝑅
3
given by𝐷

3
.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

(𝑠
3
, 𝑠
3
) (𝑠

3
, 𝑠
5
) (𝑠

6
, 𝑠
1
) (𝑠

2
, 𝑠
6
)

𝐴
2

(𝑠
3
, 𝑠
2
) (𝑠

2
, 𝑠
4
) (𝑠

2
, 𝑠
1
) (𝑠

3
, 𝑠
4
)

𝐴
3

(𝑠
6
, 𝑠
1
) (𝑠

2
, 𝑠
5
) (𝑠

3
, 𝑠
4
) (𝑠

1
, 𝑠
3
)

𝐴
4

(𝑠
5
, 𝑠
1
) (𝑠

4
, 𝑠
4
) (𝑠

6
, 𝑠
2
) (𝑠

5
, 𝑠
2
)

Step 1. The decision makers provide their evaluation val-
ues and construct the linguistic intuitionistic fuzzy deci-
sion matrix 𝑅

𝑘
= (𝑟

𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 = 1, 2, 3) as shown in
Tables 1, 2, and 3, respectively.

Step 2. By the normal distribution based method [39],
the associated weight vector is determined as 𝜔 =

(0.243, 0.514, 0.243)
𝑇. Then, utilize the LIFOWA operator

to derive the aggregated decision matrix 𝑅 = (𝑟
𝑖𝑗
)
4×4

,
which is shown in Table 4. Alternatively, if the LIFOWG
operator instead of LIFOWAoperator is applied in Step 2, the
aggregated decision matrix 𝑅 = (𝑟

𝑖𝑗
)
𝑚×𝑛

can be derived as
shown in Table 5.

Step 3. Aggregate 𝑟
𝑖𝑗

(𝑗 = 1, 2, . . . , 4) to yield the collective
overall preference values 𝑟

𝑖
for each alternative 𝐴

𝑖
(𝑖 =

1, 2, . . . , 4) based on the LIFWA or LIFWG operator with the
weight vector 𝑤 = (0.3, 0.1, 0.2, 0.4), as shown in Table 6.

Step 4. By ranking 𝑟
𝑖
(𝑖 = 1, 2, 3, 4) based on Definition 7,

the priorities of the alternatives can be obtained, which are
listed in Table 6. Obviously, both the methods come to the
same conclusion that the best alternative is 𝐴

4
.

In the above linguistic intuitionistic fuzzy aggregation
operators, the weights of the arguments are supposed to
be crisp numbers. However, for reason of complexity or
uncertainty of decision making, decision makers may have
difficulty in assigning weights of the attributes with crisp
numbers and may be inclined to appoint the weights of
the attributes as linguistic values, interval linguistic values,
or LIFVs. The existing linguistic aggregation operators can-
not deal with such cases. According to the operation laws

Table 4: The aggregated decision matrix 𝑅 by LIFOWA operator.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

(𝑠
3.998

, 𝑠
1.865

) (𝑠
3.264

, 𝑠
1.479

) (𝑠
3.998

, 𝑠
2.463

) (𝑠
1.771

, 𝑠
5.070

)

𝐴
2

(𝑠
3.584

, 𝑠
2.367

) (𝑠
2.537

, 𝑠
2.856

) (𝑠
2.537

, 𝑠
3.051

) (𝑠
2.260

, 𝑠
4.223

)

𝐴
3

(𝑠
3.230

, 𝑠
2.297

) (𝑠
2.260

, 𝑠
3.397

) (𝑠
2.574

, 𝑠
2.856

) (𝑠
3.657

, 𝑠
2.297

)

𝐴
4

(𝑠
5.282

, 𝑠
1.401

) (𝑠
3.777

, 𝑠
3.478

) (𝑠
5.282

, 𝑠
1.401

) (𝑠
4.720

, 𝑠
1.184

)

Table 5: The aggregated decision matrix 𝑅 by LIFOWG operator.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐴
1

(𝑠
3.550

, 𝑠
2.041

) (𝑠
3.217

, 𝑠
2.303

) (𝑠
3.550

, 𝑠
2.860

) (𝑠
1.690

, 𝑠
5.501

)

𝐴
2

(𝑠
3.397

, 𝑠
2.563

) (𝑠
2.463

, 𝑠
3.417

) (𝑠
2.462

, 𝑠
3.727

) (𝑠
2.207

, 𝑠
4.270

)

𝐴
3

(𝑠
2.207

, 𝑠
2.574

) (𝑠
2.207

, 𝑠
3.584

) (𝑠
2.719

, 𝑠
3.129

) (𝑠
2.719

, 𝑠
2.774

)

𝐴
4

(𝑠
5.227

, 𝑠
1.505

) (𝑠
3.730

, 𝑠
3.542

) (𝑠
5.227

, 𝑠
1.505

) (𝑠
4.838

, 𝑠
1.257

)

described by (11) and (12), we can also solve such decision
making problems. For example, suppose the decision makers
take the weights of attributes as linguistic values in this
example, that is, 𝑤

1
= (𝑠
3
, 𝑠
2
), 𝑤
2
= 𝑠
1
, 𝑤
3
= [𝑠
2
, 𝑠
4
], and

𝑤
4
= [𝑠
4
, 𝑠
7
], which can be transformed to LIFVs; that is,𝑤

1
=

(𝑠
3
, 𝑠
2
), 𝑤
2
= (𝑠
1
, 𝑠
7
), 𝑤
3
= (𝑠
2
, 𝑠
4
), and 𝑤

4
= (𝑠
4
, 𝑠
1
). Thus, by

(11) and (12), the collective overall preference values 𝑟
𝑖
for each

alternative 𝐴
𝑖
(𝑖 = 1, 2, . . . , 4) with linguistic weights can be

obtained by the following:

𝑟
𝑖
= (𝑤
1
⊗ 𝑟
𝑖1
) ⊕ (𝑤

2
⊗ 𝑟
𝑖2
) ⊕ (𝑤

3
⊗ 𝑟
𝑖3
)

⊕ (𝑤
4
⊗ 𝑟
𝑖4
) .

(63)

Without loss of generalization, on the basis of Table 4, we
have the following results:

𝑟
1
= ((𝑠
3
, 𝑠
2
) ⊗ (𝑠
3.998

, 𝑠
1.865

)) ⊕ ((𝑠
1
, 𝑠
7
) ⊗ (𝑠
3.264

, 𝑠
1.479

))

⊕ ((𝑠
2
, 𝑠
4
) ⊗ (𝑠
3.998

, 𝑠
2.463

)) ⊕ ((𝑠
4
, 𝑠
1
) ⊗ (𝑠
1.771

, 𝑠
5.070

))

= (𝑠
3.200

, 𝑠
1.245

) ,

𝑟
2
= ((𝑠
3
, 𝑠
2
) ⊗ (𝑠
3.584

, 𝑠
2.367

)) ⊕ ((𝑠
1
, 𝑠
7
) ⊗ (𝑠
2.537

, 𝑠
2.856

))

⊕ ((𝑠
2
, 𝑠
4
) ⊗ (𝑠
2.537

, 𝑠
3.051

)) ⊕ ((𝑠
4
, 𝑠
1
) ⊗ (𝑠
2.260

, 𝑠
4.223

))

= (𝑠
2.931

, 𝑠
1.221

) ,

𝑟
3
= ((𝑠
3
, 𝑠
2
) ⊗ (𝑠
3.230

, 𝑠
2.297

)) ⊕ ((𝑠
1
, 𝑠
7
) ⊗ (𝑠
2.260

, 𝑠
3.397

))

⊕ ((𝑠
2
, 𝑠
4
) ⊗ (𝑠
2.574

, 𝑠
2.856

)) ⊕ ((𝑠
4
, 𝑠
1
) ⊗ (𝑠
3.657

, 𝑠
2.297

))

= (𝑠
3.355

, 𝑠
0.882

) ,

𝑟
4
= ((𝑠
3
, 𝑠
2
) ⊗ (𝑠
5.282

, 𝑠
1.401

)) ⊕ ((𝑠
1
, 𝑠
7
) ⊗ (𝑠
3.777

, 𝑠
3.478

))

⊕ ((𝑠
2
, 𝑠
4
) ⊗ (𝑠
5.282

, 𝑠
1.401

)) ⊕ ((𝑠
4
, 𝑠
1
) ⊗ (𝑠
4.720

, 𝑠
1.184

))

= (𝑠
5.109

, 𝑠
0.424

) ,

(64)

by which we can obtain the rankings of alternatives: that is,
𝐴
4
> 𝐴
3
> 𝐴
1
> 𝐴
2
.
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Table 6: The collective overall preference values and the rankings of alternatives.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

Ranking
LIFOWA
LIFWA (𝑠

3.142
, 𝑠
2.874

) (𝑠
2.772

, 𝑠
3.199

) (𝑠
3.198

, 𝑠
2.495

) (𝑠
4.938

, 𝑠
1.435

) 𝐴
4
> 𝐴
3
> 𝐴
1
> 𝐴
2

LIFOWG
LIFWG (𝑠

2.612
, 𝑠
3.932

) (𝑠
2.596

, 𝑠
3.619

) (𝑠
2.501

, 𝑠
2.876

) (𝑠
4.990

, 𝑠
1.650

) 𝐴
4
> 𝐴
3
> 𝐴
2
> 𝐴
1

Such results do not exceed the cardinality of the cor-
responding linguistic term set and can be easily accepted.
By contrast, if we transform the above LIFVs into interval
linguistic values and take the operation laws defined by
Definition 3, we may have similar problems discussed in
Example 11.

7. Conclusions

In this paper, we introduce the concept of LIFS, which
can be seen as a generalization of IFS and is suitable to
deal with imprecise and uncertain information in decision
making. We further define the score function and accuracy
function to compare the LIFVs.Moreover, we propose several
aggregation operators for LIFSs, such as the LIFWA operator,
LIFOWA operator, LIFWG operator, and LIFOWG operator,
together with their desired properties. Comparing with the
existing linguistic operation laws, we can obtain more intu-
itive and acceptable results by these aggregation operators
proposed.
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