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To resist known quantum algorithm attacks, several nonabelian algebraic structures mounted upon the stage of modern
cryptography. Recently, Baba et al. proposed an important analogy from the integer factorization problem to the factorization
problem over nonabelian groups. In this paper, we propose several conjugated problems related to the factorization problem over
nonabelian groups and then present three constructions of cryptographic primitives based on these newly introduced conjugacy
systems: encryption, signature, and signcryption. Sample implementations of our proposal as well as the related performance
analysis are also presented.

1. Introduction

Background andMotivation.Although the idea of encryption
has made it to the world thousands of years ago, the concept
of public key cryptography (PKC) came to us no more than
half of a century. To secure communications over insecure
channels, the core idea of PKC is to exert a heavy burden,
that is, computational cost in general, on eavesdroppers but
meanwhile keep the additional workload of legitimate users
as light as possible [1]. This idea is always instantiated by
certain challenging problems for which the legitimate users
know at least one feasible solution, while it is infeasible to find
a solution even if the attackers exhaust all available resources.
Along this roadmap, the well-known Diffie-Hellman key
exchange protocol [2] as well as many public key cryptosys-
tems, such as RSA [3], ElGamal [4], and ECC [5, 6], manifests
their great success during the past four decades. However,
considering that the famous problem 𝑃

?

= 𝑁𝑃 remained open
up to now, all these cryptographic protocols/schemes relay
their security on assumptions of the intractability of certain
problems, say integer factorization problem (IFP), discrete
logarithm problem over finite fields (DLP), or elliptic curves
(ECDLP).

Intractability assumptions of certain cryptographic prob-
lems themselves never mean the security of real systems.
Instead, they must be embedded in implementing certain
cryptographic primitives. In fact, security is a composite
concept and it can be divided into several different proper-
ties. Among them, confidentiality, authenticity, and integrity
attract a lot of attention in the community of PKC. Although
the primitive of encryption is mainly intended to keep con-
fidentiality, when an encryption scheme achieves indistin-
guishability against adaptive chosen ciphertext attacks (IND-
CCA2), the integrity of the ciphertexts is also granted. Sim-
ilarly, the primitive of signature maintains the authenticity
and integrity, simultaneously. Another cryptographic prim-
itive, signcryption, is a data security technology by which
confidentiality is protected and authenticity is achieved seam-
lessly at the same time [7–9]. The primitive of signcryp-
tion, invented in 1996 but firstly disclosed to the public at
CRYPTO 1997 [7, 8], is now an international standard for
data protection (ISO/IEC 29150, Dec 2011). Up-to-date, many
constructions of signcryption were proposed, based on the
intractability assumptions of IFP [10, 11] or DLP/ECDLP [12,
13]. Some constructions further utilize the bilinear pairing
to enhance the functionalities and performance [14, 15], but
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the security of these constructions was also rooted in the
intractability assumption of ECDLP. Unfortunately, IFP and
DLP as well as ECDLP could be efficiently solved by Shor’s
quantum algorithms [16, 17] and its extensions [18]. Thus,
there is an urgent requirement to develop new signcryption
schemes that have the potential capability to resist Shor-like
quantum attacks. Although two lattice-based signcryption
schemes were claimed recently [19, 20] to have the advantages
in resisting known quantum algorithm attacks, the parameter
size of these constructions is considerably large. Therefore,
more efficient designs are expected.

Contribution. In this paper, wemade efforts from two aspects.
At first, we define several conjugated problems related to the
factorization problem over nonabelian groups and we name
these problems as conjugacy systems. Next, we explore the
usefulness of these conjugacy systems via presenting three
constructions of cryptographic primitives: encryption, signa-
ture, and signcryption. In addition, sample implementations
of our proposal as well as related performance analysis are
presented.

Related Work. Our work belongs to the line of the so-called
noncommutative cryptography that has become noticeable
recently [21]. Considering that Shor’s quantum algorithm and
its extension work well over some commutative groups, such
as the multiplication group Z∗

𝑛
, the multiplication group F∗

𝑞
,

and the addition group over elliptic curves on finite field F
𝑞
,

and we have already known efficient quantum algorithms for
hidden group problems (HSP) over all commutative groups,
a lot of attempts on developing cryptosystems are based on
noncommutative algebraic structures.During the past decade,
braid groups [9, 22, 23], inner automorphism groups [24, 25],
Thompson’s groups [26], linear groups and classical modular
groups [27, 28], random covers and logarithmic signatures
[29], and so forth have already mounted upon the stage
of modern cryptography. However, this area is considerably
immature and at present there are no practical, both in
efficiency and security, noncommutative cryptosystems [9].
In particular, finding a secure nonabelian analogy of cryp-
tosystems based on IFP remains open [21] until recently. In
2011, Baba et al. proposed a nonabelian factorization prob-
lem and presented associated cryptosystems [30]. Although
BKT’s constructions failed to achieve semantic security, the
insight embedded in the nonabelian factorization problem
opens a new avenue for developing practical nonabelian
cryptography [31]. In 2012, Gu et al. [31] proposed an
IND-CCA2 secure encryption scheme based on BKT’s idea.
Moreover, they gave the first arguments on resisting Shor’s
quantum algorithm attacks based on noncommutativity
(see Remark 11).

Roadmap. The remaining content is organized as follows.
In Section 2, we at first recall the definition of nonabelian
factorization problem and related extensions, then define
some new cryptographic problems (referred to as conjugacy
systems), and finally present analysis on the hardness of these
problems; in Section 3, we present new constructions on
encryption, signature, andsigncryption based on the newly

introduced conjugacy systems; in Section 4, we discuss the
possible implementation platforms and related performance;
finally, concluded remarks are given in Section 5.

2. Conjugacy Systems Based on Nonabelian
Factorization Problems

Most public key cryptosystems are based on certain
intractability assumptions and thus finding new intractable
assumptions is an interesting cryptographic practice. In
this section, we will at first review the so-called nonabelian
factorization problem that was firstly formulated in [30]
and then introduce some new cryptographic problems by
coupling related problems with conjugate operations. This
idea is in fact enlightened by braid cryptosystems [23] and
the CSP-based constructions [32] where conjugacy related
problems play center roles. For abbreviation, we refer to
these problems as conjugacy systems.

2.1. Nonabelian Factorization Problem and New
Cryptographic Problems

Definition 1 (factorization problem, FP [30, 31]). Let𝐺 be any
nonabelian finite group with identity 𝑒. Let 𝑔, ℎ ∈ 𝐺 be two
random elements so that ⟨𝑔⟩ ∩ ⟨ℎ⟩ = {𝑒}. The factorization
problem with respect to 𝐺, 𝑔, ℎ, denoted by FP𝐺

𝑔,ℎ
, is to split

the given product 𝑔𝑥ℎ𝑦 ∈ 𝐺 into a pair (𝑔𝑥, ℎ𝑦) ∈ 𝐺
2, where

𝑥 and 𝑦 are arbitrary integers picked at random.

Definition 2 (computational Diffie-Hellman problem, CDH
[30, 31]). Let 𝐺 be any nonabelian finite group with identity
𝑒. Let 𝑔, ℎ ∈ 𝐺 be two random elements so that ⟨𝑔⟩ ∩ ⟨ℎ⟩ =

{𝑒}. The computational Diffie-Hellman (CDH) problem with
respect to 𝐺, 𝑔, ℎ, denoted by CDH𝐺

𝑔,ℎ
, is to recover 𝑔𝑎+𝑐ℎ𝑏+𝑑

from the given pair (𝑔𝑎ℎ𝑏, 𝑔𝑐ℎ𝑑) ∈ 𝐺
2, where 𝑎, 𝑏, 𝑐, 𝑑 are

arbitrary integers picked at random.

Definition 3 (decisional Diffie-Hellman problem, DDH [31]).
Let 𝐺 be any nonabelian finite group with identity 𝑒. Let
𝑔, ℎ ∈ 𝐺 be two random elements so that ⟨𝑔⟩∩ ⟨ℎ⟩ = {𝑒}. The
decisional Diffie-Hellman (DDH) problem with respect to
𝐺, 𝑔, ℎ, denoted by DDH𝐺

𝑔,ℎ
, is to distinguish the distribution

D
0
≜ {(𝑔

𝑎
ℎ
𝑏
, 𝑔
𝑐
ℎ
𝑑
, 𝑔
𝑧
ℎ
𝑦
) : 𝑎, 𝑏, 𝑐, 𝑑, 𝑧, 𝑦∈

𝑅
Z} (1)

and the distribution

D
1
≜ {(𝑔

𝑎
ℎ
𝑏
, 𝑔
𝑐
ℎ
𝑑
, 𝑔
𝑎+𝑐

ℎ
𝑏+𝑑

) : 𝑎, 𝑏, 𝑐, 𝑑∈
𝑅
Z} . (2)

Definition 4 (gap computational Diffie-Hellman problem,
Gap-CDH [31]). Let 𝐺 be any nonabelian finite group with
identity 𝑒. Let 𝑔, ℎ ∈ 𝐺 be two random elements so that
⟨𝑔⟩∩⟨ℎ⟩ = {𝑒}.The gap computational Diffie-Hellman (Gap-
CDH) problem (In [31], this problem is called gap Diffie-
Hellman (Gap-DH) problem) with respect to𝐺, 𝑔, ℎ, denoted
by Gap-CDH𝐺

𝑔,ℎ
, is to solve the CDH𝐺

𝑔,ℎ
problem given access

to an oracle that solves the DDH𝐺
𝑔,ℎ

problem.
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Definition 5 (subgroup conjugator searching problem, SCSP).
Let 𝐺 be any nonabelian finite group with identity 𝑒. Let
𝑔, ℎ ∈ 𝐺 be two random elements so that ⟨𝑔⟩∩ ⟨ℎ⟩ = {𝑒}. The
subgroup conjugator searching problem (SCSP) with respect
to𝐺, 𝑔, ℎ, denoted by SCSP𝐺

𝑔,ℎ
, is to recover 𝑔𝑥 from the given

pair (ℎ𝑦, 𝑔𝑥ℎ𝑦𝑔−𝑥) ∈ 𝐺
2, where 𝑥, 𝑦 are arbitrary integers

picked at random.

Definition 6 (subgroup conjugacy deciding problem, SCDP).
Let 𝐺 be any nonabelian finite group with identity 𝑒. Let
𝑔, ℎ ∈ 𝐺 be two random elements so that ⟨𝑔⟩ ∩ ⟨ℎ⟩ =

{𝑒}. The subgroup conjugacy deciding problem (SCDP) with
respect to 𝐺, 𝑔, ℎ, denoted by SCDP𝐺

𝑔,ℎ
, is to distinguish the

distribution

D
2
≜ {(ℎ

𝑏
, 𝑔
𝑎
ℎ
𝑏
𝑔
𝑐
) : 𝑎, 𝑏, 𝑐∈

𝑅
Z} (3)

and the distribution

D
3
≜ {(ℎ

𝑏
, 𝑔
𝑎
ℎ
𝑏
𝑔
−𝑎
) : 𝑎, 𝑏∈

𝑅
Z} . (4)

Definition 7 (conjugated computational Diffie-Hellman prob-
lem, CCDH). Let 𝐺 be any nonabelian finite group with
identity 𝑒. Let 𝑔, ℎ ∈ 𝐺 be two random elements so that
⟨𝑔⟩ ∩ ⟨ℎ⟩ = {𝑒}. The conjugated computational Diffie-
Hellman (CCDH) problem with respect to 𝐺, 𝑔, ℎ, denoted
by CCDH𝐺

𝑔,ℎ
, is to recover 𝑔𝑎+𝑐ℎ𝑏𝑔−𝑎−𝑐 from the given triple

(ℎ
𝑏
, 𝑔
𝑎
ℎ
𝑏
𝑔
−𝑎
, 𝑔
𝑐
ℎ
𝑏
𝑔
−𝑐
) ∈ 𝐺
3
, (5)

where 𝑎, 𝑏, 𝑐, 𝑑 are arbitrary integers picked at random.

Definition 8 (conjugated decisional Diffie-Hellman problem,
CDDH). Let𝐺 be any nonabelian finite groupwith identity 𝑒.
Let 𝑔, ℎ ∈ 𝐺 be two random elements so that ⟨𝑔⟩ ∩ ⟨ℎ⟩ = {𝑒}.
The conjugated decisional Diffie-Hellman (CDDH) problem
with respect to𝐺, 𝑔, ℎ, denoted by CDDH𝐺

𝑔,ℎ
, is to distinguish

the distribution

D
4
≜ {(ℎ

𝑏
, 𝑔
𝑎
ℎ
𝑏
𝑔
−𝑎
, 𝑔
𝑐
ℎ
𝑏
𝑔
−𝑐
, 𝑔
𝑑
ℎ
𝑏
𝑔
−𝑑
)} , (6)

(where 𝑎, 𝑏, 𝑐, 𝑑∈
𝑅
Z are drawn at random) and the distribu-

tion

D
5
≜ {(ℎ

𝑏
, 𝑔
𝑎
ℎ
𝑏
𝑔
−𝑎
, 𝑔
𝑐
ℎ
𝑏
𝑔
−𝑐
, 𝑔
𝑎+𝑐

ℎ
𝑏
𝑔
−𝑎−𝑐

)} , (7)

(where 𝑎, 𝑏, 𝑐∈
𝑅
Z are drawn at random).

Definition 9 (gap conjugated computational Diffie-Hellman
problem, Gap-CCDH). Let𝐺 be any nonabelian finite group
with identity 𝑒. Let 𝑔, ℎ ∈ 𝐺 be two random elements so
that ⟨𝑔⟩ ∩ ⟨ℎ⟩ = {𝑒}. The gap conjugated computational
Diffie-Hellman (Gap-CCDH)problemwith respect to𝐺, 𝑔, ℎ,
denoted by Gap-CCDH𝐺

𝑔,ℎ
, is to solve the CCDH𝐺

𝑔,ℎ
problem,

given access to an oracle that solves the CDDH𝐺
𝑔,ℎ

problem.

2.2. Hardness Assumptions. Firstly, we should notice that the
condition ⟨𝑔⟩∩⟨ℎ⟩ = {𝑒} implies that the FP problem is well-
defined in the sense that the solution is unique for any given

FP instance. In addition, if 𝐺 is abelian and the orders of 𝑔
and ℎ are coprime and known, then the FP problem can be
reduced to the discrete logarithm problem in 𝐺 according
to [30]. However, if the orders of 𝑔 and ℎ have common
factors or are kept unrevealed or 𝐺 is nonabelian, then the
FP problem seems much hard. In this case, the naive method
of trying all different pairs (𝑥, 𝑦) is apparently infeasible if the
orders of 𝑔 and ℎ are large enough. Therefore, we would like
to introduce the meta-assumptions as follows:

(i) (𝐺, 𝑒) is a nonabelian finite group, where 𝑒 is the
identity;

(ii) the orders of 𝑔 and ℎ are large enough;
(iii) 𝑔ℎ ̸= ℎ𝑔 and ⟨𝑔⟩ ∩ ⟨ℎ⟩ = {𝑒}.

And then, based on this meta-assumption, our first hardness
assumption states that the FP 𝐺

𝑔,ℎ
problem is intractable.

Secondly, both the DDH𝐺
𝑔,ℎ

problem and the Gap-DH𝐺
𝑔,ℎ

problem are no harder than the CDH𝐺
𝑔,ℎ

problem. But as
far as we know, there is no better solution for the DDH𝐺

𝑔,ℎ

problem and Gap-CDH𝐺
𝑔,ℎ

problem other than solving the
CDH𝐺
𝑔,ℎ

problem. (Note that if 𝑔 and ℎ commute (i.e., 𝑔ℎ =

ℎ𝑔), although the FP𝐺
𝑔,ℎ

problem is still meaningful, but the
CDH𝐺
𝑔,ℎ

problem, the DDH𝐺
𝑔,ℎ

problem, and the Gap-DH𝐺
𝑔,ℎ

problem become trivial, thus, the meta-assumption of non-
commutativity of 𝑔 and ℎ is one of the crucial factors.)
Therefore, our 2nd, 3rd, and 4th hardness assumptions state
the intractabilities of the CDH𝐺

𝑔,ℎ
problem, the DDH𝐺

𝑔,ℎ

problem, and the Gap-DH𝐺
𝑔,ℎ

problem, respectively.
Thirdly, the SCDP problem might be tractable for certain

nonabelian groups, say matrix groups, considering that the
trace of the matrix 𝑔

𝑎
ℎ
𝑏
𝑔
−𝑎 is the same as the trace of ℎ𝑏.

However, even for matrix groups, it seems that both the
CCDH problem and the CDDH problem are still intractable,
since we have not found an easier way for solving them
than using the naive method of enumerating all possible
entries. Intuitively, it is hard to solve the CDDH problem
without solving the SCSP problem when 𝐺 is modeled as a
generic semigroup model. In 2005, Maurer [33] proved that
the discrete logarithm problem (DLP) and the corresponding
decisional Diffie-Hellman (DDH) problem are polynomially
equivalent in a generic cyclic group. By an analogical manner,
we speculate that the SCSP problem and the CDDH problem
in a generic noncommutative semigroup are polynomially
equivalent. Furthermore, we do not know a better solution
for the CDDH𝐺

𝑔,ℎ
problem and Gap-CCDH𝐺

𝑔,ℎ
problem other

than solving the CCDH𝐺
𝑔,ℎ

problem. Therefore, our 5th, 6rd,
7th, and 8th hardness assumptions state the intractabilities of
the SCSP𝐺

𝑔,ℎ
problem, the CCDH𝐺

𝑔,ℎ
problem, the CDDH𝐺

𝑔,ℎ
,

and the Gap-CCDH𝐺
𝑔,ℎ

problem, respectively. Note that in
this paper, we do not assume that SCDP𝐺

𝑔,ℎ
problem is hard.

At present, we have no idea on whether (gap) conjugated
computational (resp., decisional) Diffie-Hellman problem is
harder than (gap) computational (resp., decisional) Diffie-
Hellman problem or vice versa.
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Finally, a solution to the FP𝐺
𝑔,ℎ

problem would imply
a solution to all above problems [30]. In addition, ℎ𝑏 is
not required to be invertible in all above definitions; thus
it is possible to instantiate these problems over nonabelian
semigroups (see Figure 1).

Remark 10 (SCSP versus CSP). Note that the subgroup conju-
gator searching problem (SCSP) and the subgroup conjugacy
deciding problem (SCDP) introduced in this paper are in
general at least as hard as the conjugator searching problem
(CSP) and the conjugacy deciding problem (CDP) given in
[21] in the sense that SCSP and SCDP further require the
potential conjugator 𝑔𝑥 coming from a specified subgroup
⟨𝑔⟩ ⊂ 𝐺.

Remark 11 (quantum attack resistant). Note that in [31], we
give detailed analysis of the core role of noncommutativity
on resisting Shor’s quantum algorithm attacks. To make this
paper self-contained, we briefly recall some points. We know
that the main part of Shor’s quantum algorithm is a quantum
algorithm to solve the order-finding problem over the abelian
groupZ∗

𝑛
[16, 17]. Now, suppose that a quantum algorithm to

solve the order-finding problem over the underlying group𝐺
is at hand and we have already worked out 𝑔’s order 𝑎 and ℎ’s
order 𝑏. However, the following lifting reductions are blocked
by noncommutativity:

(𝑔
𝑥
ℎ
𝑦
)
𝑎

̸= 𝑔
𝑥⋅𝑎
ℎ
𝑦⋅𝑎

= 𝑒 ⋅ ℎ
𝑦⋅𝑎

= ℎ
𝑦⋅𝑎
,

(𝑔
𝑥
ℎ
𝑦
)
𝑏

̸= 𝑔
𝑥⋅𝑏
ℎ
𝑦⋅𝑏

= 𝑔
𝑥⋅𝑏

⋅ 𝑒 = 𝑔
𝑥⋅𝑏
.

(8)

The above two inequalities are very important in our argu-
ments. Without them, one can reduce the FP𝐺

𝑔,ℎ
problem to

the DLP problems over the cyclic groups ⟨𝑔⟩ and ⟨ℎ⟩, which
are quantumly tractable by using Shor’s algorithm [31]. In
this sense, we can see that BKT’s method pins down the true
meaning of noncommutativity for resisting Shor’s quantum
algorithm attacks (see Section 7.1 of [31] for more details).

3. Cryptographic Applications

Let us proceed to demonstrate the usefulness of the conjugacy
systems defined above. Suppose that𝐺 is a nonabelian group.
At first, the common setting on the public parameters of the
proposed schemes are given by a quintuple ⟨D, 𝑔, ℎ,𝐻

1
, 𝐻
2
⟩,

where

(i) D is a description of 𝐺. Without loss of generality,
we assume the length of D is bounded by O(log |𝐺|)
for finite 𝐺. When 𝐺 is infinite but admits a finite
presentation, say𝐺 = ⟨𝑋 | 𝑅⟩, then the description of
D is given by the description of𝑋 and 𝑅.

(ii) 𝑔, ℎ ∈ 𝐺 are two fixed elements that are picked at
random so that

(a) 𝑔 and ℎ do not commute; that is, 𝑔ℎ ̸= ℎ𝑔;
(b) ⟨𝑔⟩ ∩ ⟨ℎ⟩ = {𝑒};
(c) the order of 𝑔 is large enough. Typically, we

assume that the order of 𝑔 is no less than

FP

SCSP

CDH

DDH

Gap-CDH

CCDH

CDDH

Gap-CCDH

SCDP

Seems intractable

Tractable over matrix groups

Figure 1: Cryptographic problems over nonabelian semigroups.

the system security parameter 𝑘 that will be
specified later.

(iii) 𝐻
1

: 𝐺 → 𝐺
2 and 𝐻

2
: 𝐺
2

→ 𝐺 are two
cryptographic hash functions that are modeled as
random oracles.

3.1. Encryption with IND-CPA Security. Now, as a warming-
up, an Elgamal-like encryption scheme, denoted by 𝑉

1
, is

described as follows.

(i) KeyGen(1𝑘): this is the key generation algorithm that
takes, as input, the system security parameter 1𝑘, picks
an integer 𝑠 ∈ {0, 1}

𝑘 at random and calculates 𝑥 =

𝑔
𝑠
ℎ𝑔
−𝑠

∈ 𝐺, and finally outputs (𝑔𝑠, 𝑥) ∈ 𝐺
2 as the

private/public key pair.

(ii) Enc(𝑥;𝑚): this is the encryption algorithm that takes
as inputs the public key 𝑥 ∈ 𝐺 and the message𝑚 ∈ 𝐺

and performs the following steps:

(a) pick 𝑡 ∈ {0, 1}
𝑘 at random,

(b) compute 𝑐
1
= 𝑔
𝑡
ℎ𝑔
−𝑡 and 𝑐

2
= 𝑚𝑔
𝑡
𝑥𝑔
−𝑡,

(c) output (𝑐
1
, 𝑐
2
).

(iii) Dec(𝑔𝑠; 𝑐
1
, 𝑐
2
): this is the decryption algorithm that

takes as inputs the private key 𝑔
𝑠

∈ 𝐺 and the
ciphertext pair (𝑐

1
, 𝑐
2
) ∈ 𝐺

2 and then outputs the
intended message𝑚 = 𝑐

2
(𝑔
𝑠
𝑐
1
𝑔
−𝑠
)
−1.
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Correctness. The correctness of the scheme is granted by the
following calculation:

𝑐
2
(𝑔
𝑠
𝑐
1
𝑔
−𝑠
)
−1

= 𝑚𝑔
𝑡
𝑥𝑔
−𝑡
(𝑔
𝑠
𝑔
𝑡
ℎ𝑔
−𝑡
𝑔
−𝑠
)
−1

= 𝑚𝑔
𝑡
𝑥𝑔
−𝑡
(𝑔
𝑡
𝑔
𝑠
ℎ𝑔
−𝑠
𝑔
−𝑡
)
−1

= 𝑚(𝑔
𝑡
𝑥𝑔
−𝑡
) (𝑔
𝑡
𝑥𝑔
−𝑡
)
−1

= 𝑚.

(9)

Security. The security of the above encryption scheme is
essentially similar to the security of the well-known Elgamal
encryption scheme [4]. That is, it is indistinguishable against
chosen plaintext attack (IND-CPA) under the assumption
of the intractability of the CDDH𝐺

𝑔,ℎ
problem. One can also

find similar proofs from either [9] or [32]. In addition, since
neither𝐻

1
nor𝐻

2
are used in this scheme, it is secure in the

standardmodel. By using two randomoracles𝐻
1
and𝐻

2
, one

can easily convert it into an IND-CCA2 secure encryption
scheme according to the well-known FO transformation
theorem [34] (see the proof of Theorem 14).

3.2. Signature with the Lowest Security. Next, let us describe
a signature scheme, denoted by 𝑉

2
, that can be viewed as a

simplified variant of the noncommutative signature scheme
given in [35].

(i) KeyGen(1𝑘): it is the same as in Section 3.1.
(ii) Sign(𝑔𝑠; 𝑚): this is the signing algorithm that takes as

inputs the private key 𝑔𝑠 ∈ 𝐺 and the message𝑚 ∈ 𝐺

and performs the following steps:

(a) pick 𝑡 ∈ {0, 1}
𝑘 at random,

(b) compute 𝑢 = 𝑔
𝑡
ℎ𝑔
−𝑡, V = 𝐻

2
(𝑚, 𝑢), and 𝑤 =

𝐻
2
(𝑢, V)𝑔−𝑡𝑔𝑠,

(c) output the signature 𝜎 = (𝑢, 𝑤) ∈ 𝐺
2.

(iii) Verify(𝑥;𝑚, 𝜎): this is the verifying algorithm that
takes as inputs the public key 𝑥 ∈ 𝐺 and the message-
signature pair (𝑚, 𝜎) and then performs the following
steps:

(a) parse 𝜎 into (𝑢, 𝑤) ∈ 𝐺
2,

(b) compute V = 𝐻
2
(𝑚, 𝑢) and verify whether the

following equality holds

𝑤𝑢𝑤
−1 ?

= 𝐻
2 (𝑢, V) 𝑥𝐻2(𝑢, V)

−1
, (10)

(c) if so, accept this signature; otherwise, reject it.

Correctness. The correctness of the scheme is granted by the
following calculation:

𝑤𝑢𝑤
−1

= 𝐻
2 (𝑢, V) 𝑔

−𝑡
𝑔
𝑠
(𝑔
𝑡
ℎ𝑔
−𝑡
) 𝑔
−𝑠
𝑔
𝑡
𝐻
2(𝑢, V)

−1

= 𝐻
2 (𝑢, V) (𝑔

−𝑠
ℎ𝑔
𝑠
)𝐻
2(𝑢, V)

−1

= 𝐻
2 (𝑢, V) 𝑥𝐻2(𝑢, V)

−1
.

(11)

Security. On one hand, under the assumptions of the
intractability of the SCSP𝐺

𝑔,ℎ
problem and𝐻

2
being a random

oracle, this signature scheme merely achieves unforgeability
against no message attacks (UF-NMA)—this is the lowest
security level for a signature scheme where adversaries are
merely given the public key and asked to output a successful
forgery. The arguments are similar to the security analysis
given in [35]. On the other hand, taking this scheme as a
building block, we can design a signcryption scheme that
achieves existential unforgeability against external adaptively
chosen message attack (see the next subsection).

3.3. Signcryption with IND-CCA2 Security. Based on the
encryption scheme 𝑉

1
and the signature scheme 𝑉

2
, let us

proceed to present a signcryption scheme, denoted by 𝑉
3
.

(i) KeyGen(1𝑘): it the same as in Section 3.1.
(ii) SignCrypt(𝑔𝑠, 𝑦; 𝑚): this is the signcryption algo-

rithm that takes as inputs the sender’s private key 𝑔𝑠 ∈
𝐺, the receiver’s public key 𝑦 ∈ 𝐺, and the message
𝑚 ∈ 𝐺 and performs the following steps:

(a) pick 𝑡 ∈ {0, 1}
𝑘 at random,

(b) compute

𝑐
1
= 𝑔
𝑡
ℎ𝑔
−𝑡
,

𝜏 = 𝐻
2
(𝑚, 𝑐
1
) ,

𝜎 = 𝜏𝑐
1
𝑔
𝑠
𝑔
−𝑡
,

𝛾 = 𝐻
1
(𝑔
𝑡
𝑦𝑔
−𝑡
) ,

𝑐
2
= (𝑚 || 𝜎) ⊕ 𝛾,

(12)

where operator “⊕” should be viewed as XOR
operation over bit-strings that are encoding
results of a pair in 𝐺

2,
(c) output (𝑐

1
, 𝑐
2
).

(iii) UnSignCrypt (𝑔𝑟, 𝑥; 𝑐
1
, 𝑐
2
): this is the unsigncryption

algorithm that takes as inputs the receiver’s private
key 𝑔

𝑟
∈ 𝐺, the sender’s public key 𝑥 ∈ 𝐺, and

the ciphertext pair (𝑐
1
, 𝑐
2
) and performs the following

steps:

(a) compute𝑚 || 𝜎 = 𝑐
2
⊕ 𝐻
1
(𝑔
𝑟
𝑐
1
𝑔
−𝑟
),

(b) let 𝜏 = 𝐻
2
(𝑚

, 𝑐
1
),

(c) output 𝑚 if 𝜎𝑐
1
𝜎
−1

= (𝜏

𝑐
1
)𝑥(𝜏

𝑐
1
)
−1 and ⊥

otherwise.

Remark 12. The above signcryption scheme inherits the same
framework from [9]. However, the construction given here is
featured by the following differences.

(i) Different platforms with different security bases. In
[9], the platform is the braid group 𝐵

𝑛
and the

underlying intractability assumption is the conjugator
searching problem (CSP), while in this paper, the
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platform could be any nonabelian group and the
underlying intractability assumption is the subgroup
conjugator searching problem (SCSP) that is based
on the intractability assumption of the nonabelian
factorization problem. In general, we think the SCSP
problem is at least as hard as the CSP problem (see
Remark 10). In particular, based on nonabelian fac-
torization related problems, noncommutativity plays
a core role in resisting Shor’s quantum algorithm
attacks.

(ii) Different settings with different trade-off in computa-
tional/storage cost. As suggested in [9], with the braid
group 𝐵

50
, we need about 4 Kbits to represent a braid

with canonical length ℓ ≤ 10. This is a bit inefficient
in storage. Therefore, instead of keeping a braid as
the private key, we merely use a positive integer 𝑠 ∈

{0, 1}
𝑘 to indicate the private key. Considering that the

braid exponentiation can be finished very efficiently,
the real private key 𝑎

𝑠
∈ 𝐵
50

can be reconstructed
whenever it is required. However in this paper,
our proposal could be instantiated over arbitrary
nonabelian groups only if the related intractability
assumptions remain reasonable.Thus, we directly use
𝑔
𝑠
∈ 𝐺 as the private key. To deploy our proposal in

real systems, the engineers are responsible formaking
proper trade-off choice between the storage cost and
the computational cost.

Correctness. The correctness of the above scheme is given by
the following theorem.

Theorem 13. The proposed signcryption is consistent.

Proof. Suppose the sender and the receiver perform honestly
and their inputs are well formed. That is, 𝑥 = 𝑔

𝑠
ℎ𝑔
−𝑠 and 𝑦 =

𝑔
𝑟
ℎ𝑔
−𝑟. Then, since

𝑔
𝑟
𝑐
1
𝑔
−𝑟

= 𝑔
𝑟
𝑔
𝑡
ℎ𝑔
−𝑡
𝑔
−𝑟

= 𝑔
𝑡
𝑔
𝑟
ℎ𝑔
−𝑟
𝑔
−𝑡

= 𝑔
𝑡
𝑦𝑔
−𝑡
,

𝑚

|| 𝜎

= 𝑐
2
⊕ 𝐻
1
(𝑔
𝑟
𝑐
1
𝑔
−𝑟
)

= (𝑚 || 𝜎) ⊕ 𝐻
1
(𝑔
𝑡
𝑦𝑔
−𝑡
) ⊕ 𝐻

1
(𝑔
𝑡
𝑦𝑔
−𝑡
)

= 𝑚 || 𝜎,

𝜏

= 𝐻
2
(𝑚

, 𝑐
1
) = 𝐻

2
(𝑚, 𝑐
1
) = 𝜏,

𝜎 = 𝜏𝑐
1
𝑔
𝑠
𝑔
−𝑡
,

(13)

we have that

𝜎

𝑐
1
𝜎
−1

= 𝜎 (𝑔
𝑡
ℎ𝑔
−𝑡
) 𝜎
−1

= (𝜏𝑐
1
𝑔
𝑠
𝑔
−𝑡
) (𝑔
𝑡
ℎ𝑔
−𝑡
) (𝜏𝑐
1
𝑔
𝑠
𝑔
−𝑡
)
−1

= (𝜏

𝑐
1
) (𝑔
𝑠
ℎ𝑔
−𝑠
) (𝜏

𝑐
1
)
−1

= (𝜏

𝑐
1
) 𝑥(𝜏

𝑐
1
)
−1

.

(14)

Then,𝑚 = 𝑚 will be output correctly.

Security. As for a signcryption scheme, the security includes
two aspects: indistinguishability and unforgeability.

Theorem 14. Suppose that 𝐻
1
and 𝐻

2
are random oracles.

The proposed signcryption is indistinguishable against adap-
tive chosen ciphertext attack (IND-CCA2) assuming that the
CDDH𝐺

𝑔,ℎ
problem is intractable.

Proof (sketch of the proof). The proof threads are similar to
what is given in [9]. At first, we can apply the well-known
Fujisaki-Okamoto transformation theorem [34] to conclude
the IND-CCA2 security of the following encryption scheme,
denoted by 𝑉

4
.

(i) KeyGen(1𝑘): it is the same as in Section 3.1.
(ii) Enc(𝑦;𝑚): this is the encryption algorithm that takes

as inputs the receiver’s public key𝑦 and amessage𝑚 ∈

𝐺 and then performs the following steps:

(a) pick 𝑢 ∈ 𝐺 at random,
(b) let (𝑐

1
, 𝑐
2
) ← Enc(𝑦; 𝑢), where Enc is the

encryption algorithm in Section 3.1,
(c) let 𝑐

3
= 𝑚 ⊕ 𝐻

1
(𝑢) and 𝑐

4
= 𝐻
2
(𝑚, 𝑢),

(d) output (𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
).

(iii) Dec(𝑔𝑟; 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
): this is the decryption algorithm

that takes as inputs the receiver’s private key 𝑔𝑟 ∈ 𝐺

and the ciphertext quadruple (𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) and then

performs the following steps:

(a) let 𝑢


← Dec(𝑔𝑟; 𝑐
1
, 𝑐
2
), where Dec is the

decryption algorithm in Section 3.1,
(b) let𝑚 ← 𝑐

3
⊕ 𝐻
1
(𝑢

),

(c) output𝑚 if 𝑐
4
= 𝐻
2
(𝑚

, 𝑢

) and ⊥ otherwise.

Apparently, 𝑉
4
is an FO-like variant of 𝑉

1
and its security is

enhanced to IND-CCA2 assuming that both 𝐻
1
and 𝐻

2
are

random oracles [34].
Now, let us show that, with the same random oracles, if

there exists a probabilistic polynomial time adversaryA that
can break the IND-CCA2 security of the proposed signcryp-
tion scheme 𝑉

3
, then there also exists another probabilistic

polynomial time adversaryB that can break the IND-CCA2
security of 𝑉

4
.

In fact, since B controls the response of the random
oracles 𝐻

1
and 𝐻

2
, it can break the IND-CCA2 security of

𝑉
4
easily: whenever seeing a ciphertext (𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4
), it can

retrieve the message 𝑚 and random salt 𝑢 by looking up the
response list of𝐻

2
under the reasonable assumption that the

probability for different pair (𝑚, 𝑢) with same hash value
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with the pair (𝑚, 𝑢) is negligible. The thing left is to show
how B, without knowing the receiver’s private key 𝑔

𝑟
∈ 𝐺,

can simulate the response on decryption queries for A by a
perfect manner.

WheneverA invokes an unsigncryption query by submit-
ting a signcryption pair (𝑐

1
, 𝑐
2
),B responds as follows.

(1) Lookup (∗, 𝑐
1
, ∗) in 𝐻

2
-list, where ∗ indicates a

wildcard that can be matched with arbitrary inputs.
If there is no matched triple, B sends ⊥ to A as the
response.

(2) For each matched triple (𝑚
𝑖
, 𝑐
1
, 𝜏
𝑖
), B performs the

following steps:

(a) for each (𝑢, 𝛾) in𝐻
1
list, do the following steps:

(i) extract a possible 𝜎
𝑖
according to the fol-

lowing formula:

𝑐
2
= (𝑚
𝑖
|| 𝜎
𝑖
) ⊕ 𝛾, (15)

(ii) test whether the equality

𝜎
𝑖
𝑐
1
𝜎
−1

𝑖

?

= (𝜏
𝑖
𝑐
1
) 𝑥(𝜏
𝑖
𝑐
1
)
−1 (16)

holds. If so, reply A with 𝑚
𝑖
and end the

response; otherwise, continue.

(3) If up to nowB has no output response toA yet, then
B sends ⊥ to A as the response and then end the
response.

Finally, without accessing hash queries on randomoracles
𝐻
1
and𝐻

2
,A’s probability for submitting a valid signcryption

pair (𝑐
1
, 𝑐
2
) is negligible. Thus, whenever A invokes hash

queries on 𝐻
1
and 𝐻

2
for forming a valid signcryption pair,

related materials are recorded, andB can retrieve them and
finally sendA a perfect response.

Theorem 15. Suppose that 𝐻
1
and 𝐻

2
are random oracles.

The proposed signcryption scheme is existential unforgeable
against external adaptive chosen message attacks (EUF-ext-
CMA) assuming that the SCSP𝐺

𝑔,ℎ
problem is intractable.

Proof. Here, the term “external” means that the forger is
neither the singer, nor the intended receiver. Let us show
that whenever an external attacker A outputs a successful
forgery, then this must mean a contrary against the UF-NMA
security of the signature scheme 𝑉

2
given in Section 3.2. At

first, without invoking any query,A’s successful forgery itself
means an attack against the UF-NMA security. Next, suppose
that A invokes many polynomial signcryption queries or
unsigncryption queries. Let us show that the responses
for these queries have no help to A for making a forged
signcryption.

Suppose A invokes a signcryption query on some mes-
sage𝑚 and receives a pair (𝑐

1
, 𝑐
2
) as the response. After then,

A invokes a random oracle query on 𝐻
2
with inputs 𝑚 and

𝑐
1
and then he/she obtains 𝜏. Now, A still has no means to

obtain a valid signature from (𝑚, 𝑐
1
, 𝑐
2
, 𝜏) since both 𝑔

𝑠
𝑔
−𝑡

and 𝛾 remain unknown. Suppose A can get 𝛾 via invoking
a random oracle query on 𝐻

1
with input 𝑔𝑡𝑦𝑔−𝑡. Then, its

query input gives a solution to the SCSP instance (𝑐
1

=

𝑔
𝑡
ℎ𝑔
−𝑡
, 𝑦 = 𝑔

𝑟
ℎ𝑔
−𝑟
). This is a contrary to the assumption of

the intractability of the SCSP problem.
Now, suppose A invokes an unsigncryption query on

some signcryption pair (𝑐
1
, 𝑐
2
). Similar to the response of B

given in the proof of Theorem 14, A gets either a symbol
⊥ or a message 𝑚

𝑖
. In the former case, A’s query is invalid

and rejected. In the latter case, A’s query is valid and there
exists a matched entry 𝛾 in 𝐻

1
list. This in turn implies that

there exists a matched entry 𝑔𝑡𝑦𝑔−𝑡 in 𝐻
1
list. However, this

is impossible since it again means a solution to the SCSP
instance (𝑐

1
= 𝑔
𝑡
ℎ𝑔
−𝑡
, 𝑦 = 𝑔

𝑟
ℎ𝑔
−𝑟
).

This concludes the theorem.

Remark 16. To proof the unforgeability of a signature scheme,
it is reasonable to exclude the signer from forgeries. But just
as what was done in [9], the so-called external attacker model
enables us to further exclude the intended receiver from the
forgeries. Unlike the primitive authenticated encryption, the
authenticity embedded in the primitive of signcryption is
unidirectional to some extent. That is, it seems that there
is no reason for an intended receiver to forge a signature
on behalf of some signer and then encrypt the signature
for himself/herself, except for planting false evidence against
some senders. Otherwise, an existentially unforgeable signa-
ture scheme, such as the noncommutative signature scheme
in [36], should be embedded therein.

4. Sample Implementations and
Performance Evaluation

In [30], the authors suggested to consider the intractability
assumption of the FP𝐺

𝑔,ℎ
problem over three kinds of plat-

forms:
(1) GL

𝑛
(F
𝑞
), that is, the general linear group over finite

field,
(2) UT

𝑛
(F
𝑞
), that is, the nonabelian subgroup of GL

𝑛
(F
𝑞
)

consisting of unitriangular matrices,
(3) braids set 𝐵

𝑛
(𝑙), that is, the set of braids in the braid

group 𝐵
𝑛
with 𝑙 canonical factors.

At first, a braid 𝐵
𝑛
(𝑙) can be represented by a bit string

of size ⌈ln log 𝑛⌉ [23] and the complexities of the braid
operations such as multiplication, inversion, and canonical
form computation are bounded by O(𝑙2𝑛 log 𝑛) in the sense
of bit operations [9]. Thus, if we follow Maffre’s suggestions
by setting 𝑛 = 50 and 𝑙 = 10 [37], then the number of
bit operations for implementing these braid operations is
proportional to 215 and the sizes of the systemparameters, the
private key, the public key, and the ciphertexts are 5650 bits,
80 bits, 2822 bits, and 8466 bits, respectively. More detailed
evaluation on the performance of braid-based cryptosystems
can be found either in [36] or in [9].

Next, let us pay attention to GL
𝑛
(F
𝑞
) and UT

𝑛
(F
𝑞
). In

particular, wemainly focus on two aspects: the time complex-
ity of exponentiation and the related parameter sizes. Since
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the classical techniques for matrix multiplication/inversion
in GL

𝑛
(F
𝑞
) (resp., UT

𝑛
(F
𝑞
)) take about 𝑛3 (resp., 𝑛(𝑛 + 1)(𝑛 +

2)/6) F
𝑞
-operations, while each F

𝑞
-operation needs O(log2𝑞)

bit operations [38], thus by employing the idea of “square-
multiply,” the time complexity of calculating an exponen-
tiation 𝑔

𝑠 with 𝑠∈
𝑅
{0, 1}
𝑘 in both GL

𝑛
(F
𝑞
) and UT

𝑛
(F
𝑞
) is

O(𝑛3𝑘 log2𝑞) in sense of bit operations. To represent a matrix
inGL

𝑛
(F
𝑞
) (resp.,UT

𝑛
(F
𝑞
)), we need 𝑛2 (resp., 𝑛(𝑛−1)/2) F

𝑞
-

elements, while each F
𝑞
-element occupies exactly log 𝑞 bits.

In practice, 𝑛 need not to be too large. Typically, we set 𝑛 = 4

and then collect our analysis in Table 1. From this table, we
can see that the computational/storage cost of cryptosystems
overUT

𝑛
(F
𝑞
) is about merely 1/3 times of those overGL

𝑛
(F
𝑞
)

when 𝑛 = 4. (Note that since both the encryption scheme
𝑉
1
and the signature scheme 𝑉

2
are embedded into the

signcryption scheme 𝑉
3
, we merely present performance

analysis on 𝑉
3
.)

5. Conclusion

The booming of quantum algorithm casts distrust on many
public key cryptosystems based on integer factorization
problem, discrete logarithm, and other assumed intractable
problems over certain abelian groups. Some breakthrough in
developing newpublic key cryptography based onnonabelian
algebraic structures has been made during the past decade.
In particular, Baba et al. made the first step toward construct
cryptographic schemes based on nonabelian factorization
problems. In this paper, we at first present several conjugacy
systems based on the factorization problem over nonabelian
groups and then present new construction of encryption,
signature, and signcryption based on the newly introduced
cryptographic intractable assumptions. Some possible imple-
mentation platforms and the related performance analysis are
also given. Two possible future perspectives are to investigate
more efficient platforms for implementing our proposal and
to investigate possible reductions from the hardness of the
related conjugated problems to the hardness of the underlying
problems.

Appendix

Existential Forgery on the Noncommutative
Signature Scheme in [35]

In 2012, Kahrobaei and Koupparis [35] introduced a non-
commutative digital signature scheme, denoted by KK12 for
short. In KK12, a highly smooth composite number 𝑛 was
introduced and the authors claimed it is necessary to use
the exponent 𝑛 for resisting existential forgery. The KK12
signature scheme can be summarized as follows.

(i) KeyGen: the private key is a pair (𝑠, 𝑛) with 𝑠∈
𝑅
𝐺

and 𝑛 = ∏
𝑙

𝑘=1
𝑝
𝑒𝑘

𝑘
(where 𝑝

𝑘
are prime and 𝑒

𝑘
∈

N) while the public key is set to 𝑥 = 𝑔
𝑛𝑠. (For

arbitrary 𝑠 ∈ 𝐺 and 𝑛 ∈ N, 𝑔𝑠 and 𝑔
𝑛 represent

𝑠
−1
𝑔𝑠 ∈ 𝐺 and 𝑔 ⋅ ⋅ ⋅ 𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
∈ 𝐺, resp. In addition,

although neither 𝑛𝑠 nor 𝑠𝑛 is well-defined, we have
that 𝑔

𝑛𝑠
= 𝑠
−1
𝑔
𝑛
𝑠 = (𝑔

𝑠
)
𝑛
= 𝑔
𝑠𝑛 holds without any

ambiguity.)
(ii) Sign: to sign a given message 𝑚, the signer with

private key (𝑠, 𝑛) performs the following steps:

(a) pick 𝑡 ∈ 𝐺 at random and a random factoriza-
tion of 𝑛 = 𝑛

𝑖
𝑛
𝑗
,

(b) compute

𝑦 = 𝑔
𝑛𝑗𝑡, ℎ = 𝐻 (𝑚, 𝑦) , 𝛼 = 𝑡

−1
𝑠ℎ𝑦, (A.1)

(c) output the signature 𝜎 = (𝑦, 𝛼, 𝑛
𝑗
).

(iii) Verify: 𝑦𝑛𝑗𝛼 ?= 𝑥
ℎ𝑦 where ℎ = 𝐻(𝑚, 𝑦).

Unfortunately, we find that this is not true and the newly
introduced exponent 𝑛 did not bring to bear upon existential
forgery. In fact, the authors [35] had already realized this
problem and suggested to let the signer keep a public list that
contains all 𝑛

𝑗
s, that is, random factors of 𝑛, he/she has used

thus far. But we think this solution is impractical; this would
make the signature verification process very inefficient, since
one has to check the freshness of 𝑛

𝑗
.This needs to go through

all existing 𝑛
𝑗
s from the list.

Now, let us proceed to describe our cryptanalysis on
KK12. Upon obtaining a valid signature triple 𝜎 = (𝑦, 𝛼, 𝑛

𝑗
)

on message 𝑚, by reusing the exponent 𝑛
𝑗
, our existential

forgery 𝜎

= (𝑦

, 𝛼

, 𝑛
𝑗
) on arbitrary message 𝑚 is formed

as follows:

𝑦

= 𝑦
𝑡


, ℎ

= 𝐻(𝑚


, 𝑦

) , 𝛼


= 𝑡
−1

𝛼𝑦
−1
ℎ
−1
ℎ

𝑦

,

(A.2)

where 𝑡 ∈ 𝐺 is picked at random and ℎ = 𝐻(𝑚, 𝑦). The left
thing is to show that this forgery can pass the verification. In
fact, we have

𝛼

= 𝑡
−1

𝛼𝑦
−1
ℎ̂
−1
ℎ

𝑦


= 𝑡
−1

(𝑡
−1
𝑠ℎ𝑦) 𝑦

−1
ℎ̂
−1
ℎ

𝑦


= (𝑡𝑡

)
−1

𝑠ℎ

𝑦

,

𝑦

= 𝑦
𝑡


= 𝑡
−1

(𝑡
−1
𝑔
𝑛𝑖𝑡) 𝑡


= 𝑔
𝑛𝑖𝑡𝑡


.

(A.3)

Thus,

𝑦
𝑛𝑗𝛼


= (𝑔
𝑛𝑖𝑡𝑡


)

𝑛𝑗𝛼


= 𝑔
𝑛𝑡𝑡

(𝑡𝑡

)
−1

𝑠ℎ

𝑦


= (𝑔
𝑛𝑠
)
ℎ

𝑦


= 𝑥
ℎ

𝑦


.

(A.4)

That is, the above existential forgery attack is successful.
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Table 1: Performance of signcryption scheme 𝑉
3
(𝑛 = 4).

Platforms Operations∗ and complexities† Parameters and sizes‡

KeyGen SignCrypt UnSignCrypt pk§ sk Ciphertext
𝐺 1𝑒 + 2𝑚 + 1𝑖 1𝑒 + 7𝑚 + 1𝑖 7𝑚 + 3𝑖 log |𝐺| log |𝐺| 2 log |𝐺|
GL
𝑛
(F
𝑞
) ∼64𝑘log2𝑞 ∼640log2𝑞 ∼16log 𝑞 ∼16log 𝑞 ∼32log 𝑞

UT
𝑛
(F
𝑞
) ∼20𝑘log2𝑞 ∼200log2𝑞 ∼6log𝑞 ∼6log 𝑞 ∼12log 𝑞

𝐵
50
(10) ∼215 5730 2822 8466

∗
𝑒/𝑚/𝑖: exponentiation/multiplication/inversion in the nonabelian group 𝐺.
†In the sense of bit operations.
‡In the sense of bit length.
§Including system parameters shared by all users.
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