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We propose two new methods: improved binomial methods and improved least square MonteCarlo methods (LSM), for pricing
American options. These two methods are developed using the nice capped options which have closed-form formulas. Numerical
examples are provided to verify that these two new methods are pretty efficient.

1. Introduction

American style options are very important in hedging instru-
ments. The binomial tree and least square Monte Carlo
method (LSM) are two popularly used methods for pricing
American options. Binomial tree was first introduced by Cox
et al. [1] and developed by many researchers (see, e.g., a
book by Kwok [2]). Least square Monte Carlo method was
originally invented by Longstaff and Schwartz [3] and became
well-known and popular approaches after then.

In this paper it is found that the binomial tree meth-
ods and least square Monte Carlo methods can be greatly
improved by nice option-capped options with closed-form
solutions. Capped option is a conventional option with a
predefined profit cap written into the contract. A capped
option is automatically exercised when the underlying secu-
rity closes at a price making the option’s mark to market
match the specified amount. Boyle and Turnbull [4] provided
the valuation formulas for European capped options and
Broadie and Detemple [5] gave the closed-form formula
for American capped option under the condition of low
dividend.

In this paper we use the American capped option with
the closed-form formula given by Broadie and Detemple [5]
to improve the binomial tree approach for pricing American
call options. Also we develop new improvement to the least
square Monte Carlo method using the lower bound on the

early exercise boundary which was provided by Broadie and
Detemple [6]. Numerical examples are given to confirm our
findings.

The paper is organized as follows. In Section 2 we intro-
duce capped options. In Sections 3 and 4 we introduce how
to use capped options to improve the traditional binomial
tree method and LSM. In Section 5 we give the result of
numerical implementations. Conclusions and remarks on the
future work are given in the last section.

2. Capped Options

Let 𝐶𝐿
𝑡
represent the value of an American capped call option

at time 𝑡. The American capped call option has a strike price
𝐾, a cap 𝐿, a risk free rate 𝑟, a low dividend 𝛿, and a maturity
𝑇.Throughout the paper, we assume that 𝐿 ≥ 𝐾 > 0. Exercise
may take place, at the discretion of the owner of the security,
at any date during the life of the option [0, 𝑇]. The capped
call option with payoff max(min(𝐿, 𝑆

𝑡
) − 𝐾, 0) and condition

𝛿 ≤ 𝑟𝐾/𝐿 is given by (see Broadie and Detemple [6])

𝐶
𝐿

𝑡
(𝑆
𝑡
, 𝐿)

= (𝐿 − 𝐾) [𝜆
2𝜙/𝜎
2

𝑡
𝑁(𝑑
0
) + 𝜆
2𝛼/𝜎
2

𝑡
𝑁(𝑑
0
+

2𝑓√𝑇 − 𝑡

𝜎
)]
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+ 𝑆
𝑡
𝑒
−𝛿(𝑇−𝑡)

[𝑁 (𝑑
−

1
(𝐿) − 𝜎√𝑇 − 𝑡)

−𝑁(𝑑
−

1
(𝐾) − 𝜎√𝑇 − 𝑡)]

− 𝜆
−(2(𝑟−𝛿)/𝜎

2
)

𝑡
𝐿𝑒
−𝛿(𝑇−𝑡)

[𝑁 (𝑑
+

1
(𝐿) − 𝜎√𝑇 − 𝑡)

−𝑁(𝑑
+

1
(𝑆
𝑡
) − 𝜎√𝑇 − 𝑡)]

− 𝐾𝑒
−𝑟(𝑇−𝑡)

[𝑁 (𝑑
−

1
(𝐿)) − 𝑁 (𝑑

−

1
(𝐾)) − 𝜆

1−(2(𝑟−𝛿)/𝜎
2
)

𝑡

× [𝑁 (𝑑
+

1
(𝐿)) − 𝑁 (𝑑

+

1
(𝐾))] ] ,

(1)
where

𝑑
0
=

1

𝜎√𝑇 − 𝑡
[log (𝜆

𝑡
) − 𝑓 (𝑇 − 𝑡)] ,

𝑑
±

1
(𝑥)

=
1

𝜎√𝑇 − 𝑡
[± log (𝜆

𝑡
) − log (𝐿) + log (𝑥) + 𝑏 (𝑇 − 𝑡)] ,

𝑏 = 𝛿 − 𝑟 +
1

2
𝜎
2
,

𝑓 = √𝑏2 + 2𝑟𝜎2,

𝜙 =
1

2
(𝑏 − 𝑓) ,

𝛼 =
1

2
(𝑏 + 𝑓) , 𝜆

𝑡
=

𝑆
𝑡

𝐿
.

(2)
𝑁(⋅) denotes the cumulative standard normal distribution.
The procedure relies heavily on the derivative of the capped
call option value with respect to the constant cap 𝐿, evaluated
as 𝑆
𝑡
approaches 𝐿 from below:

𝐷(𝐿, 𝑡) ≡ lim
𝑆
𝑡
↓𝐿

𝜕𝐶
𝐿

𝑡
(𝑆
𝑡
, 𝐿)

𝜕𝐿
,

𝜕𝐶
𝐿

𝑡
(𝑆
𝑡
, 𝐿)

𝜕𝐿

= [1 − (
𝐿 − 𝐾

𝐿
)(

2𝜙

𝜎2
)]𝜆
2𝜙/𝜎
2

𝑡
𝑁(𝑑
0
)

+ [1 − (
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𝐿
)(

2𝛼

𝜎2
)] 𝜆
2𝛼/𝜎
2

𝑡
𝑁(𝑑
0
+
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𝜎
)

+ 𝜆
−(2(𝑟−𝛿)/𝜎

2
)
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−𝛿𝜏

2 (𝑏 − 𝜎
2
)

𝜎2

× [𝑁 (𝑑
+

1
(𝐿) − 𝜎√𝜏) − 𝑁 (𝑑

+

1
(𝐾) − 𝜎√𝜏)]

− 𝜆
−(2𝑏/𝜎

2
)

𝑡
𝑒
−𝑟𝜏 2𝑏𝐾

𝜎2𝐿
[𝑁 (𝑑

+

1
(𝐿)) − 𝑁 (𝑑

+

1
(𝐾))] .

(3)

So

𝐷 (𝐿, 𝑡) = [1 − (
𝐿 − 𝐾

𝐿
)(

2𝜙

𝜎2
)]𝑁(−

𝑓√𝜏

𝜎
)

+ [1 − (
𝐿 − 𝐾

𝐿
)(

2𝛼
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𝑓√𝜏

𝜎
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−𝛿𝜏

2 (𝑏 − 𝜎
2
)

𝜎2

× [𝑁 (𝑑
+

1
(𝐿) − 𝜎√𝜏) − 𝑁 (𝑑

+

1
(𝐾) − 𝜎√𝜏)]

− 𝑒
−𝑟𝜏 2𝑏𝐾

𝜎2𝐿
[𝑁 (𝑑

+

1
(𝐿)) − 𝑁 (𝑑

+

1
(𝐾))] ,

𝜕𝐷 (𝐿, 𝑡)

𝜕𝐿
= −

𝐾

𝐿2
[
2𝜙

𝜎2
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2𝑓

𝜎2
𝑁(

𝑓√𝜏

𝜎
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− 2𝑒
−𝛿𝜏

𝑛 (𝑑
+

1
(𝐿) − 𝜎√𝜏)

𝐿𝜎√𝜏

− 𝑒
−𝑟𝜏 2𝑏𝐾

𝜎2𝐿2
[𝑁 (𝑑

+

1
(𝐿)) − 𝑁 (𝑑

+

1
(𝐾))] .

(4)

Denote by 𝐿∗ the solution to the equation

𝐷(𝐿
∗
, 𝑡) = 0. (5)

Equation (5) represents a zero-finding problem that can be
solved easily, for example, using Newton’s method with (4).

3. New Binomial Algorithm for
American Options

In this section, how to use American capped option in
improving binomial treemethod is introduced. Binomial tree
is a classical method. Cox et al. [1] introduced binomial tree
method. Throughout the following paper, suppose that the
constant interest rate 𝑟 > 0 and the constant volatility 𝜎 > 0

are given, and continuous capital markets are modeled by a
stock price process 𝑆

𝑡
following geometric Brownian motion

𝑑𝑆
𝑡
= 𝑆
𝑡 (𝑟 − 𝛿) 𝑑𝑡 + 𝑆

𝑡
𝜎𝑑𝑊
𝑡
, (6)

where 𝑊
𝑡
is a standard Wiener process on some probability

space (𝑋, 𝐹, 𝑄). Suppose 𝐶𝐴(𝑆
𝑡
) is the value of American call

option for the continuous-time Black-Scholes model, where
𝑆
𝑡
is the asset’s price at time 𝑡, between time [0, 𝑇]. The

American call option can be written as

𝐶
𝐴
(𝑆
𝑡
) =

sup
𝜏∈[0,𝑇]

𝐸
𝑡
[𝑒
−𝑟𝜏

𝐶 (𝑆
𝜏
)] , (7)

where 𝜏 is the stopping time, and 𝐶(𝑆
𝜏
) = max(𝑆

𝜏
− 𝐾, 0).

𝐸
𝑡
[⋅] is the conditional expectation at 𝑡 under risk neutral

probability measure.
Binomialmodels are the description of discrete asset price

dynamics. They specify a number 𝑛 of trading dates. Trading
occurs only at the equidistant spots of time 𝑡

𝑖
∈ [0, 𝑇],

𝑖 = 0, . . . , 𝑛, and 0 = 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛

= 𝑇. In
order to achieve a complete market model, the one-period
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return𝑅
𝑖
(𝑖 = 0, . . . , 𝑛) is modeled by two point i.i.d binomial

random variables

𝑅
𝑖
=
{

{

{

𝑢
𝑛
with probability 𝑞

𝑛

𝑑
𝑛
with complementary probability 1 − 𝑞

𝑛

(8)

on a suitable probability space (𝑋, 𝐹, 𝑄). Therefore the dis-
crete asset price dynamics is 𝑆

𝑘
, where the price 𝑆

𝑡
𝑘

at time 𝑡
𝑘

is described by

𝑆
𝑡
𝑘

= 𝑆
0

𝑘

∏

𝑖=1

𝑅
𝑖
. (9)

The specification of the one-period returns is a complete
description of the discrete dynamics. The model of CRR uses

𝑢
𝑛
= 𝑒
𝜎√Δ𝑡

𝑛 , 𝑑
𝑛
= 𝑒
−𝜎√Δ𝑡

𝑛 , (10)

whereΔ𝑡
𝑛
= 𝑇/𝑛 is the stepsize. To take into account the risk-

neutrality argument of Harrison and Pliska [7], the expected
one-period return 𝐸[𝑅

𝑖
] must be equal to the one-period

return of the riskless bond 𝑟
𝑛
= 𝑒
𝑟Δ𝑡
𝑛 . This amounts to setting

𝑞
𝑛
= (𝑟
𝑛
−𝑑
𝑛
)/(𝑢
𝑛
−𝑑
𝑛
).The risk-neutrality argument amounts

to matching discrete and continuous first moments. In Tian
[8], the parameter selection requires the second and third
moments to be equal, too:

𝑢
𝑛
=

𝑟
𝑛
V
𝑛

2
(V
𝑛
+ 1 + √V2

𝑛
+ V
𝑛
− 3) ,

𝑑
𝑛
=

𝑟
𝑛
V
𝑛

2
(V
𝑛
+ 1 − √V2

𝑛
+ V
𝑛
− 3) ,

(11)

where V
𝑛
= 𝑒
𝜎
2
Δ𝑡
𝑛 .

Denote the value of American call option calculated by
the standard CRR binomial tree at time 𝑡

𝑘
by 𝐶
𝐵
(𝑆
𝑡
𝑘

), the
exercise value by 𝐶𝑒(𝑆

𝑡
𝑘

), and the hold-on value by 𝐶ℎ(𝑆
𝑡
𝑘

). It
is known that 𝐶𝐵(𝑆

𝑇
) = max(𝑆

𝑇
− 𝐾, 0), 𝐶𝑒(𝑆

𝑡
𝑘

) = max(𝑆
𝑡
𝑘

−

𝐾, 0), and 𝐶
ℎ
(𝑆
𝑡
𝑘

) = 𝐸
𝑡
𝑘

(𝑒
−𝑟Δ𝑡
𝑛𝐶
𝐵

(𝑆
𝑡
𝑘+1

)). Then standard CRR
binomial value of American call option at 𝑡

𝑘
is 𝐶
𝐵
(𝑆
𝑡
𝑘

) =

max(𝐶𝑒(𝑆
𝑡
𝑘

), 𝐶
ℎ
(𝑆
𝑡
𝑘

)).
The above procedure described the standard CRR bino-

mial tree approach for calculation of American call option.
Now we present the improved binomial tree approach.
Denote 𝐶

𝐸
(𝑆) by the value of a European call option calcu-

lated by Black-Scholes formula. Broadie and Detemple [6]
improved the binomial tree approach by replacing 𝐶

𝐵
(𝑆
𝑡
𝑛−1

)

with 𝐶
𝐸
(𝑆
𝑡
𝑛−1

) at 𝑡
𝑛
, the time before maturity 𝑇. We find that

this kind of improvement can be further refined. Since

𝐶
𝐸
(𝑆
𝑡
𝑛−1

) ≤ 𝐶
𝐿

𝑡
𝑛−1

(𝑆
𝑡
𝑛−1

, 𝐿) ≤ 𝐶
𝐴
(𝑆
𝑡
𝑛−1

) , (12)

where 𝐶𝐴(𝑆
𝑡
𝑛−1

) is the real value of American call option (see
Broadie and Detemple [6]), which means that the value of
capped option is much closer to the true American option
than the European option, it is more accurate to replace
𝐶
𝐵
(𝑆
𝑡
𝑛−1

) by 𝐶
𝐿

𝑡
𝑛−1

(𝑆
𝑡
𝑛−1

, 𝐿). The cap 𝐿 can be chosen by

S0
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Figure 1: Simulation paths.

a practicer. In fact it is muchmore accurate to use the optimal
value 𝐿

∗ obtained by solving the nonlinear equation (5).
Although it takes time to solve the nonlinear equation (5),
the calculated result can be stored in computer and used for
next time calculation. In this way the traditional binomial
approach is greatly improved and accelerated.

4. New LSM for American Options

Least Monte Carlo method (LSM) was first introduced by
Longstaff and Schwartz [3]. It is a simple yet powerful
approach for approximating the value of American options by
simulation.They only used in-the-money paths since it allows
them to better estimate the conditional expectation function
in the region where exercise is relevant and significantly
improves the efficiency of the algorithm.

The key insight underlying LSM approach is that this
conditional expectation can be estimated from the cross-
sectional information in the simulation by using least squares.
Specifically, LSM regresses the realized payoffs from contin-
uation on functions of the values of the state variables. The
fitted value from this regression provides a direct estimate
of the conditional expectation function. By estimating the
conditional expectation function for each exercise date, LSM
obtains a complete specification of the optimal exercise
strategy along each path. With this specification, American
options can then be valued accurately by simulation.

Suppose a stock price process 𝑆
𝑡
following geometric

Brownian motion as well. The initial price is 𝑆
0
, and 𝑆

𝑡
=

𝑆
𝑡
𝑒
(𝑟−(1/2)𝜎

2
)𝑡+𝜎𝑊

𝑡 , where 𝑊
𝑡

∼ 𝑁(0, 1). By specifying a
number 𝑁 of trading dates, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁, and
𝑗 < 𝑖, the discrete time is 0 < 𝑡

𝑗
< ⋅ ⋅ ⋅ < 𝑡

𝑖
≤ 𝑡
𝑁

= 𝑇. Then, we
can have

𝑆
𝑡
𝑖

= 𝑆
𝑡
𝑗

𝑒
(𝑟−(1/2)𝜎

2
)(𝑡
𝑖
−𝑡
𝑗
)+𝜎√𝑡𝑖−𝑡𝑗𝑊𝑡𝑖 . (13)

The simulation paths are as shown in Figure 1.
There are six paths at Figure 1. The value of European call

option is

𝐶
𝐸
=

1

6
𝑒
−𝑟𝑇

((𝑆
1,𝑇

− 𝐾)
+
+ (𝑆
2,𝑇

− 𝐾)
+
+ (𝑆
3,𝑇

− 𝐾)
+

+ (𝑆
4,𝑇

− 𝐾)
+
+ (𝑆
5,𝑇

− 𝐾)
+
+ (𝑆
6,𝑇

− 𝐾)
+
) .

(14)
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Figure 2: Lower bound on the early exercise boundary.

As American option can be excised at any time before
maturity time 𝑇, the values of American option at any time
𝑡 also need to be compared as the procedure described in
Section 3. Suppose there are total number of 𝑃 paths, among
which the number of effective paths is 𝑃, where the effective
paths are defined by the hold-on value that is above zero to
regression (see Longstaff and Schwartz [3]).

LSM uses regression to obtain the regressed hold-on
value. The estimated conditional expectation function is

𝐸 (𝐶
ℎ
(𝑆
𝑘

,𝑡
𝑖

) | 𝑆
𝑘

,𝑡
𝑖

) = 𝑎 + 𝑏 ∗ 𝑆
𝑘

,𝑡
𝑖

+ 𝑐 ∗ 𝑆
2

𝑘

,𝑡
𝑖

,

𝑘

= 1, . . . , 𝑃


,

(15)

where 𝑃
 is the number of in-the-money paths, and 𝑆

𝑘

,𝑡
𝑖

is
the price of underlying asset on the in-the-money path. The
regressed hold-on value 𝐶

ℎ
(𝑆
𝑘,𝑡
𝑖

) is compared with excised
value.

Therefore there exists stopping time at each path and a
stoppingmatrix𝑃×𝑁. With this specification of the stopping
matrix, it is straightforward to determine the cash flows
realized by following the stopping time. Having identified
the cash flows generated by the American call at each date
along each path, the value of American call option can now
be valued by discounting each cash flow back to time zero
and averaging over all. One possible choice of basis functions
is the set of (weighted) Laguerre polynomials. Other types
of basis functions include the Hermite, Legendre, Chebyshev,
and Jacobi polynomials.

But there are some useless paths which raise the cost of
computation in the Monte Carlo regression. In this paper
we develop a new algorithm. More precisely we use a more
accurate early exercise policy to recognize the paths that
are not used in the Monte Carlo regression. Broadie and
Detemple [6] used capped option as a tool to obtain the lower
bond 𝐿

∗ of American call option as shown in Figure 2, where
the solid line 𝐵

∗ is the optimal exercise boundary for an
American call option. The dotted line 𝐿∗ is the lower bound
(see (5)). Assume that there are 𝑃

 in-the-money paths in
Monte Carlo simulation for pricing a call option. Given a
lower bound, we can filter out the invalid path in Monte
Carlo simulation. We take interval [𝑎 ∗ 𝐿

∗
𝑏 ∗ 𝐿
∗
] to reduce

the number of paths, where 𝑎 and 𝑏 are two user-selected

constants satisfying 𝑏 > 1, 0 < 𝑎 < 1, and use the paths on
the interval to regression. Assume that there are 𝑃

∗ in-the-
money paths between the intervals, and obviously 𝑃

∗
< 𝑃
;

the new conditional expectation function is

𝐸 (𝐶
ℎ
(𝑆
𝑘
∗
,𝑡
𝑖

) | 𝑆
𝑘
∗
,𝑡
𝑖

) = 𝑎
∗
+ 𝑏
∗
∗ 𝑆
𝑘
∗
,𝑡
𝑖

+ 𝑐
∗
∗ 𝑆
2

𝑘
∗
,𝑡
𝑖

,

𝑘
∗
= 1, . . . , 𝑃

∗
.

(16)

So, there is a new stopping rule and stopping matrix 𝑃 × 𝑁.
In this way the traditional LSM method is greatly improved
and accelerated.

5. Numerical Analysis

5.1. New Binomial Algorithm. In Examples 1, 2, and 4, the
dividend rate is not lower than the interest rate. Broadie and
Detemple [5] only proved formula (1) for the capped option
with lower dividend rates. However the numerical results in
these examples show that our algorithm is still correct using
formula (1).

Example 1. Use capped option as a tool to improve CRR
model with parameters: 𝑆0 = 100; 𝛿 = 0.07; 𝑟 = 0.03;
𝜎 = 0.2; 𝑇 = 0.5; 𝑡 = 0; 𝐾 = 100. The benchmark value
for the American option calculated by CRR binomial tree
with 50,000 steps is 4.782592536.The rate is calculated by the
following formula:

rate = −
log (Error (step1) /Error (step2))

log (step1/step2)
. (17)

Suppose that the rate of convergence of binomial method is
𝑞; that is,

Error (step1) = 𝛼(
𝑇

step1
)

𝑞

Error (step2) = 𝛼(
𝑇

step2
)

𝑞

.

(18)

Then

log Error (step1)
 ≈ log (𝛼) + 𝑞 log( 𝑇

step1
)

log Error (step2)
 ≈ log (𝛼) + 𝑞 log( 𝑇

step1
) .

(19)

So

𝑞 = −
log (Error (step1) /Error (step2)

)

log (step1/step2)
. (20)

Example 2. Use capped option as a tool to improve CRR
model with parameters: 𝑆0 = 100; 𝛿 = 0.03; 𝑟 = 0.03;
𝜎 = 0.2; 𝑇 = 0.5; 𝑡 = 0; 𝐾 = 100. The benchmark value for
the American option calculated by CRR binomial tree with
50,000 steps is 5.568079.
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Table 1: Numerical results for Example 1.

Steps CRR binomial tree Error Rate Improved binomial tree Error Rate
100 4.775603311 −0.00699 — 4.787452236 0.0048597 —
200 4.779176352 −0.00342 1.032747 4.785155998 0.002563463 0.922773287
400 4.780890888 −0.0017 1.005453 4.78396397 0.001371434 0.902408294
800 4.781760011 −0.00083 1.031369 4.783305899 0.000713364 0.942975933
1600 4.782184168 −0.00041 1.027623 4.782971819 0.000379283 0.911362084

Table 2: Numerical results for Example 2.

Steps CRR binomial tree Error Rate Improved binomial tree Error Rate
100 5.555259412 −0.012819 — 5.57314351 0.00506440 —
200 5.561670746 −0.006408 1.0003342 5.57065882 0.00257971 0.97317924
400 5.564883789 −0.003195 1.0039956 5.56939269 0.00131358 0.97370770
800 5.566492564 −0.001586 1.0100720 5.56875293 0.00067382 0.96305278
1600 5.567298182 −0.000780 1.0226286 5.56843027 0.00035116 0.94021553

Table 3: Numerical results for Example 3.

Steps CRR binomial tree Error Rate Improved binomial tree Error Rate
100 6.07615754 −0.013941 — 6.09471576 0.00461651 —
200 6.08313793 −0.006961 1.0019746 6.09242930 0.00233005 0.98644161
400 6.08663147 −0.003467 1.0053502 6.09128023 0.00118098 0.98037573
800 6.08837907 −0.001720 1.0114551 6.09070422 0.00060497 0.96504590
1600 6.08925308 −0.000846 1.0235380 6.09041584 0.00031659 0.93422088

Example 3. Use capped option as a tool to improve CRR
model with parameters: 𝑆0 = 100; 𝛿 = 0.03; 𝑟 = 0.07;
𝜎 = 0.2; 𝑇 = 0.5; 𝑡 = 0; 𝐾 = 100. The benchmark value for
the American option calculated by CRR binomial tree with
50,000 steps is 6.090099249.

From Tables 1, 2, and 3, it is clear that all the errors
calculated by improved binomial tree method are smaller
than the errors of the CRR binomial tree method. According
to Examples 1 and 3, the value of American option calculated
by improved binomial tree method with 100 steps is better
than that calculated by traditional binomial tree method with
200 steps. And capped option does a better job in improving
the CRR binomial tree method for the higher dividend
and lower dividend CRR model than the CRR model with
dividend being equal to risk free rate according to Tables 1–3.

The following example tests the capped option as a tool to
improve the traditional binomial tree method in Tian model
[8].The numerical result shows that this improvement can be
also used in Tian model.

Example 4. Use capped option as a tool to improve Tian
model with parameters: 𝑆0 = 100; 𝛿 = 0.07; 𝑟 = 0.03;
𝜎 = 0.2; 𝑇 = 0.5; 𝑡 = 0; 𝐾 = 100. The benchmark value for
the American option calculated by Tian binomial tree with
50,000 steps is 4.78259298824482.

5.2. New LSM

Example 5. Use capped option as a tool to improve LSM.
Consider the parameters:

𝑟 = 0.03, 𝜎 = 0.2, 𝛿 = 0.07,

𝐾 = 100, 𝑁 = 20, 𝑃 = 50, 000, 𝑇 = 0.5.
(21)

Let 𝑎 = 0, 0.25, 0.5, 0.75, 𝑏 = 1.125; take interval [𝑎 ∗

𝐿
∗
, 𝑏 ∗ 𝐿

∗
] to reduce the paths. The initial values of under-

lying asset: 𝑆0 = [80 90 100 110 120]. The benchmark
values, which are calculated using 500,000 paths, are: 𝑉 =

[0.219 1.386 4.783 11.098 20.000]. The output parameters
showed by Tables 5, 6, 7, 8, and 9 are

𝑉(𝑖, 𝑗): the value of options, where 𝑖 = 1, . . . , 5 and
𝑗 = 1, . . . , 5;

Res(𝑖, 𝑗): the error, where Res = √∑
𝑛

𝑘=1
(𝑉
𝑘
− 𝑉)
2

/𝑛,
and 𝑛 = 100;
Reduced path(𝑖, 𝑗): the number of average reduced
paths;
Var(𝑖, 𝑗): the average variance;
Avt(𝑖, 𝑗): the average time.

We simulate 100 times to get the output parameters.
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Table 4: Numerical results for Example 4.

Steps Tian binomial tree Error Rate Improved binomial tree Error Rate
100 4.775829512 0.0067634 — 4.787677204 0.00508421 —
200 4.779289543 0.0033034 1.0337934 4.785271837 0.00267884 0.92441183
300 4.780385169 0.0022078 0.9938233 4.784452498 0.00185950 0.90038471
400 4.780947507 0.0016454 1.0218663 4.784022516 0.00142952 0.9140937
500 4.781290534 0.0013024 1.0476757 4.783750356 0.00115736 0.94645693
600 4.78151052 0.0010824 1.0147265 4.783567205 0.00097421 0.94486630
700 4.781671345 0.0009216 1.0433990 4.783434838 0.00084185 0.94733429
800 4.781788327 0.0008046 1.0165205 4.783334956 0.00074196 0.94581474
900 4.781878368 0.0007146 1.0075284 4.783260037 0.00066704 0.90371784
1000 4.781950499 0.0006424 1.0098803 4.783199437 0.00060644 0.90397488
1100 4.782010723 0.0005822 1.0326610 4.783148553 0.00055556 0.91947996
1200 4.782060177 0.0005328 1.0200962 4.783105294 0.00051230 0.93163122
1300 4.782102211 0.0004907 1.0266497 4.783068897 0.00047590 0.92069405
1400 4.782138982 0.0004540 1.0509063 4.783037294 0.00044430 0.92722175
1500 4.782170649 0.0004223 1.0479512 4.783010233 0.00041724 0.91082254
1600 4.782198327 0.0003946 1.0502588 4.78298612 0.00039313 0.92234362

Table 5: Numerical result for Example 5.

𝑉(𝑖, 𝑗) S0 = 80 90 100 110 120
Standard LSM 0.2027 1.3485 4.6388 11.0304 19.9684
[𝑎, 𝑏] = [0, 1.125] 0.2030 1.3551 4.6219 11.0805 19.9684
[𝑎, 𝑏] = [0.25, 1.125] 0.1795 1.3843 4.4811 10.7401 19.0541
[𝑎, 𝑏] = [0.5, 1.125] 0.1795 1.3843 4.4683 10.6162 18.2787
[𝑎, 𝑏] = [0.75, 1.125] 0.1795 1.3843 4.4683 10.6162 18.2787

Table 6: Numerical result for Example 5.

Res(𝑖, 𝑗) S0 = 80 90 100 110 120
Standard LSM 0.0010 0.0029 0.0094 0.0263 0.0027
[𝑎, 𝑏] = [0, 1.125] 0.0010 0.0028 0.0089 0.0261 0.0028
[𝑎, 𝑏] = [0.25, 1.125] 0.0010 0.0031 0.0101 0.0269 0.0508
[𝑎, 𝑏] = [0.5, 1.125] 0.0010 0.0032 0.0105 0.0313 0.0772
[𝑎, 𝑏] = [0.75, 1.125] 0.0010 0.0032 0.0105 0.0313 0.0772

Table 7: Numerical result for Example 5.

Reduced path(𝑖, 𝑗) S0 = 80 90 100 110 120
Standard LSM 0 0 0 0 0
[𝑎, 𝑏] = [0, 1.125] 0.1 4.4 30.7 148.4 442.1
[𝑎, 𝑏] = [0.25, 1.125] 27.4 237.5 1078.7 1995.6 2267.9
[𝑎, 𝑏] = [0.5, 1.125] 27.4 237.5 1079 2002.8 2318.8
[𝑎, 𝑏] = [0.75, 1.125] 27.4 237.5 1079 2002.8 2318.8

Table 5 shows that improved LSM is right. Tables 6 and 8
show that when [𝑎, 𝑏] = [0, 1.125], the Res and the average
variance are both improved. Table 7 shows that the reduced
paths increase when the initial asset price goes larger. We
can see from Table 9 that the times of calculation are much
reduced. According to Tables 5, 6, 7, 8, and 9, improved
LSM is faster and meanwhile does not decrease the accuracy.

Table 8: Numerical result for Example 5.

Var(𝑖, 𝑗) S0 = 80 90 100 110 120
Standard LSM 0.0120 0.0120 0.0563 0.0565 0.0265
[𝑎, 𝑏] = [0, 1.125] 0.0119 0.0353 0.0551 0.0573 0.0265
[𝑎, 𝑏] = [0.25, 1.125] 0.0123 0.0428 0.0793 0.1183 0.1341
[𝑎, 𝑏] = [0.5, 1.125] 0.0123 0.0428 0.0791 0.1209 0.1488
[𝑎, 𝑏] = [0.75, 1.125] 0.0123 0.0428 0.0791 0.1209 0.1488

Table 9: Numerical result for Example 5.

Avt(𝑖, 𝑗) S0 = 80 90 100 110 120
Standard LSM 0.0011 0.0008 0.0017 0.0045 0.0072
[𝑎, 𝑏] = [0, 1.125] 0.0003 0.0006 0.0019 0.0045 0.0064
[𝑎, 𝑏] = [0.25, 1.125] 0.0005 0.0006 0.0006 0.0008 0.0013
[𝑎, 𝑏] = [0.5, 1.125] 0.0003 0.0002 0.0003 0.0006 0.0005
[𝑎, 𝑏] = [0.75, 1.125] 0.0003 0.0002 0.0006 0.0003 0.0003

Especially whenwe use [𝑎, 𝑏] = [0, 1.125] to reduce the paths,
the result is much better and faster.

6. Conclusions

We used the capped option as a tool to improve the binomial
tree method and LSMmethod. From the above examples, we
conclude that capped option does a good job in improving
both the binomial tree and LSM. According to Tables 1–3,
the improved binomial tree method performs well for CRR
models. Table 4 shows that it works well for Tian model. It is
more efficient to replace the values of American call option
one step before maturity with the values of corresponding
American capped call options. Tables 5–9 give the numerical
result of the improved LSM. By filtering out the invalid paths
with the lower bound, the LSM method has been improved.
According to above result, the capped option is a very useful
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tool in improving the traditional binomial tree method and
LSM.This paper only studied two basicmethods. Othermore
complex models, such as stochastic models and multiple
assets models, need to be studied in the future.
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